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Abstract

Factual inconsistencies pose a significant hur-
dle for the faithful summarization by generative
models. While a major direction to enhance
inconsistency detection is to derive stronger
Natural Language Inference (NLI) models, we
propose an orthogonal aspect that underscores
the importance of incorporating task-specific
taxonomy into the inference. To this end,
we consolidate key error types of inconsistent
facts in summaries, and incorporate them to
facilitate both the zero-shot and supervised
paradigms of LLMs. Extensive experiments
on ten datasets of five distinct domains suggest
that, zero-shot LLM inference could benefit
from the explicit solution space depicted by
the error type taxonomy, and achieves state-
of-the-art performance overall, surpassing spe-
cialized non-LLM baselines, as well as recent
LLM baselines. We further distill models that
fuse the taxonomy into parameters through our
designed prompt completions and supervised
training strategies, efficiently substituting state-
of-the-art zero-shot inference with much larger
LLMs. Our data and code are publicly released
at https://github.com/lxucs/factax.

1 Introduction

As abstractive summarization has been advanced
significantly via generative models such as BART
(Lewis et al., 2020) and Large Language Models
(LLMs), factual inconsistencies remain one of the
key concerns for ensuring high-quality faithful sum-
maries (Maynez et al., 2020a; Kryscinski et al.,
2020; Goyal et al., 2023), where certain facts from
the summary are not aligned with those presented
in the original document. Previous works have
studied extensively that employ various paradigms
to reason inconsistencies, ranging from specialized
BERT-variants (Devlin et al., 2019) such as DAE
(Goyal and Durrett, 2020), QAFactEval (Fabbri
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et al., 2022), to recent LLMs equipped with gen-
eral comprehension capabilities (Luo et al., 2023;
Wang et al., 2023; Liu et al., 2023a).

In particular, one outstanding direction for fac-
tual inconsistency detection is to frame it as a Nat-
ural Language Inference (NLI) problem, assessing
the entailment between the document and summary
(Bowman et al., 2015). Intuitively, irrelevant or in-
consistent facts in the summary should reflect a
low level of entailment through NLI models. Prior
to LLMs, BERT-based NLI models have been suc-
cessfully practiced by approaches such as SummaC
(Laban et al., 2022) to identify summary inconsis-
tencies. In this new era of LLMs, several pioneer-
ing works have shown that zero-shot prompting of
LLMs is already effective with NLI-style scoring,
where LLMs directly classify the summary consis-
tency or provide a consistency score (Luo et al.,
2023; Wang et al., 2023; Liu et al., 2023a).

While it is a promising direction to keep enhanc-
ing factual inconsistency recognition by deriving
stronger NLI models, such as FactCC (Kryscinski
et al., 2020), DocNLI (Yin et al., 2021), FalseSum
(Utama et al., 2022), AMRFact (Qiu et al., 2024),
in this work, we propose approaches from an or-
thogonal aspect, which examines the incorporation
of explicit solution space into the inference, such
that either zero-shot LLM prompting or trained
models are grounded by explicit task-specific cues,
i.e. an explicit error type taxonomy.

Our motivation stems from the distinct nature
between summary inconsistencies and NLI: sum-
maries are grounded by the original document, thus
leaning towards reiteration, whereas NLI tackles a
broader problem that involves extrapolation. Since
the scope of summary inconsistency detection is
roughly smaller than NLI, one can consolidate and
leverage its task-specific taxonomy to rationalize a
more effective inference with interpretability.

As there exist numerous annotation schemas
adopted by previously introduced datasets, factual
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errors have been unified into a fine-grained taxon-
omy by AGGREFACT (Tang et al., 2023), which
we consolidate upon and identify five common er-
ror types that are salient for recognizing summary
inconsistencies, including Predicate Error, Entity
Error, Circumstantial Error, Coreference Error
and Addition Error (Section 3), covering a wide
variety of datasets (Table 1). The identified error
types are then utilized to anchor the inference of
factual inconsistencies. Specifically, we examine
their efficacy with LLMs in both zero-shot and su-
pervised paradigms, and demonstrate the utility of
task-specific taxonomy in complementary to the
sole NLI-style classification.

For the zero-shot setting (Section 4), we craft
the instruction tailored for each error type in the
prompt, directing LLMs to reason specific error
types according to the given guidance. To han-
dle long summaries, we additionally propose a
window-based prompting scheme, as an effective
alternative to the vanilla prompting. For a compre-
hensive evaluation, our experiments are conducted
on 10 datasets across five domains, including sum-
marization on different news sources, daily or pro-
fessional dialogues, official reports and narrative
stories. Moreover, we employ models from Ope-
nAI (ChatGPT, GPT-4o) along with strong open-
source LLMs including Llama-3 (Touvron et al.,
2023) and Mistral (Jiang et al., 2023) towards a
robust conclusion.

Empirical results suggest that our proposed meth-
ods surpass all baselines, including 7 non-LLM
baselines and 4 LLM baselines, showing that zero-
shot LLM inference could benefit from a grounded
solution space by depicting the task taxonomy in
the instruction. Our proposed methods, termed
Factuality with Taxonomy (FACTAX), achieve the
best overall performance across five domains; espe-
cially, FACTAX with ChatGPT outperforms pre-
vious state-of-the-art zero-shot baseline G-Eval
with GPT-4 (Liu et al., 2023a; Qiu et al., 2024)
on the AGGREFACT-FTSOTA benchmark (Tang
et al., 2023). Our zero-shot FACTAX methods
could be seamlessly applied with stronger LLMs
to harness their ongoing development; Section 4.4
demonstrates that switching to the larger GPT-4o or
Llama3-70B can unsurprisingly boost the improve-
ment “for free”, significantly surpassing previous
trained models specialized for this task.

