Continuous Sculpting: Persistent Swarm
Shape Formation Adaptable to
Local Environmental Changes

Andrew G. Curtis!, Mark Yim2, Michael Rubenstein®

Abstract—Despite their growing popularity, swarms of robots
remain limited by the operating time of each individual. We
present algorithms which allow a human to sculpt a swarm of
robots into a shape that persists in space perpetually, independent
of onboard energy constraints such as batteries. Robots generate
a path through a shape such that robots cycle in and out of the
shape. Robots inside the shape react to human initiated changes
and adapt the path through the shape accordingly. Robots outside
the shape recharge and return to the shape so that the shape can
persist indefinitely. The presented algorithms communicate shape
changes throughout the swarm using message passing and robot
motion. These algorithms enable the swarm to persist through
any arbitrary changes to the shape. We describe these algorithms
in detail and present their performance in simulation and on a
swarm of mobile robots. The result is a swarm behavior more
suitable for extended duration, dynamic shape-based tasks in
applications such as entertainment, agriculture, and emergency
response.

Index Terms—Swarms; Path Planning for Multiple Mobile
Robots or Agents; Distributed Robot Systems; Shape Formation

I. INTRODUCTION

As their popularity continues to grow, commercial drones
are employed in swarms more and more frequently. Swarms of
flying robots are commonly used in shape-based applications,
such as entertainment drone shows, where robots navigate
through a set of predefined waypoints to form different shapes.
Other shape-based flying swarm applications include search
and rescue, emergency response communications networks,
and crop monitoring, where a flying swarm maintains a 2D
formation over an area of land to perform its task.

The challenge with most shape-based flying swarm appli-
cations is the limited flight time, or endurance, of the robots.
Typically, robots must land to recharge, and the task is paused
until the robots can fly again (e.g., crops go unmonitored while
the robots charge). In addition, most swarms only form static
predefined shapes, limiting their potential applications.

Manuscript received: January 5, 2024. Resubmitted: May 13, 2024.

This paper was recommended for publication by Editor TBD.

This work was supported by the NDSEG Fellowship and The National
Science Foundation, NRI2.0 grants 2024692 and 2024615.

LAndrew G. Curtis and Michael Rubenstein are with the Center for
Robotics and Biosystems, McCormick School of Engineering, North-
western University, Evanston, IL USA agc@u.northwestern.edu,
rubenstein@northwestern.edu.

2Mark Yim is with the General Robotics, Automation, Sensing and Per-
ception (GRASP) Lab, University of Pennsylvania, Philadelphia, PA USA

yim@seas.upenn.edu.

Fig. 1: Cartoon overhead view of adaptive and persistent shape
formation. (a) A swarm of mobile robots (purple circles) leave
a charging station (yellow box) to enter and form a shape. The
robots move through the shape in the directions indicated by
the black arrows until they exit the shape and return to the
charging station. (b) A human points to where they would
like to add to the shape (purple box). (c¢) The swarm adjusts
to form a path through the new shape while continuing to
cycle to and from the charging station.

To overcome these challenges, we present a novel approach
to persistent and adaptable shape formation. We shift the
paradigm of shape formation from shapes formed by static
robots to shapes formed by a sequence of robots moving along
a path. The path allows robots to cycle to and from a charging
station, so robot endurance is no longer a constraint on shape
duration. The path is also adaptable to external environmental
stimuli (e.g., human interactions) so that the shape is free to
change over the duration of the task. For example, farmers
could form a swarm of drones into a shape over their fields
to persistently monitor crops (regardless of individual robot
charge). They could then directly interact with the swarm to
change the shape of the swarm and thus the fields of crops
being monitored. Similarly, a performer could interact with a
drone show, changing the shape of the swarm to entertain an
audience beyond the flight time of individual flyers.

We achieve shape persistence by allowing swarm robots
to cycle between a shape and a charging station indefinitely
via a path that both approximates the shape and facilitates
the movement of robots through the shape and back to a

charging station (Fig. 1). With each change to the shape,
the swarm adapts to another path and the process continues.
Our primary contributions, the algorithms we present for both
shape persistence and shape adaptability, are decentralized and
scalable to large swarms. They also open the door to a new
application of human-swarm interaction - continuous sculpting
- where a human can use intuitive gestures to actively morph
a swarm into a persistent shape in a manner similar to the way
an artist might morph clay into a sculpture. One potential issue
with continuous sculpting is making sure potential collisions
with humans are safe, but this can be solved by making robots
small and light [1].

The remainder of this paper is structured as follows. After
discussing related work (Section II), we describe the ba-
sic robot capabilities required for a swarm to execute the
algorithms (Section III). Then, we introduce the algorithm
responsible for shape persistence, called the default behavior.
The default behavior is introduced and demonstrated in Sec-
tion IV, and the theory supporting the algorithm is described
in Section V. The later portions of the paper are dedicated to
the algorithms responsible for shape adaptability which are
only executed to resolve a shape change. The adaptability
algorithms are introduced in Section VI. In Section VII, we
provide demonstrations of both adaptability and persistence
in the presence of humans and for a large swarm. Finally, in
Section VIII we describe the theory supporting the adaptability
algorithms, and in Section IX we summarize our work and de-
scribe our future plans. Terms defined in the text are indicated
in bold and their definitions are included in Appendix A.

II. RELATED WORK

This work lies in a largely unstudied area of swarm robotics
with few direct state-of-the-art comparisons. However, related
works exist in the fields of shape formation, area coverage,
robot recharging, Hamiltonian path planning, and human-
swarm interaction.

A. Shape Formation

One approach to persist in a shape is to have individual
swarm robots cycle into and out of the shape to recharge.
Here, the energy limitations of individual robots no longer
constrain shape duration but instead constrain the size of the
path that an individual robot can travel and thus the size of
the final shape. One problem occurs if a robot is ever “stuck”
along its path in the middle of the shape formation, unable to
return to a charging station because it is surrounded by other
robots forming the shape. Stuck robots are a potential problem
for most static shape formation algorithms that begin with
robots in some arbitrary starting position and end with robots
statically holding a position in the defined shape [2]-[7].

However, there are some non-static shape formation algo-
rithms that use dynamic shape scaling [8], time varying shape
formations [9], and robot position swapping [10] so that robots
are not always statically holding a position in the defined
shape. These works are likely the closest existing shape
formation works to our algorithms as they enable swarm shape
formation in such a way that could potentially be altered to

include robot recharging. However, they either lack guarantees
that a particular robot will never become stuck or they operate
on predefined shapes and therefore lack adaptability to real-
time changes. Some programmable matter shape formation
algorithms have shown similar potential as they have displayed
the ability to distributively change from one shape to another
[11], [12], but these too lack guarantees that robots will never
become stuck.

B. Area Coverage

Traditional area coverage algorithms are similar to adap-
tive and persistent shape formation because they can cycle
robots through a defined shape or area, though typically at a
lower density of robots than most shape formation algorithms.
Dozens of area coverage algorithms already exist for aerial
vehicles [13]. Many of these algorithms use a centralized
controller for traditional back-and-forth path planning [14]-
[17] or spiral-like path planning [18]. Still others implement
decentralized approaches (which are more suitable for swarms)
using built-in randomness [19], cost functions [20], and vir-
tual pheromones [21]. However, the decentralized approaches
typically result in nonuniform area coverage which, if used
for shape formation, would result in distorted shapes with no
guarantees for avoiding stuck robots.

C. Swarm Robot Recharging

Others have pushed swarm performance beyond the battery
lifetime of individual robots by either: 1) continuous charging
where power is brought to the robots as they operate [22]
or 2) robot swapping where individual robots take turns
recharging at designated charging stations [23]-[27]. Our work
falls in group 2. Although most works in this group are
concerned with swarm tasks like exploration [23], [24] where
the swarm need not maintain a particular formation, there
are a few associated with shape formation. However, these
swarms operate on either fixed formations [25] that are not
adaptable to environmental changes or they use centralized
planners to optimize robot movements [27]. To the authors’
best knowledge, this work is the first of its kind to incorporate
robot recharging and shape adaptability for robot swarms in a
decentralized way.

D. Hamiltonian Path Planning

In this work, we ensure that a robot can cycle through a 2D
shape and back to a charging station by using planar (i.e., non-
intersecting) Hamiltonian cycles. These guarantee the robot’s
path covers the entire shape uniformly. If the cycle is further
constrained to have adjacent start and end positions on the
periphery of the shape, then the robot is guaranteed to be able
to cycle into and out of the shape without becoming stuck or
colliding with its peers. Unfortunately, finding a Hamiltonian
cycle through a shape represented as a grid graph of points in
space is a NP-complete problem [28]-[30], making it difficult
to scale to large shapes.

Despite the challenge, others have found Hamiltonian cycles
by either restricting the problem to grid graphs that are

solid (i.e., no holes) [29] or for specialized purposes such as
programmable chain assembly [31], obstacle avoidance [32],
and nonuniform aerial coverage [33]. However, in all of these
approaches, Hamiltonian cycles are found via a centralized
planner using global information about the entire grid graph
or a single robot moving through (and sensing) the entire en-
vironment. In a swarm setting, it is important that Hamiltonian
cycles are generated in an online, decentralized manner with
each individual robot planning its next step using only local
information. This helps the swarm stay adaptable and permits
the use of simple robots.

E. Human-Swarm Interaction

Kolling et al. [34] define humans directly interacting with
a swarm in a shared environment as proximal interaction.
Examples of proximal interaction include works where swarms
are shown to detect and identify specific human gestures
[35], [36]. In our work, we use human gestures in a shared
environment to initiate shape changes that modify (i.e. sculpt)
the swarm into different shapes. We focus on the swarm’s
response to the gesture, not necessarily the detection and
identification of the gesture itself.

III. ROBOT CAPABILITIES AND ASSUMPTIONS

The algorithms presented in this paper are agnostic to
specific swarm implementations, so the algorithms can be em-
ployed on robots with various hardware and software designs.
However, there are some basic capabilities we assume each
robot has in order to execute the algorithms.

First, we assume that each robot can store a representation
of a grid graph overlay on the environment (G = (n,e)). We
also assume that each robot can identify if it is residing at a
particular node (n) or translating along a particular edge (e) of
G. Further, we assume that each robot can identify a subset of
grid graph nodes that represent the shape (5) that the swarm
is forming in space (S C G). For the simulations and physical
demonstrations in this paper, we elected (by design choice)
to have robots maintain a list of in-shape grid nodes. If the
shape is ever changed, robots communicate the change using
neighbor-to-neighbor communication to propagate the change
through the swarm so each robot can update its list.

For this to occur, we also assume that robots are capable of
robot-to-robot communication and are equipped with internal
clocks. We also assume that each robot can communicate with
its peers within a range of v/2 % [where [is the length of
an edge in G. This allows robots to communicate with up
to eight immediate neighbors (i.e., N, NE, E, SE, S, SW,
W, and NW). During operation of the algorithms, robots use
neighbor-to-neighbor communication to inform one another of
shape changes, share position information, and synchronize
their clocks so that robots can move together in lockstep.

Additionally, since the algorithms in this paper use planar
Hamiltonian cycles (and since finding a Hamiltonian cycle in
a grid graph is an NP-complete problem), it is not realistic to
assume that a given robot can find a Hamiltonian cycle as it
navigates through a very large shape. Therefore, we enforce a
set of rules to standardize shape structures so that the swarm

e o o 0 o o e o o r, . e o o ‘m' .
L L L] L] L L e L L] , L] . L] L] L]
o o o e o o . .-b.-l‘ ' . 5> i .
el e o e o 0o o 0 +0 +0 0 | o = < .
ao e o o o o b- e o o o o Co e o o o o

Fig. 2: (a) An example of a valid shape of 3 boxes. Points
indicate nodes of G. (b) Robots (purple) approximating the
shape. Arrows indicate robot heading. (c) The path along
which robots travel. Arrows indicate edge direction.

can more easily find Hamiltonian cycles, including for very
large shapes and shapes with holes.

