
1

Continuous Sculpting: Persistent Swarm

Shape Formation Adaptable to

Local Environmental Changes

Andrew G. Curtis1, Mark Yim2, Michael Rubenstein1

Abstract—Despite their growing popularity, swarms of robots
remain limited by the operating time of each individual. We
present algorithms which allow a human to sculpt a swarm of
robots into a shape that persists in space perpetually, independent
of onboard energy constraints such as batteries. Robots generate
a path through a shape such that robots cycle in and out of the
shape. Robots inside the shape react to human initiated changes
and adapt the path through the shape accordingly. Robots outside
the shape recharge and return to the shape so that the shape can
persist indefinitely. The presented algorithms communicate shape
changes throughout the swarm using message passing and robot
motion. These algorithms enable the swarm to persist through
any arbitrary changes to the shape. We describe these algorithms
in detail and present their performance in simulation and on a
swarm of mobile robots. The result is a swarm behavior more
suitable for extended duration, dynamic shape-based tasks in
applications such as entertainment, agriculture, and emergency
response.

Index Terms—Swarms; Path Planning for Multiple Mobile
Robots or Agents; Distributed Robot Systems; Shape Formation

I. INTRODUCTION

As their popularity continues to grow, commercial drones

are employed in swarms more and more frequently. Swarms of

flying robots are commonly used in shape-based applications,

such as entertainment drone shows, where robots navigate

through a set of predefined waypoints to form different shapes.

Other shape-based flying swarm applications include search

and rescue, emergency response communications networks,

and crop monitoring, where a flying swarm maintains a 2D

formation over an area of land to perform its task.

The challenge with most shape-based flying swarm appli-

cations is the limited flight time, or endurance, of the robots.

Typically, robots must land to recharge, and the task is paused

until the robots can fly again (e.g., crops go unmonitored while

the robots charge). In addition, most swarms only form static

predefined shapes, limiting their potential applications.

Manuscript received: January 5, 2024. Resubmitted: May 13, 2024.
This paper was recommended for publication by Editor TBD.
This work was supported by the NDSEG Fellowship and The National

Science Foundation, NRI2.0 grants 2024692 and 2024615.
1Andrew G. Curtis and Michael Rubenstein are with the Center for

Robotics and Biosystems, McCormick School of Engineering, North-
western University, Evanston, IL USA agc@u.northwestern.edu,

rubenstein@northwestern.edu.
2Mark Yim is with the General Robotics, Automation, Sensing and Per-

ception (GRASP) Lab, University of Pennsylvania, Philadelphia, PA USA
yim@seas.upenn.edu.

Fig. 1: Cartoon overhead view of adaptive and persistent shape

formation. (a) A swarm of mobile robots (purple circles) leave

a charging station (yellow box) to enter and form a shape. The

robots move through the shape in the directions indicated by

the black arrows until they exit the shape and return to the

charging station. (b) A human points to where they would

like to add to the shape (purple box). (c) The swarm adjusts

to form a path through the new shape while continuing to

cycle to and from the charging station.

To overcome these challenges, we present a novel approach

to persistent and adaptable shape formation. We shift the

paradigm of shape formation from shapes formed by static

robots to shapes formed by a sequence of robots moving along

a path. The path allows robots to cycle to and from a charging

station, so robot endurance is no longer a constraint on shape

duration. The path is also adaptable to external environmental

stimuli (e.g., human interactions) so that the shape is free to

change over the duration of the task. For example, farmers

could form a swarm of drones into a shape over their fields

to persistently monitor crops (regardless of individual robot

charge). They could then directly interact with the swarm to

change the shape of the swarm and thus the fields of crops

being monitored. Similarly, a performer could interact with a

drone show, changing the shape of the swarm to entertain an

audience beyond the flight time of individual flyers.

We achieve shape persistence by allowing swarm robots

to cycle between a shape and a charging station indefinitely

via a path that both approximates the shape and facilitates

the movement of robots through the shape and back to a



2

charging station (Fig. 1). With each change to the shape,

the swarm adapts to another path and the process continues.

Our primary contributions, the algorithms we present for both

shape persistence and shape adaptability, are decentralized and

scalable to large swarms. They also open the door to a new

application of human-swarm interaction - continuous sculpting

- where a human can use intuitive gestures to actively morph

a swarm into a persistent shape in a manner similar to the way

an artist might morph clay into a sculpture. One potential issue

with continuous sculpting is making sure potential collisions

with humans are safe, but this can be solved by making robots

small and light [1].

The remainder of this paper is structured as follows. After

discussing related work (Section II), we describe the ba-

sic robot capabilities required for a swarm to execute the

algorithms (Section III). Then, we introduce the algorithm

responsible for shape persistence, called the default behavior.

The default behavior is introduced and demonstrated in Sec-

tion IV, and the theory supporting the algorithm is described

in Section V. The later portions of the paper are dedicated to

the algorithms responsible for shape adaptability which are

only executed to resolve a shape change. The adaptability

algorithms are introduced in Section VI. In Section VII, we

provide demonstrations of both adaptability and persistence

in the presence of humans and for a large swarm. Finally, in

Section VIII we describe the theory supporting the adaptability

algorithms, and in Section IX we summarize our work and de-

scribe our future plans. Terms defined in the text are indicated

in bold and their definitions are included in Appendix A.

II. RELATED WORK

This work lies in a largely unstudied area of swarm robotics

with few direct state-of-the-art comparisons. However, related

works exist in the fields of shape formation, area coverage,

robot recharging, Hamiltonian path planning, and human-

swarm interaction.

A. Shape Formation

One approach to persist in a shape is to have individual

swarm robots cycle into and out of the shape to recharge.

Here, the energy limitations of individual robots no longer

constrain shape duration but instead constrain the size of the

path that an individual robot can travel and thus the size of

the final shape. One problem occurs if a robot is ever “stuck”

along its path in the middle of the shape formation, unable to

return to a charging station because it is surrounded by other

robots forming the shape. Stuck robots are a potential problem

for most static shape formation algorithms that begin with

robots in some arbitrary starting position and end with robots

statically holding a position in the defined shape [2]–[7].

However, there are some non-static shape formation algo-

rithms that use dynamic shape scaling [8], time varying shape

formations [9], and robot position swapping [10] so that robots

are not always statically holding a position in the defined

shape. These works are likely the closest existing shape

formation works to our algorithms as they enable swarm shape

formation in such a way that could potentially be altered to

include robot recharging. However, they either lack guarantees

that a particular robot will never become stuck or they operate

on predefined shapes and therefore lack adaptability to real-

time changes. Some programmable matter shape formation

algorithms have shown similar potential as they have displayed

the ability to distributively change from one shape to another

[11], [12], but these too lack guarantees that robots will never

become stuck.

B. Area Coverage

Traditional area coverage algorithms are similar to adap-

tive and persistent shape formation because they can cycle

robots through a defined shape or area, though typically at a

lower density of robots than most shape formation algorithms.

Dozens of area coverage algorithms already exist for aerial

vehicles [13]. Many of these algorithms use a centralized

controller for traditional back-and-forth path planning [14]–

[17] or spiral-like path planning [18]. Still others implement

decentralized approaches (which are more suitable for swarms)

using built-in randomness [19], cost functions [20], and vir-

tual pheromones [21]. However, the decentralized approaches

typically result in nonuniform area coverage which, if used

for shape formation, would result in distorted shapes with no

guarantees for avoiding stuck robots.

C. Swarm Robot Recharging

Others have pushed swarm performance beyond the battery

lifetime of individual robots by either: 1) continuous charging

where power is brought to the robots as they operate [22]

or 2) robot swapping where individual robots take turns

recharging at designated charging stations [23]–[27]. Our work

falls in group 2. Although most works in this group are

concerned with swarm tasks like exploration [23], [24] where

the swarm need not maintain a particular formation, there

are a few associated with shape formation. However, these

swarms operate on either fixed formations [25] that are not

adaptable to environmental changes or they use centralized

planners to optimize robot movements [27]. To the authors’

best knowledge, this work is the first of its kind to incorporate

robot recharging and shape adaptability for robot swarms in a

decentralized way.

D. Hamiltonian Path Planning

In this work, we ensure that a robot can cycle through a 2D

shape and back to a charging station by using planar (i.e., non-

intersecting) Hamiltonian cycles. These guarantee the robot’s

path covers the entire shape uniformly. If the cycle is further

constrained to have adjacent start and end positions on the

periphery of the shape, then the robot is guaranteed to be able

to cycle into and out of the shape without becoming stuck or

colliding with its peers. Unfortunately, finding a Hamiltonian

cycle through a shape represented as a grid graph of points in

space is a NP-complete problem [28]–[30], making it difficult

to scale to large shapes.

Despite the challenge, others have found Hamiltonian cycles

by either restricting the problem to grid graphs that are



3

solid (i.e., no holes) [29] or for specialized purposes such as

programmable chain assembly [31], obstacle avoidance [32],

and nonuniform aerial coverage [33]. However, in all of these

approaches, Hamiltonian cycles are found via a centralized

planner using global information about the entire grid graph

or a single robot moving through (and sensing) the entire en-

vironment. In a swarm setting, it is important that Hamiltonian

cycles are generated in an online, decentralized manner with

each individual robot planning its next step using only local

information. This helps the swarm stay adaptable and permits

the use of simple robots.

E. Human-Swarm Interaction

Kolling et al. [34] define humans directly interacting with

a swarm in a shared environment as proximal interaction.

Examples of proximal interaction include works where swarms

are shown to detect and identify specific human gestures

[35], [36]. In our work, we use human gestures in a shared

environment to initiate shape changes that modify (i.e. sculpt)

the swarm into different shapes. We focus on the swarm’s

response to the gesture, not necessarily the detection and

identification of the gesture itself.

III. ROBOT CAPABILITIES AND ASSUMPTIONS

The algorithms presented in this paper are agnostic to

specific swarm implementations, so the algorithms can be em-

ployed on robots with various hardware and software designs.

However, there are some basic capabilities we assume each

robot has in order to execute the algorithms.

First, we assume that each robot can store a representation

of a grid graph overlay on the environment (G = (n, e)). We

also assume that each robot can identify if it is residing at a

particular node (n) or translating along a particular edge (e) of

G. Further, we assume that each robot can identify a subset of

grid graph nodes that represent the shape (S) that the swarm

is forming in space (S ⊂ G). For the simulations and physical

demonstrations in this paper, we elected (by design choice)

to have robots maintain a list of in-shape grid nodes. If the

shape is ever changed, robots communicate the change using

neighbor-to-neighbor communication to propagate the change

through the swarm so each robot can update its list.

For this to occur, we also assume that robots are capable of

robot-to-robot communication and are equipped with internal

clocks. We also assume that each robot can communicate with

its peers within a range of
√
2 ∗ l where l is the length of

an edge in G. This allows robots to communicate with up

to eight immediate neighbors (i.e., N, NE, E, SE, S, SW,

W, and NW). During operation of the algorithms, robots use

neighbor-to-neighbor communication to inform one another of

shape changes, share position information, and synchronize

their clocks so that robots can move together in lockstep.

Additionally, since the algorithms in this paper use planar

Hamiltonian cycles (and since finding a Hamiltonian cycle in

a grid graph is an NP-complete problem), it is not realistic to

assume that a given robot can find a Hamiltonian cycle as it

navigates through a very large shape. Therefore, we enforce a

set of rules to standardize shape structures so that the swarm

Fig. 2: (a) An example of a valid shape of 3 boxes. Points

indicate nodes of G. (b) Robots (purple) approximating the

shape. Arrows indicate robot heading. (c) The path along

which robots travel. Arrows indicate edge direction.

can more easily find Hamiltonian cycles, including for very

large shapes and shapes with holes.