We then further seek to distill a model that fuses
the task taxonomy into model parameters through
supervised training. By unifying the error types

of previous independently introduced datasets, we
regard them jointly as training resources. Llama3-
8B models are trained to learn binary decisions
as well as to recognize specific error types on
summaries, through our designed completions and
training strategies. The resulting model outper-
forms previous supervised baselines, and is able
to match the zero-shot FACTAX performance with
ChatGPT, effectively acting as an efficient alterna-
tive to zero-shot reasoning with much larger LLMs.

Overall, our key contributions in this work are:
• We underscore the importance of a fine-grained

task taxonomy for the inference of summary in-
consistencies, leading to enhanced performance
and interpretability upon vanilla reasoning.

• We pinpoint key error types and incorporate them
into our designed zero-shot prompting schemes,
anchoring LLM reasoning within an explicit so-
lution space. Experiments on diverse datasets
with multiple LLMs demonstrate its efficacy.

• We further distill a model that rationalizes the
task taxonomy into parameters through our su-
pervised training strategies, offering SOTA per-
formance with a smaller parameter size.

2 Related Work

Factual Inconsistency Evaluation Datasets Nu-
merous datasets for evaluating factual inconsisten-
cies in summaries have been independently intro-
duced in recent years. Among these, many focus on
the news domain, primarily addressing CNN/Dai-
lyMail summaries (Nallapati et al., 2016), such as
FactCC (Kryscinski et al., 2020), FRANK (Pagnoni
et al., 2021) and SummEval (Fabbri et al., 2021);
others addressing XSum summaries (Narayan et al.,
2018) constructed upon BBC news, such as XSum-
Faith (Maynez et al., 2020b) and DeFacto (Liu
et al., 2023b); some also addressing both, such
as CLIFF (Cao and Wang, 2021) and Goyal and
Durrett (2021).

Apart from news, several datasets focus on dia-
logue summaries, especially daily dialogues from
SAMSum (Gliwa et al., 2019), such as DiaSum-
mEval (Gao and Wan, 2022), FactEval (Wang et al.,
2022b), DiaSummFactCorr (Gao et al., 2023). Dia-
SummFact (Zhu et al., 2023) also assesses meeting
summaries from QMSum (Zhong et al., 2021).

Recent datasets have also been proposed to ad-
dress more domains, e.g. Koh et al. (2022) eval-
uates factual consistency on official reports from
GovReport (Huang et al., 2021); LongEval (Kr-



Domain Doc Len Summ Len # Summ Ent. Pred. Circ. Coref. AddE.

Polytope (Huang et al., 2020) CNN/DM 573.2 64.8 1268 - - - - -
SummEval (Fabbri et al., 2021) CNN/DM 363.6 62.8 1698 - - - - -
FRANK (Pagnoni et al., 2021) CNN/DM 476.2 40.6 2246 ✓ ✓ ✗ ✗ ✓

BUMP (Ma et al., 2023) CNN/DM 686.4 52.5 1087 ✓ ✓ ✓ ✓ ✓

CLIFF (Cao and Wang, 2021) CNN/DM & XSum 453.4 35.6 600 ✓ ✓ ✗ ✗ ✓

XsumFaith (Maynez et al., 2020b) XSum 381.1 19.2 2353 ✓ ✓ ✗ ✗ ✓

QAGS/Wang’20 (Wang et al., 2020) XSum 324.5 33.3 474 - - - - -
Goyal’21 (Goyal and Durrett, 2021) XSum 430.3 21.8 150 ✓ ✓ ✗ ✗ ✓

Cao’22 (Cao et al., 2022) XSum 349.4 25.3 696 - - - - -

DiaSumFact (Zhu et al., 2023) Dialogues 187.0 43.7 475 ✓ ✓ ✓ ✓ ✓

DiaSummEval (Gao and Wan, 2022) Dialogues 109.5 22.6 474 - - - - -
DiaSummFactCorr (Gao et al., 2023) Dialogues 113.1 20.8 4000 ✓ ✓ ✓ ✓ ✓

FacEval (Wang et al., 2022b) Dialogues 98.5 19.6 750 ✓ ✓ ✓ ✓ ✓

GovReport (Koh et al., 2022) Reports 3884.5 397.2 204 ✓ ✓ ✓ ✓ ✓

SQuALITY (Krishna et al., 2023) Stories 4795.7 376.9 60 - - - - -

Table 1: Datasets utilized in this work with statistical details: averaged document length, summary Length, number
of all available summaries; and the unified error type taxonomy described in Section 3: “-” means no error types
originally annotated; ✓ and ✗ represent whether the corresponding error type is available after label conversion.

ishna et al., 2023) addresses story summaries from
SQuALITY (Wang et al., 2022a).

In this work, we aim for robust evaluation across
diverse domains under the same task requirement,
especially for zero-shot methods that should gener-
alize across different types of documents.

Non-LLM Approaches State-of-the-art models
prior to LLMs mainly focus around two directions.
The first is to effectively leverage NLI models
to assess the entailment between the document-
summary pair, such as Falke et al. (2019) and Sum-
maC (Laban et al., 2022). Within this direction,
several works focus on improving the NLI model
itself through methods such as synthetic data con-
struction (Kryscinski et al., 2020; Yin et al., 2021;
Utama et al., 2022; Qiu et al., 2024) or multitask
learning (Zha et al., 2023a,b). The second direc-
tion employs QA-based models, such as QuestE-
val (Scialom et al., 2021) and QAFactEval (Fabbri
et al., 2022), where they generate questions regard-
ing explicit entities in the summary, then verify
upon the source document. Apart from the two
main directions, other works have also explored
methods such as syntactic dependencies (Goyal
and Durrett, 2020) or information extraction (Nan
et al., 2021). Particularly, Chan et al. (2023) also
emphasizes interpretable factual errors by extract-
ing semantic frames.