The rules define a unit shape, called a box, that is comprised
of four grid nodes in a 2x2 square (Fig. 2). This is similar
to the method of finding Hamiltonian paths by breaking a
box down into four smaller boxes, as discussed for space
filling curves in [31]. We assume that each robot associates a
given 2x2 square of grid nodes with the same box as every
other robot. This ensures that a given shape representation is
consistent for all robots in the swarm. Further, we assume each
robot can determine the box that it is in and its relative position
with respect to the center of that box. This allows robots
to detect if they are moving clockwise or counter-clockwise
around the center of a box.

Allowable shapes are continuous so that each box meets the
full side of another box: partial side connections and vertex-to-
vertex only connections are not allowed. Partial boxes are also
not permitted. Shapes that meet these conditions are called
valid shapes, and they are important because they reduce
the difficulty of finding a planar Hamiltonian cycle from NP-
complete to something that is solvable in linear time (run time,
O(B), scales linearly with BB, where B is the number of boxes
in the shape). In fact, we will show that a planar Hamiltonian
cycle can always be found for any valid shape in Section V-B.
Finally, although we only consider valid shapes created in a
square lattice graph, it is plausible that the algorithms in this
paper could extend to other planar graphs, such as hexagonal
lattices, but this is reserved for future work.

IV. SHAPE PERSISTENCE

For a swarm to form a persistent shape beyond the energy
limitations of any individual robot, the swarm must cycle
robots back and forth between the shape and a charging station.
This cycle can be separated into four subroutines: 1) forming
the shape, 2) traveling from the exit point of the shape to
a charging station, 3) charging at the charging station, and
4) traveling from the charging station to the entry point of
the shape. The primary contributions of this work are in the
first subroutine: forming the shape. To do this, each robot
will travel along the same planar Hamiltonian cycle to both
approximate the shape and move through the shape without
colliding with other robots in the swarm.

To be consistent with prior works, we have adapted the for-
mal definition of Hamiltonian circuits from the 1976 paper by
Garey et. al. [28] which first identified the planar Hamiltonian
circuit problem as NP complete (Definition 1). We will use
this definition throughout the remainder of this paper.

Definition 1 (Planar Hamiltonian Cycle). A planar Hamilto-
nian cycle in a graph is a path which passes through every
vertex exactly once and returns to its starting point without
intersecting itself.

Further, in our work, planar Hamiltonian cycles are broken
at the adjacent entry and exit points (there are no path edges
connecting the two). Thus, the paths that robots create through
shapes are technically planar Hamiltonian paths (not cycles).
However, for the remainder of this paper, a planar Hamilto-
nian path with adjacent start and end nodes will be treated
identically to a planar Hamiltonian cycle since the former
can always be turned into the latter by simply connecting
the adjacent start and end nodes. Both will be referred to
as Hamiltonian cycles to distinguish from other Hamiltonian
paths that do not have adjacent start and end nodes. Finally, we
restrict the start and end nodes to the periphery of the shape
so that each robot can enter and exit the shape and ultimately
cycle to and from a charging station.

A. Subroutine 1: Forming the Shape

In subroutine 1, robots form a planar Hamiltonian cycle to
both approximate the shape and cycle robots from the entry
node (a grid node on the periphery of the shape where robots
enter the shape) to the exit node (a grid node on the periphery
of the shape where robots exit the shape to return to the
charging station). To do this, each robot enters the shape at
the entry node and then visits each grid node in the shape
exactly once before finally exiting the shape at the exit node
without ever intersecting its own path. Robots keep track of
the boxes they have visited Vp and the nodes they have visited
V,, while traversing through the shape. Robots follow a set of
rules called the default behavior when traveling in the shape
to determine the order in which grid nodes are visited between
the entry and exit nodes using only local information.

The default behavior prioritizes a robot’s movement through
a shape so that a robot visits new boxes in a manner that mim-
ics a traditional depth-first search. If a robot were performing
a depth-first search of the boxes in a shape, the robot would
first identify all of the children of its current box. Next, the
robot would enter a child box and continue to move parent-
to-child as it explored all of the descendant boxes within that
subtree. Only after the robot exhausted all descendants in the
subtree would the robot move “up” the tree, revisiting boxes in
the reverse order (child-to-parent) and repeating the process of
visiting descendant boxes before visiting other children. Once
all boxes had been visited, the robot would exit the shape.

Similar logic governs the default behavior. As a robot
traverses through the shape, it moves from node-to-node such
that it visits boxes in a depth-first, clockwise priority manner
starting at the entry node and finishing at the exit node.
Specifically, when a robot is at a node in the shape, there
is a set of four possible edges that the robot could take to
move away from that node (i.e., ey, eg, eg, ey). If the robot
is at the exit node, it will take the edge that leads the robot
out of the shape to the charging station. For all other nodes
(n) in the shape (.5), the robot selects which edge to take next
by first ignoring any edge that leads the robot to a node that

is out of the shape or to a node that the robot has already
visited. Then, the following rules are applied to the remaining
edges in the set (as depicted in Algorithm 1):

IF an edge leads to a node in a box not previously
visited, take that edge. (Rule 1)

ELSE IF an edge leads the robot clockwise within
its current box, take that edge. (Rule 2)

ELSE IF an edge leads to a node in the parent box
in the tree, take that edge. (Rule 3)

Algorithm 1 Default Behavior

Input: 5,5, Vg, V,
Output: €
1: if robot at exit node then
2: exit shape
3: else
> Create lists of plausible next edges and nodes
€« len,es,€em, ew]
N [nn,ng, nE, nw]
> Remove visited and out-of-shape options
6: for ¢,n in £, N do
7: if n € V,, then
8
9

> b = current box
> ¢’ = edge to next node

Al

remove €, n from £,N
else if n ¢ S then

10: remove €,n from £, N
11: end if
12: end for

> Employ default behavior rules

132 if3ene& N | Box(n) ¢ Vi then > Rule 1
14: € +—¢€ > Rule 1
15: elseif 3e,neE, N | nind > Rule 2
16: and ¢ is clockwise then > Rule 2
17: € ¢ > Rule 2

18: else if 3 ¢,n € £, N | n in parent of b then > Rule 3

19: € ¢ > Rule 3
20: end if
21: end if

While executing the default behavior, robots communicate
timing information to synchronize their clocks. This allows
robots to move in lockstep with one another, avoiding in-
path collisions and maintaining spacing such that one robot
is always occupying one grid node in S. Robots also avoid
collisions by never crossing another robot’s path. This is the
result of every robot following the same default behavior rules
(and Hamiltonian cycle). Since the default behavior creates a
Hamiltonian cycle such that each robot terminates its path
at the exit node (which is on the periphery of the shape),
and every robot can traverse the shape without collision, we
can guarantee that all robots will be able to exit the shape
to recharge (i.e., no “stuck” robots), which facilitates the
persistence of the shape. The fact that the default behavior
results in a planar Hamiltonian cycle is proven in Section V-C.

One key aspect of the default behavior is that robots do not
plan their paths through the shape prior to entering it. Instead,
each robot makes its own decisions to reactively build a path
through the shape from entry to exit one step at a time. That

means that our design choice to have robots maintain a list of
in-shape grid nodes is not necessary for algorithm operation.
If a robot were capable of distinguishing between in-shape and
out-of-shape nodes with its onboard sensors, then the list of
in-shape grid nodes (.S) could be replaced with a list that the
robot senses and creates as it moves. This more sophisticated
sensing scheme would replace the shape memory requirements
in the default behavior without changing the rules for robot
motion. This would further expand the practical applications
of persistent shape formation to very large shapes (with many
grid nodes) or for very simple robots (with limited memory
capacity). Investigating this is reserved for future work.

B. Subroutines 2, 3, & 4: Robot Recharging

Although the remaining subroutines are not the primary
focus of this work, they are necessary for the swarm’s suc-
cess, so very simplistic behaviors are implemented. The two
“traveling” subroutines (traveling to the charging station and
traveling to the shape) are simplified by a set of predefined,
static waypoints from the exit node to the charging station and
from the charging station to the entry node, respectively. This
ensures that robots can travel between the charging station and
the shape without encountering obstacles or collisions.

The traveling subroutines are further simplified such that
robots arrive at the shape and exit the shape at the same user
defined constant time interval as robots moving in lockstep
between nodes within the shape (e.g., 7 = 10s). Further, if the
robots in the shape are ever holding still to complete some
portion of an algorithm, then the last robot to have left the
shape will carry a message to the other robots outside of
the shape. This message contains a list of nodes added to or
removed from the shape so that the robots outside of the shape
can update their list of in-shape nodes. Robots in receipt of
this message also adjust their shape-arrival times to limit the
number of robots queuing at the shape entry node.

Similarly, the entry and exit nodes are simplified to be static
and known a priori. By definition, the entry and exit nodes
are adjacent to one another on the periphery of the shape
and within the same box. Having static and predefined entry
and exit nodes allows us to demonstrate the shape persistence
aspects of the algorithms without unnecessarily complicating
swarm behavior. Changing the entry and exit nodes is reserved
for future work.

The charging subroutine is also simplified since most imple-
mentations would be highly dependent on the type of charging
technology used (e.g., wireless charging vs. contact charging).
For this work, the charging station is modeled as a set of
static positions in space. Upon reaching a position in the
charging station, a robot begins charging. When a robot is
done charging, it leaves the charging station to travel back to
the shape in a first-in-first-out order and such that it will arrive
at the shape at the constant time interval (7).

In addition to these simplifications, we assume that robots
move through the entire shape and back to the charging station
on one charge and that the swarm has enough robots that each
robot has more than enough time to completely recharge be-
fore it cycles back into the shape. If for a given implementation

a shape is too large that robots could not pass through the
shape and back to the charging station on a single charge, a
system of multiple charging stations could be implemented,
effectively breaking the shape into multiple pieces. Similarly,
if robots do not have enough time to completely recharge
before cycling back into the shape, one could either add more
robots (and more charging stations) or reduce charging time.
Investigating these scenarios are reserved for future work.

C. Demonstrations of Persistence

Shape persistence was demonstrated in identical tests for
both a simulated swarm and a swarm of physical robots. In
both kinds of experiments, a user initialized a shape of four
boxes (with a start and end node) in a grid graph with edge
lengths of [= 0.2m. 16 robots were set up in a temporary
queue outside of the shape, and 22 robots were placed in a
charging station. Coordinates of the charging station, as well
as the waypoints to and from the charging station, were pre-
programmed and provided to all robots. These coordinates did
not change during the course of the experiment. Communica-
tion was artificially limited to a range of 0.3m for each robot.

After initialization, the robots in the temporary queue began
to fill the shape via the default behavior. Each robot stepped
in synchronization with other robots (due to clock synchro-
nization messages), moving to a new node every 7 = 12s.
Once the shape was almost completely formed, robots in the
charging queue began to leave so that they would arrive at
the shape in 7 = 12s increments starting as soon as the first
robot was about to exit the shape. For every 12s after that,
one robot left for the charging station, one robot arrived from
the charging station, and each robot within the shape moved
to its next node. At that point, the system was in steady state
and allowed to persist for some time.

In both the simulation and physical experiments, the charg-
ing station was modeled as a set of linear positions along one
side of the environment. This was meant to emulate a “charg-
ing rail” where robots could pull up to charge themselves. This
design decision did create the potential for collisions between
robots entering a charging station position and robots exiting
a charging station position. Robots communicated their own
position to one another to help avoid collisions. In the event
of a potential collision, robots heading to the charging station
yielded to robots heading toward the shape to ensure the shape-
bound robots arrived at the shape on time. Furthermore, robots
entered and exited the charging station in a first-in-first-out
basis.