The rules define a unit shape, called a box, that is comprised

of four grid nodes in a 2x2 square (Fig. 2). This is similar

to the method of finding Hamiltonian paths by breaking a

box down into four smaller boxes, as discussed for space

filling curves in [31]. We assume that each robot associates a

given 2x2 square of grid nodes with the same box as every

other robot. This ensures that a given shape representation is

consistent for all robots in the swarm. Further, we assume each

robot can determine the box that it is in and its relative position

with respect to the center of that box. This allows robots

to detect if they are moving clockwise or counter-clockwise

around the center of a box.

Allowable shapes are continuous so that each box meets the

full side of another box: partial side connections and vertex-to-

vertex only connections are not allowed. Partial boxes are also

not permitted. Shapes that meet these conditions are called

valid shapes, and they are important because they reduce

the difficulty of finding a planar Hamiltonian cycle from NP-

complete to something that is solvable in linear time (run time,

O(B), scales linearly with B, where B is the number of boxes

in the shape). In fact, we will show that a planar Hamiltonian

cycle can always be found for any valid shape in Section V-B.

Finally, although we only consider valid shapes created in a

square lattice graph, it is plausible that the algorithms in this

paper could extend to other planar graphs, such as hexagonal

lattices, but this is reserved for future work.

IV. SHAPE PERSISTENCE

For a swarm to form a persistent shape beyond the energy

limitations of any individual robot, the swarm must cycle

robots back and forth between the shape and a charging station.

This cycle can be separated into four subroutines: 1) forming

the shape, 2) traveling from the exit point of the shape to

a charging station, 3) charging at the charging station, and

4) traveling from the charging station to the entry point of

the shape. The primary contributions of this work are in the

first subroutine: forming the shape. To do this, each robot

will travel along the same planar Hamiltonian cycle to both

approximate the shape and move through the shape without

colliding with other robots in the swarm.

To be consistent with prior works, we have adapted the for-

mal definition of Hamiltonian circuits from the 1976 paper by

Garey et. al. [28] which first identified the planar Hamiltonian

circuit problem as NP complete (Definition 1). We will use

this definition throughout the remainder of this paper.



4

Definition 1 (Planar Hamiltonian Cycle). A planar Hamilto-

nian cycle in a graph is a path which passes through every

vertex exactly once and returns to its starting point without

intersecting itself.

Further, in our work, planar Hamiltonian cycles are broken

at the adjacent entry and exit points (there are no path edges

connecting the two). Thus, the paths that robots create through

shapes are technically planar Hamiltonian paths (not cycles).

However, for the remainder of this paper, a planar Hamilto-

nian path with adjacent start and end nodes will be treated

identically to a planar Hamiltonian cycle since the former

can always be turned into the latter by simply connecting

the adjacent start and end nodes. Both will be referred to

as Hamiltonian cycles to distinguish from other Hamiltonian

paths that do not have adjacent start and end nodes. Finally, we

restrict the start and end nodes to the periphery of the shape

so that each robot can enter and exit the shape and ultimately

cycle to and from a charging station.

A. Subroutine 1: Forming the Shape

In subroutine 1, robots form a planar Hamiltonian cycle to

both approximate the shape and cycle robots from the entry

node (a grid node on the periphery of the shape where robots

enter the shape) to the exit node (a grid node on the periphery

of the shape where robots exit the shape to return to the

charging station). To do this, each robot enters the shape at

the entry node and then visits each grid node in the shape

exactly once before finally exiting the shape at the exit node

without ever intersecting its own path. Robots keep track of

the boxes they have visited VB and the nodes they have visited

Vn while traversing through the shape. Robots follow a set of

rules called the default behavior when traveling in the shape

to determine the order in which grid nodes are visited between

the entry and exit nodes using only local information.

The default behavior prioritizes a robot’s movement through

a shape so that a robot visits new boxes in a manner that mim-

ics a traditional depth-first search. If a robot were performing

a depth-first search of the boxes in a shape, the robot would

first identify all of the children of its current box. Next, the

robot would enter a child box and continue to move parent-

to-child as it explored all of the descendant boxes within that

subtree. Only after the robot exhausted all descendants in the

subtree would the robot move “up” the tree, revisiting boxes in

the reverse order (child-to-parent) and repeating the process of

visiting descendant boxes before visiting other children. Once

all boxes had been visited, the robot would exit the shape.

Similar logic governs the default behavior. As a robot

traverses through the shape, it moves from node-to-node such

that it visits boxes in a depth-first, clockwise priority manner

starting at the entry node and finishing at the exit node.

Specifically, when a robot is at a node in the shape, there

is a set of four possible edges that the robot could take to

move away from that node (i.e., eN , eS , eE , eW ). If the robot

is at the exit node, it will take the edge that leads the robot

out of the shape to the charging station. For all other nodes

(n) in the shape (S), the robot selects which edge to take next

by first ignoring any edge that leads the robot to a node that

is out of the shape or to a node that the robot has already

visited. Then, the following rules are applied to the remaining

edges in the set (as depicted in Algorithm 1):

IF an edge leads to a node in a box not previously

visited, take that edge. (Rule 1)

ELSE IF an edge leads the robot clockwise within

its current box, take that edge. (Rule 2)

ELSE IF an edge leads to a node in the parent box

in the tree, take that edge. (Rule 3)

Algorithm 1 Default Behavior

Input: b, S, VB , Vn ▷ b = current box

Output: ϵ′ ▷ ϵ′ = edge to next node

1: if robot at exit node then

2: exit shape

3: else

▷ Create lists of plausible next edges and nodes

4: E ← [eN , eS , eE , eW ]
5: N ← [nN , nS , nE , nW ]

▷ Remove visited and out-of-shape options

6: for ϵ, n in E ,N do

7: if n ∈ Vn then

8: remove ϵ, n from E ,N
9: else if n /∈ S then

10: remove ϵ, n from E ,N
11: end if

12: end for

▷ Employ default behavior rules

13: if ∃ ϵ, n ∈ E ,N | Box(n) /∈ VB then ▷ Rule 1

14: ϵ′ ← ϵ ▷ Rule 1

15: else if ∃ ϵ, n ∈ E ,N | n in b ▷ Rule 2

16: and ϵ is clockwise then ▷ Rule 2

17: ϵ′ ← ϵ ▷ Rule 2

18: else if ∃ ϵ, n ∈ E ,N | n in parent of b then ▷ Rule 3

19: ϵ′ ← ϵ ▷ Rule 3

20: end if

21: end if

While executing the default behavior, robots communicate

timing information to synchronize their clocks. This allows

robots to move in lockstep with one another, avoiding in-

path collisions and maintaining spacing such that one robot

is always occupying one grid node in S. Robots also avoid

collisions by never crossing another robot’s path. This is the

result of every robot following the same default behavior rules

(and Hamiltonian cycle). Since the default behavior creates a

Hamiltonian cycle such that each robot terminates its path

at the exit node (which is on the periphery of the shape),

and every robot can traverse the shape without collision, we

can guarantee that all robots will be able to exit the shape

to recharge (i.e., no “stuck” robots), which facilitates the

persistence of the shape. The fact that the default behavior

results in a planar Hamiltonian cycle is proven in Section V-C.

One key aspect of the default behavior is that robots do not

plan their paths through the shape prior to entering it. Instead,

each robot makes its own decisions to reactively build a path

through the shape from entry to exit one step at a time. That



5

means that our design choice to have robots maintain a list of

in-shape grid nodes is not necessary for algorithm operation.

If a robot were capable of distinguishing between in-shape and

out-of-shape nodes with its onboard sensors, then the list of

in-shape grid nodes (S) could be replaced with a list that the

robot senses and creates as it moves. This more sophisticated

sensing scheme would replace the shape memory requirements

in the default behavior without changing the rules for robot

motion. This would further expand the practical applications

of persistent shape formation to very large shapes (with many

grid nodes) or for very simple robots (with limited memory

capacity). Investigating this is reserved for future work.

B. Subroutines 2, 3, & 4: Robot Recharging

Although the remaining subroutines are not the primary

focus of this work, they are necessary for the swarm’s suc-

cess, so very simplistic behaviors are implemented. The two

“traveling” subroutines (traveling to the charging station and

traveling to the shape) are simplified by a set of predefined,

static waypoints from the exit node to the charging station and

from the charging station to the entry node, respectively. This

ensures that robots can travel between the charging station and

the shape without encountering obstacles or collisions.

The traveling subroutines are further simplified such that

robots arrive at the shape and exit the shape at the same user

defined constant time interval as robots moving in lockstep

between nodes within the shape (e.g., Ä = 10s). Further, if the

robots in the shape are ever holding still to complete some

portion of an algorithm, then the last robot to have left the

shape will carry a message to the other robots outside of

the shape. This message contains a list of nodes added to or

removed from the shape so that the robots outside of the shape

can update their list of in-shape nodes. Robots in receipt of

this message also adjust their shape-arrival times to limit the

number of robots queuing at the shape entry node.

Similarly, the entry and exit nodes are simplified to be static

and known a priori. By definition, the entry and exit nodes

are adjacent to one another on the periphery of the shape

and within the same box. Having static and predefined entry

and exit nodes allows us to demonstrate the shape persistence

aspects of the algorithms without unnecessarily complicating

swarm behavior. Changing the entry and exit nodes is reserved

for future work.

The charging subroutine is also simplified since most imple-

mentations would be highly dependent on the type of charging

technology used (e.g., wireless charging vs. contact charging).

For this work, the charging station is modeled as a set of

static positions in space. Upon reaching a position in the

charging station, a robot begins charging. When a robot is

done charging, it leaves the charging station to travel back to

the shape in a first-in-first-out order and such that it will arrive

at the shape at the constant time interval (Ä ).

In addition to these simplifications, we assume that robots

move through the entire shape and back to the charging station

on one charge and that the swarm has enough robots that each

robot has more than enough time to completely recharge be-

fore it cycles back into the shape. If for a given implementation

a shape is too large that robots could not pass through the

shape and back to the charging station on a single charge, a

system of multiple charging stations could be implemented,

effectively breaking the shape into multiple pieces. Similarly,

if robots do not have enough time to completely recharge

before cycling back into the shape, one could either add more

robots (and more charging stations) or reduce charging time.

Investigating these scenarios are reserved for future work.

C. Demonstrations of Persistence

Shape persistence was demonstrated in identical tests for

both a simulated swarm and a swarm of physical robots. In

both kinds of experiments, a user initialized a shape of four

boxes (with a start and end node) in a grid graph with edge

lengths of l = 0.2m. 16 robots were set up in a temporary

queue outside of the shape, and 22 robots were placed in a

charging station. Coordinates of the charging station, as well

as the waypoints to and from the charging station, were pre-

programmed and provided to all robots. These coordinates did

not change during the course of the experiment. Communica-

tion was artificially limited to a range of 0.3m for each robot.

After initialization, the robots in the temporary queue began

to fill the shape via the default behavior. Each robot stepped

in synchronization with other robots (due to clock synchro-

nization messages), moving to a new node every Ä = 12s.

Once the shape was almost completely formed, robots in the

charging queue began to leave so that they would arrive at

the shape in Ä = 12s increments starting as soon as the first

robot was about to exit the shape. For every 12s after that,

one robot left for the charging station, one robot arrived from

the charging station, and each robot within the shape moved

to its next node. At that point, the system was in steady state

and allowed to persist for some time.

