
Scalable Continuous Sculpting: Adaptive and

Persistent Swarm Shape Formation Algorithms

with Fixed Memory Dependence

Andrew G. Curtis1, Michael Rubenstein1

1Center for Robotics and Biosystems,
Northwestern University, Evanston IL 60208, USA,

agc@u.northwestern.edu, rubenstein@northwestern.edu

Abstract. Robotic swarms often cite scalability as a benefit of their
deployment. To realize the full extent of this benefit, swarm behavior
algorithms have to be designed so that performance is not inhibited at
scale. In this work, we examine a set of persistent and adaptable swarm
shape formation algorithms that are limited by onboard memory when
executed at scale. We improve these algorithms by using robot commu-
nication and collective knowledge to allow robots to form persistent and
adaptive shapes with a fixed memory dependence. We demonstrate the
improved algorithms in both simulation and on a swarm of mobile robots.

Keywords: Swarms; Path Planning for Multiple Mobile Robots
or Agents; Distributed Robot Systems; Shape Formation

1 Introduction

Scalability is often an important aspect of robotic swarms. Swarm behaviors such
as shape formation [1]–[3], path planning [4]–[6], foraging [7]–[9], and flocking
[10]–[12] can often be executed with swarms ranging from a few robots to a
few thousand (or more!). However, in some applications, the performance of the
swarm may change with scale. For example, increasing scale may result in a
higher resolution shape during shape formation [2], a lower mission success rate
for swarm taxis [13], or reduced individual robot efficiency when foraging [7].

In this work, we examine swarm behavior scalability that is limited by the
onboard memory (M) of individual robots. Specifically, in [14], robots form
dynamic shapes through a process called continuous sculpting. These shapes
have a constant density per unit area, so “large” shapes are shapes with many
robots covering a big area while “small” shapes are shapes with fewer robots
covering a smaller area. When forming such shapes, M scales with the size of
the shape by O(N) where N is the number of robots needed to form the shape.
To remove this limitation, we developed variations of the algorithms in [14] to
allow for scalable continuous sculpting where M is fixed and does not scale
with shape (or swarm) size: O(1). This ensures that neither swarm behavior nor
robot requirements must change when forming large shapes. This is especially



2 Curtis and Rubenstein

important as the field of swarm robotics is trending toward smaller, simpler
robotic designs with less onboard memory [15]–[17].

After giving some additional background (Section 2), we elaborate on the
process by which robots communicate and infer information (Section 3). This
communication process allows the swarm to form a path through the shape
using the collective knowledge of the swarm instead of individual robot memory.
We then describe how robots use this communication process to form shapes
that are both persistent (beyond the battery lifetime of each individual robot)
and adaptable to shape changes (Section 4). Finally, we demonstrate the new
fixed-memory algorithms in both simulation and on a swarm of mobile robots
(Section 5) before concluding and identifying future work (Section 6).

2 Background

In a previous work, we introduced continuous sculpting: an activity in which a
human can actively change a swarm into shapes that persist beyond the battery
lifetime of individual robots (Fig. 1). To perform continuous sculpting, robots
execute a set of decentralized algorithms, forming planar (i.e., non-intersecting)
Hamiltonian cycles that both approximate the shape and facilitate robot move-
ment through the shape and back to a charging station. This allows the swarm
to form shapes persistently as robots can continuously recharge and re-enter the
shape. When a human initiates a change to the shape, the swarm detects and
reacts to the change, adapting to a new Hamiltonian cycle so that the swarm
can continue to persist. The underlying persistence and adaptability algorithms
were proven theoretically and demonstrated on a swarm of mobile robots in [14].

In those algorithms, robots navigate through a virtual square grid graph (G =
(n, e)) overlaid on the environment, occupying grid graph nodes to represent the
shape (S) where S ⊂ G. Each shape is constructed from boxes (B) such that
each box consists of four grid nodes (n) in a 2 by 2 configuration and each box
meets the full side of another box. To navigate through such shapes, robots
plan and move one edge (e) at a time using local information and data stored in
memory. Specifically, robots store a list of in-shape nodes (S), a list of nodes that
the robot has already visited (Vn) such that Vn ⊂ S, and a tree data structure
of previously visited boxes (VB). The required memory for S, Vn, and VB scales
with shape (and swarm) size: O(N).