For the physical robot demonstration, we used an existing
swarm of ground robots called Coachbot V2.0 [2]. Each
Coachbot is equipped with a two-wheeled differential drive
system and the ability to sense its position (z,y,6) in the
arena. The robots are also equipped with an onboard battery,
an onboard Raspberry Pi computer, and onboard Wi-Fi for
robot-to-robot communication that can be artificially limited
to a user defined distance. The simulator was built to emulate
the performance of the Coachbots (i.e., differential drive
robots with the ability to sense x, y, and 6, robot-to-robot
communication, etc.).

Fig. 3: Images from a simulation (top) and physical robot
experiment (bottom). Each set of three images represents
a sequence in time of the robots forming the shape (left),
stepping to their next node (center), and holding at their next
node (right). The charging station is highlighted by the green
box, and the desired shape is highlighted by the blue box.
Robots in neither box are cycling to or from the shape. The
resulting path through the shape for both the simulation and
the physical robots is shown in the bottom right image. The
LED color of each robot is insignificant for these experiments.

Images from both the simulation and physical robot ex-
periments can be found in Fig. 3. Both the simulated swarm
and the physical swarm were left to maintain their respective
shape for over 30 minutes (and some simulations were left
to run for well over an hour). In that time, each robot cycled
through the shape and back to the charging station 4 or 5
times (9 or 10 times for the hour-long simulations). The
experiments were stopped by an experimenter, not due to
robot or algorithmic failure. This suggests that each swarm is
capable of persistent shape formation for extended duration
tasks because both the simulated swarm and the physical
swarm demonstrated the ability to cycle robots through the
shape via the default behavior without failure or collision for
multiple cycles through the entire swarm of robots.

The Coachbots were used for the physical demonstrations
because they are an established swarm platform that was
available to the authors. However, as ground robots, they could
simply drive to form a shape, power down, and persist in that
shape indefinitely without needing to recharge. In the future,
we plan to demonstrate swarm persistence with a swarm of
flying robots (currently under construction) that do not have
the luxury of a floor to help them hold position in space. In

6

. B, B3

Fig. 4: (a) A clockwise planar Hamiltonian cycle through a
unit shape. (b) A counter-clockwise planar Hamiltonian cycle
through a unit shape. Arrows indicate edge direction.

the meantime, the Coachbots served as an experiment-ready
option that enabled us to demonstrate the algorithms on a
physical platform.

V. SHAPE PERSISTENCE THEORY

The theory behind the default behavior is rooted in some
provable properties of valid shapes and planar Hamiltonian
cycles. The remainder of this section formally addresses this
theory in three parts: establishing basic concepts, proving
planar Hamiltonian cycles can be found for any valid shape,
and proving the default behavior always produces a planar
Hamiltonian cycle.

A. Basic Concepts

In order to simplify the discussion of shape persistence
theory, we define some basic terminology and concepts. While
most of these concepts are used in the shape persistence
proofs, some of them are also applicable to the shape adapt-
ability concepts discussed in later sections.

The first concept is the unit shape: a shape of b = 1 box.
A robot can take one of two possible cycles through a unit
shape: clockwise or counter-clockwise (Fig. 4). By design
choice, we elect to use the clockwise cycle as default in
this paper. We define a clockwise planar Hamiltonian cycle
through a unit shape as the unit path. Choosing the counter-
clockwise cycle as the unit path would have also been valid. In
that case, the algorithms would result in robots moving along
paths (and edges) in the opposite directions as the ones shown
in this paper. Furthermore, Algorithm 1 rule 2 would have
to be changed to prioritize counter-clockwise motion instead
of clockwise. The remainder of the concepts and theories
presented in this paper would go unchanged.

In discussing the remaining concepts, we will use the
following terminology: parallel to refer to path edges that are
equidistant everywhere and do not intersect; opposite to refer
to edges that have directions exactly 180° from one another;
spanning to refer to path edges that begin and terminate in
different boxes; and non-spanning to refer to path edges that
begin and terminate in the same box. Finally, we will define
two path edges as a pair if the start and end nodes of both
path edges are in a 2x2 grid configuration (regardless of if that
grid configuration is within a box or across multiple boxes).
Thus, the unit path is comprised of two pairs of parallel and
opposite non-spanning edges (a pair directed North-South and
a pair directed East-West).

With these terms, we can discuss merging two paths into one
or separating a single path into multiple and, in the process,
establish two lemmas.

path merging

P3 -

N1 (I

-
.~e

path separation

Fig. 5: The fundamental operations of path merging (going
from a to b) and path separation (going from b to a). Red
indicates impacted edges. Arrows indicate edge direction.

Lemma 1. If path merging is performed on two separate pla-
nar Hamiltonian cycles, then the result will be one combined
planar Hamiltonian cycle.

Lemma 2. If path separation is performed on a planar
Hamiltonian cycle, then the result will be separate planar
Hamiltonian cycles on either side of the box connection where
the separation occurred.

The first concept, path merging, involves separate paths
merging into one path by creating a pair of spanning edges
across a box connection. During path merging, a pair of
parallel and opposite non-spanning edges (one in each box
on either side of the box connection) are replaced with a pair
of parallel and opposite spanning edges (Fig. 5a to b). The
resulting path is a planar Hamiltonian cycle through all of the
nodes in the combined path by Definition 1. Further, the only
edges affected by this change are the pairs of edges that go
from non-spanning to spanning; the rest of the edges and nodes
are unchanged. Therefore, it does not matter if the pre-merge
paths were simple planar Hamiltonian cycles (such as the unit
paths shown in Fig. 5a), or if the pre-merged paths were
larger, more complicated planar Hamiltonian cycles. Because
the changed portions of the path are within Definition 1, and
since all other portions are unaffected, the result is still a planar
Hamiltonian cycle. Thus, we can conclude Lemma 1.

The opposite concept, called path separation, involves one
planar Hamiltonian cycle separating into multiple paths. For
this to occur, a pair of parallel and opposite spanning edges
are replaced with a pair of parallel and opposite non-spanning
edges (Fig. 5b to a). The result is two planar Hamiltonian
cycles on either side of the box connection after separation.
Similar to path merging, the only edges affected are the pair of
edges that go from spanning to non-spanning; the remainder
of the shape nodes and path edges from the pre-separated
planar Hamiltonian cycle are unchanged. Therefore, it does
not matter if the post-separated paths are simple unit paths,
as shown in Fig. 5a, or if the post-separated paths are larger,
more complicated planar Hamiltonian cycles. In either case,
path separation will always result in planar Hamiltonian cycles
on either side of the box connection after the separation. Thus,
we can conclude Lemma 2.

B. Planar Hamiltonian Cycles in Valid Shapes

Earlier, we claimed that a planar Hamiltonian cycle can
always be found for any valid shape, and we suggested that

1] oave] oyl
73
a b [
Oulololedy| | |J0SToTeTs 0 llely3
b b P ¢
2} 28 |14 2,1.53 | 843
d e f

Fig. 6: An arbitrary sequence of shape construction (a-f).
Each additional box creates a new valid shape and valid path.
Periphery edges are red. Arrows indicate edge direction.

the process of finding a cycle would scale linearly with the
number of boxes in the shape (O(B) scales linearly with 3). To
prove these claims, we establish four things: the assembly of
valid shapes by sequential box addition, path merging during
shape assembly, periphery nodes, and periphery edges.

First, consider the assembly of valid shapes. Since valid
shapes are constructed from boxes, any valid shape can be
assembled by adding boxes together in an arbitrary sequence
until the desired final shape is achieved. For example, the
shape in Fig. 6f could be constructed by assembling boxes
in the order 0,4,3,2,1,5 or 0,1,2,3,4,5, etc. We can further
constrain assembly so boxes are only added together such
that a valid shape is maintained after each addition (i.e., each
additional box is added to be adjacent to an existing box).
To continue the example under such restrictions, 0,4,3,2,1,5
would no longer be a valid sequence for assembling the shape
in Fig. 6f, but 0,1,2,3,4,5 would be valid because it maintains
a valid shape after each additional box.

Next, consider the concept of path merging during shape
assembly under the valid shape constraint. Every time a box
is added to a valid shape, its unit path could be merged with
the existing path via path merging. By Lemma 1, this would
result in a new planar Hamiltonian cycle through the shape.
For example, when box 2 is assembled with boxes 0 and 1
in Fig. 6c, the unit path in box 2 is merged with the existing
path in boxes 0 and 1. Specifically, the bottom edge of the
path in box O and the top edge of the unit path in box 2 are
the pair of parallel and opposite non-spanning edges that are
turned into spanning edges to merge the paths. The result is a
new planar Hamiltonian cycle through boxes 0, 1, and 2.

Finally, we define a periphery node as an in-shape node
on the periphery of the shape and a periphery edge as a non-
spanning edge between two periphery nodes. Periphery edges
represent edges that could be merged with unit paths when
new boxes are added to the shape. If every periphery node
is connected by at least one periphery edge, then a new box
could be added anywhere along the periphery of the shape
and its unit path could always merge with the existing path.
For example, every periphery node in the shape in Fig. 6¢ is
connected by at least one periphery edge, so a new box could
be added to any side on the periphery of the three-box shape.

Theorem 1. A planar Hamiltonian cycle exists for any valid

shape.

Proof 1. This is a proof by induction. Consider the base case
of the unit box (B = 1). This shape has three important
properties. Trivially, it is a valid shape (property 1) and its
path is a planar Hamiltonian cycle (property 2). Further, all
periphery nodes are connected by at least one periphery edge
(property 3). For example, see Fig. 6a.

Next, assume there exists a shape of 5 = K boxes, where K
is some integer and K > 1. Assume the shape has properties
1, 2, and 3. A new valid shape of B = K + 1 boxes could
be generated by adding a new box next to an existing box
in the B = K shape such that the two boxes share an entire
side. This maintains property 1. The unit path in the newly
added box could be merged with one of the periphery edges
on the existing path via path merging to maintain property 2
(by Lemma 1).

Further, by creating the new path in this way, property 3 is
maintained. This is because the portions of the existing path
not involved in the path merge are unchanged and any of the
sides of the new box that are on the periphery of the shape
have a periphery edge between two periphery nodes. Neither
of the edges used in the path merge are on the periphery of the
shape, so the B = K + 1 path maintains property 3. Examples
of this can be seen in each box addition in Fig. 6.

Since all three properties are maintained for the case of
B =1 and for the transition from B = K to B = K + 1 for
some K > 1, we can conclude by induction that Theorem 1
is valid for any valid shape of size B > 1. O

Since we can find a Hamiltonian cycle through a shape by
incrementally adding boxes together until we reach that shape,
we can conclude that time to find the Hamiltonian cycle would
scale with the number of boxes in the shape (O(B) scales
linearly with B).

Theorem 1 does not rely on the order in which boxes are
assembled to form a shape so long as each additional box
results in a valid shape. Furthermore, when a new box is added
to an existing shape, it does not matter which periphery edge
is used in the path merge. For example, when box 5 is added
to the shape in Fig. 6, the periphery edge in box 2 was used
to merge with the unit path in box 5. The nearest periphery
edges in box 1 or box 4 could have also been used and the
result would still have been a planar Hamiltonian cycle.