LLM Approaches The capability of LLMs on
detecting inconsistencies have been studied by sev-
eral recent works. Most of them resolve this task in
the zero-shot or few-shot prompting manner (Shen

et al., 2023; Luo et al., 2023; Wang et al., 2023;
Liu et al., 2023a). Besides, FActScore firstly recog-
nizes atomic claims then performs LLM inference
(Min et al., 2023). Other utilization of LLMs have
also been proposed, such as synthetic data genera-
tion with LLMs (Gekhman et al., 2023) or retrieval-
augmented factuality detection (Chern et al., 2023).

3 Task Taxonomy

Establishing what constitutes inconsistent facts in
a summary is a fundamental aspect of this task. In
this work, we target to consolidate key error types
that are salient for inconsistent fact detection in
general, instead of building fine-grained complex
taxonomy, for two reasons. First, a simple taxon-
omy is easier to be consumed by models than a
complex one, aligning with our goal of practical
utilization during inference. Second, a more fine-
grained taxonomy may be of greater noises, as the
annotated types from different datasets can vary
significantly in their standards.

Based on the annotation schemas of previously
introduced datasets and the aggregation of factual
errors by AGGREFACT (Tang et al., 2023), we iden-
tify the following five salient error types:
• Predicate Error: the semantics expressed by a

predicate in the summary are not consistent with
those in the source document.

• Entity Error: any core arguments or attributes
(e.g. subjects and objects in semantic frames) in
the summary are not consistent accordingly.

• Circumstantial Error: Time, duration, or the lo-
cation of an event or action is not consistent.



Window1: Paul is almost there, but 
he‘s still 30 minutes away.
Window2: Laura is angry, because 
Paul is not coming.

SummarySource 
Text

Laura: Where are you?       
Paul: Almost there.
Laura: That's so far away!  
Paul: 15 mins
Laura: I am not waiting any more!

Taxonomy
Predicate Error，Entity Error，

Circumstantial Error
Coreference Error，Addition Error

Reason

FacTax FacTax-WD
Window1 Window2

Circumstantial Error

Reason Reason

Circumstantial Error Factually Correct

Circumstantial Error

LLM-Zero-Shot

LLM

FacTax-setting Evaluation

FacTax-setting DataBinary-setting Data

Binary-setting Evaluation

Circumstantial ErrorFactually Wrong
LLM-Supervised

Figure 1: Illustration of our proposed approaches that ground the task inference of factual inconsistency by its
taxonomy (Sec. 3), via either the zero-shot paradigm (Sec. 4) or the supervised paradigm (Sec. 5) with LLMs.

• Coreference Error: a pronoun or a reference men-
tion in the summary cannot be resolved to refer
to the correct entity.

• Addition Error: the summary expresses facts or
events that have no grounding sentences in the
document, thus cannot be verified (unless clearly
extrapolatable by common sense).

These five error types focus on the “factuality” as-
pect that reflects semantic frames not aligned with
the source document, which have been partially
or entirely adopted in previous datasets. To unify
labels across datasets by the above taxonomy, we
conduct the following steps:
1. For datasets originally without error types anno-

tated, no label mapping is performed.
2. For datasets addressed by AGGREFACT, we uti-

lize their unified labels from AGGREFACT, then
perform a heuristic conversion: NP → Entity
Error; Pred → Predicate Error; Sent → Addi-
tion Error. For all extrinsic errors, we also mark
them as Addition Error.

3. For datasets not included in AGGREFACT, we
manually perform the label conversion per
dataset (details provided in Appx. A).

Table 1 shows the resulting conversion as well as
more statistical details. We do notice that neither
our adopted taxonomy nor the fine-grained one in
AGGREFACT is completely free from noises, due
to different annotation standards across datasets.
Though, the current conversion is enough to bring
positive gain as shown in Section 4.

4 Approach: Zero-Shot Paradigm

To incorporate the error type taxonomy, we first
propose zero-shot prompting methods that lever-
age the general comprehension capability of LLMs,
aiming to depict the explicit solution space to facil-
itate the zero-shot inference. As such, the proposed

methods could harness the promising development
of LLMs for this task, tying to greater potentials
when switching to more capable LLMs.

4.1 FACTAX

Our first designed prompting scheme, dubbed Fac-
tuality with Taxonomy (FACTAX), follows the stan-
dard zero-shot procedure: for a document-summary
pair, we instruct a LLM to determine whether the
summary is factually correct, as in previous works
utilizing LLMs (Luo et al., 2023; Wang et al., 2023;
Liu et al., 2023a). For each error type, we handcraft
its explanation along with an optional example, and
we ask the LLM to reason in a Chain-of-Thought
(CoT) style (Wei et al., 2022): whether there are
any specific error types present in the summary,
instead of generating a binary decision directly. A
summary is thus recognized as factually correct
through a rationalization stage, whenever no speci-
fied error types are present.

The resulting zero-shot inference, to this end, is
regularized by the underlying task taxonomy, so
to achieve a comprehensive task reasoning. We
provide our full prompt in Appx. B.