In this work, we alter the persistence and adaptability algorithms so their
memory dependence is fixed: O(1). This concept is not new to robotics research.
Others have investigated foraging [7], traversing directed graphs [15], and mobile
robot dispersion [18] with limited memory on each robot. In most cases, mem-
ory was a variable that could be tuned to study performance against memory
size [7], [18]. In other cases, onboard memory was replaced with stigmergy or
other environment markers [15], [19]. In this paper, we use robot-to-robot com-
munication to augment onboard memory, allowing robots to infer where they
have been based on information received from their neighbors instead of relying
on information stored in memory.



Scalable Continuous Sculpting 3

Fig. 1. A graphical representation of continuous sculpting modified from [14]. (a) A
shape of 7 boxes. Robots occupy grid graph nodes to form the shape. Robot headings
indicate the swarm path through the shape. Dashed arrows show robot paths to and
from the charging station. (b) A human initiates an addition to the shape (purple box).
(c) The swarm travels a new path through the new shape.

3 Robot Memory

Our goal for this work was not to change the logic of the algorithms in [14], but
rather to have robots infer s, vn, and vB , subsets of S, Vn, and VB , respectively,
using robot-to-robot communication. These subsets still contain enough infor-
mation for each robot to follow the continuous sculpting algorithms outlined in
[14], but they are limited to a fixed memory size so onboard memory does not
scale with the number of grid nodes representing the shape. In this section, we
address how these subsets are found and provide an example.

Additionally, we define a neighborhood as the eight grid nodes surrounding
any given node in G. For example, in Fig. 2a, the robots labeled 0, 1, 2, 14, 15, 20,
21, and 23 are all at grid nodes in the neighborhood of the robot labeled 22. Like
our previous work, robots are only capable of communicating with other robots
in their neighborhood as the communication range is limited to

√
2l where l is

the length of an edge in G. During the process of finding s, vn, and vB , robots
will transmit a message to all robots in their neighborhood. We refer to this
message as a broadcast message. Finally, we make the following assumptions
about robot capabilities:

1. Robots can determine the clockwise direction around the center of a box.

2. Robots map the same 2 by 2 configuration of nodes to the same box.

3. Robots are capable of identifying a box given a node (and vice versa) by
evaluating its (x, y) position with a modulus of 2.



4 Curtis and Rubenstein

Algorithm 1 Finding s, vn, and vB

Require: (xr, yr), Cr, Cminr ▷ Information provided from a neighbor robot
Ensure: s, vn, vB , Cmin ▷ Updated information about the robot and its neighborhood

▷ Assume robot has edge count C and in-box minimum count Cmin

1: if (xr, yr) /∈ s then include (xr, yr) in s ▷ Update s
2: end if

3: if Cr < C and (xr, yr) /∈ vn then include (xr, yr) in vn ▷ Update vn
4: end if

5: if Cr < Cmin and (xr, yr) in my box then Cmin ← Cr ▷ Overwrite Cmin

6: end if

7: if Cminr < C and (xr, yr) not in my box and Box(xr, yr) /∈ vB then

8: include Box(xr, yr) in vB ▷ Update vB
9: end if

3.1 Identifying In-Shape Nodes: s ⊂ S

To make continuous sculpting more scalable and limit the required memory,
robots infer s based on the presence of other robots. This process begins with
each robot broadcasting its current node location (x, y) to robots in its neigh-
borhood (i.e., its neighbors). Each robot then builds a mental map of occupied
nodes (nodes from which a message was received) and unoccupied nodes (nodes
from which a message was not received). From this, each robot infers that occu-
pied nodes are a part of the shape and unoccupied nodes are not. Robots then
store the list of occupied nodes as s. This process is summarized in Algorithm 1
lines 1-2 where (xr, yr) is the node position received from a robot in the neigh-
borhood. Since communication range is limited to a neighborhood, the memory
required for s is fixed to no more than eight locations. After moving to a new
grid node, each robot clears s and builds a new s in its new neighborhood.