Finally, because path merging is used to prove Theorem 1
by merging unit paths when each additional box is added to
the shape, the resulting planar Hamiltonian cycles have two
particular properties. First, each non-spanning edge is directed
clockwise around the center of its box because each non-
spanning edge originated in a unit path which is clockwise
by definition. Second, each spanning edge is part of a pair
of parallel and opposite edges that span across the same box
connection. In fact, if a tree data representation were used to
track the order in which boxes were added to the shape, one
would see that these pairs span from parent to child in the
tree. For example, box 4 is a child of box 3 when it is added
to the shape in Fig. 6e, and a pair of parallel and opposite
edges span this parent-child box connection.

We need a term to differentiate planar Hamiltonian cycles
that have these two distinct properties from other planar
Hamiltonian cycles that do not. In addition, we know from
practice that planar Hamiltonian cycles are broken at adjacent
start and end nodes to facilitate the movement of robots to
and from a charging station. Thus, we define a valid path as
a planar Hamiltonian cycle with adjacent entry and exit nodes
on the periphery of the shape such that each non-spanning
edge is directed clockwise around the center of its box and
each spanning edge is part of a pair of parallel and opposite
edges spanning across the same box connection.

C. Planar Hamiltonian Cycles via the Default Behavior

Earlier we claimed that the default behavior always results
in a planar Hamiltonian cycle (for any valid shape). As before,
to prove this claim, we have to introduce a new concept: or-
dered assembly of valid shapes via the depth-first clockwise-
priority (DFCP) method. Also, we will define a preferred
path as a planar Hamiltonian cycle that is generated by the
default behavior and a DFCP path as a planar Hamiltonian
cycle that is generated by the DFCP method (and later, we
will show that preferred paths and DFCP paths are identical).

We established in Section V-B that a valid shape can be
constructed via the assembly of boxes in an arbitrary order.
We then constrained the assembly such that each additional
box had to maintain a valid shape, and we found that this
resulted in valid paths. However, the order in which boxes
were assembled remained arbitrary; we only enforced the valid
shape constraint. If we restrict the order in which boxes are
assembled while enforcing the valid shape constraint, then we
can create a subset of valid paths (called DFCP paths) since
a sequence of box additions in a particular order is a subset
of all box additions in arbitrary orders.

In particular, in the DFCP method, we restrict the order
in which boxes are assembled to mimic that of a classical
depth-first search where ties are broken in a clockwise-priority
manner (thus the name: depth-first clockwise-priority method).
Every time a box is added to a shape, we update the frontier of
plausible next boxes with un-searched boxes that will be in the
desired final shape and that will maintain the properties of a
valid shape (i.e., boxes that share a complete side with the most
recently added box). Boxes in the frontier are also added to a
tree data structure representation of the boxes identified thus
far. If more than one box is to box could be added to the tree
at the same time, each box is added right to left corresponding
to a clockwise order with respect to an imaginary clock face
at the center of the most recently added box with the “top”
of the clock facing the second most recently added box. For
example, boxes 2 and 4 are added to the tree data structure
from right to left in Fig. 7b since 2 is more clockwise than 4
with respect to an imaginary clock face centered in box 1 with
the “top” of the clock pointing toward box 0. Once all boxes in
the frontier have been added to the tree, the deepest, rightmost
unexplored node in the tree will be added to the shape next.
Once a box is added to the shape, all other instances of it are
removed from the frontier. The process continues until there
are no other potential boxes to add, and the shape matches the
desired final shape (e.g., Fig. 7).

0|1(2 :@1 m:ﬁ 2 :L_o 21 :L.o 1% :L_o L2 oJLLL?

3afs]| & sl | ElalE | Bl | BlEL) | (B
desired final

S N N N

3 3 N

% % %

N AN

a b c d e 3 |f 3

Fig. 7: (left) A desired final shape of 6 boxes and (right) a sequence of temporary shapes and corresponding tree data structures
to produce the desired final shape (a-f). Periphery edges are in red. Arrows indicate path direction. Green identifies the most

recently added box to the shape, and blue identifies the frontier.

After each addition to the shape, the path is adjusted in the
same way as in the proof of Theorem 1: the unit path of the
new box is merged with the existing path via path merging.
However, unlike before, in the DFCP method we constrain
the merge so that the periphery edge of the existing path is
in the parent of the new box. For example, when box 3 is
added to the shape in Fig. 7f, the periphery edge in box 4 is
merged with the unit path of box 3 instead of the periphery
edge through box 0 because box 4 is the parent of box 3 in
the tree.

The DFCP method results in DFCP paths (e.g., Fig. 7f). As a
subset of valid paths, DFCP paths are also planar Hamiltonian
cycles with the two unique properties of valid paths: clockwise
non-spanning edges and spanning edge pairs between parent
and child boxes. The only difference is the order in which
the path navigates through boxes. With this established, to
prove our claim we only need two additional lemmas about
robots moving through a valid shape. Assume we have a robot
moving through a shape with some box in that shape, /3. Per
Algorithm 1, we can say the following about how a robot will
choose its next edge, €', with respect to 3.

Lemma 3. € = f(x,8) = f(z) if VninB:n¢g N
Lemma 4. ¢/ = f(z,08) = f(z) ifVninf:neV,

In layman’s terms, Lemma 3 states that finding ¢’ is not a
function of a box [until the robot reaches a node adjacent to
[and one of the nodes (n) in [is within the list of plausible
next nodes A/ assembled in Algorithm 1 line 5. Similarly,
Lemma 4 suggests that a robot’s path is not influenced by the
presence of [after the robot has visited all nodes within
since those nodes will be eliminated from the plausible list in
Algorithm 1 lines 7 and 8. We will use both lemmas in the
proof of Theorem 2.

Theorem 2. The default behavior always results in a planar
Hamiltonian cycle for any valid shape.

Proof 2. This is a proof by induction that will show that the
DFCP path produced by the DFCP method and the preferred
path produced by the default behavior are identical for any
valid shape as that shape is built up one box at a time.

Consider the base case of the unit box (B = 1). The
DFCP path is the unit path with an entry and exit node (e.g.,
Fig. 7a). Now, consider the preferred path formed by the
default behavior. After entering the shape, the robot never sees
any new boxes or previously visited boxes (there are none!),
so only Algorithm 1 rule 2 applies. The robot moves from
node to node in a clockwise manner until it reaches the exit
node and exits the shape. The resulting path is identical to the
DFCP path.

Next, assume there exists a shape of B = K boxes, where
K is some integer and K > 1. Assume that the shape has a
DFCP path that matches the preferred path generated by the
default behavior. One additional box (call it box Y) is added to
the shape in accordance with the DFCP method for a total of
B = K +1 boxes. A path merge between the existing B = K
path and the unit path of box Y will result in a new DFCP
path that passes through box Y via a 5-edge loop between
the two nodes nearest to (and in the parent of) box Y: one
spanning edge into box Y, three non-spanning edges within
box Y, and one spanning edge back into the parent of box Y.
No other portions of the preferred path will be changed from
the B = K case. For example, see the addition of box 5 to
the shape in Fig. 7d.

A new preferred path generated by the default behavior will
match this new DFCP path because the DFCP method and the
default behavior explore boxes in the same manner. For the
DFCP method, adding box Y to the shape can be thought
of as expanding the node in the tree that is the deepest and
rightmost unexplored node (where rightmost is analogous to
clockwise-priority). Similarly, when a robot is executing the
default behavior, it traverses the shape in a depth-first manner
due to the priority of Algorithm 1 rule 1 over Algorithm 1
rule 2. When this depth-first precedent is combined with the
clockwise priority of Algorithm 1 rule 2, one can conclude that
a robot will see and enter neighboring boxes in a depth-first
clockwise-priority order.

Since the DFCP method and the default behavior explore
boxes in the same order, box Y is both the deepest and
rightmost unexplored node in the DFCP method and the last
unvisited box the robot reaches when traversing the B = K +1

shape via the default behavior. Further, by Lemma 3 and
Lemma 4, the preferred path before the robot enters box Y and
after it has visited every node within box Y will be unchanged
from the B = K case. Therefore, we only have to prove that
the new DFCP path and the default behavior path are identical
within box Y.

Upon reaching box Y, the robot executing the default
behavior will follow Algorithm 1 rule 1 to enter box Y. When
in box Y, there are no other unvisited boxes, so Algorithm 1
rule 1 will not trigger for the rest of the robot’s motion
through the shape. The robot will move clockwise in box Y
(Algorithm 1 rule 2) and then move into the parent of box Y
(Algorithm 1 rule 3). This is the same as the 5-edge loop that
the DFCP path takes through box Y back to the parent of box
Y.

Since the DFCP path and the preferred path are identical
for the case of B = 1 and for the transition from B = K to
B = K + 1 for some K > 1, we can conclude by induction
that the default behavior will always produce a preferred path
identical to the DFCP path for any valid shape of B > 1. And,
since we know DFCP paths are a type of planar Hamiltonian
cycle, we know Theorem 2 is valid. Further, we know preferred
paths are a subset of valid paths with the two unique properties
of valid paths: clockwise non-spanning edges and spanning
edge pairs between parent and child boxes. O

VI. SHAPE ADAPTABILITY

Once a swarm has formed a persistent shape in space, the
swarm must remain adaptable to shape changes (the addition
or removal of a box from the shape). These shape changes
can be in arbitrary order and at arbitrary positions around the
shape (as long as they maintain a valid shape) and may not be
in the same order as the DFCP method. Therefore, robots need
a set of behaviors, other than the default behavior, to handle
these changes. This section introduces these new behaviors and
explains how robots can reconcile shape changes using only
local information and making only local path modifications
since no single robot can have global influence over the swarm.
To do this, we simplify adaptability into three basic steps: 1)
detection, 2) primary changes to fill in a new box or empty a
removed box, and 3) secondary changes to return the swarm
to the preferred path.

To explain these steps, we will use downstream to refer to
a robot that has previously visited a particular grid node, and
upstream to refer to a robot that has yet to visit a particular
grid node. For example, in Fig. 8a, robots 6 through 11 are
all said to be upstream of robot 5’s position, and robots O
through 4 are said to be downstream of robot 5. We will also
use existing shape and existing path to refer to the shape and
path that existed prior to the change and new shape and new
path to refer to the post-change shape and post-change path,
respectively. The term interim path will be used to refer to
any provisional path formed in the process of changing from
an existing path to a new path.

A. Change Detection

The first step in shape adaptability, detecting the change, is
largely outside of the scope of work in this paper because

the exact process by which a swarm detects an external
environmental stimulus is often dependent on robot hardware.
To keep this work hardware agnostic, detection is simplified by
using human gestures as environmental stimuli and assuming
that robots can sense two unique gestures as the swarm is
sculpted: one indicating a box addition and one indicating a
box subtraction. Further, we assume that gesture identification
is local (only robots nearest to the gesture can sense it), and
that a gesture occurs at the location of the desired change.
Once a gesture is sensed, robots can propagate notification of
the change across the swarm using robot-to-robot communi-
cation. It is assumed that a human can initiate a change to
any portion of the existing shape that results in a new valid
shape. This includes creating and removing holes but excludes
changing the entry and exit nodes. It is also assumed that a new
change is only initiated after an existing change is completely
resolved.

B. Primary Changes

After a shape change has been detected and communicated,
the swarm begins making changes to the path. In the case of
a box addition, this involves robots filling in the newly added
box. In the case of a box subtraction, this involves robots filing
out of the newly removed box. These behaviors are captured
in Algorithm 2 and described in this section.

In the case of addition, the swarm first identifies the critical
point for the change (n.p). This is identified by the robot in
the existing shape that has visited only one grid node adjacent
to the new box and was planning to take a non-spanning
periphery edge as its next move. The grid node occupied by
that robot becomes the point of inflection for communicating
and addressing the change because all robots downstream of
that position may be affected by the change and all robots
upstream of that position will not be affected by the change (by
Lemma 3). Once n, is identified, each robot takes action in
accordance with Algorithm 2 lines 1-8 depending on whether
the robot is upstream, downstream, or at n.,. Once all four
nodes in the new box are occupied, the robots have filled the
new shape, the interim path is a valid path (Theorem 3 proven
later in Section VIII-A), and primary changes are complete.