4.2 FACTAX-WD

Since summaries often extend beyond a single sen-
tence, prior works adapted NLI models such as
SummaC (Laban et al., 2022) conduct inference
on each sentence independently, which helps mit-
igate degradation that may occur when inferring
over long summaries. As LLMs are susceptible
to degradation over long sequences as well (Hsieh
et al., 2024), certain errors scattered across many
sentences may be overlooked by the model. Thus,
we further introduce a second prompting scheme in-
tuitively: rather than processing the entire summary
at once, we divide it into separate windows that are



CNN/DM XSum Dialogues Reports Stories

Polytope SummEval Frank CLIFF Avg. Wang’20 CLIFF Goyal’21 Cao’22 Avg. DiaSumFact GovReport SQuALITY MACRO

QuestEval 17.60 64.90 62.60 74.00 70.20 56.00 61.90 81.40 60.10 69.50 57.03 26.90 42.11 51.15
QAFactEval 32.40 65.20 54.70 71.60 67.80 75.60 62.60 75.40 61.30 65.85 65.91 40.59 44.79 56.60
SUMMAC-ZS 97.10 62.20 57.00 65.60 64.00 69.80 59.60 46.60 49.00 56.40 58.81 35.19 15.00 45.88
ALIGNSCORE 94.12 43.40 53.65 67.61 64.04 65.52 74.68 52.63 65.70 67.59 68.93 37.07 43.77 56.28
ALIGN 91.18 44.92 55.48 58.30 69.49 68.09 74.82 68.06 65.34 68.41 69.22 35.05 46.26 57.47
FALSESUM - - - - 50.50 - - - - 54.70 - - - -
AMRFACT 100.00 80.70 72.40 71.00 72.30 59.50 66.70 59.10 64.50 64.10 - - - -

ChatGPT-ZS 90.19 79.78 54.82 65.13 60.03 71.82 74.01 63.38 68.82 69.39 66.85 41.40 44.63 56.46
ChatGPT-CoT 89.22 66.64 51.94 62.20 56.20 68.30 66.27 63.85 65.98 66.21 61.59 40.73 42.64 53.47
ChatGPT-Star 41.17 54.57 51.27 57.91 55.30 56.72 56.61 65.25 54.89 55.89 62.86 35.90 25.62 47.11
G-Eval 99.02 48.98 54.18 56.25 55.04 51.05 56.61 53.08 52.36 51.57 51.73 15.77 35.86 41.99

FACTAX 78.44 67.43 62.82 68.71 68.97 74.06 70.25 74.08 71.65 72.21 62.76 40.54 45.93 58.08
FACTAX-WD 85.31 72.98 67.09 70.71 68.92 71.46 70.81 68.85 69.49 69.82 64.15 48.36 48.06 59.94

FACTAX (4o) 94.12 79.53 61.67 79.65 69.60 74.07 70.21 73.89 70.05 71.05 74.63 47.42 46.57 61.85

Table 2: Evaluation results for the zero-shot paradigm (Section 4.3). Five domains (10 datasets in total) are evaluated,
where the setting for CNN/DM and XSum is kept consistent and comparable with AGGREFACT-FTSOTA (Tang et al.,
2023). MACRO is the final evaluation metric that computes the macro-average score across each domain. FACTAX
methods are our proposed approaches that ground the zero-shot inference by the task taxonomy. All LLM-based
methods are shown the averaged scores of three repeated runs for robust evaluation. The same underlying LLM
(gpt-3.5-turbo-0125) is adopted for direct comparison among LLM methods, except for FACTAX (4o) that employs
GPT-4o for demonstrating the improved performance by simply switching to stronger LLMs.

individually processed. The final result is then ag-
gregated across windows, such that a summary is
factually correct only if each window possesses
no errors. The second method is thereby termed
FACTAX by Windows (FACTAX-WD).

After our preliminary experiments, we manually
set the window size as roughly 30 words to balance
between the performance and efficiency. It is worth
noting that smaller window size (i.e. one sentence
per window) does not necessarily lead to higher
performance, as we observe that pronouns in each
short window requires coreference resolution (Xu
and Choi, 2020, 2021) that could often introduce
false negatives when they are inferred without its
broader context.

4.3 Zero-Shot Experiments

Datasets For comprehensive evaluation, we
adopt diverse document types of five domains: CN-
N/DM, XSum, dialogues, reports, and stories. Each
domain consists of one or multiple datasets from
Table 1, with 10 datasets evaluated by the zero-
shot paradigm in total. Notably, we only evaluate
upon summaries generated by state-of-the-art mod-
els specified by each dataset, in coordination with
AGGREFACT-FTSOTA (Tang et al., 2023).

For GovReport and SQuALITY, documents are
long articles that can exceed the model’s length
limit. We follow Wu et al. (2023) that for each
document, top sentences that maximize ROUGE
scores towards the summary are retrieved as a con-
densed context (details in Appx. C).

Metrics As in previous works, we use Balanced
Accuracy for all datasets that offer classification
labels. For GovReport and SQuALITY whose la-
bels are consistency scores, we use Pearson Cor-
relation that aligns with prior works. The perfor-
mance of each domain is either from the standalone
dataset (e.g. Dialogues), or represented by the mi-
cro average score of all datasets within this domain,
aligning with AGGREFACT evaluation. We further
introduce a single metric to evaluate the overall per-
formance, termed MACRO, which takes the macro
average scores across each domain.

Non-LLM Methods We adopt strong non-LLM
models as baselines, including QuestEval (Scialom
et al., 2021), QAFactEval (Fabbri et al., 2022),
SummaC (Laban et al., 2022), ALIGNSCORE (Zha
et al., 2023a) and ALIGN (Zha et al., 2023b). For
each, we either take the evaluation scores from
prior works, or run the code released by the au-
thors on datasets not evaluated previously. Scores
of FALSESUM and AMRFACT are from their orig-
inal papers. For CNN/DM and XSum, we adopt
thresholds per dataset to be consistent with previ-
ously reported numbers. More details on non-LLM
baselines are provided in Appx. C.

LLM Methods We use ChatGPT-ZS, ChatGPT-
CoT (Luo et al., 2023), ChatGPT-Star (Wang et al.,
2023), and G-Eval (Liu et al., 2023a) as the LLM
baselines, which have achieved strong performance
in AGGREFACT. For direct comparison, we use the
same ChatGPT (gpt-3.5-turbo-0125) for all LLM
methods. We also vary LLMs for more insights on
model comparison in Sec. 4.4.



For FACTAX, we adapt our methods to addition-
ally yield a score on GovReport and SQuALITY
summaries to enable evaluation with their score-
based labels.