In both the simulation and physical experiments, the charg-

ing station was modeled as a set of linear positions along one

side of the environment. This was meant to emulate a “charg-

ing rail” where robots could pull up to charge themselves. This

design decision did create the potential for collisions between

robots entering a charging station position and robots exiting

a charging station position. Robots communicated their own

position to one another to help avoid collisions. In the event

of a potential collision, robots heading to the charging station

yielded to robots heading toward the shape to ensure the shape-

bound robots arrived at the shape on time. Furthermore, robots

entered and exited the charging station in a first-in-first-out

basis.

For the physical robot demonstration, we used an existing

swarm of ground robots called Coachbot V2.0 [2]. Each

Coachbot is equipped with a two-wheeled differential drive

system and the ability to sense its position (x, y, ¹) in the

arena. The robots are also equipped with an onboard battery,

an onboard Raspberry Pi computer, and onboard Wi-Fi for

robot-to-robot communication that can be artificially limited

to a user defined distance. The simulator was built to emulate

the performance of the Coachbots (i.e., differential drive

robots with the ability to sense x, y, and ¹, robot-to-robot

communication, etc.).



6

Fig. 3: Images from a simulation (top) and physical robot

experiment (bottom). Each set of three images represents

a sequence in time of the robots forming the shape (left),

stepping to their next node (center), and holding at their next

node (right). The charging station is highlighted by the green

box, and the desired shape is highlighted by the blue box.

Robots in neither box are cycling to or from the shape. The

resulting path through the shape for both the simulation and

the physical robots is shown in the bottom right image. The

LED color of each robot is insignificant for these experiments.

Images from both the simulation and physical robot ex-

periments can be found in Fig. 3. Both the simulated swarm

and the physical swarm were left to maintain their respective

shape for over 30 minutes (and some simulations were left

to run for well over an hour). In that time, each robot cycled

through the shape and back to the charging station 4 or 5

times (9 or 10 times for the hour-long simulations). The

experiments were stopped by an experimenter, not due to

robot or algorithmic failure. This suggests that each swarm is

capable of persistent shape formation for extended duration

tasks because both the simulated swarm and the physical

swarm demonstrated the ability to cycle robots through the

shape via the default behavior without failure or collision for

multiple cycles through the entire swarm of robots.

The Coachbots were used for the physical demonstrations

because they are an established swarm platform that was

available to the authors. However, as ground robots, they could

simply drive to form a shape, power down, and persist in that

shape indefinitely without needing to recharge. In the future,

we plan to demonstrate swarm persistence with a swarm of

flying robots (currently under construction) that do not have

the luxury of a floor to help them hold position in space. In

Fig. 4: (a) A clockwise planar Hamiltonian cycle through a

unit shape. (b) A counter-clockwise planar Hamiltonian cycle

through a unit shape. Arrows indicate edge direction.

the meantime, the Coachbots served as an experiment-ready

option that enabled us to demonstrate the algorithms on a

physical platform.

V. SHAPE PERSISTENCE THEORY

The theory behind the default behavior is rooted in some

provable properties of valid shapes and planar Hamiltonian

cycles. The remainder of this section formally addresses this

theory in three parts: establishing basic concepts, proving

planar Hamiltonian cycles can be found for any valid shape,

and proving the default behavior always produces a planar

Hamiltonian cycle.

A. Basic Concepts

In order to simplify the discussion of shape persistence

theory, we define some basic terminology and concepts. While

most of these concepts are used in the shape persistence

proofs, some of them are also applicable to the shape adapt-

ability concepts discussed in later sections.

The first concept is the unit shape: a shape of b = 1 box.

A robot can take one of two possible cycles through a unit

shape: clockwise or counter-clockwise (Fig. 4). By design

choice, we elect to use the clockwise cycle as default in

this paper. We define a clockwise planar Hamiltonian cycle

through a unit shape as the unit path. Choosing the counter-

clockwise cycle as the unit path would have also been valid. In

that case, the algorithms would result in robots moving along

paths (and edges) in the opposite directions as the ones shown

in this paper. Furthermore, Algorithm 1 rule 2 would have

to be changed to prioritize counter-clockwise motion instead

of clockwise. The remainder of the concepts and theories

presented in this paper would go unchanged.

In discussing the remaining concepts, we will use the

following terminology: parallel to refer to path edges that are

equidistant everywhere and do not intersect; opposite to refer

to edges that have directions exactly 180° from one another;

spanning to refer to path edges that begin and terminate in

different boxes; and non-spanning to refer to path edges that

begin and terminate in the same box. Finally, we will define

two path edges as a pair if the start and end nodes of both

path edges are in a 2x2 grid configuration (regardless of if that

grid configuration is within a box or across multiple boxes).

Thus, the unit path is comprised of two pairs of parallel and

opposite non-spanning edges (a pair directed North-South and

a pair directed East-West).

With these terms, we can discuss merging two paths into one

or separating a single path into multiple and, in the process,

establish two lemmas.



7

Fig. 5: The fundamental operations of path merging (going

from a to b) and path separation (going from b to a). Red

indicates impacted edges. Arrows indicate edge direction.

Lemma 1. If path merging is performed on two separate pla-

nar Hamiltonian cycles, then the result will be one combined

planar Hamiltonian cycle.

Lemma 2. If path separation is performed on a planar

Hamiltonian cycle, then the result will be separate planar

Hamiltonian cycles on either side of the box connection where

the separation occurred.

The first concept, path merging, involves separate paths

merging into one path by creating a pair of spanning edges

across a box connection. During path merging, a pair of

parallel and opposite non-spanning edges (one in each box

on either side of the box connection) are replaced with a pair

of parallel and opposite spanning edges (Fig. 5a to b). The

resulting path is a planar Hamiltonian cycle through all of the

nodes in the combined path by Definition 1. Further, the only

edges affected by this change are the pairs of edges that go

from non-spanning to spanning; the rest of the edges and nodes

are unchanged. Therefore, it does not matter if the pre-merge

paths were simple planar Hamiltonian cycles (such as the unit

paths shown in Fig. 5a), or if the pre-merged paths were

larger, more complicated planar Hamiltonian cycles. Because

the changed portions of the path are within Definition 1, and

since all other portions are unaffected, the result is still a planar

Hamiltonian cycle. Thus, we can conclude Lemma 1.

The opposite concept, called path separation, involves one

planar Hamiltonian cycle separating into multiple paths. For

this to occur, a pair of parallel and opposite spanning edges

are replaced with a pair of parallel and opposite non-spanning

edges (Fig. 5b to a). The result is two planar Hamiltonian

cycles on either side of the box connection after separation.

Similar to path merging, the only edges affected are the pair of

edges that go from spanning to non-spanning; the remainder

of the shape nodes and path edges from the pre-separated

planar Hamiltonian cycle are unchanged. Therefore, it does

not matter if the post-separated paths are simple unit paths,

as shown in Fig. 5a, or if the post-separated paths are larger,

more complicated planar Hamiltonian cycles. In either case,

path separation will always result in planar Hamiltonian cycles

on either side of the box connection after the separation. Thus,

we can conclude Lemma 2.

B. Planar Hamiltonian Cycles in Valid Shapes

Earlier, we claimed that a planar Hamiltonian cycle can

always be found for any valid shape, and we suggested that

Fig. 6: An arbitrary sequence of shape construction (a-f).

Each additional box creates a new valid shape and valid path.

Periphery edges are red. Arrows indicate edge direction.

the process of finding a cycle would scale linearly with the

number of boxes in the shape (O(B) scales linearly with B). To

prove these claims, we establish four things: the assembly of

valid shapes by sequential box addition, path merging during

shape assembly, periphery nodes, and periphery edges.

First, consider the assembly of valid shapes. Since valid

shapes are constructed from boxes, any valid shape can be

assembled by adding boxes together in an arbitrary sequence

until the desired final shape is achieved. For example, the

shape in Fig. 6f could be constructed by assembling boxes

in the order 0,4,3,2,1,5 or 0,1,2,3,4,5, etc. We can further

constrain assembly so boxes are only added together such

that a valid shape is maintained after each addition (i.e., each

additional box is added to be adjacent to an existing box).

To continue the example under such restrictions, 0,4,3,2,1,5

would no longer be a valid sequence for assembling the shape

in Fig. 6f, but 0,1,2,3,4,5 would be valid because it maintains

a valid shape after each additional box.

Next, consider the concept of path merging during shape

assembly under the valid shape constraint. Every time a box

is added to a valid shape, its unit path could be merged with

the existing path via path merging. By Lemma 1, this would

result in a new planar Hamiltonian cycle through the shape.

For example, when box 2 is assembled with boxes 0 and 1

in Fig. 6c, the unit path in box 2 is merged with the existing

path in boxes 0 and 1. Specifically, the bottom edge of the

path in box 0 and the top edge of the unit path in box 2 are

the pair of parallel and opposite non-spanning edges that are

turned into spanning edges to merge the paths. The result is a

new planar Hamiltonian cycle through boxes 0, 1, and 2.

Finally, we define a periphery node as an in-shape node

on the periphery of the shape and a periphery edge as a non-

spanning edge between two periphery nodes. Periphery edges

represent edges that could be merged with unit paths when

new boxes are added to the shape. If every periphery node

is connected by at least one periphery edge, then a new box

could be added anywhere along the periphery of the shape

and its unit path could always merge with the existing path.

For example, every periphery node in the shape in Fig. 6c is

connected by at least one periphery edge, so a new box could

be added to any side on the periphery of the three-box shape.

Theorem 1. A planar Hamiltonian cycle exists for any valid



8

shape.

Proof 1. This is a proof by induction. Consider the base case

of the unit box (B = 1). This shape has three important

properties. Trivially, it is a valid shape (property 1) and its

path is a planar Hamiltonian cycle (property 2). Further, all

periphery nodes are connected by at least one periphery edge

(property 3). For example, see Fig. 6a.

Next, assume there exists a shape of B = K boxes, where K
is some integer and K ≥ 1. Assume the shape has properties

1, 2, and 3. A new valid shape of B = K + 1 boxes could

be generated by adding a new box next to an existing box

in the B = K shape such that the two boxes share an entire

side. This maintains property 1. The unit path in the newly

added box could be merged with one of the periphery edges

on the existing path via path merging to maintain property 2

(by Lemma 1).

Further, by creating the new path in this way, property 3 is

maintained. This is because the portions of the existing path

not involved in the path merge are unchanged and any of the

sides of the new box that are on the periphery of the shape

have a periphery edge between two periphery nodes. Neither

of the edges used in the path merge are on the periphery of the

shape, so the B = K+1 path maintains property 3. Examples

of this can be seen in each box addition in Fig. 6.

Since all three properties are maintained for the case of

B = 1 and for the transition from B = K to B = K + 1 for

some K ≥ 1, we can conclude by induction that Theorem 1

is valid for any valid shape of size B ≥ 1.

Since we can find a Hamiltonian cycle through a shape by

incrementally adding boxes together until we reach that shape,

we can conclude that time to find the Hamiltonian cycle would

scale with the number of boxes in the shape (O(B) scales

linearly with B).

Theorem 1 does not rely on the order in which boxes are

assembled to form a shape so long as each additional box

results in a valid shape. Furthermore, when a new box is added

to an existing shape, it does not matter which periphery edge

is used in the path merge. For example, when box 5 is added

to the shape in Fig. 6, the periphery edge in box 2 was used

to merge with the unit path in box 5. The nearest periphery

edges in box 1 or box 4 could have also been used and the

result would still have been a planar Hamiltonian cycle.