For example, consider a three-box shape with a preferred
path such as the one drawn in Fig. 8a. Assume a fourth box is
added to the shape to make a square of four boxes (Fig. 8b).
Robot 7, shown in green, is occupying the point of inflection
since it has only visited one grid node adjacent to the new box,
and, prior to the addition, it intended to take a non-spanning
periphery edge for its next move (see the heading of robot 7
in Fig. 8a). With robot 7 at the n.,, the downstream robots
(robots O through 6) pause their motion until the new box
is filled. Meanwhile, robots numbered 7 and up continue to
move along the upstream path via the default behavior and fill
in the new box via clockwise non-spanning edges (Fig. 8c-f).
Once the new box is filled, primary changes are complete and
secondary changes can begin.

The case of box subtraction is similar to addition, but there
are some key differences, especially with respect to how the
existing path is impacted by the box removal. A subtraction

SOSY BUEE BUDY SHTY BERY BIES
f>€> @§§§>E>v DI s 05 0O e @;g;:@gg g@@@ 61
M® 01)(08) @@ % QQ | [g@wﬂ
alfos pl02%3) o|02%3) ql023) w?&?@m€>m%®©@

Fig. 8: Primary changes in response to a box added to the shape in (a). Numbers represent robot IDs. Arrows indicate robot
heading. Robot 7 (green) is at the point of inflection in (b) and then is the first robot into the new box.

(15 1013 12

oorlon s

\y 12
11

028510}
oo

a

f:%

d

€

Fig. 9: Primary changes in response to a box subtracted from the shape in (a). Numbers represent robot IDs. Arrows indicate
robot heading. Robot 2 (green) is at the point of inflection in (b) and then leads robots 3, 8, 9, and 10 out of the removed box.

Algorithm 2 Primary Changes

Input: CT, ngp, Vy,
1. if C'T is addition then
2 if n, € V,, then > downstream case
3 pause motion and ignore change
4 else if robot is at n., then
5 fill in new box via clockwise motion
6: else > upstream case
7
8
9

> C'T = change type

> ngp case

execute default behavior until reaching n.,
end if

. else if C'T is subtraction then
> Set Boolean True if robot is currently
> within the removed box or False if not

10: inRemovedBox <+ checkInRemovedBox()

11: if not inRemovedBox then

12: if n., € V,, then > downstream case
13: execute default behavior

14: else if robot is at n., then > N¢p Case
15: execute default behavior

16: else if n., ¢ V,, then > upstream case
17: pause motion

18: if robot planned to enter removed box then
19: plan clockwise non-spanning motion

20: end if

21: end if

22: else

23: exit box via clockwise motion to 7.,

24: end if

25: end if

will immediately impact robots in two categories: 1) robots
within the removed box and 2) robots that have passed through
the removed box but have not yet visited all of the nodes within
the removed box. This latter category of robots would have
to move through the removed box again to exit the shape via
the existing path. Robots that have yet to reach the removed
box, and robots that have already visited every node in the
removed box, will not be immediately impacted by its removal
(by Lemmas 3 and 4, respectively). Therefore, as the change

is communicated across the swarm, a point of inflection node
(n¢p) is identified like before, but now it represents the earliest
node in the existing path after which the subtraction will have
no effect. This allows robots within the removed box to safely
follow the robot at the point of inflection out of the removed
box without impacting other portions of the path. The point
of inflection is identified as the node occupied by the robot
with following criteria:

1) The robot has previously visited all four nodes in the
removed box.
2) The robot’s previous node was within the removed box.

Once a point of inflection has been identified, each robot
takes action in accordance with Algorithm 2 lines 10-24
depending on the robot’s relative position to the removed box
and n, (upstream, downstream, etc.). If any of the upstream
robots are in a box adjacent to the box to be removed and had
planned to move into the box prior to its removal, they adjust
their plan to instead move clockwise within their current box.
In other words, they adjust their path from a spanning edge to a
non-spanning edge. Once all of the robots have exited the box
to be removed, primary changes are finished and secondary
changes can begin.

For example, consider a shape of four boxes in a 2x2
array with a preferred path cycling robots through the shape
(Fig. 9a). Assume the swarm identifies a gesture indicating
the removal of the lower right box (Fig. 9b). In such a case,
robot 2 would be identified as residing at the point of inflection
since it is adjacent to the removed box, it has visited every
node in the removed box, and its previous node was within the
removed box. With robot 2 at the point of inflection, robots
0, 1, and 2 can continue to move through the shape as if the
removal never occurred. Robots upstream of 2’s position that
are not within the removed box (i.e., robots 4-7 and 11-15)
remain still as the box is emptied. Furthermore, robot 4 and
robot 11, which had previously planned to take a spanning
edges into the removed box, adjusts their paths to take non-
spanning edges within their own boxes (Fig. 9a-b). Finally,
robots 3, 8, 9, and 10 follow robot 2 out of the removed box
until the box is empty (Fig. 9c-f).

Unlike the case of addition, however, the resulting path is

not necessarily valid after a subtraction. Primary changes for
subtraction can only guarantee that the resulting path is at
least pseudo-valid (Theorem 4 proved later in Section VIII-B).
Although we will discuss pseudo-valid paths at length in later
sections, we introduce the following definition now. Examples
of a pseudo-valid paths can be found in Fig. 11b and Fig. 15c.

Definition 2 (Pseudo-valid Path). A discontinuous path com-
prised of multiple continuous planar closed loops (called sub-
cycles) with the following criteria: 1) each node is visited
exactly once; 2) each non-spanning edge results in clockwise
motion around the center of its box; and 3) each spanning
edge belongs to a pair of parallel and opposite spanning edges
that cross over the same box connection (though the spanning
edges may belong to different sub-cycles).

C. Secondary Changes

Secondary changes are the series of local path changes that
convert the swarm from following the post-primary-changes
path to the preferred path of the new shape. As the last step in
shape adaptability, secondary changes are extremely important
for shape persistence because they guarantee that the swarm
is following the preferred path of the new shape. If the swarm
did not return to moving along the preferred path of the new
shape after each change, then the impact of each change would
have to be communicated to the swarm indefinitely. In those
cases, the swarm’s path through the shape would forever be
altered by the shape changes encountered in the past. By
always reverting to the preferred path, the swarm behavior
becomes independent of its past, and the swarm can continue
to execute the default behavior to persist in the shape while
remaining adaptive to future changes.

There are two interchangeable methods for making sec-
ondary changes. The first method, called the communication-
based method, resolves secondary changes by passing a mes-
sage robot-to-robot through the swarm along the new preferred
path immediately after primary changes are complete. Each
swarm member reacts to this message and, if necessary, makes
a local change to its planned path to match the new preferred
path. The swarm then executes the default behavior and moves
along the new preferred path as soon as the message has
traveled through the shape. The second method, called the
movement-based method, resolves secondary changes by
promoting a single robot to make a series of local path changes
as it moves through the remainder of the new shape. This
results in a sequence of interim paths until the swarm finally
converges to the new preferred path.

The communication-based method is best suited for appli-
cations where communication speed is much faster than the
traveling speeds of the robots and where secondary changes
must be completed quickly (within one time period, 7). This
is because secondary changes are complete as soon as the
message reaches the robot at the exit node, and one does
not have to wait for a robot to travel through the remainder
of the new shape (as is the case with the movement-based
method). By contrast, the movement-based method is better

Algorithm 3 Memory Message Reception

Input: m, S, Vg, V, > m = memory message
Output: m’ > m’ = new memory message
> Update data structures with information from m
1: Vg < Vp from m and b > b = current box
2: V,, <V, from m and n > n = current node
> Determine next edge via default behavior

3: €’ + defaultBehavior(b, S, Vg, V)
> Determine next node

4: n' < node at end of ¢’ > n/ = next node
> Create message to send to robot at next node

5: m' < createMessage(Vg, V., n’)

suited for applications where communication speed is slower,
and a message is not likely to be passed through the swarm in
one time period (7). In practice, a swarm would be designed
to execute one of the two methods for secondary changes for
the duration of its task; the swarm would not alternate between
the two methods during any given task.

Both methods begin after primary changes have been ad-
dressed, and both start from the same grid node in the new
shape. For clarity, we define the node from which secondary
changes begin as the secondary change start node (SCSN). It
represents the latest node in the path where all upstream robots
will not be affected by the change (by Lemma 3). In the case of
box addition, the point of inflection identified during primary
changes (prior to filling in the new box) and the SCSN are
identical. In the case of box subtraction, the SCSN is the node
occupied by the robot with the following criteria:

1) The robot has never visited any of the nodes in the
removed box.

2) Prior to removal, the robot’s next position would have
been in the removed box.

In the subtraction example, the SCSN is occupied by robot 11
in Fig. 9.

1) Communication-Based Method: In this method, the
robot occupying the SCSN initiates a memory message
through the swarm. The memory message is essentially a
virtual robot executing the default behavior along the new
preferred path. Instead of physically moving, the message is
transmitted from robot to robot along the new preferred path in
accordance with Algorithm 3. Each recipient of the memory
message re-writes its boxes visited (V) and nodes visited
(V) to match that of the memory message (m). Then, the
robot appends its own grid node and box information to the
data structures before executing the default behavior without
actually moving. By doing this, the robot determines its next
position. The robot occupying the original recipient’s next
position is the next recipient of the updated memory message
(m/). The original recipient then transmits the updated memory
message to the next recipient and the process continues.

This creates local changes in the path as the message tra-
verses through the swarm. Each recipient adjusts its memory,
effectively rewriting its past as if it had always been moving
along the new preferred path of the new shape. This ensures
that all future robot movements will also be along the new

1% 19 13+ 12
@@

a@ b

Fig. 10: Secondary changes. (a) The state of the swarm
immediately following the primary changes (Fig. 9). Robot
11 is at the SCSN (blue). (b) The state of the swarm after the
communication-based method is complete with robots 5 and
9 (orange) having changed their heading. Numbers represent
unique IDs of the robots. Arrows indicate robot heading.

a b C

Fig. 11: A sequence of interim paths leading from an interim
path (a) to the new preferred path (c). Changes from the
previous path are shown in red. Arrows indicate edge direction.

preferred path of the new shape. The memory message is only
sent downstream from the SCSN because all upstream portions
of the path are the same for both the existing path and the new
path (by Lemma 3). Eventually, the memory message reaches
the robot at the exit node and the robots resume the default
behavior as if nothing ever happened.

Although the communication-based method works for both
shape additions and subtractions, we will consider only the
example subtraction case (from Fig. 9) for brevity. After the
box is removed and primary changes are resolved, robot 11 (at
the SCSN) begins transmitting a memory message through the
swarm. Fig. 10 shows the state of the swarm when memory
message transmission begins (Fig. 10a) and ends (Fig. 10b).
Note Fig. 10a is identical to Fig. 9f because secondary changes
begin where primary changes left off. In accordance with
Algorithm 3, the memory message moves through the swarm
along the new preferred path, so it passes through robots in the
following order: 11, 10,9, 4, 7, 6, 5, 8. Robots 11, 10, 4, 7, 6,
and 8 do not change their heading direction after processing
the memory message because their heading in the interim path
(Fig. 10a) is identical to the new preferred path (Fig. 10b).
However, robots 9 and 5 both make a local change to their
heading in response to the memory message so that the swarm
is following the new preferred path (Fig. 10a to b).