Results Due to the variation of LLM generation,
we run all LLM-based methods three times for
robust conclusions, and show the averaged scores
of each dataset in Table 2, along with evaluation
results of non-LLM baselines. Several observations
from Table 2 can be made as follows.

• Corroborating previous works, LLM zero-shot
inference is capable to identify factual errors
directly with decent performance, matching or ex-
ceeding strong non-LLM baselines specialized for
factual inconsistency detection. Specifically, FAC-
TAX methods and ChatGPT-ZS achieve 56.5 - 59.9
MACRO scores, on par with 56.3 - 57.5 obtained
by QAFactEval, ALIGNSCORE and ALIGN. The
lowest score of LLM baselines is 41.2, which only
lags behind SUMMAC-ZS by 3.9%.

• Comparing among LLM-based approaches,
FACTAX-WD achieves the best overall perfor-
mance, surpassing the best LLM baseline ChatGPT-
ZS by 3.5%, also outperforming all non-LLM base-
lines. As the main difference between FACTAX

and LLM baselines is the incorporation of given
task taxonomy in the prompt, the empirical result
suggest that LLM inference can indeed benefit
from a grounded solution space.

• The gap between FACTAX and FACTAX-WD
is relatively trivial. The window-based inference
is shown effective on long summaries, demon-
strated by the significant performance raise on Gov-
Report and SQuALITY.

• By switching to the stronger GPT-4o, FACTAX

receives significant performance boost on almost
all domains (3.8% average improvement), high-
lighting the flexibility, simplicity and future poten-
tials of our proposed zero-shot methods.

4.4 Zero-Shot Analysis

We focus on the three common domains: CNN/DM,
XSum, Dialogues, and perform further analysis for
more regarding insights.

Impact of LLMs and Sizes Apart from Chat-
GPT, we employ GPT-4o from OpenAI, as well
as strong open-source LLMs including Llama3-
8B/70B and Mistral-7B. Table 3 provides the
model comparison by adopting the same FAC-
TAX prompts. Notably, FACTAX with ChatGPT

CNN/DM XSum Dialogues MACRO

G-Eval (GPT-4) 69.90 65.80 - -

ChatGPT 68.97 72.21 62.76 67.98
GPT-4o 69.60 71.05 74.63 71.76

Llama3-8B 50.38 61.17 62.81 58.12
Llama3-70B 68.56 71.20 73.08 70.93

Mistral-7B 51.95 57.80 58.31 56.02

Table 3: Evaluation results using FACTAX on three do-
mains by varying LLMs. For the AGGREFACT-FTSOTA
benchmark, FACTAX with ChatGPT outperforms previ-
ous zero-shot G-Eval with GPT-4 (numbers reported by
Qiu et al. (2024)).

achieves SOTA performance on AGGREFACT-
FTSOTA benchmark (Tang et al., 2023), outper-
forming G-Eval with GPT-4 (Qiu et al., 2024).

Just by switching to GPT-4o, there comes a di-
rect boost upon ChatGPT by 3+ MACRO score
overall. There is still quite a gap of almost 10%
between the smaller 7B/8B models and the larger
OpenAI models. By Table 3, it is evident that in-
creasing the model size significantly improves the
task reasoning, as switching Llama3-8B to 70B
obtains performance gain by an impressive 12.8%,
making the zero-shot method future-proof due to
the rapid LLM development.

Impact of Examples Our default FACTAX set-
ting grounds the inference by depicting error type
definitions in the prompt, without supplying any
examples. After conducting multiple rounds of
experiments by adding crafted examples per type,
we are not able to obtain stable improvement, as
adding a few examples could lead to biases towards
errors. The averaged improvement after adding ex-
amples is only 0.06 MACRO score; thus, we keep
FACTAX off examples in this work.

Impact of Summary Lengths Figure 2 plots the
performance curve on different lengths of sum-
maries using ChatGPT. FACTAX-WD is shown
more robust against long summaries, due to its
length-agnostic scoring mechanism. For long
summaries, false positives become more often
for FACTAX, which is alleviated by the window-
based inference of FACTAX-WD. Thus, we suggest
window-based inference for long summaries (e.g.
> 100 tokens), while the vanilla inference should
suffice for short summaries.
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Figure 2: Accuracy of FACTAX methods for different
summary lengths using ChatGPT.

5 Approach: Supervised Paradigm

As Section 4 has demonstrated the strengths of
grounding zero-shot LLM inference by its task tax-
onomy, we further seek to distill a model that ab-
sorbs the taxonomy into LLM parameters through
supervised training. Two advantages could come
with such distillation. First, by learning the taxon-
omy from examples, the model gains real-world
distribution of each error type, rather than relying
on shallow comprehension through prompt instruc-
tions. Second, it is more efficient and practical
compared to zero-shot methods, avoiding the need
for large model sizes and lengthy generation due to
the CoT reasoning.

With above motivations, we utilize previous
datasets that were proposed independently, and re-
gard them jointly as training resources. To this end,
we prepare our training and test set as follows:
• Training Set I: FRANK, Polytope, BUMP,

CLIFF, Goyal’21, DeFacto, XSumFaith, Dia-
SummEval, DiaSummFactCorr, FactEval

• Training Set II: DocNLI, FalseSum
• Test Set: SummEval, Wang’20, Cao’22, Dia-

SumFact
Concretely, the test set is formed to cover at least
one dataset per CNN/DM, XSum, and Dialogues
domain. Training Set I encompasses datasets with
human-annotated labels, and we use all available
examples of each dataset in training, while keeping
the test set only containing summaries from state-
of-the-art models, such that the evaluation of the
supervised paradigm is directly comparable with
zero-shot results in Table 2&3.