3.2 Identifying Visited Nodes: vn ⊂ Vn

To understand how a robot can infer vn, let’s consider the path robots travel
according to the original continuous sculpting algorithms. The path is a planar
Hamiltonian cycle that is broken at adjacent entry and exit nodes such that the
entry and exit nodes are in the same box and are on the periphery of the shape.
The robot occupying the entry node has yet to traverse any edges in the shape,
while the robot occupying the exit node has traversed some number of edges, E ,
in order to visit each node in the shape exactly once. In fact, every robot along
the path from entry node to exit node will have visited some number of edges, µ,
such that 0 ≤ µ ≤ E . If we display the number of edges each robot has traveled,
we see that edge counts create a monotonically increasing sequence along the
path from entry node to exit node (Fig. 2a).

Robots can use this information to infer which nodes they have visited (and
which they have not) instead of keeping that information in memory. When
traveling through the shape, robots count the number of edges they traversed.
Then, robots broadcast their own edge count in their broadcast messages. Robots



Scalable Continuous Sculpting 5

Fig. 2. (a) A monotonically increasing sequence of edge counts along the path through
the 6-box shape. Grey circles indicate robots. Arrows indicate path direction. Numbers
indicate edge count values. (b) Example to show how robot C identifies that robot B’s
box has been visited. (c) Robot X identifies the node to its south as the node in its
parent box due to a counter-clockwise priority around the red virtual box vertex.

compare their own edge count (C) with each edge count they receive (Cr). If a
received edge count is less than their own, then the robot can infer it has visited
the corresponding node. Conversely, if a received edge count is greater than their
own, then the robot can infer it has not yet visited that node. Since the swarm
edge counts are monotonically increasing along the path through the shape, and
all robots increase their edge counts at the same rate, it is impossible for two
robots to have the same edge count. It is also impossible for a robot to receive
an edge count lower than its own from a node it has not already visited or an
edge count higher than its own from a node that it has already visited.

Thus, robots create vn by recording each node from which they received an
edge count lower than their own (Algorithm 1 lines 3-4). Since communication
range is limited, vn is fixed to no more than eight locations, and each robot
clears vn and builds a new vn after moving to each new grid node.

3.3 Identifying Visited Boxes: vB ⊂ VB

The process for identifying vB also uses edge counts. Since robots can identify
which nodes belong to which boxes, they can identify if a neighbor is in their own
box (in-box) or in a different box. When a robot receives a broadcast message
from an in-box neighbor, it evaluates if the received edge count value is less than
its own estimated in-box minimum edge count (Cmin). If the received edge count
is less than Cmin, the robot overwrites Cmin to the received value. Each robot
then transmits Cmin in its broadcast message.

Robots use minimum in-box edge count values to determine boxes that have
been visited instead of keeping that information in memory. If a robot receives
a minimum edge count less than its own edge count from a robot in a different
box, then the box from which the message originated must be a visited box.
Robots can record this information to create vB . The processes for overwriting
Cmin and updating vB are given in Algorithm 1 lines 5-6 and 7-9, respectively.
Further, since a neighborhood can only include nodes from 4 boxes at most, vB



6 Curtis and Rubenstein

is fixed to no more than four boxes. For example, the neighborhood of the robot
with edge count C = 15 in Fig. 2a consists of robots from its own box (count
numbers 13, 14, and 16) and three other boxes (count numbers 19-23). Finally,
like s and vn, vB is cleared and rebuilt at each new grid node as robots move
through the shape. Cmin is also re-initialized to C after each robot movement.