2) Movement-Based Method: In this method, secondary
changes happen more slowly than in the communication-based
method. This is because they rely on a robot moving through
the shape, swapping destinations with other robots in the
swarm to make local path changes as it goes. This results in a
series of interim paths from the path immediately after primary
changes complete to the new preferred path. For example, the
path after primary changes for the box addition described in
Fig. 8 looks like the path drawn in Fig. 11a. This path is
changed twice in a sequence of interim paths from Fig. 11a to
Fig. 11c in order to achieve the new preferred path (Fig. 11c).

To begin converting the swarm’s path to the new preferred
path, the swarm promotes a change robot. The change robot
is not inherently special; it is just the robot that happens to
be present at the SCSN when primary changes are completed.
As before, all portions of the path upstream of the SCSN are
the same for both the existing path and the new preferred path
(by Lemma 3), so all impacts of the change robot will come
after the change robot’s initial position. Thus, the change robot
represents the first robot capable of traversing the preferred
path of the new shape using only the default behavior.

Even though the change robot is executing the default
behavior, robots downstream of its position may not be. Since
the post-primary-changes interim path is not necessarily the
preferred path (it could be valid or pseudo-valid as proven
later for Theorems 3 and 4, respectively), robots downstream
of the change robot’s position may be executing non-default
behavior to maintain a non-preferred interim path (i.e., a
pseudo-valid path or a valid path that is not preferred). Non-
default behavior is facilitated by pass-back robots: robots
that use neighbor-to-neighbor communication to “pass back” a
non-default movement instructions such that upstream robots
follow the pass-back robot’s non-default path.

Robots involved in or adjacent to a primary change (i.e.,
those that fill a new box and those that are adjacent to a
newly added or removed box) immediately become pass-
back robots when primary changes are finished. Then, after
they move to their next grid node, each pass-back robot
transmits a pass-back message (Algorithm 4) to the robot
in its previous grid node (ny.c,). The recipient of the pass-
back message then adjusts its path to follow the pass-back
robot (Algorithm 5). The recipient also rewrites its memory
(Vg and V,,) to match that of the sender (the original pass-
back robot) and then becomes a pass-back robot itself. This
ensures that the grid node becomes a semi-permanent instance
of non-default behavior because the recipient will pass-back
the same message to the next robot in line after it moves. Any
upstream robot that receives a pass-back message will follow
the robot that previously occupied the grid node and then tell
the next upstream robot to do the same.

After transmitting a pass-back message, a pass-back robot
converts back to a regular robot and follows the default be-
havior. However, if it ever receives another pass-back message
from a downstream robot, it will become a pass-back robot
again (per Algorithm 5).

Pass-back behavior is only cleared from the swarm by the
change robot. It does this by moving through downstream grid
nodes and ignoring pass-back messages as it moves (i.e., the
change robot does not continue to transmit pass-back messages
even if a pass-back robot attempts to send a message to the
change robot).

Since its downstream neighbors may not be navigating along
the same path as the change robot, conflicts can occur when
both the change robot and a neighboring robot intend to
move to the same node. Such conflicts are resolved via a
process called destination swapping. In a destination swap,
the change robot could take one of two edges from its current
node. One edge could be taken in accordance with the default
behavior to a node (destination 1), while the other edge

Algorithm 4 Pass-back Robot Behavior: Transmission

Input: ¢',V,,, Vg
Output: m,;,
: move to next node via €’

> mpp = pass-back message

1

2 Nppew ¢ Va[—1] > get previous node

3: append b to Vg > update boxes visited w. current box

4: append n to V,, > update nodes visited w. current node
> Create message to send to previous node

5: myy < createMessage(Vp, Vi, €, Nprev)

Algorithm 5 Pass-back Robot Behavior: Reception

Input: my,
1: Vp < Vp from my,
2: Vi, <=V, from myy
3: € <+ € from my,
4: become pass-back robot

> mpp = pass-back message
> overwrite boxes visited

> overwrite nodes visited

> overwrite edge to next node

could be taken in accordance with the current interim path
to some other node (destination 2). Since the change robot
is always executing its default behavior, it will always take
the edge to destination 1. This leaves destination 2 available
for the conflicting neighbor robot that had previously planned
to move to destination 1 but can no longer since the change
robot has priority. Thus, the change robot effectively “swaps
destinations” with the conflicting neighbor robot, giving the
conflicting neighbor robot destination 2 in exchange for desti-
nation 1. In practice, destination swapping is facilitated by the
change robot constantly broadcasting its planned movements
so that conflicting neighboring robots can react to the message
and change their destination before collisions occur.

After destination swapping, the robot that changed its desti-
nation to accommodate the change robot becomes a pass-back
robot so that other robots continue to follow this new direction
and a new interim path is created. This process continues with
each destination swap creating a sequence of interim paths
until the new preferred path is achieved (Theorem 5 proved
later in Section VIII-C). Once the change robot reaches the end
of the shape, all pass-back nodes have been cleared, the swarm
is executing the new preferred path, and all future robots can
continue to execute their default behavior without exception.
Finally, the change robot reverts back to a normal swarm robot
as it departs for the charging station.

Similar to the communication-based method, the movement-
based method transforms interim paths to preferred paths
via an identical process for both addition and subtraction.
For brevity, only the addition example from Fig. 8 will be
discussed here. After addition, the swarm has formed the
interim path shown in Fig. 8f. For clarity, a graphic showing
the sequence of events for secondary changes is provided in
Fig. 12. As before, secondary changes begin where primary
changes left off, so Fig. 8f matches Fig. 12a.

An example of pass-back behavior can be seen in the
transition from Fig. 12a to 12b. In Fig. 12a, robot 3 is a pass-
back robot since it was adjacent to the box addition. When it
moves to its next position in Fig. 12b, robot 3 sends a pass-
back message to robot 4 and transitions back to the default

Fig. 12: Secondary changes via the movement-based method.
The sequence transforms the interim path (a) to the preferred
path (o). Numbers represent robot IDs. Arrows on the robots
indicate headings. Dashed arrows indicate communication
paths for direction swapping in (d), (e), (h), and (i) and
promoting the change robot (a). Red robots are pass-back
robots and the blue robot is the change robot.

behavior. Robot 4 receives the pass-back message and adjusts
its path to follow robot 3. In Fig. 12a, robot 5 is also a pass-
back robot. When it moves to its next position (in Fig. 12b), it
sends a pass-back message to robot 6. Robot 5 transitions to
the default behavior, but then immediately receives a pass-back
message from robot 4, transitioning it back to the pass-back
state. All robots involved in the primary change (or adjacent
to the primary change) become pass-back robots. They are
shown in red in Fig. 12.

Change robot behavior is also evident in Fig. 12. The
change robot (robot 11) is promoted by robot 7 once the
local changes are complete (Fig. 12a). Robot 11 serves as
the change robot in this case because it is the robot present
at the SCSN when primary changes are completed. Likewise,
robot 7 is the robot that promotes robot 11 because robot 7
was at the point of inflection at the onset of primary changes
and was the robot that led the way into the newly added box.
Robot 11 then proceeds to move through the shape, executing
its default behavior and destination swapping as necessary.
For example, in Fig. 12d, robot 11, executing the default
behavior, plans to move “left” to the node occupied by robot

6 (see robot 11°’s heading in Fig. 12d). Thus, robot 7, which
had previously planned to move to robot 6’s position, is free
to swap destinations and instead move “right” to robot 10’s
position (Fig. 12e). Robot 7 also switches to a pass-back state
as a result of the destination swap. This particular destination
swap results in a pseudo-valid path of two sub-cycles: robots
7, 8,9, and 10 form one sub-cycle while robots 3-6 and 11-18
form another. This pseudo-valid path continues to persist until
Fig. 12h and Fig. 12i when robots 7 and 11 destination swap
again. Lastly, the change robot (robot 11) clears pass-back
messages as it moves, so when robot 11 has exited the shape,
the swarm is following the new preferred path (Fig. 120).

VII. ADDITIONAL EXPERIMENTS AND DEMONSTRATIONS

We performed additional experiments to demonstrate the
swarm’s adaptability while maintaining its persistence. Specif-
ically, we show detection, primary changes, and secondary
changes via both the communication-based method and the
movement-based method with the swarm executing the default
behavior in between shape changes. These demonstrations
were completed on a swarm of mobile robots to capture the
swarm’s response to an actual human and on a simulated
swarm of 90 robots to depict the scalability of the algorithms.

With no known direct state-of-the-art comparisons, it was
not possible to compare the performance of these demon-
strations against the metrics of other methods. Instead, these
demonstrations were completed as a proof of concept to both
reinforce the effectiveness of the algorithms and complement
the theoretical proofs. Furthermore, although performance
reliability was not a primary driver of our work, we did note
that the simulated experiments could be run repeatedly without
error. The mobile robot experiments were also repeatable with
exceptions only in the event of unrelated robot hardware issues
(e.g., robot wheels getting snagged on hairs on the floor, etc.).

A. Demonstrations with Humans

Experiments were performed on the swarm of Coachbots to
show the swarm’s response to a human sculpting the shape.
These experiments used a 20 robot initial shape and a 22 robot
charging station. The demonstrations on the Coachbots also
consisted of both addition and subtraction via both secondary
change methods (communication-based and movement-based).

In these experiments, once the initial shape was formed
and the robots reached a steady-state persistent cycle into
and out of the shape, a human initiated a random set of
arbitrary changes to the shape by interacting directly with
the swarm. In both secondary change methods, and for both
addition and subtraction, the swarm effectively detected each
change, made primary changes, and finally made secondary
changes to continue to cycle robots through the new shape.
The time to resolve each change was on the order of 1-7
minutes depending on the location of the change. The changes
made closer to the end of the path took less time to resolve
than those towards the beginning where the memory message
or change robot would have to travel further before the
change completed. These experiments were recorded with an

15

Fig. 13: A sequence of images from a Coachbot experiment
running the movement-based method. Pane (a) shows the
initial shape. Human initiated additions are in panes (b) and (f),
and subtractions are in panes (d) and (h). A dashed rectangle
indicates the added or removed box. Panes (c), (e), (g), and (i)
show the swarm’s shape once the previous change is resolved.
In-shape robots have green, blue, and red LEDs to indicate the
potential for addition, subtraction, and no change, respectively.

overhead camera, and images of one human-swarm interaction
experiment are captured in Fig. 13.

The Coachbots were used in these experiments because they
were an existing swarm available to the authors. Unfortunately,
they have no means of sensing humans: only their position
(x,y) and heading (6). Therefore, we physically rotated robots
in place as human “gestures” when sculpting the shape. Robots
changed color within the shape to indicate which robots could
be manipulated for an addition and which for a subtraction.
Robots would turn green if they were along the periphery of
the shape alongside a box that could be added to the shape.
Robots would turn blue if they were not along the periphery of
the shape or otherwise not alongside a box that could be added
to the shape. Finally, robots would turn red if they could not
be manipulated for either addition or subtraction (e.g., a robot
at the exit node). If a green robot’s heading was changed,
then the robot would initiate a box addition, and if a blue
robot’s heading was changed, then the robot would initiate
a box subtraction. Red robots were unresponsive to human
interaction. Other robot colors (e.g., yellow and white) are

Fig. 14: A simulation of 90 robots running the communication-
based method. Robots begin in a 17-box “N” (far left). Boxes
are removed and added to the shape (left to right) until the
swarm forms the 15-box “U” (far right). Robot LED color
indicates shapes of with an even (green) or odd (blue) number
of boxes. The charging station is not shown.

used to debug the system.