Training Set II includes two publicly released
large-scale datasets constructed via synthetic data
generation. The more recent AMRFACT is ex-
cluded, since its data has not been released as of
this writing. For efficiency, Training Set II retains
randomly sampled 50k examples from DocNLI and
FalseSum respectively that do not overlap with any
source documents in the test set.

The resulting training resources thereby have

16k examples in Training Set I, 100k examples in
Training Set II, and 1k examples in Test Set.

5.1 Training Strategy
With our identified task taxonomy, we unify the
error types for all training examples whenever ap-
plicable according to Table 1. The training is con-
ducted through LLM supervised finetuning, where
each example is converted into pairs of prompts
and completions. To fully utilize the available re-
sources, we design two types of prompt-completion
pairs, according to if error type labels are available:

• Error Type Completion: if a dataset has error
type labels available after the label conversion, the
prompt then lists error type candidates, instructing
the model to generate specific error types if present
any in the summary.

• Binary Completion: for an example, the prompt
can ask to directly classify if the summary is factu-
ally correct. The completion is then a binary label.

Note that for those examples with error type la-
bels, both two types of completions can be created,
which inflates training size, and also anchors differ-
ent error types towards “factually wrong”.

5.2 Supervised Experiments
Training Settings We employ Llama3-8B as
the backbone LLM model for supervised training.
Three training settings are experimented, based on
different training sets and completion types:
• I-Binary: Training Set I that only adopts Binary

Completion for all examples.
• I-Taxonomy: Training Set I with both Binary

and Error Type Completion when applicable.
• I&II-Taxonomy: adding Training Set II (only

Binary Completion is applicable), in addition to
all prompt-completion pairs in I-Taxonomy.

Particularly, the performance difference between
I-Binary and I-Taxonomy could directly reflect
the impact of incorporating the task taxonomy
into model parameters. I&II-Taxonomy further
explores the extent to which synthetic data can
complement human annotations.

For the latter two settings, the INFerence of
trained models is also flexible, which could ei-
ther opt to determine the factual consistency di-
rectly (INF-Binary), or to yield fine-grained error
types (INF-Taxonomy), according to specific types
of prompts given. For I&II-Taxonomy, we evalu-
ate both inference for the best performance.

In our experiments, we adopt common hyperpa-
rameters for LLM finetuning, described in Appx. D,



CNN/DM XSum Dialogues

SummEval Wang’20 Cao’22 DiaSumFact MACRO

Zero-Shot
ChatGPT 73.0 71.5 69.5 64.2 69.2
GPT-4o 79.5 74.1 70.1 74.6 75.4

Zero-Shot
Llama3-8B 64.4 59.1 61.1 62.8 62.4
Llama3-70B 77.0 76.4 70.3 72.9 74.4

Supervised

I-Binary + INF-Binary 80.1 62.7 72.5 72.6 73.4
I-Taxonomy + INF-Binary 80.3 63.0 67.4 76.1 73.9
I&II-Taxonomy + INF-Binary 79.0 68.0 70.9 76.7 75.1
I&II-Taxonomy + INF-Taxonomy 81.1 67.7 71.8 75.2 75.4

Table 4: Evaluation results of the supervised paradigm, which are directly comparable with zero-shot results in
Table 2. Llama3-8B models are trained through supervised finetuning by three training settings (Sec. 5.1). For the
I&II-Taxonomy setting, we apply both binary inference and error type inference for the best performance.

# Train Length T-Ratio # Test

I-Binary 16393 648.5 0% 1033
I-Taxonomy 26315 634.2 37.7% 1033
I&II-Taxonomy 116393 783.3 20.0% 1033

Table 5: Statistics of three supervised training settings:
number of prompt-completion pairs in training; aver-
aged length of prompts; ratio of prompts with Taxonomy
provided; number of prompts for evaluation.

without requiring a development set due to limited
resources. Detailed statistics of three settings are
shown in Table 5. Specifically for I&II-Taxonomy,
we boost the ratio of Error Type Completion to 20%
in training by adjusting the data sampling strategy,
to facilitate model learning of the task taxonomy.

Results Table 4 shows the evaluation results
of our supervised paradigm, along with com-
parison by various zero-shot results. Unsurpris-
ingly, trained Llama3-8B models of any settings
outperform its zero-shot inference by large mar-
gins, up to 13 MACRO score. More impor-
tantly, I&II-Taxonomy + INF-Taxonomy achieves
the best performance, matching the best existing
approaches by using FACTAX with GPT-4o and
Llama3-70B. Our trained model can effectively
serve as an efficient alternative to zero-shot in-
ference by much larger LLMs.

Comparing I-Binary and I-Taxonomy, there is
an enhancement of 0.5 MACRO score by adopting
Error Type Completion in training; indeed, utiliz-
ing large-scale synthetic data brings more improve-
ment by 1.2 MACRO score. By reasoning via error
types rather than binary decisions, I&II-Taxonomy
receives further 0.3 gain, validating the benefit of
fusing task taxonomy into model parameters.

Ent. Pred. Circ. Coref. AddE.

ChatGPT 41.1 28.8 28.2 21.9 45.1
GPT-4o 60.4 34.4 18.2 10.0 46.5

Llama3-8B 32.7 34.2 23.1 10.4 35.8
Llama3-70B 58.5 32.6 27.8 3.4 43.0

I-Taxonomy 61.1 37.1 25.3 28.9 21.9
I&II-Taxonomy 62.6 29.0 23.0 26.3 31.0

Table 6: F1 of five error types on DiaSumFact evalua-
tion, with both zero-shot and supervised paradigm.