3.4 Example: Finding s, vn, & vB

Consider an example in Fig. 2b. Assume the robots just arrived at their current
nodes. Robots A and B are in the same box. To start, both robots believe their
own edge count is the smallest in the box, so CminA

is initialized to CA and
CminB is initialized to CB . Robot A will broadcast its position, its own edge
count (CA = 5), and its assumed in-box minimum (CminA

= 5). Robot B will
broadcast its position, CB = 20, and CminB

= 20. Upon receipt of the message
from robot A, robot B does three things: 1) it records that robot A’s node is
within the shape (s), 2) it records robot A’s node in vn (because CA < CB), and
3) it changes its in-box minimum to CminB

= CA = 5 (because CA < CminB

and robots A and B are in the same box). Robot B does not need to add the
box occupied by robot A into vB since robot B and robot A share a box. At this
point, robot B is now broadcasting its position, CB = 20, and CminB

= 5. Then,
when robot C receives a message from robot B, robot C processes the message in
three parts: 1) it records that robot B’s node is within the shape (s), 2) it does
not append robot B’s node to vn (because CB > CC = 15), and 3) it records
robot B’s box in vB (because CminB

< CC).
Because the communication range is limited to

√
2l, it takes two communi-

cation “rounds” for robot C to know that it has visited robot B’s box. In the
first round, robot B is broadcasting its own edge counter as minimum (as it has
not yet heard from robot A), so robot C will assume that robot B’s box has
not yet been visited (because CC < CminB

= 20). Then, in the second round,
robot B has heard from A and is broadcasting a minimum of CminB

= 5 < CC ,
so robot C will assume that robot B’s box has been visited and change vB ac-
cordingly. Given this delay, it is important that robots have enough time to
receive all pertinent information before deciding what to do next. For reference,
in the simulations and demonstrations presented in this paper, robots transmit
messages at approximately 4Hz which would indicate that robots could move
approximately once per 0.5 s (accounting for 2 rounds of communication and
algorithm processing per movement). However, our robots move every 12 s to
15 s to account for any dropped messages in our communication system and the
velocity and turning constraints of our nonholonomic robots.

4 Persistence and Adaptability

When executing the persistence and adaptability algorithms in [14], robots query
data about their neighborhood from S, Vn, and VB to find and follow paths
through the shape. This allows the swarm to form any size valid shape via any



Scalable Continuous Sculpting 7

number of additions or subtractions to the shape in any order, as proven in [14].
However, because only neighborhood data is used to inform each robot decision,
robots need not store S, Vn, and VB in memory. Robots can instead use s, vn,

and vB to get information about their neighborhood. This means the algorithms
governing persistence and adaptability in this paper are largely unaltered from
their original form with a few minor differences described in this section.

4.1 Persistence

The persistence algorithm in [14] is called the default behavior, and consists
of three rules, given below, where the parent box is the box that the robot had
visited before moving into its current box for the first time. The default behavior
rules are executed distributively and in real time to form a planar Hamiltonian
cycle through the shape called a preferred path. In order to execute the default
behavior, robots require information about their current box (b), S, Vn, and VB

(s, vn, and vB in the fixed memory case). More details can be found in [14].

IF an edge leads to a box not visited, take that edge. (Rule 1)

ELSE IF an edge leads the robot clockwise within its current box, take
that edge. (Rule 2)

ELSE IF an edge leads to the parent box, take that edge. (Rule 3)

In order to remove the memory scalability limitation of the default behavior,
two minor changes are required: the addition of a message passing period and
a new way to identify the parent box. The reason for the first change is trivial;
robots need some idea of S, Vn, and VB to execute the default behavior. Since
robots cannot store these lists in memory, they have to infer subset lists from
their neighbors using the processes described in Section 3. Therefore, each robot
participates in a short communication period to develop s, vn and vB before
executing the default behavior described in [14].

The only other challenge to the fixed-memory version of the default behavior
is distinguishing which previously visited node is in the parent box without
storing the visited box tree data structure (i.e., VB) in memory. To resolve this,
robots infer their parent box based on Lemma 8 from [14] which states that, for
any given node in a preferred path, there is only one valid outgoing edge that
spans into a different box.

For example, consider robot X with edge count CX = 16 in Fig. 2c. Robot
X has already visited the nodes to its north (N) and west (W) because their
edge counts are lower than CX . The nodes to its east (E) and south (S) are
unvisited because their edge counts are higher than CX . Both unvisited nodes
are in previously visited boxes because the minimum counts in each box (5 and
10) are lower than CX , so default behavior rule 3 applies. Of the two options, only
the S node satisfies Lemma 8, so the robot can correctly infer that the S node is
in its parent box. In practice, this is done by choosing the edge that results in
counter-clockwise motion around the nearest virtual box vertex (Fig. 2c).