B. Large Scale Simulations

The final set of experiments demonstrated the scalability
of the algorithms by simulating a swarm of 90 robots form-
ing a 17-box “N” shape persistently. The swarm was then
manipulated into a 15-box “U” shape through a series of ad-
ditions and subtractions. Human gestures indicating additions
or subtractions were emulated by pre-programmed messages
transmitted at pre-assigned times to the robots nearest to the
desired addition or subtraction. Images of a particular test
are in Fig. 14. This simulation demonstrates the scalability
of the algorithms to swarms of large numbers and shows the
complexity of the shapes that can be formed despite the valid
shape constraints. Although scalability is not formally proven,
the size of the swarm is not a necessary component in any of
the algorithms, and each robot is executing identical behavior
without a dependency on a centralized actor. This indicates that
the size of the swarm would not be limited by the algorithms,
but rather the capacity of the charging station, the size of the
path that an individual robot can travel, the onboard memory
of each robot, or the size of the environment.

VIII. SHAPE ADAPTABILITY THEORY

The previous sections described swarm adaptability in the
cases of box addition and box subtraction. Specifically, we
covered the steps of detection, primary changes (for both
addition and subtraction), and secondary changes (for both
the communication-based method and the movement-based
method). Along the way, we stated a series of unproven claims
as fact. The remainder of this section formally addresses these
claims and provides proofs to support their validity.

A. Primary Changes: Addition Yields Valid Paths

Earlier we claimed that, in the event of an addition, primary
changes in accordance with Algorithm 2 lines 1-8 always
result in a valid interim path. We can prove this claim directly
by the logic of Theorem 1.

Theorem 3. Addition primary changes result in a valid path.

Proof 3. Prior to an addition, the existing shape is a valid
shape and the existing path is a preferred path. In the event of
an addition, primary changes effectively replace a periphery

16

| . |
I)
7| b [l L
. O
| |
preferred valid pseudo-valid

Fig. 15: Examples of preferred, valid, and pseudo-valid paths
through the same shape. Arrows indicate path direction.

edge of the existing path with a 5-edge loop: 1 edge that
spans into the new box from an existing box, 3 non-spanning
edges that move robots clockwise through the new box, and
1 spanning edge back into the existing box. This is the same
5-edge loop discussed in the proof of Theorem 1 that occurs
when a unit path through a new box is merged into the existing
path. Thus, by the same logic, we know that the 5-edge loop
created by primary changes in response to an addition will
also result a valid path and Theorem 3 is valid. O

B. Primary Changes: Subtraction Yields Pseudo-valid Paths

Earlier we claimed that local changes in response to a
subtraction in accordance with Algorithm 2 lines 9-25 can
only guarantee that the resulting path is at least pseudo-valid.
In order to prove this, we must explain the phrase “at least
pseudo-valid.” We will also establish two more lemmas.

Lemma 5. For a path that is pseudo-valid, valid, or preferred,
each non-spanning edge results in clockwise motion around
the center of its box.

Lemma 6. For a path that is pseudo-valid, valid, or preferred,
each spanning edge belongs to a pair of parallel and opposite
spanning edges that cross over the same box connection.

By Definition 2, in a pseudo-valid path, each non-spanning
edge results in clockwise motion around the center of its
box, and each spanning edge belongs to a pair of parallel
and opposite spanning edges that cross over the same box
connection. Since these properties are also true of preferred
and valid paths, we can conclude Lemma 5 and Lemma 6.
Examples of a preferred path, valid path, and pseudo-valid
path are shown in Fig. 15 for comparison.

Since preferred paths are a subset of valid paths, and valid
paths are a subset of pseudo-valid paths (i.e., valid paths are
pseudo-valid paths with only one sub-cycle), then we can use
the phrase “at least a pseudo-valid path” to refer to any path
that is pseudo-valid but could also be valid or preferred. With
these terms defined, we can now prove our claim directly using
the concepts of path separation, path merging, and Lemma 2.

Theorem 4. Subtraction primary changes result in at least a
pseudo-valid path.

Proof 4. Prior to a subtraction, the existing shape is a valid
shape and the existing path is a preferred path. Since the
existing path is a preferred path, by Theorem 2 we know
that a robot traversing the preferred path will create a tree
data structure of boxes that matches the tree data structure

assembled by the DFCP method (just like in Fig. 7). The
box with entry and exit nodes is the root of the tree, and
the remainder of the boxes in the shape are either branches
or leaves. Branches are boxes that the robot enters and exits
at least twice: at least once to access descendent boxes and
once to move back up the tree to exit the shape. On the other
hand, leaves are boxes for which the robot enters and exits
only once, making a distinctive 5-edge “U” pattern through
the box. For example, in Fig. 15, the box marked “I” is a leaf
and the box marked “b” is a branch. Now, let R denote a box
to be removed. The impact of removing R from a valid shape
(with a preferred path) varies depending on whether R is a
leaf or a branch.

If R is a leaf, then the box can be removed without
impacting any other portions of the path because the original
path did not need to travel through R to get to other boxes.
When R is removed, the robot that had previously planned to
take a spanning edge into IR will instead plan to move clock-
wise within its own box (in accordance with primary change
procedures). In that case, removing R is like separating its unit
path from the planar Hamiltonian cycle in the remainder of the
shape via path separation (i.e., spanning edges become non-
spanning edges). This results in a planar Hamiltonian cycle
through the remainder of the shape (by Lemma 2), and the
path prior to and after R is not affected by the presence of R
(by Lemmas 3 and 4). Thus, we can conclude that the planar
Hamiltonian cycle that remains once R is removed is identical
to the planar Hamiltonian cycle that would have existed if R
had never been a part of the shape. We can also conclude that
the planar Hamiltonian cycle that would have existed if R had
never been a part of the shape is the same as the preferred
path that a robot would have traveled via the default behavior
if R had never been a part of the shape as R (being a leaf)
is the last unvisited box in its subtree. In other words, we can
conclude that when a leaf box is removed, primary changes
result in the preferred path of the new shape.

However, if R is a branch, then removing the box will
result in a discontinuity in the path since the path had to
pass through R to get to other boxes. In that case, all robots
that had previously planned to take a spanning edge into R
will instead plan to move clockwise within their own boxes
(in accordance with primary change procedures). This is the
same as a path separation operation on each pair of spanning
edges that crossed a side of R. By Lemma 2, this still creates
planar Hamiltonian cycles in the remainder of the boxes, but
instead of being one continuous path, the resulting path will
have at least two sub-cycles. For example, if R is a branch
with only one child, there will be one sub-cycle through all
of the boxes visited from the root box through the parent of
R and one sub-cycle through all of boxes visited after R. By
Definition 2, such a path is a pseudo-valid path, so we can
conclude that when a branch is removed, primary changes
result in a pseudo-valid interim path.

Finally, since a primary changes in response to a subtraction
result in either a preferred path (in the case of a leaf) or a
pseudo-valid path (in the case of a branch), we can conclude
that Theorem 4 is valid. O

C. Secondary Changes Yield Preferred Paths

In describing secondary changes, we presented two inter-
changeable methods for operation: the communication-based
method and the movement-based method. We also explained
that secondary changes return the swarm to the preferred
path of the new shape so that robots can freely execute the
default behavior without concerning themselves about shape
changes that occurred in the past. Therefore, we must prove
that both the communication-based method and the movement-
based method result in the new preferred path of the new
shape. The proof of the communication-based method is
trivial. Since the communication-based method is just a virtual
implementation of the default behavior, we can conclude that
it will always result in the new preferred path of the new shape
by Theorem 2.

However, the proof of the movement-based method is less
obvious. We earlier claimed that by repeatedly destination
swapping with the change robot, the swarm will morph
through a sequence of interim paths until the preferred path is
achieved. This relies on two basic tenets: 1) that a destination
swap morphs the swarm from one path that is at least pseudo-
valid to another path that is at least pseudo-valid, and 2) that
the sequence of interim paths will converge to the preferred
path. Both of these are addressed in the proof of Theorem 5.
We will also use the following lemmas.

Lemma 7. For a robot at a node in at least a pseudo-valid
path, only one outgoing non-spanning edge exists for the robot
to travel within its box while maintaining Lemma 5.

Lemma 8. For a robot at a node in at least a pseudo-valid
path, only one outgoing spanning edge exists for the robot to
travel into a different box while maintaining Lemma 5 and
Lemma 6.

Lemma 7 is trivial based on the definitions of preferred,
valid, and pseudo-valid paths, and Fig. 4a shows each of the
four valid outgoing spanning edges for each of the four nodes
in a unit box. On the other hand, Lemma 8 is slightly less
intuitive, so we provide Fig. 16 to show a visual representation
of Lemma 8 for one node in an arbitrary box in an arbitrary
valid shape (the argument is rotationally symmetric for all
other nodes in the box). Of the two possible options for
spanning edges leading away from the white node in Fig. 16,
only edge a is compatible for paths that are at least pseudo-
valid. If edge b were present, then edge ¢ must also exist by
Lemma 6. However, the only way a path could connect from
the end of edge b to the start of edge ¢ without intersection
is for the path to have a non-spanning edge with counter-
clockwise motion around the center of its box (if not in the box
that edge b spans into then in some other leaf box downstream
of edge b). Since this contradicts Lemma 5, we can infer that
edge b will never exist in a pseudo-valid, valid, or preferred
path and Lemma 8 must be valid.

Theorem 5. In the movement-based method of secondary
changes, a sequence of valid and pseudo-valid interim paths
created as a change robot moves through the shape will
converge to the preferred path of the new shape.

Ay
-

'--)L-p

TN

Fig. 16: Edge a is the only plausible spanning edge to leave
the white node in a path that is at least pseudo-valid. Edges b
and c cannot exist without a counter-clockwise spanning edge
somewhere in the shape (indicated by the dashed line).

L 3

Fig. 17: Each valid edge for nodes in an arbitrary shape.

Proof 5. First, by Theorem 3 and Theorem 4, it can be said
that all local changes, regardless of whether a box was added
or removed, will result in at least a pseudo-valid path (i.e., the
path is either pseudo-valid, valid, or preferred). Thus, it can be
assumed that when a change robot is promoted at the start of
secondary changes, the interim path is at least pseudo-valid,
so we have to prove that a destination swap results in another
path that is at least pseudo-valid.

To do this, we use Lemma 7 and Lemma 8, to draw the two
potential outgoing edges at each node in an arbitrary shape in
Fig. 17. Consider a change robot at node A (the argument is
rotationally symmetric for all other nodes in a box). Since we
know a destination swap will only occur when a neighboring
robot is planning to move to the same destination as the change
robot, then we can see only two cases where a destination
swap might occur: 1) when the change robot is planning to
take edge AB at the robot at node C is planning to take edge
CB, or 2) when the change robot is planning to take edge
AD at the robot at node C is planning to take edge C'D. In
both cases, the robot at node C is free to swap destinations
without risking a collision with other robots because the node
it is swapping to can only be accessed by one of two edges,
and the other edge is not being taken by the change robot. For
example, in the first case, the robot at node C is free to swap
its destination from node B to node D because the change
robot is going to take edge AB (not AD), meaning no other
robot is planning to move to node D.