Finally, because path merging is used to prove Theorem 1

by merging unit paths when each additional box is added to

the shape, the resulting planar Hamiltonian cycles have two

particular properties. First, each non-spanning edge is directed

clockwise around the center of its box because each non-

spanning edge originated in a unit path which is clockwise

by definition. Second, each spanning edge is part of a pair

of parallel and opposite edges that span across the same box

connection. In fact, if a tree data representation were used to

track the order in which boxes were added to the shape, one

would see that these pairs span from parent to child in the

tree. For example, box 4 is a child of box 3 when it is added

to the shape in Fig. 6e, and a pair of parallel and opposite

edges span this parent-child box connection.

We need a term to differentiate planar Hamiltonian cycles

that have these two distinct properties from other planar

Hamiltonian cycles that do not. In addition, we know from

practice that planar Hamiltonian cycles are broken at adjacent

start and end nodes to facilitate the movement of robots to

and from a charging station. Thus, we define a valid path as

a planar Hamiltonian cycle with adjacent entry and exit nodes

on the periphery of the shape such that each non-spanning

edge is directed clockwise around the center of its box and

each spanning edge is part of a pair of parallel and opposite

edges spanning across the same box connection.

C. Planar Hamiltonian Cycles via the Default Behavior

Earlier we claimed that the default behavior always results

in a planar Hamiltonian cycle (for any valid shape). As before,

to prove this claim, we have to introduce a new concept: or-

dered assembly of valid shapes via the depth-first clockwise-

priority (DFCP) method. Also, we will define a preferred

path as a planar Hamiltonian cycle that is generated by the

default behavior and a DFCP path as a planar Hamiltonian

cycle that is generated by the DFCP method (and later, we

will show that preferred paths and DFCP paths are identical).

We established in Section V-B that a valid shape can be

constructed via the assembly of boxes in an arbitrary order.

We then constrained the assembly such that each additional

box had to maintain a valid shape, and we found that this

resulted in valid paths. However, the order in which boxes

were assembled remained arbitrary; we only enforced the valid

shape constraint. If we restrict the order in which boxes are

assembled while enforcing the valid shape constraint, then we

can create a subset of valid paths (called DFCP paths) since

a sequence of box additions in a particular order is a subset

of all box additions in arbitrary orders.

In particular, in the DFCP method, we restrict the order

in which boxes are assembled to mimic that of a classical

depth-first search where ties are broken in a clockwise-priority

manner (thus the name: depth-first clockwise-priority method).

Every time a box is added to a shape, we update the frontier of

plausible next boxes with un-searched boxes that will be in the

desired final shape and that will maintain the properties of a

valid shape (i.e., boxes that share a complete side with the most

recently added box). Boxes in the frontier are also added to a

tree data structure representation of the boxes identified thus

far. If more than one box is to box could be added to the tree

at the same time, each box is added right to left corresponding

to a clockwise order with respect to an imaginary clock face

at the center of the most recently added box with the “top”

of the clock facing the second most recently added box. For

example, boxes 2 and 4 are added to the tree data structure

from right to left in Fig. 7b since 2 is more clockwise than 4

with respect to an imaginary clock face centered in box 1 with

the “top” of the clock pointing toward box 0. Once all boxes in

the frontier have been added to the tree, the deepest, rightmost

unexplored node in the tree will be added to the shape next.

Once a box is added to the shape, all other instances of it are

removed from the frontier. The process continues until there

are no other potential boxes to add, and the shape matches the

desired final shape (e.g., Fig. 7).



9

Fig. 7: (left) A desired final shape of 6 boxes and (right) a sequence of temporary shapes and corresponding tree data structures

to produce the desired final shape (a-f). Periphery edges are in red. Arrows indicate path direction. Green identifies the most

recently added box to the shape, and blue identifies the frontier.

After each addition to the shape, the path is adjusted in the

same way as in the proof of Theorem 1: the unit path of the

new box is merged with the existing path via path merging.

However, unlike before, in the DFCP method we constrain

the merge so that the periphery edge of the existing path is

in the parent of the new box. For example, when box 3 is

added to the shape in Fig. 7f, the periphery edge in box 4 is

merged with the unit path of box 3 instead of the periphery

edge through box 0 because box 4 is the parent of box 3 in

the tree.

The DFCP method results in DFCP paths (e.g., Fig. 7f). As a

subset of valid paths, DFCP paths are also planar Hamiltonian

cycles with the two unique properties of valid paths: clockwise

non-spanning edges and spanning edge pairs between parent

and child boxes. The only difference is the order in which

the path navigates through boxes. With this established, to

prove our claim we only need two additional lemmas about

robots moving through a valid shape. Assume we have a robot

moving through a shape with some box in that shape, ´. Per

Algorithm 1, we can say the following about how a robot will

choose its next edge, ϵ′, with respect to ´.

Lemma 3. ϵ′ = f(x, ´) = f(x) if ∀ n in ´ : n /∈ N
Lemma 4. ϵ′ = f(x, ´) = f(x) if ∀ n in ´ : n ∈ Vn

In layman’s terms, Lemma 3 states that finding ϵ′ is not a

function of a box ´ until the robot reaches a node adjacent to

´ and one of the nodes (n) in ´ is within the list of plausible

next nodes N assembled in Algorithm 1 line 5. Similarly,

Lemma 4 suggests that a robot’s path is not influenced by the

presence of ´ after the robot has visited all nodes within ´
since those nodes will be eliminated from the plausible list in

Algorithm 1 lines 7 and 8. We will use both lemmas in the

proof of Theorem 2.

Theorem 2. The default behavior always results in a planar

Hamiltonian cycle for any valid shape.

Proof 2. This is a proof by induction that will show that the

DFCP path produced by the DFCP method and the preferred

path produced by the default behavior are identical for any

valid shape as that shape is built up one box at a time.

Consider the base case of the unit box (B = 1). The

DFCP path is the unit path with an entry and exit node (e.g.,

Fig. 7a). Now, consider the preferred path formed by the

default behavior. After entering the shape, the robot never sees

any new boxes or previously visited boxes (there are none!),

so only Algorithm 1 rule 2 applies. The robot moves from

node to node in a clockwise manner until it reaches the exit

node and exits the shape. The resulting path is identical to the

DFCP path.

Next, assume there exists a shape of B = K boxes, where

K is some integer and K ≥ 1. Assume that the shape has a

DFCP path that matches the preferred path generated by the

default behavior. One additional box (call it box Y ) is added to

the shape in accordance with the DFCP method for a total of

B = K+1 boxes. A path merge between the existing B = K
path and the unit path of box Y will result in a new DFCP

path that passes through box Y via a 5-edge loop between

the two nodes nearest to (and in the parent of) box Y : one

spanning edge into box Y , three non-spanning edges within

box Y , and one spanning edge back into the parent of box Y .

No other portions of the preferred path will be changed from

the B = K case. For example, see the addition of box 5 to

the shape in Fig. 7d.

A new preferred path generated by the default behavior will

match this new DFCP path because the DFCP method and the

default behavior explore boxes in the same manner. For the

DFCP method, adding box Y to the shape can be thought

of as expanding the node in the tree that is the deepest and

rightmost unexplored node (where rightmost is analogous to

clockwise-priority). Similarly, when a robot is executing the

default behavior, it traverses the shape in a depth-first manner

due to the priority of Algorithm 1 rule 1 over Algorithm 1

rule 2. When this depth-first precedent is combined with the

clockwise priority of Algorithm 1 rule 2, one can conclude that

a robot will see and enter neighboring boxes in a depth-first

clockwise-priority order.

Since the DFCP method and the default behavior explore

boxes in the same order, box Y is both the deepest and

rightmost unexplored node in the DFCP method and the last

unvisited box the robot reaches when traversing the B = K+1



10

shape via the default behavior. Further, by Lemma 3 and

Lemma 4, the preferred path before the robot enters box Y and

after it has visited every node within box Y will be unchanged

from the B = K case. Therefore, we only have to prove that

the new DFCP path and the default behavior path are identical

within box Y .

Upon reaching box Y , the robot executing the default

behavior will follow Algorithm 1 rule 1 to enter box Y . When

in box Y , there are no other unvisited boxes, so Algorithm 1

rule 1 will not trigger for the rest of the robot’s motion

through the shape. The robot will move clockwise in box Y
(Algorithm 1 rule 2) and then move into the parent of box Y
(Algorithm 1 rule 3). This is the same as the 5-edge loop that

the DFCP path takes through box Y back to the parent of box

Y .

Since the DFCP path and the preferred path are identical

for the case of B = 1 and for the transition from B = K to

B = K + 1 for some K ≥ 1, we can conclude by induction

that the default behavior will always produce a preferred path

identical to the DFCP path for any valid shape of B ≥ 1. And,

since we know DFCP paths are a type of planar Hamiltonian

cycle, we know Theorem 2 is valid. Further, we know preferred

paths are a subset of valid paths with the two unique properties

of valid paths: clockwise non-spanning edges and spanning

edge pairs between parent and child boxes.

VI. SHAPE ADAPTABILITY

Once a swarm has formed a persistent shape in space, the

swarm must remain adaptable to shape changes (the addition

or removal of a box from the shape). These shape changes

can be in arbitrary order and at arbitrary positions around the

shape (as long as they maintain a valid shape) and may not be

in the same order as the DFCP method. Therefore, robots need

a set of behaviors, other than the default behavior, to handle

these changes. This section introduces these new behaviors and

explains how robots can reconcile shape changes using only

local information and making only local path modifications

since no single robot can have global influence over the swarm.

To do this, we simplify adaptability into three basic steps: 1)

detection, 2) primary changes to fill in a new box or empty a

removed box, and 3) secondary changes to return the swarm

to the preferred path.

To explain these steps, we will use downstream to refer to

a robot that has previously visited a particular grid node, and

upstream to refer to a robot that has yet to visit a particular

grid node. For example, in Fig. 8a, robots 6 through 11 are

all said to be upstream of robot 5’s position, and robots 0

through 4 are said to be downstream of robot 5. We will also

use existing shape and existing path to refer to the shape and

path that existed prior to the change and new shape and new

path to refer to the post-change shape and post-change path,

respectively. The term interim path will be used to refer to

any provisional path formed in the process of changing from

an existing path to a new path.

A. Change Detection

The first step in shape adaptability, detecting the change, is

largely outside of the scope of work in this paper because

the exact process by which a swarm detects an external

environmental stimulus is often dependent on robot hardware.

To keep this work hardware agnostic, detection is simplified by

using human gestures as environmental stimuli and assuming

that robots can sense two unique gestures as the swarm is

sculpted: one indicating a box addition and one indicating a

box subtraction. Further, we assume that gesture identification

is local (only robots nearest to the gesture can sense it), and

that a gesture occurs at the location of the desired change.

Once a gesture is sensed, robots can propagate notification of

the change across the swarm using robot-to-robot communi-

cation. It is assumed that a human can initiate a change to

any portion of the existing shape that results in a new valid

shape. This includes creating and removing holes but excludes

changing the entry and exit nodes. It is also assumed that a new

change is only initiated after an existing change is completely

resolved.

B. Primary Changes

After a shape change has been detected and communicated,

the swarm begins making changes to the path. In the case of

a box addition, this involves robots filling in the newly added

box. In the case of a box subtraction, this involves robots filing

out of the newly removed box. These behaviors are captured

in Algorithm 2 and described in this section.

In the case of addition, the swarm first identifies the critical

point for the change (ncp). This is identified by the robot in

the existing shape that has visited only one grid node adjacent

to the new box and was planning to take a non-spanning

periphery edge as its next move. The grid node occupied by

that robot becomes the point of inflection for communicating

and addressing the change because all robots downstream of

that position may be affected by the change and all robots

upstream of that position will not be affected by the change (by

Lemma 3). Once ncp is identified, each robot takes action in

accordance with Algorithm 2 lines 1-8 depending on whether

the robot is upstream, downstream, or at ncp. Once all four

nodes in the new box are occupied, the robots have filled the

new shape, the interim path is a valid path (Theorem 3 proven

later in Section VIII-A), and primary changes are complete.