(i) (ii) (iii) (iv)

ChatGPT 9.7 33.4 63.4 28.5
GPT-4o 9.8 35.6 76.3 37.6

Llama3-8B 4.6 27.8 62.0 24.0
Llama3-70B 9.0 36.5 73.5 36.0

I-Taxonomy 15.5 31.8 85.4 40.4
I&II-Taxonomy 15.8 39.4 83.8 41.1

Table 7: Percentage of correct error type predictions on
DiaSumFact by four different criteria: i) exact match by
gold error types; ii) predicted types are a subset of gold
types; iii) predicted types contain one of gold types; iv)
predicted types contain all gold types.

5.3 Supervised Analysis

Fine-Grained Evaluation Table 6 shows the F1
score of each error type with zero-shot and super-
vised paradigms. Among five types, most methods
suffer on Circumstantial Error and Coreference
Error, while performing the best on Entity Error.
The two trained models surpass zero-shot methods
on three error types. However, they perform worse
on Addition Error. We attribute the degradation
to different annotation standards across datasets,
which may become noisy even after label unifi-



cation. Nevertheless, as we have already seen im-
provement with the current taxonomy, future works
with cleaner labels have good potentials to further
boost the supervised performance.

Error Type Predictions As models often predict
partially correct error types, Table 7 shows the per-
centage of correct type predictions by four criteria,
from strict to relaxed. As the results suggest, either
zero-shot or supervised methods could recognize
at least one gold error type on most of the factu-
ally incorrect cases, by up to 85.4% achieved by
the trained model I-Taxonomy. Whereas for exact
match, even the trained models could only obtain
15% accuracy. The best performance by either cri-
terion is achieved by the supervised paradigm, as
expected, since the model learns the real-world
distribution from training examples.

6 Conclusion

We highlight the importance of task-specific tax-
onomy for factual inconsistency detection, where
we consolidate salient error types, and incorpo-
rate them to facilitate LLM inference with both
zero-shot and supervised paradigms. Extensive
experiments on ten datasets of five domains demon-
strate the efficacy of depicting task taxonomy to
ground the zero-shot inference, achieving state-of-
the-art performance compared with respective base-
lines. We further distill models that fuse the given
error taxonomy into parameters through our de-
signed training completions and strategies, effec-
tively serving as an efficient alternative to state-of-
the-art zero-shot reasoning by much larger LLMs.

Limitations

While our study demonstrates the effective utiliza-
tion of task-specific taxonomy for detecting factual
inconsistencies, it is important to acknowledge cer-
tain limitations.

First, as discussed in Section 5.3, the unified
labels after conversion can contain noises, due to
the different annotation standards across previous
independently introduced datasets. The resulting
converted error type labels may hinder the super-
vised training process. Further consolidation may
be conducted for a cleaner realization of the error
type taxonomy.

Second, both the zero-shot paradigm and super-
vised paradigm may not fully capture the nuances
of complex summaries. We list concrete qualita-
tive examples in Appendix E on the failed cases

by LLMs. Specifically for zero-shot paradigm, the
failed cases could come from imperfect instruction
following, as well as ambiguous descriptions of the
task taxonomy that are not fully comprehensive.
For the supervised paradigm, it indeed requires ei-
ther human annotated examples, or synthetic data
generation, which may not generalize as well as
the zero-shot inference.
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A Taxonomy Conversion

For datasets not included in AGGREFACT, we man-
ually perform the error type conversion as follows:
• BUMP: Authors of original dataset manually edit

reference summaries to constructs an unfaithful
summary and classified error types into Extrinsic
Entity Error, Intrinsic Entity Error, Intrinsic Pred-
icate Error, Extrinsic Circumstance Error, Intrin-
sic Circumstance Error, Coreference Error and
Other Error. We mapped Extrinsic Entity Error
and Intrinsic Entity Error to Entity Error; Extrin-
sic Predicate Error and Intrinsic Predicate Error
to Predicate Error; Extrinsic Circumstance Error
and Intrinsic Circumstance Error to Circumstan-
tial Error; Coreference Error to Coreference Er-
ror and Extrinsic-related Error to Addition Error.
We also manually mapped five edited summaries
with other types of errors to the types we have
set according to our own judgment.

• DiaSumFact: Authors of original dataset classi-
fied error types into Ex-EntE, In-EntE, Ex-PredE,
In-PredE, Ex-CirE, In-CirE, CorefE, LinkE ande
Others. We mapped Ex-EntE and In-EntE to
Entity Error; Ex-PredE, In-PredE and LinkE to
Predicate Error; Ex-CirE and In-CirE to Circum-
stantial Error; CorefE to Coreference Error; Ex-
Error to Addition Error and manually mapped
Others base on the comment given by annotators.

• DiaSummFactCorr: The error types of summ-
maries in this dataset were classified into EntE,
PredE, CircE, CorefE, LinkE, GramE, OutE and
OthE. We mapped EntE to Entity Error; PredE,
GramE and LinkE to Predicate Error; CircE to
Circumstantial Error; CorefE to Coreference Er-
ror;OutE to Addition Error and mapped each
summary with OthE manually according to our
own judgment.

• FacEval: Authors of original dataset classified
error types into Subject Object Error, Pronoun
Error, Negation Error, Particulars Error, Halluci-
nation Error and Other Error. We mapped Sub-
ject Object Error to Entity Error; Pronoun Error
to Coreference Error; Negation Error to Pred-
icate Error, Particulars Error to Circumstantial
Error; Hallucination Error to Addition Error and
mapped each summary with Other Error manu-
ally according to our own judgment.

• GovReport: Authors of original dataset classi-
fied each summary sentence’s factuality based
on seven types of errors: PredE, EntityE, CircE,
CorefE, LinkE, OutE and GramE. We mapped

EntityE to Entity Error; PredE, GramE and LinkE
to Predicate Error; CircE to Circumstantial Er-
ror; CorefE to Coreference Error and OutE to
Addition Error.

B Full Prompts

We provide the full prompt for FACTAX in Figure 3.