Furthermore, all aspects of valid and pseudo-valid paths
are maintained after these destination swaps because, in both
cases, there are no path intersections, each node is still

connected via exactly two edges, the start and end nodes have
not been changed, and no periphery edges have been changed.
The only impact of swapping destinations is that the nodes
may belong to a different sub-cycle (or valid path) than they
previously belonged to. Thus, we can conclude that the path
remains at least pseudo-valid after a destination swap.
Finally, as the change robot moves, it creates a sequence
of interim paths as it destination swaps with its neighbors.
It always executes the default behavior, and so do all of the
robots upstream of its position. This implies that, as the change
robot moves closer to the end of the shape, more robots are
following the new preferred path via the default behavior
and fewer robots are following the interim path. Therefore,
a sequence of valid and pseudo-valid interim paths created as
a change robot moves through the shape will converge to the
new preferred path as the change robot converges toward the
exit node, and Theorem 5 is valid. O

IX. CONCLUSION

In this work, we presented algorithms for persistent and
adaptive 2D shape formation that allow a swarm to overcome
the limitations of individual robot power constraints while
finding new paths through the shape after every shape change.
We have shown that these algorithms are provably correct and
have demonstrated their effectiveness in both simulation and
a swarm of physical robots. More significantly, though, we
have opened the door to a largely unexplored field of swarm
shape formation applications where the duration of the task
may no longer be a constraint on the swarm’s performance
and the shape that the swarm is forming during its task is free
to change in response to an external stimulus such as a human
sculpting the shape.

Future work includes demonstrating these algorithms on a
swarm of physical flying robots. There is also work to be
done to improve the efficiency and fault tolerance of these
algorithms to make them more suitable for applications in
unpredictable environments. Specifically, the behavior of the
swarm in the face of challenges, such as communication inter-
ference and damaged or adversarial robots, has not yet been
explored. Investigating such impacts on the algorithms would
also require us to identify potential single points of failure and
build redundancy into the algorithms (e.g, detecting a failure
in the transmission of a memory message and recovering by
restarting transmission of a new message).

Finally, we intend to develop three-dimensional algorithms
that are analogous to the 2D algorithms presented in this
paper so that swarm implementations are not constrained to
planar tasks. One way to accomplish this might be to execute
2D algorithms for a set of vertically stacked layers in a 3D
shape. Another method might be to develop valid 3D shapes
constructed of cubes in the same way we developed valid
shapes constructed of boxes in 2D. Additional challenges
with a 3D version will include the impact of downwash on
other flying robots, the ability to detect human gestures while
in flight, and the safety concerns associated with a human
interacting with flying robots.

(REVISION NOTE: References [11], [12], [22]-[27] are

new.)

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]
[12]

[13]

[14]
[15]

[16]

[17]

REFERENCES

A. G. Curtis et al., “Autonomous 3d position control for
a safe single motor micro aerial vehicle,” IEEE RA-L,
2023.

H. Wang and M. Rubenstein, “Shape formation in
homogeneous swarms using local task swapping,” IEEE
T-RO, vol. 36, pp. 597-612, 3 Jun. 2020.

H. Xu, H. Guan, A. Liang, and X. Yan, “A multi-robot
pattern formation algorithm based on distributed swarm
intelligence,” in IEEE ICCSEA, vol. 1, 2010, pp. 71-75.
Z. Xue and J. Zeng, “Formation control numerical
simulations of geometric patterns for unmanned au-
tonomous vehicles with swarm dynamical methodolo-
gies,” in IEEE International Conference on Measuring
Technology and Mechatronics Automation, 2009.

J. Wu et al., “Distributed vav swarm formation and
collision avoidance strategies over fixed and switching
topologies,” IEEE Transactions on Cybernetics, 2021.
Y. Liu et al., “A distributed control approach to forma-
tion balancing and maneuvering of multiple multirotor
uavs,” IEEE T-RO, 2018.

M. Aranda et al., “Distributed formation stabilization
using relative position measurements in local coordi-
nates,” IEEE Transactions on Automatic Control, 2016.
H. Wang and M. Rubenstein, “Generating goal configu-
rations for scalable shape formation in robotic swarms,”
in DARS, Springer, 2021.

X. Dong et al., “Time-varying formation control for
unmanned aerial vehicles: Theories and applications,”
IEEE Transactions on Control Systems Technology,
2014.

Y. Xu et al., “Concurrent optimal trajectory planning
for indoor quadrotor formation switching,” Journal of
Intelligent & Robotic Systems, 2019.

G. A. Di Luna et al.,, “Shape formation by pro-
grammable particles,” Distributed Computing, 2020.
Z. Derakhshandeh et al., “Universal shape formation for
programmable matter,” in SPAA, 2016.

T. M. Cabreira, L. B. Brisolara, and R. F. Paulo, “Sur-
vey on coverage path planning with unmanned aerial
vehicles,” Drones, vol. 3, pp. 1-38, 1 Mar. 2019.

Y.-S. Jiao et al., “Research on the coverage path plan-
ning of uavs for polygon areas,” in IEEE ICIEA, 2010.
W. H. Huang, “Optimal line-sweep-based decomposi-
tions for coverage algorithms,” in JEEE ICRA, 2001.
M. Torres et al., “Coverage path planning with un-
manned aerial vehicles for 3d terrain reconstruction,”
Expert Systems with Applications, vol. 55, pp. 441451,
2016.

C. Di Franco and G. Buttazzo, “Coverage path planning
for uvavs photogrammetry with energy and resolution
constraints,” Journal of Intelligent & Robotic Systems,
2016.

[24]

[25]

[36]

T. M. Cabreira et al., “Energy-aware spiral coverage
path planning for uav photogrammetric applications,”
IEEE RA-L, 2018.

D. Albani, D. Nardi, and V. Trianni, Field Coverage
and Weed Mapping by UAV Swarms. 2017.

S.-H. Lim and H.-C. Bang, “Waypoint planning al-
gorithm using cost functions for surveillance,” IJASS,
2010.

J. Zelenka and T. Kasanicky, “Insect pheromone strat-
egy for the robots coordination—reaction on loss com-
munication,” in /[EEE CINTI, 2014.

F. Arvin et al., “Perpetual robot swarm: Long-term
autonomy of mobile robots using on-the-fly inductive
charging,” Intelligent & Robotic Systems, 2018.

M. Carrillo et al., “A bio-inspired approach for collab-
orative exploration with mobile battery recharging in
swarm robotics,” in BIOMA, Springer, 2018.

M. Rappaport and C. Bettstetter, “Coordinated recharg-
ing of mobile robots during exploration,” in IEEE IROS,
2017.

G. Li, I. Svogor, and G. Beltrame, “Long-term pattern
formation and maintenance for battery-powered robots,”
Swarm Intelligence, 2019.

A. Boggio-Dandry and T. Soyata, “Perpetual flight for
uav drone swarms using continuous energy replenish-
ment,” in IEEE UEMCON, 2018.

D. Mitchell, E. A. Cappo, and N. Michael, “Persistent
robot formation flight via online substitution,” in /EEE
IROS, 2016.

M. R. Garey, D. S. Johnson, and R. E. Tarjan, “The
planar hamiltonian circuit problem is np-complete,’
SIAM Journal on Computing, 1976.

C. Umans and W. Lenhart, “Hamiltonian cycles in solid
grid graphs,” in Proceedings 38th Annual Symposium on
Foundations of Computer Science, 1997.

R. I. Nishat, “Reconfiguration of hamiltonian cycles and
paths in grid graphs,” Ph.D. dissertation, 2020.

K. C. Cheung et al., “Programmable assembly with uni-
versally foldable strings (moteins),” IEEE T-RO, 2011.
A. A. Joshi, M. C. Bhatt, and A. Sinha, “Modification of
hilbert’s space-filling curve to avoid obstacles: A robotic
path-planning strategy,” in 2019 Sixth Indian Control
Conference, IEEE.

S. A. Sadat, J. Wawerla, and R. Vaughan, “Fractal
trajectories for online non-uniform aerial coverage,” in
IEEE ICRA, 2015.

A. Kolling et al., “Human interaction with robot
swarms: A survey,” IEEE Transactions on Human-
Machine Systems, 2015.

A. Giusti et al., “Human-swarm interaction through
distributed cooperative gesture recognition,” in Proceed-
ings of the seventh annual ACM/IEEE international
conference on Human-Robot Interaction, 2012.

J. Nagi et al., “Human-swarm interaction using spatial
gestures,” in IEEE IROS, 2014.

A. Defined Terms

APPENDIX

Term Definition

box four grid nodes in a 2x2 square

change robot the robot whose movement initiates destination swapping in the movement-based method
communication-

based method

default behavior
depth-first

clockwise-priority

(DFCP) method
destination swap

DFCP path
downstream
existing path
existing shape
interim path
memory message
movement-based
method

new path

new shape
non-spanning edge
opposite edges
pair

parallel edges
pass-back message
pass-back robots
path merging

path separation
periphery edge
periphery node

preferred path
pseudo-valid path

secondary change

start node (SCSN)

spanning edge
sub-cycle

unit path

unit shape
upstream
valid path

valid shape

a method for secondary changes that converts an interim path to the new preferred path
by passing a memory message
algorithm used for shape persistence; results in a preferred path

a method for assembling valid shapes by assembling boxes in accordance with a
traditional depth-first search where ties are resolved with a clockwise priority

process by which a neighboring robot assumes the interim path destination of the change
robot instead of its own interim path destination

a type of valid path generated by the DFCP method

refers to a robot that has previously visited a particular grid node

the path prior to a change (i.e., addition or subtraction)

the shape prior to a change (i.e., addition or subtraction)

a provisional path formed in the process of changing from an existing path to a new path
the message used to communicate change in the communication-based method

a method for secondary changes that converts an interim path to the new preferred path
by a series of destination swaps initiated by the movement of a change robot

the path after a change is resolved

the shape after a change is resolved

an edge that begins and terminates in the same box

edges that have directions exactly 180° from one another

(e.g., a pair of edges) two edges with start and end nodes in a 2x2 grid configuration
edges that are equidistant everywhere and do not intersect

message used to communicate non-default movement during secondary changes

robots that send pass-back messages to upstream robots

the process of replacing a pair of parallel and opposite non-spanning edges with a pair
of parallel and opposite spanning edges

the process of replacing a pair of parallel and opposite spanning edges with a pair of
parallel and opposite non-spanning edges

a non-spanning edge between two periphery nodes

an in-shape node along the periphery of the shape

a type of valid path generated by the default behavior

a discontinuous path comprised sub-cycles such that: 1) each node is visited exactly once;
2) each non-spanning edge results in clockwise motion around the center of its box; and
3) each spanning edge belongs to a pair of parallel and opposite spanning edges that
cross over the same box connection (though they may belong to different sub-cycles).

the node from which secondary changes begin

an edge that begins and terminates in different boxes

a planar Hamiltonian cycle through a portion of the shape

a clockwise Hamiltonian cycle through a unit shape

a shape constructed of 1 box

refers to a robot that has yet to visit a particular grid node

a planar Hamiltonian cycle with adjacent entry and exit nodes on the periphery of the
shape such that each non-spanning edge is directed clockwise around the center of its
box and each spanning edge is part of a pair of parallel and opposite edges spanning
across the same box connection

a shape constructed of boxes assembled continuously such that each box meets the full
side of another box

20

	Introduction
	Related Work
	Shape Formation
	Area Coverage
	Swarm Robot Recharging
	Hamiltonian Path Planning
	Human-Swarm Interaction

	Robot Capabilities and Assumptions
	Shape Persistence
	Subroutine 1: Forming the Shape
	Subroutines 2, 3, & 4: Robot Recharging
	Demonstrations of Persistence

	Shape Persistence Theory
	Basic Concepts
	Planar Hamiltonian Cycles in Valid Shapes
	Planar Hamiltonian Cycles via the Default Behavior

	Shape Adaptability
	Change Detection
	Primary Changes
	Secondary Changes
	Communication-Based Method
	Movement-Based Method

	Additional Experiments and Demonstrations
	Demonstrations with Humans
	Large Scale Simulations

	Shape Adaptability Theory
	Primary Changes: Addition Yields Valid Paths
	Primary Changes: Subtraction Yields Pseudo-valid Paths
	Secondary Changes Yield Preferred Paths

	Conclusion
	Appendix
	Defined Terms