For example, consider a three-box shape with a preferred

path such as the one drawn in Fig. 8a. Assume a fourth box is

added to the shape to make a square of four boxes (Fig. 8b).

Robot 7, shown in green, is occupying the point of inflection

since it has only visited one grid node adjacent to the new box,

and, prior to the addition, it intended to take a non-spanning

periphery edge for its next move (see the heading of robot 7

in Fig. 8a). With robot 7 at the ncp, the downstream robots

(robots 0 through 6) pause their motion until the new box

is filled. Meanwhile, robots numbered 7 and up continue to

move along the upstream path via the default behavior and fill

in the new box via clockwise non-spanning edges (Fig. 8c-f).

Once the new box is filled, primary changes are complete and

secondary changes can begin.

The case of box subtraction is similar to addition, but there

are some key differences, especially with respect to how the

existing path is impacted by the box removal. A subtraction



11

Fig. 8: Primary changes in response to a box added to the shape in (a). Numbers represent robot IDs. Arrows indicate robot

heading. Robot 7 (green) is at the point of inflection in (b) and then is the first robot into the new box.

Fig. 9: Primary changes in response to a box subtracted from the shape in (a). Numbers represent robot IDs. Arrows indicate

robot heading. Robot 2 (green) is at the point of inflection in (b) and then leads robots 3, 8, 9, and 10 out of the removed box.

Algorithm 2 Primary Changes

Input: CT , ncp, Vn ▷ CT = change type

1: if CT is addition then

2: if ncp ∈ Vn then ▷ downstream case

3: pause motion and ignore change

4: else if robot is at ncp then ▷ ncp case

5: fill in new box via clockwise motion

6: else ▷ upstream case

7: execute default behavior until reaching ncp

8: end if

9: else if CT is subtraction then

▷ Set Boolean True if robot is currently

▷ within the removed box or False if not

10: inRemovedBox← checkInRemovedBox()

11: if not inRemovedBox then

12: if ncp ∈ Vn then ▷ downstream case

13: execute default behavior

14: else if robot is at ncp then ▷ ncp case

15: execute default behavior

16: else if ncp /∈ Vn then ▷ upstream case

17: pause motion

18: if robot planned to enter removed box then

19: plan clockwise non-spanning motion

20: end if

21: end if

22: else

23: exit box via clockwise motion to ncp

24: end if

25: end if

will immediately impact robots in two categories: 1) robots

within the removed box and 2) robots that have passed through

the removed box but have not yet visited all of the nodes within

the removed box. This latter category of robots would have

to move through the removed box again to exit the shape via

the existing path. Robots that have yet to reach the removed

box, and robots that have already visited every node in the

removed box, will not be immediately impacted by its removal

(by Lemmas 3 and 4, respectively). Therefore, as the change

is communicated across the swarm, a point of inflection node

(ncp) is identified like before, but now it represents the earliest

node in the existing path after which the subtraction will have

no effect. This allows robots within the removed box to safely

follow the robot at the point of inflection out of the removed

box without impacting other portions of the path. The point

of inflection is identified as the node occupied by the robot

with following criteria:

1) The robot has previously visited all four nodes in the

removed box.

2) The robot’s previous node was within the removed box.

Once a point of inflection has been identified, each robot

takes action in accordance with Algorithm 2 lines 10-24

depending on the robot’s relative position to the removed box

and ncp (upstream, downstream, etc.). If any of the upstream

robots are in a box adjacent to the box to be removed and had

planned to move into the box prior to its removal, they adjust

their plan to instead move clockwise within their current box.

In other words, they adjust their path from a spanning edge to a

non-spanning edge. Once all of the robots have exited the box

to be removed, primary changes are finished and secondary

changes can begin.

For example, consider a shape of four boxes in a 2x2

array with a preferred path cycling robots through the shape

(Fig. 9a). Assume the swarm identifies a gesture indicating

the removal of the lower right box (Fig. 9b). In such a case,

robot 2 would be identified as residing at the point of inflection

since it is adjacent to the removed box, it has visited every

node in the removed box, and its previous node was within the

removed box. With robot 2 at the point of inflection, robots

0, 1, and 2 can continue to move through the shape as if the

removal never occurred. Robots upstream of 2’s position that

are not within the removed box (i.e., robots 4-7 and 11-15)

remain still as the box is emptied. Furthermore, robot 4 and

robot 11, which had previously planned to take a spanning

edges into the removed box, adjusts their paths to take non-

spanning edges within their own boxes (Fig. 9a-b). Finally,

robots 3, 8, 9, and 10 follow robot 2 out of the removed box

until the box is empty (Fig. 9c-f).

Unlike the case of addition, however, the resulting path is



12

not necessarily valid after a subtraction. Primary changes for

subtraction can only guarantee that the resulting path is at

least pseudo-valid (Theorem 4 proved later in Section VIII-B).

Although we will discuss pseudo-valid paths at length in later

sections, we introduce the following definition now. Examples

of a pseudo-valid paths can be found in Fig. 11b and Fig. 15c.

Definition 2 (Pseudo-valid Path). A discontinuous path com-

prised of multiple continuous planar closed loops (called sub-

cycles) with the following criteria: 1) each node is visited

exactly once; 2) each non-spanning edge results in clockwise

motion around the center of its box; and 3) each spanning

edge belongs to a pair of parallel and opposite spanning edges

that cross over the same box connection (though the spanning

edges may belong to different sub-cycles).

C. Secondary Changes

Secondary changes are the series of local path changes that

convert the swarm from following the post-primary-changes

path to the preferred path of the new shape. As the last step in

shape adaptability, secondary changes are extremely important

for shape persistence because they guarantee that the swarm

is following the preferred path of the new shape. If the swarm

did not return to moving along the preferred path of the new

shape after each change, then the impact of each change would

have to be communicated to the swarm indefinitely. In those

cases, the swarm’s path through the shape would forever be

altered by the shape changes encountered in the past. By

always reverting to the preferred path, the swarm behavior

becomes independent of its past, and the swarm can continue

to execute the default behavior to persist in the shape while

remaining adaptive to future changes.

There are two interchangeable methods for making sec-

ondary changes. The first method, called the communication-

based method, resolves secondary changes by passing a mes-

sage robot-to-robot through the swarm along the new preferred

path immediately after primary changes are complete. Each

swarm member reacts to this message and, if necessary, makes

a local change to its planned path to match the new preferred

path. The swarm then executes the default behavior and moves

along the new preferred path as soon as the message has

traveled through the shape. The second method, called the

movement-based method, resolves secondary changes by

promoting a single robot to make a series of local path changes

as it moves through the remainder of the new shape. This

results in a sequence of interim paths until the swarm finally

converges to the new preferred path.

The communication-based method is best suited for appli-

cations where communication speed is much faster than the

traveling speeds of the robots and where secondary changes

must be completed quickly (within one time period, Ä ). This

is because secondary changes are complete as soon as the

message reaches the robot at the exit node, and one does

not have to wait for a robot to travel through the remainder

of the new shape (as is the case with the movement-based

method). By contrast, the movement-based method is better

Algorithm 3 Memory Message Reception

Input: m,S, VB , Vn ▷ m = memory message

Output: m′ ▷ m′ = new memory message

▷ Update data structures with information from m
1: VB ← VB from m and b ▷ b = current box

2: Vn ← Vn from m and n ▷ n = current node

▷ Determine next edge via default behavior

3: ϵ′ ← defaultBehavior(b, S, VB , Vn)

▷ Determine next node

4: n′ ← node at end of ϵ′ ▷ n′ = next node

▷ Create message to send to robot at next node

5: m′ ← createMessage(VB , Vn, n
′)

suited for applications where communication speed is slower,

and a message is not likely to be passed through the swarm in

one time period (Ä ). In practice, a swarm would be designed

to execute one of the two methods for secondary changes for

the duration of its task; the swarm would not alternate between

the two methods during any given task.

Both methods begin after primary changes have been ad-

dressed, and both start from the same grid node in the new

shape. For clarity, we define the node from which secondary

changes begin as the secondary change start node (SCSN). It

represents the latest node in the path where all upstream robots

will not be affected by the change (by Lemma 3). In the case of

box addition, the point of inflection identified during primary

changes (prior to filling in the new box) and the SCSN are

identical. In the case of box subtraction, the SCSN is the node

occupied by the robot with the following criteria:

1) The robot has never visited any of the nodes in the

removed box.

2) Prior to removal, the robot’s next position would have

been in the removed box.

In the subtraction example, the SCSN is occupied by robot 11

in Fig. 9.

1) Communication-Based Method: In this method, the

robot occupying the SCSN initiates a memory message

through the swarm. The memory message is essentially a

virtual robot executing the default behavior along the new

preferred path. Instead of physically moving, the message is

transmitted from robot to robot along the new preferred path in

accordance with Algorithm 3. Each recipient of the memory

message re-writes its boxes visited (VB) and nodes visited

(Vn) to match that of the memory message (m). Then, the

robot appends its own grid node and box information to the

data structures before executing the default behavior without

actually moving. By doing this, the robot determines its next

position. The robot occupying the original recipient’s next

position is the next recipient of the updated memory message

(m′). The original recipient then transmits the updated memory

message to the next recipient and the process continues.

This creates local changes in the path as the message tra-

verses through the swarm. Each recipient adjusts its memory,

effectively rewriting its past as if it had always been moving

along the new preferred path of the new shape. This ensures

that all future robot movements will also be along the new



13

Fig. 10: Secondary changes. (a) The state of the swarm

immediately following the primary changes (Fig. 9). Robot

11 is at the SCSN (blue). (b) The state of the swarm after the

communication-based method is complete with robots 5 and

9 (orange) having changed their heading. Numbers represent

unique IDs of the robots. Arrows indicate robot heading.

Fig. 11: A sequence of interim paths leading from an interim

path (a) to the new preferred path (c). Changes from the

previous path are shown in red. Arrows indicate edge direction.

preferred path of the new shape. The memory message is only

sent downstream from the SCSN because all upstream portions

of the path are the same for both the existing path and the new

path (by Lemma 3). Eventually, the memory message reaches

the robot at the exit node and the robots resume the default

behavior as if nothing ever happened.

Although the communication-based method works for both

shape additions and subtractions, we will consider only the

example subtraction case (from Fig. 9) for brevity. After the

box is removed and primary changes are resolved, robot 11 (at

the SCSN) begins transmitting a memory message through the

swarm. Fig. 10 shows the state of the swarm when memory

message transmission begins (Fig. 10a) and ends (Fig. 10b).

Note Fig. 10a is identical to Fig. 9f because secondary changes

begin where primary changes left off. In accordance with

Algorithm 3, the memory message moves through the swarm

along the new preferred path, so it passes through robots in the

following order: 11, 10, 9, 4, 7, 6, 5, 8. Robots 11, 10, 4, 7, 6,

and 8 do not change their heading direction after processing

the memory message because their heading in the interim path

(Fig. 10a) is identical to the new preferred path (Fig. 10b).

However, robots 9 and 5 both make a local change to their

heading in response to the memory message so that the swarm

is following the new preferred path (Fig. 10a to b).

2) Movement-Based Method: In this method, secondary

changes happen more slowly than in the communication-based

method. This is because they rely on a robot moving through

the shape, swapping destinations with other robots in the

swarm to make local path changes as it goes. This results in a

series of interim paths from the path immediately after primary

changes complete to the new preferred path. For example, the

path after primary changes for the box addition described in

Fig. 8 looks like the path drawn in Fig. 11a. This path is

changed twice in a sequence of interim paths from Fig. 11a to

Fig. 11c in order to achieve the new preferred path (Fig. 11c).