8 Curtis and Rubenstein

4.2 Adaptability

The adaptability algorithms in [14] govern the swarm’s behavior as it adapts to
shape changes (i.e., box additions or box subtractions). The adaptability algo-
rithms are divided into three sequential parts: detection, primary changes, and
secondary changes. During detection, robots adjacent to the added or removed
box identify the change as either an addition or a subtraction. Then, during
primary changes, robots either fill in the new box or file out of the removed box.
Finally, during secondary changes, the swarm adjusts its path (if necessary) to
the preferred path of the new shape. Secondary changes are completed either via
robot communication (the communication-based method) or via robot motion
(the movement-based method). More details can be found in [14].

For this paper, we alter the adaptability algorithms to permit the use of the
fixed-memory subsets s, vn, and vB . Details of these alterations are provided in
this section, followed by some examples. There are no alterations to detection
since shape changes are detected locally (i.e., by robots closest to the change)
without requiring S, Vn, or VB . Finally, for this discussion, we use upstream to
refer to a robot that has yet to visit a particular grid node, and downstream

to refer to a robot that has previously visited a particular grid node.

Alterations to Primary Changes Per [14], once a change is detected, it is
communicated through the swarm with the coordinates of a critical node, ncp.
The critical node is adjacent to the added or removed box at the beginning of
primary changes and serves as a reference point for other robots to determine if
they are upstream, downstream, or located at ncp.

With unlimited memory, robots can simply check if ncp is in Vn to determine
if they are upstream, downstream, or at ncp. To remove this memory dependence,
robots instead use Cncp

(the edge count of the robot at ncp). Once the change
is detected, the robot that detected the change identifies ncp and communicates
Cncp

through the swarm via repeated robot-to-robot messages. Each robot checks
its own edge counter C against Cncp

. If C < Cncp
, it is an upstream robot; if

C > Cncp
, it is a downstream robot; and if C = Cncp

, it is at the critical node.
Once they have determined if they are upstream, downstream, or at ncp, robots
can execute the default behavior, fill in the new box, file out of the removed box,
or remain still per the the primary changes algorithm in [14].

The only other alteration to primary changes is that robots must adjust their
edge count values to reflect the change to the shape. In the case of addition, once
a new box is filled in, all robots downstream of ncp add four to their edge count
(and minimum in-box edge count) so that it appears as if they have already
moved through the four nodes of the newly added box before reaching their
current position. This maintains a monotonically increasing edge count sequence
through the swarm along the interim path that is established once the new box
is filled in. In the case of subtraction, robots that file out of the removed box
inherit the edge count of the downstream robot that they followed out of the
removed box. This ensures downstream robots always have an edge count value
higher than (or equal to) Cncp

after the removed box is emptied.



Scalable Continuous Sculpting 9

Alterations to Secondary Changes In order to describe the alterations to
secondary changes, let us first explain the original secondary changes algorithm
in more detail. Once the new box is filled in (or the removed box is emptied),
secondary changes begin. Secondary changes are responsible for changing the
interim path established after primary changes to the preferred path of the new
shape. This allows the swarm to execute the default behavior after a shape
change is resolved. The behaviors for secondary changes are agnostic of the type
of shape change (i.e., addition or subtraction) and are realized via one of two
interchangeable methods: communication-based or movement-based.

Both methods operate under the same tenet: incrementally change the path
by moving a “change carrier” through the swarm. In the communication-based
method, the change carrier is a message that is sent through the swarm robot-
to-robot. In the movement-based method, the change carrier is a robot that
adjusts the paths of other robots in its neighborhood as it moves. For both
methods, the change carrier is established at a secondary change start node
(SCSN) immediately after primary changes. The robot at the SCSN represents
the first robot that can travel through the new shape using only its default
behavior because all robots upstream of its position are not impacted by the
shape change, and all downstream robots may be impacted by the shape change.