C Zero-Shot Experimental Settings

Long Document Alignment As documents in
both GovReport and SQuALITY have long length
of thousands of tokens, alignment is firstly per-
formed, such that for each summary or summary
window, related sentences from the document are
retrieved, which will be used as a shorter context
for factual error evaluation. Though past work has
proposed techniques for long context segmentation
(Cho et al., 2022), in this work, we opt for the
common approach via retrieval for simplicity.

For FACTAX, top sentences from the document
that maximize the recall of ROUGE-1 and ROUGE-
2 towards the summary are retrieved until the to-
tal length reaches a certain threshold. These sen-
tences are concatenated as the new context, which
is shorter but has a higher information density than
the original document.

For FACTAX-WD that operates on summary
windows, n important sentences are extracted in-
dependently to maximize the combined recall of
ROUGE-1 and ROUGE-2 metrics in relation to the
summary. Table 8 shows the alignment thresholds
we adopted for the two datasets.

For non-LLM systems, the context length limit
is usually shorter (512 for BERT models). We
perform window-based inference accordingly, so
that the aligned context for each summary window
falls within 512 tokens. The final result is thereby
aggregated through all windows.

FACTAX FACTAX-WD (n=5)

GovReport 1024 102.31

SQuALITY 1024 28.50

Table 8: The maximum length of aligned context for
FACTAX, and the averaged length of aligned context per
summary window for FACTAX-WD, with n being the
number of sentences extracted for each summary win-
dow. For SQuALITY, some of the retrieved sentences
can be quite short.

Evaluation for Baselines Five non-LLM base-
lines, QuestEval, QaFactEval, SUMMAC-ZS,



ALIGNSCORE and ALIGN produce a consistency
score for each summary, which requires a thresh-
old to convert to the classification label. For each
dataset in the AGGREFACT-FTSOTA test set, fol-
lowing Tang et al. (2023), we tune the threshold
to reach the best balanced accuracy on the corre-
sponding AGGREFACT-FTSOTA validation set.

For DiaSumFact without a specific validation set,
we use the AGGREFACT-FTSOTA validation set to
tune the threshold for the non-LLM baselines.

For GovReport and SQuALITY, the evaluation
metric is Pearson Correlation, thus not requiring
any thresholds.

D Supervised Experimental Settings

We perform full finetuning of Llama3-8B with
flash attention enabled on 8 Nvidia A100 GPUs
(40GB memory each). Each training setting runs
for 8 epochs, taking around 6 hours to finish
I-Binary and I-Taxonomy, and 24 hours to fin-
ish I&II-Taxonomy. We use a batch size of 1 per
GPU, learning rate of 1×10−5, and cosine learning
rate schedule with warm up rate 0.05. Loss is only
enabled on the completion during training.

E Failure Cases by LLMs

Failed to grasp the implied information For
some cases, LLMs failed to grasp the implicit con-
tent in the text, leading to an error in judgment.

[Part of the source text]
...
Ana: You sleeping?
Catherine: Not yet.
Ana: Wanna go visit grandma tomorrow? I miss her.
Catherine: Yeah that would be nice :) I’ll call you
when I wake up
...

[Part of the summary]
Ana and Catherine are going to see their grandma
tomorrow.

[Human comment]
None

[Error type]
Factually Correct

[Response of LLM]
- Reasoning: The statement is not consistent with the
source document as it is only Ana who expresses the
desire to visit grandma, not Catherine.
- Label: Entity_Error

Inconsistent reasoning with humans For some
cases, even though LLM makes the correct label
prediction, its reasoning does not correspond to
what humans think.

[Part of the source text]
...
phd d: Uh working in the cepstral domain ? So there is
one guy in Grenada
phd b: Yeah, in Grenada one of my friend.
phd d: and another in uh, Lucent that I met at ICASSP.
...

[Part of the summary]
The team said that the person in grenada was working
in the cepstral domain.

[Human comment]
the team -> phd d

[Error type]
Entity Error

[Response of LLM]
- Reasoning: The summary states that the person in
Grenada was working in the cepstral domain. However,
there is no mention in the source text about the person
in Grenada working in the cepstral domain. This
indicates a predicate inconsistency.
- Label: Predicate_Error



### Background

Now you are one of the greatest English linguist experts and Logician. Below is an
instruction for evaluating the factual consistency of a given statement derived from the
source document. Consistency measures whether the statement is correctly aligned with the
facts presented in the source document, without contradicting or misrepresenting any
information. The goal is to determine the consistency label of the statement defined as below
, identifying whether the statement contains factual errors, or is factually correct towards
the source document.

### Consistency Labels

i) Predicate_Error: a predicate from the statement (usually a verb of a semantic frame) is
not consistent with the source document.
ii) Entity_Error: a core argument or attribute in a semantic frame (usually a subject or
object) from the statement is not consistent with the source document (capitalization should
not matter).
iii) Circumstantial_Error: Time, duration, or the location of an event from the statement is
not consistent with the source document.
iv) Coreference_Error: a pronoun or a reference (e.g., this picture) from the statement is
wrong, or cannot be resolved to refer to the correct entity.
v) Addition_Error: the statement introduces facts that cannot be verified from the source
document.
vi) Factually_Correct: the statement is factually correct without above factual errors. Note
that it is allowed for the statement to miss important information from the source document;
it is considered factually correct as long as the statement can be verified from the source
document.

### Task

Please try your best to firstly reason in few sentences on whether the statement has factual
errors or is factually correct, then determine the consistency label(s) from the above 6
types of labels in the end.

--- Your_Task ---

### Source Document

{Document}

### Statement

{Entire Summary or Summary Window}

### Output Format

- Reasoning: ...
- Label: ...

### Your Output

Please refer to the above instruction, return Reasoning and Label in a Markdown list, to
evaluate the factual consistency of the statement.

Figure 3: Prompt for FACTAX described in Section 4. Slots in blue refer to the input document and summary.
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