To begin converting the swarm’s path to the new preferred

path, the swarm promotes a change robot. The change robot

is not inherently special; it is just the robot that happens to

be present at the SCSN when primary changes are completed.

As before, all portions of the path upstream of the SCSN are

the same for both the existing path and the new preferred path

(by Lemma 3), so all impacts of the change robot will come

after the change robot’s initial position. Thus, the change robot

represents the first robot capable of traversing the preferred

path of the new shape using only the default behavior.

Even though the change robot is executing the default

behavior, robots downstream of its position may not be. Since

the post-primary-changes interim path is not necessarily the

preferred path (it could be valid or pseudo-valid as proven

later for Theorems 3 and 4, respectively), robots downstream

of the change robot’s position may be executing non-default

behavior to maintain a non-preferred interim path (i.e., a

pseudo-valid path or a valid path that is not preferred). Non-

default behavior is facilitated by pass-back robots: robots

that use neighbor-to-neighbor communication to “pass back” a

non-default movement instructions such that upstream robots

follow the pass-back robot’s non-default path.

Robots involved in or adjacent to a primary change (i.e.,

those that fill a new box and those that are adjacent to a

newly added or removed box) immediately become pass-

back robots when primary changes are finished. Then, after

they move to their next grid node, each pass-back robot

transmits a pass-back message (Algorithm 4) to the robot

in its previous grid node (nprev). The recipient of the pass-

back message then adjusts its path to follow the pass-back

robot (Algorithm 5). The recipient also rewrites its memory

(VB and Vn) to match that of the sender (the original pass-

back robot) and then becomes a pass-back robot itself. This

ensures that the grid node becomes a semi-permanent instance

of non-default behavior because the recipient will pass-back

the same message to the next robot in line after it moves. Any

upstream robot that receives a pass-back message will follow

the robot that previously occupied the grid node and then tell

the next upstream robot to do the same.

After transmitting a pass-back message, a pass-back robot

converts back to a regular robot and follows the default be-

havior. However, if it ever receives another pass-back message

from a downstream robot, it will become a pass-back robot

again (per Algorithm 5).

Pass-back behavior is only cleared from the swarm by the

change robot. It does this by moving through downstream grid

nodes and ignoring pass-back messages as it moves (i.e., the

change robot does not continue to transmit pass-back messages

even if a pass-back robot attempts to send a message to the

change robot).

Since its downstream neighbors may not be navigating along

the same path as the change robot, conflicts can occur when

both the change robot and a neighboring robot intend to

move to the same node. Such conflicts are resolved via a

process called destination swapping. In a destination swap,

the change robot could take one of two edges from its current

node. One edge could be taken in accordance with the default

behavior to a node (destination 1), while the other edge



14

Algorithm 4 Pass-back Robot Behavior: Transmission

Input: ϵ′, Vn, VB

Output: mpb ▷ mpb = pass-back message

1: move to next node via ϵ′

2: nprev ← Vn[−1] ▷ get previous node

3: append b to VB ▷ update boxes visited w. current box

4: append n to Vn ▷ update nodes visited w. current node

▷ Create message to send to previous node

5: mpb ← createMessage(VB , Vn, ϵ′, nprev)

Algorithm 5 Pass-back Robot Behavior: Reception

Input: mpb ▷ mpb = pass-back message

1: VB ← VB from mpb ▷ overwrite boxes visited

2: Vn ← Vn from mpb ▷ overwrite nodes visited

3: ϵ′ ← ϵ′ from mpb ▷ overwrite edge to next node

4: become pass-back robot

could be taken in accordance with the current interim path

to some other node (destination 2). Since the change robot

is always executing its default behavior, it will always take

the edge to destination 1. This leaves destination 2 available

for the conflicting neighbor robot that had previously planned

to move to destination 1 but can no longer since the change

robot has priority. Thus, the change robot effectively “swaps

destinations” with the conflicting neighbor robot, giving the

conflicting neighbor robot destination 2 in exchange for desti-

nation 1. In practice, destination swapping is facilitated by the

change robot constantly broadcasting its planned movements

so that conflicting neighboring robots can react to the message

and change their destination before collisions occur.

After destination swapping, the robot that changed its desti-

nation to accommodate the change robot becomes a pass-back

robot so that other robots continue to follow this new direction

and a new interim path is created. This process continues with

each destination swap creating a sequence of interim paths

until the new preferred path is achieved (Theorem 5 proved

later in Section VIII-C). Once the change robot reaches the end

of the shape, all pass-back nodes have been cleared, the swarm

is executing the new preferred path, and all future robots can

continue to execute their default behavior without exception.

Finally, the change robot reverts back to a normal swarm robot

as it departs for the charging station.

Similar to the communication-based method, the movement-

based method transforms interim paths to preferred paths

via an identical process for both addition and subtraction.

For brevity, only the addition example from Fig. 8 will be

discussed here. After addition, the swarm has formed the

interim path shown in Fig. 8f. For clarity, a graphic showing

the sequence of events for secondary changes is provided in

Fig. 12. As before, secondary changes begin where primary

changes left off, so Fig. 8f matches Fig. 12a.

An example of pass-back behavior can be seen in the

transition from Fig. 12a to 12b. In Fig. 12a, robot 3 is a pass-

back robot since it was adjacent to the box addition. When it

moves to its next position in Fig. 12b, robot 3 sends a pass-

back message to robot 4 and transitions back to the default

Fig. 12: Secondary changes via the movement-based method.

The sequence transforms the interim path (a) to the preferred

path (o). Numbers represent robot IDs. Arrows on the robots

indicate headings. Dashed arrows indicate communication

paths for direction swapping in (d), (e), (h), and (i) and

promoting the change robot (a). Red robots are pass-back

robots and the blue robot is the change robot.

behavior. Robot 4 receives the pass-back message and adjusts

its path to follow robot 3. In Fig. 12a, robot 5 is also a pass-

back robot. When it moves to its next position (in Fig. 12b), it

sends a pass-back message to robot 6. Robot 5 transitions to

the default behavior, but then immediately receives a pass-back

message from robot 4, transitioning it back to the pass-back

state. All robots involved in the primary change (or adjacent

to the primary change) become pass-back robots. They are

shown in red in Fig. 12.

Change robot behavior is also evident in Fig. 12. The

change robot (robot 11) is promoted by robot 7 once the

local changes are complete (Fig. 12a). Robot 11 serves as

the change robot in this case because it is the robot present

at the SCSN when primary changes are completed. Likewise,

robot 7 is the robot that promotes robot 11 because robot 7

was at the point of inflection at the onset of primary changes

and was the robot that led the way into the newly added box.

Robot 11 then proceeds to move through the shape, executing

its default behavior and destination swapping as necessary.

For example, in Fig. 12d, robot 11, executing the default

behavior, plans to move “left” to the node occupied by robot



15

6 (see robot 11’s heading in Fig. 12d). Thus, robot 7, which

had previously planned to move to robot 6’s position, is free

to swap destinations and instead move “right” to robot 10’s

position (Fig. 12e). Robot 7 also switches to a pass-back state

as a result of the destination swap. This particular destination

swap results in a pseudo-valid path of two sub-cycles: robots

7, 8, 9, and 10 form one sub-cycle while robots 3-6 and 11-18

form another. This pseudo-valid path continues to persist until

Fig. 12h and Fig. 12i when robots 7 and 11 destination swap

again. Lastly, the change robot (robot 11) clears pass-back

messages as it moves, so when robot 11 has exited the shape,

the swarm is following the new preferred path (Fig. 12o).

VII. ADDITIONAL EXPERIMENTS AND DEMONSTRATIONS

We performed additional experiments to demonstrate the

swarm’s adaptability while maintaining its persistence. Specif-

ically, we show detection, primary changes, and secondary

changes via both the communication-based method and the

movement-based method with the swarm executing the default

behavior in between shape changes. These demonstrations

were completed on a swarm of mobile robots to capture the

swarm’s response to an actual human and on a simulated

swarm of 90 robots to depict the scalability of the algorithms.

With no known direct state-of-the-art comparisons, it was

not possible to compare the performance of these demon-

strations against the metrics of other methods. Instead, these

demonstrations were completed as a proof of concept to both

reinforce the effectiveness of the algorithms and complement

the theoretical proofs. Furthermore, although performance

reliability was not a primary driver of our work, we did note

that the simulated experiments could be run repeatedly without

error. The mobile robot experiments were also repeatable with

exceptions only in the event of unrelated robot hardware issues

(e.g., robot wheels getting snagged on hairs on the floor, etc.).

A. Demonstrations with Humans

Experiments were performed on the swarm of Coachbots to

show the swarm’s response to a human sculpting the shape.

These experiments used a 20 robot initial shape and a 22 robot

charging station. The demonstrations on the Coachbots also

consisted of both addition and subtraction via both secondary

change methods (communication-based and movement-based).

In these experiments, once the initial shape was formed

and the robots reached a steady-state persistent cycle into

and out of the shape, a human initiated a random set of

arbitrary changes to the shape by interacting directly with

the swarm. In both secondary change methods, and for both

addition and subtraction, the swarm effectively detected each

change, made primary changes, and finally made secondary

changes to continue to cycle robots through the new shape.

The time to resolve each change was on the order of 1-7

minutes depending on the location of the change. The changes

made closer to the end of the path took less time to resolve

than those towards the beginning where the memory message

or change robot would have to travel further before the

change completed. These experiments were recorded with an

Fig. 13: A sequence of images from a Coachbot experiment

running the movement-based method. Pane (a) shows the

initial shape. Human initiated additions are in panes (b) and (f),

and subtractions are in panes (d) and (h). A dashed rectangle

indicates the added or removed box. Panes (c), (e), (g), and (i)

show the swarm’s shape once the previous change is resolved.

In-shape robots have green, blue, and red LEDs to indicate the

potential for addition, subtraction, and no change, respectively.

overhead camera, and images of one human-swarm interaction

experiment are captured in Fig. 13.

The Coachbots were used in these experiments because they

were an existing swarm available to the authors. Unfortunately,

they have no means of sensing humans: only their position

(x, y) and heading (¹). Therefore, we physically rotated robots

in place as human “gestures” when sculpting the shape. Robots

changed color within the shape to indicate which robots could

be manipulated for an addition and which for a subtraction.

Robots would turn green if they were along the periphery of

the shape alongside a box that could be added to the shape.

Robots would turn blue if they were not along the periphery of

the shape or otherwise not alongside a box that could be added

to the shape. Finally, robots would turn red if they could not

be manipulated for either addition or subtraction (e.g., a robot

at the exit node). If a green robot’s heading was changed,

then the robot would initiate a box addition, and if a blue

robot’s heading was changed, then the robot would initiate

a box subtraction. Red robots were unresponsive to human

interaction. Other robot colors (e.g., yellow and white) are



16

Fig. 14: A simulation of 90 robots running the communication-

based method. Robots begin in a 17-box “N” (far left). Boxes

are removed and added to the shape (left to right) until the

swarm forms the 15-box “U” (far right). Robot LED color

indicates shapes of with an even (green) or odd (blue) number

of boxes. The charging station is not shown.

used to debug the system.

B. Large Scale Simulations

The final set of experiments demonstrated the scalability

of the algorithms by simulating a swarm of 90 robots form-

ing a 17-box “N” shape persistently. The swarm was then

manipulated into a 15-box “U” shape through a series of ad-

ditions and subtractions. Human gestures indicating additions

or subtractions were emulated by pre-programmed messages

transmitted at pre-assigned times to the robots nearest to the

desired addition or subtraction. Images of a particular test

are in Fig. 14. This simulation demonstrates the scalability

of the algorithms to swarms of large numbers and shows the

complexity of the shapes that can be formed despite the valid

shape constraints. Although scalability is not formally proven,

the size of the swarm is not a necessary component in any of

the algorithms, and each robot is executing identical behavior

without a dependency on a centralized actor. This indicates that

the size of the swarm would not be limited by the algorithms,

but rather the capacity of the charging station, the size of the

path that an individual robot can travel, the onboard memory

of each robot, or the size of the environment.

VIII. SHAPE ADAPTABILITY THEORY

The previous sections described swarm adaptability in the

cases of box addition and box subtraction. Specifically, we

covered the steps of detection, primary changes (for both

addition and subtraction), and secondary changes (for both

the communication-based method and the movement-based

method). Along the way, we stated a series of unproven claims

as fact. The remainder of this section formally addresses these

claims and provides proofs to support their validity.

A. Primary Changes: Addition Yields Valid Paths

Earlier we claimed that, in the event of an addition, primary

changes in accordance with Algorithm 2 lines 1-8 always

result in a valid interim path. We can prove this claim directly

by the logic of Theorem 1.

Theorem 3. Addition primary changes result in a valid path.

Proof 3. Prior to an addition, the existing shape is a valid

shape and the existing path is a preferred path. In the event of

an addition, primary changes effectively replace a periphery

Fig. 15: Examples of preferred, valid, and pseudo-valid paths

through the same shape. Arrows indicate path direction.

edge of the existing path with a 5-edge loop: 1 edge that

spans into the new box from an existing box, 3 non-spanning

edges that move robots clockwise through the new box, and

1 spanning edge back into the existing box. This is the same

5-edge loop discussed in the proof of Theorem 1 that occurs

when a unit path through a new box is merged into the existing

path. Thus, by the same logic, we know that the 5-edge loop

created by primary changes in response to an addition will

also result a valid path and Theorem 3 is valid.

B. Primary Changes: Subtraction Yields Pseudo-valid Paths

Earlier we claimed that local changes in response to a

subtraction in accordance with Algorithm 2 lines 9-25 can

only guarantee that the resulting path is at least pseudo-valid.

In order to prove this, we must explain the phrase “at least

pseudo-valid.” We will also establish two more lemmas.

Lemma 5. For a path that is pseudo-valid, valid, or preferred,

each non-spanning edge results in clockwise motion around

the center of its box.

Lemma 6. For a path that is pseudo-valid, valid, or preferred,

each spanning edge belongs to a pair of parallel and opposite

spanning edges that cross over the same box connection.

By Definition 2, in a pseudo-valid path, each non-spanning

edge results in clockwise motion around the center of its

box, and each spanning edge belongs to a pair of parallel

and opposite spanning edges that cross over the same box

connection. Since these properties are also true of preferred

and valid paths, we can conclude Lemma 5 and Lemma 6.

Examples of a preferred path, valid path, and pseudo-valid

path are shown in Fig. 15 for comparison.

Since preferred paths are a subset of valid paths, and valid

paths are a subset of pseudo-valid paths (i.e., valid paths are

pseudo-valid paths with only one sub-cycle), then we can use

the phrase “at least a pseudo-valid path” to refer to any path

that is pseudo-valid but could also be valid or preferred. With

these terms defined, we can now prove our claim directly using

the concepts of path separation, path merging, and Lemma 2.

Theorem 4. Subtraction primary changes result in at least a

pseudo-valid path.

Proof 4. Prior to a subtraction, the existing shape is a valid

shape and the existing path is a preferred path. Since the

existing path is a preferred path, by Theorem 2 we know

that a robot traversing the preferred path will create a tree

data structure of boxes that matches the tree data structure



17

assembled by the DFCP method (just like in Fig. 7). The

box with entry and exit nodes is the root of the tree, and

the remainder of the boxes in the shape are either branches

or leaves. Branches are boxes that the robot enters and exits

at least twice: at least once to access descendent boxes and

once to move back up the tree to exit the shape. On the other

hand, leaves are boxes for which the robot enters and exits

only once, making a distinctive 5-edge “∪” pattern through

the box. For example, in Fig. 15, the box marked “l” is a leaf

and the box marked “b” is a branch. Now, let R denote a box

to be removed. The impact of removing R from a valid shape

(with a preferred path) varies depending on whether R is a

leaf or a branch.

If R is a leaf, then the box can be removed without

impacting any other portions of the path because the original

path did not need to travel through R to get to other boxes.

When R is removed, the robot that had previously planned to

take a spanning edge into R will instead plan to move clock-

wise within its own box (in accordance with primary change

procedures). In that case, removing R is like separating its unit

path from the planar Hamiltonian cycle in the remainder of the

shape via path separation (i.e., spanning edges become non-

spanning edges). This results in a planar Hamiltonian cycle

through the remainder of the shape (by Lemma 2), and the

path prior to and after R is not affected by the presence of R
(by Lemmas 3 and 4). Thus, we can conclude that the planar

Hamiltonian cycle that remains once R is removed is identical

to the planar Hamiltonian cycle that would have existed if R
had never been a part of the shape. We can also conclude that

the planar Hamiltonian cycle that would have existed if R had

never been a part of the shape is the same as the preferred

path that a robot would have traveled via the default behavior

if R had never been a part of the shape as R (being a leaf)

is the last unvisited box in its subtree. In other words, we can

conclude that when a leaf box is removed, primary changes

result in the preferred path of the new shape.

However, if R is a branch, then removing the box will

result in a discontinuity in the path since the path had to

pass through R to get to other boxes. In that case, all robots

that had previously planned to take a spanning edge into R
will instead plan to move clockwise within their own boxes

(in accordance with primary change procedures). This is the

same as a path separation operation on each pair of spanning

edges that crossed a side of R. By Lemma 2, this still creates

planar Hamiltonian cycles in the remainder of the boxes, but

instead of being one continuous path, the resulting path will

have at least two sub-cycles. For example, if R is a branch

with only one child, there will be one sub-cycle through all

of the boxes visited from the root box through the parent of

R and one sub-cycle through all of boxes visited after R. By

Definition 2, such a path is a pseudo-valid path, so we can

conclude that when a branch is removed, primary changes

result in a pseudo-valid interim path.

Finally, since a primary changes in response to a subtraction

result in either a preferred path (in the case of a leaf) or a

pseudo-valid path (in the case of a branch), we can conclude

that Theorem 4 is valid.

C. Secondary Changes Yield Preferred Paths

In describing secondary changes, we presented two inter-

changeable methods for operation: the communication-based

method and the movement-based method. We also explained

that secondary changes return the swarm to the preferred

path of the new shape so that robots can freely execute the

default behavior without concerning themselves about shape

changes that occurred in the past. Therefore, we must prove

that both the communication-based method and the movement-

based method result in the new preferred path of the new

shape. The proof of the communication-based method is

trivial. Since the communication-based method is just a virtual

implementation of the default behavior, we can conclude that

it will always result in the new preferred path of the new shape

by Theorem 2.

However, the proof of the movement-based method is less

obvious. We earlier claimed that by repeatedly destination

swapping with the change robot, the swarm will morph

through a sequence of interim paths until the preferred path is

achieved. This relies on two basic tenets: 1) that a destination

swap morphs the swarm from one path that is at least pseudo-

valid to another path that is at least pseudo-valid, and 2) that

the sequence of interim paths will converge to the preferred

path. Both of these are addressed in the proof of Theorem 5.

We will also use the following lemmas.

Lemma 7. For a robot at a node in at least a pseudo-valid

path, only one outgoing non-spanning edge exists for the robot

to travel within its box while maintaining Lemma 5.

Lemma 8. For a robot at a node in at least a pseudo-valid

path, only one outgoing spanning edge exists for the robot to

travel into a different box while maintaining Lemma 5 and

Lemma 6.

Lemma 7 is trivial based on the definitions of preferred,

valid, and pseudo-valid paths, and Fig. 4a shows each of the

four valid outgoing spanning edges for each of the four nodes

in a unit box. On the other hand, Lemma 8 is slightly less

intuitive, so we provide Fig. 16 to show a visual representation

of Lemma 8 for one node in an arbitrary box in an arbitrary

valid shape (the argument is rotationally symmetric for all

other nodes in the box). Of the two possible options for

spanning edges leading away from the white node in Fig. 16,

only edge a is compatible for paths that are at least pseudo-

valid. If edge b were present, then edge c must also exist by

Lemma 6. However, the only way a path could connect from

the end of edge b to the start of edge c without intersection

is for the path to have a non-spanning edge with counter-

clockwise motion around the center of its box (if not in the box

that edge b spans into then in some other leaf box downstream

of edge b). Since this contradicts Lemma 5, we can infer that

edge b will never exist in a pseudo-valid, valid, or preferred

path and Lemma 8 must be valid.

Theorem 5. In the movement-based method of secondary

changes, a sequence of valid and pseudo-valid interim paths

created as a change robot moves through the shape will

converge to the preferred path of the new shape.



18

Fig. 16: Edge a is the only plausible spanning edge to leave

the white node in a path that is at least pseudo-valid. Edges b
and c cannot exist without a counter-clockwise spanning edge

somewhere in the shape (indicated by the dashed line).

Fig. 17: Each valid edge for nodes in an arbitrary shape.

Proof 5. First, by Theorem 3 and Theorem 4, it can be said

that all local changes, regardless of whether a box was added

or removed, will result in at least a pseudo-valid path (i.e., the

path is either pseudo-valid, valid, or preferred). Thus, it can be

assumed that when a change robot is promoted at the start of

secondary changes, the interim path is at least pseudo-valid,

so we have to prove that a destination swap results in another

path that is at least pseudo-valid.

To do this, we use Lemma 7 and Lemma 8, to draw the two

potential outgoing edges at each node in an arbitrary shape in

Fig. 17. Consider a change robot at node A (the argument is

rotationally symmetric for all other nodes in a box). Since we

know a destination swap will only occur when a neighboring

robot is planning to move to the same destination as the change

robot, then we can see only two cases where a destination

swap might occur: 1) when the change robot is planning to

take edge
−−→
AB at the robot at node C is planning to take edge−−→

CB, or 2) when the change robot is planning to take edge−−→
AD at the robot at node C is planning to take edge

−−→
CD. In

both cases, the robot at node C is free to swap destinations

without risking a collision with other robots because the node

it is swapping to can only be accessed by one of two edges,

and the other edge is not being taken by the change robot. For

example, in the first case, the robot at node C is free to swap

its destination from node B to node D because the change

robot is going to take edge
−−→
AB (not

−−→
AD), meaning no other

robot is planning to move to node D.

Furthermore, all aspects of valid and pseudo-valid paths

are maintained after these destination swaps because, in both

cases, there are no path intersections, each node is still

connected via exactly two edges, the start and end nodes have

not been changed, and no periphery edges have been changed.

The only impact of swapping destinations is that the nodes

may belong to a different sub-cycle (or valid path) than they

previously belonged to. Thus, we can conclude that the path

remains at least pseudo-valid after a destination swap.

Finally, as the change robot moves, it creates a sequence

of interim paths as it destination swaps with its neighbors.

It always executes the default behavior, and so do all of the

robots upstream of its position. This implies that, as the change

robot moves closer to the end of the shape, more robots are

following the new preferred path via the default behavior

and fewer robots are following the interim path. Therefore,

a sequence of valid and pseudo-valid interim paths created as

a change robot moves through the shape will converge to the

new preferred path as the change robot converges toward the

exit node, and Theorem 5 is valid.

IX. CONCLUSION

In this work, we presented algorithms for persistent and

adaptive 2D shape formation that allow a swarm to overcome

the limitations of individual robot power constraints while

finding new paths through the shape after every shape change.

We have shown that these algorithms are provably correct and

have demonstrated their effectiveness in both simulation and

a swarm of physical robots. More significantly, though, we

have opened the door to a largely unexplored field of swarm

shape formation applications where the duration of the task

may no longer be a constraint on the swarm’s performance

and the shape that the swarm is forming during its task is free

to change in response to an external stimulus such as a human

sculpting the shape.

Future work includes demonstrating these algorithms on a

swarm of physical flying robots. There is also work to be

done to improve the efficiency and fault tolerance of these

algorithms to make them more suitable for applications in

unpredictable environments. Specifically, the behavior of the

swarm in the face of challenges, such as communication inter-

ference and damaged or adversarial robots, has not yet been

explored. Investigating such impacts on the algorithms would

also require us to identify potential single points of failure and

build redundancy into the algorithms (e.g, detecting a failure

in the transmission of a memory message and recovering by

restarting transmission of a new message).

Finally, we intend to develop three-dimensional algorithms

that are analogous to the 2D algorithms presented in this

paper so that swarm implementations are not constrained to

planar tasks. One way to accomplish this might be to execute

2D algorithms for a set of vertically stacked layers in a 3D

shape. Another method might be to develop valid 3D shapes

constructed of cubes in the same way we developed valid

shapes constructed of boxes in 2D. Additional challenges

with a 3D version will include the impact of downwash on

other flying robots, the ability to detect human gestures while

in flight, and the safety concerns associated with a human

interacting with flying robots.



19

(REVISION NOTE: References [11], [12], [22]–[27] are

new.)

REFERENCES

[1] A. G. Curtis et al., “Autonomous 3d position control for

a safe single motor micro aerial vehicle,” IEEE RA-L,

2023.

[2] H. Wang and M. Rubenstein, “Shape formation in

homogeneous swarms using local task swapping,” IEEE

T-RO, vol. 36, pp. 597–612, 3 Jun. 2020.

[3] H. Xu, H. Guan, A. Liang, and X. Yan, “A multi-robot

pattern formation algorithm based on distributed swarm

intelligence,” in IEEE ICCSEA, vol. 1, 2010, pp. 71–75.

[4] Z. Xue and J. Zeng, “Formation control numerical

simulations of geometric patterns for unmanned au-

tonomous vehicles with swarm dynamical methodolo-

gies,” in IEEE International Conference on Measuring

Technology and Mechatronics Automation, 2009.

[5] J. Wu et al., “Distributed uav swarm formation and

collision avoidance strategies over fixed and switching

topologies,” IEEE Transactions on Cybernetics, 2021.

[6] Y. Liu et al., “A distributed control approach to forma-

tion balancing and maneuvering of multiple multirotor

uavs,” IEEE T-RO, 2018.

[7] M. Aranda et al., “Distributed formation stabilization

using relative position measurements in local coordi-

nates,” IEEE Transactions on Automatic Control, 2016.

[8] H. Wang and M. Rubenstein, “Generating goal configu-

rations for scalable shape formation in robotic swarms,”

in DARS, Springer, 2021.

[9] X. Dong et al., “Time-varying formation control for

unmanned aerial vehicles: Theories and applications,”

IEEE Transactions on Control Systems Technology,

2014.

[10] Y. Xu et al., “Concurrent optimal trajectory planning

for indoor quadrotor formation switching,” Journal of

Intelligent & Robotic Systems, 2019.

[11] G. A. Di Luna et al., “Shape formation by pro-

grammable particles,” Distributed Computing, 2020.

[12] Z. Derakhshandeh et al., “Universal shape formation for

programmable matter,” in SPAA, 2016.

[13] T. M. Cabreira, L. B. Brisolara, and R. F. Paulo, “Sur-

vey on coverage path planning with unmanned aerial

vehicles,” Drones, vol. 3, pp. 1–38, 1 Mar. 2019.

[14] Y.-S. Jiao et al., “Research on the coverage path plan-

ning of uavs for polygon areas,” in IEEE ICIEA, 2010.

[15] W. H. Huang, “Optimal line-sweep-based decomposi-

tions for coverage algorithms,” in IEEE ICRA, 2001.

[16] M. Torres et al., “Coverage path planning with un-

manned aerial vehicles for 3d terrain reconstruction,”

Expert Systems with Applications, vol. 55, pp. 441–451,

2016.

[17] C. Di Franco and G. Buttazzo, “Coverage path planning

for uavs photogrammetry with energy and resolution

constraints,” Journal of Intelligent & Robotic Systems,

2016.

[18] T. M. Cabreira et al., “Energy-aware spiral coverage

path planning for uav photogrammetric applications,”

IEEE RA-L, 2018.

[19] D. Albani, D. Nardi, and V. Trianni, Field Coverage

and Weed Mapping by UAV Swarms. 2017.

[20] S.-H. Lim and H.-C. Bang, “Waypoint planning al-

gorithm using cost functions for surveillance,” IJASS,

2010.

[21] J. Zelenka and T. Kasanickỳ, “Insect pheromone strat-

egy for the robots coordination—reaction on loss com-

munication,” in IEEE CINTI, 2014.

[22] F. Arvin et al., “Perpetual robot swarm: Long-term

autonomy of mobile robots using on-the-fly inductive

charging,” Intelligent & Robotic Systems, 2018.

[23] M. Carrillo et al., “A bio-inspired approach for collab-

orative exploration with mobile battery recharging in

swarm robotics,” in BIOMA, Springer, 2018.

[24] M. Rappaport and C. Bettstetter, “Coordinated recharg-

ing of mobile robots during exploration,” in IEEE IROS,

2017.

[25] G. Li, I. Svogor, and G. Beltrame, “Long-term pattern

formation and maintenance for battery-powered robots,”

Swarm Intelligence, 2019.

[26] A. Boggio-Dandry and T. Soyata, “Perpetual flight for

uav drone swarms using continuous energy replenish-

ment,” in IEEE UEMCON, 2018.

[27] D. Mitchell, E. A. Cappo, and N. Michael, “Persistent

robot formation flight via online substitution,” in IEEE

IROS, 2016.

[28] M. R. Garey, D. S. Johnson, and R. E. Tarjan, “The

planar hamiltonian circuit problem is np-complete,”

SIAM Journal on Computing, 1976.

[29] C. Umans and W. Lenhart, “Hamiltonian cycles in solid

grid graphs,” in Proceedings 38th Annual Symposium on

Foundations of Computer Science, 1997.

[30] R. I. Nishat, “Reconfiguration of hamiltonian cycles and

paths in grid graphs,” Ph.D. dissertation, 2020.

[31] K. C. Cheung et al., “Programmable assembly with uni-

versally foldable strings (moteins),” IEEE T-RO, 2011.

[32] A. A. Joshi, M. C. Bhatt, and A. Sinha, “Modification of

hilbert’s space-filling curve to avoid obstacles: A robotic

path-planning strategy,” in 2019 Sixth Indian Control

Conference, IEEE.

[33] S. A. Sadat, J. Wawerla, and R. Vaughan, “Fractal

trajectories for online non-uniform aerial coverage,” in

IEEE ICRA, 2015.

[34] A. Kolling et al., “Human interaction with robot

swarms: A survey,” IEEE Transactions on Human-

Machine Systems, 2015.

[35] A. Giusti et al., “Human-swarm interaction through

distributed cooperative gesture recognition,” in Proceed-

ings of the seventh annual ACM/IEEE international

conference on Human-Robot Interaction, 2012.

[36] J. Nagi et al., “Human-swarm interaction using spatial

gestures,” in IEEE IROS, 2014.



20

APPENDIX

A. Defined Terms

Term Definition

box : four grid nodes in a 2x2 square

change robot : the robot whose movement initiates destination swapping in the movement-based method

communication-

based method : a method for secondary changes that converts an interim path to the new preferred path

by passing a memory message

default behavior : algorithm used for shape persistence; results in a preferred path

depth-first

clockwise-priority

(DFCP) method : a method for assembling valid shapes by assembling boxes in accordance with a

traditional depth-first search where ties are resolved with a clockwise priority

destination swap : process by which a neighboring robot assumes the interim path destination of the change

robot instead of its own interim path destination

DFCP path : a type of valid path generated by the DFCP method

downstream : refers to a robot that has previously visited a particular grid node

existing path : the path prior to a change (i.e., addition or subtraction)

existing shape : the shape prior to a change (i.e., addition or subtraction)

interim path : a provisional path formed in the process of changing from an existing path to a new path

memory message : the message used to communicate change in the communication-based method

movement-based

method : a method for secondary changes that converts an interim path to the new preferred path

by a series of destination swaps initiated by the movement of a change robot

new path : the path after a change is resolved

new shape : the shape after a change is resolved

non-spanning edge : an edge that begins and terminates in the same box

opposite edges : edges that have directions exactly 180° from one another

pair : (e.g., a pair of edges) two edges with start and end nodes in a 2x2 grid configuration

parallel edges : edges that are equidistant everywhere and do not intersect

pass-back message : message used to communicate non-default movement during secondary changes

pass-back robots : robots that send pass-back messages to upstream robots

path merging : the process of replacing a pair of parallel and opposite non-spanning edges with a pair

of parallel and opposite spanning edges

path separation : the process of replacing a pair of parallel and opposite spanning edges with a pair of

parallel and opposite non-spanning edges

periphery edge : a non-spanning edge between two periphery nodes

periphery node : an in-shape node along the periphery of the shape

preferred path : a type of valid path generated by the default behavior

pseudo-valid path : a discontinuous path comprised sub-cycles such that: 1) each node is visited exactly once;

2) each non-spanning edge results in clockwise motion around the center of its box; and

3) each spanning edge belongs to a pair of parallel and opposite spanning edges that

cross over the same box connection (though they may belong to different sub-cycles).

secondary change

start node (SCSN) : the node from which secondary changes begin

spanning edge : an edge that begins and terminates in different boxes

sub-cycle : a planar Hamiltonian cycle through a portion of the shape

unit path : a clockwise Hamiltonian cycle through a unit shape

unit shape : a shape constructed of 1 box

upstream : refers to a robot that has yet to visit a particular grid node

valid path : a planar Hamiltonian cycle with adjacent entry and exit nodes on the periphery of the

shape such that each non-spanning edge is directed clockwise around the center of its

box and each spanning edge is part of a pair of parallel and opposite edges spanning

across the same box connection

valid shape : a shape constructed of boxes assembled continuously such that each box meets the full

side of another box


	Introduction
	Related Work
	Shape Formation
	Area Coverage
	Swarm Robot Recharging
	Hamiltonian Path Planning
	Human-Swarm Interaction

	Robot Capabilities and Assumptions
	Shape Persistence
	Subroutine 1: Forming the Shape
	Subroutines 2, 3, & 4: Robot Recharging
	Demonstrations of Persistence

	Shape Persistence Theory
	Basic Concepts
	Planar Hamiltonian Cycles in Valid Shapes
	Planar Hamiltonian Cycles via the Default Behavior

	Shape Adaptability
	Change Detection
	Primary Changes
	Secondary Changes
	Communication-Based Method
	Movement-Based Method


	Additional Experiments and Demonstrations
	Demonstrations with Humans
	Large Scale Simulations

	Shape Adaptability Theory
	Primary Changes: Addition Yields Valid Paths
	Primary Changes: Subtraction Yields Pseudo-valid Paths
	Secondary Changes Yield Preferred Paths

	Conclusion
	Appendix
	Defined Terms