Instead of focusing on the change carrier as either a message or a robot, we
can generalize the discussion by considering the change carrier as a moving point
of inflection in the swarm. The change carrier is always at some node between
the SCSN and the exit node. When at a node, the change carrier itself and
all robots upstream of its position are executing the default behavior, while all
robots downstream of its position are executing potentially non-default behavior
as they await any path transformations initiated by the change carrier. For
brevity, we will consider this general change carrier case to describe how the
adaptability algorithms have been altered for fixed onboard memory.

Unfortunately, in the fixed-memory version of secondary changes, robots can-
not rely on neighbor edge count values (and minimum in-box edge count val-
ues) to infer vn (and vB). This is because, at any given point during secondary
changes, the robots may not be traveling along a path with a monotonically in-
creasing sequence of edge count values. Thus, we require additional information
for robots to infer vn (and vB) in the face of transforming edge count sequences.
Specifically, we require robots to categorize themselves based on their relative
location to the change carrier (i.e., upstream or downstream). Robots can then
use these categories to artificially inflate or deflate edge count values received
from their neighbors to correctly infer s, vn, and vB .

Robots assign themselves a category as follows. By default, all robots are in
category 0. Then, after a change carrier is established at the SCSN, it broadcasts
a message with its current edge count value (C∗) and the minimum edge count
identified within its box (C∗

min). Robots re-transmit the message robot-to-robot
throughout the swarm, flooding the shape with the information. Robots evaluate
their edge count (C) and minimum in-box edge count (Cmin) relative to C∗ and
C∗

min to put themselves into one of the following categories.



10 Curtis and Rubenstein

Algorithm 2 Adjusting Received Count Values & Changing Category

Require: Cr, Cminr , »r, (xr, yr) ▷ Information received from a neighbor robot
Ensure: C′

r, C
′

minr
, »′ ▷ Adjusted count values and new category

▷ Assume robot has edge count C, in-box minimum count Cmin, and category »
1: if (» = 0 or » = 1) and »r ≥ 2 and Cr ≤ C then C′

r ← Cr + C
2: end if

3: if (» = 0 or » = 1) and »r = 2 and Cminr < C then C′

minr
← Cminr + C

4: end if

5: if (» = 2 or » = 3) and »r ≤ 1 and Cr > C then C′

r ← C − 1
6: end if

7: if » = 2 and »r ≤ 1 and Cminr > C then C′

minr
← Cmin − 1

8: end if

9: if » = 2 and »r ≤ 1 and (xr, yr) in my box then »′
← 3

10: end if

– Category 0: All robots are category 0 by default
– Category 1: Robots upstream of or at the change carrier: C ≤ C∗

– Category 2: Robots downstream of the change carrier and in a box the
change carrier has not visited: C > C∗ and Cmin > C∗

min

– Category 3: Robots downstream of the change carrier and in a box the
change carrier has visited: C > C∗ and Cmin ≤ C∗

min

Once a robot leaves the shape for the charging station, it reverts to Category 0
so that it has the default category when it re-enters the shape after recharging.

Robots include their category (κ = 0, 1, 2, or 3) in their broadcast message
with their own edge count, minimum in-box edge count, and location. Robots
log the categories of their received neighbors, but since communication range
is limited, the onboard memory required for this is fixed to eight slots (one for
each neighbor) and does not scale with shape (or swarm) size.

Robots adjust received edge count values based on robot category via Algo-
rithm 2. These adjustments, for example, make sure that a robot in category
1 (upstream or at the change carrier) will always view a robot in category 2
(downstream of the change carrier) as having a greater edge count than its own
to properly infer vn. Additionally, robot categories may change as the change
carrier moves through the shape. A robot in category 2 that passes into the same
box as a robot in category 1 or category 0 (either the change carrier or a robot
upstream of it) will become a category 3 robot because its minimum in-box edge
count value (Cmin) will be less than (or equal to) that of the change carrier’s
(C∗

min). As such, category 2 robots may convert to category 3 as the change car-
rier moves per Algorithm 2 lines 9-10. After executing Algorithm 2, robots can
execute Algorithm 1 to get s, vn, and vB as they perform the secondary change
behaviors described in [14]. Note that unless a change has recently occurred, all
robots are category 0, and no artificial inflating or deflating is required.

The only other alterations to the secondary change algorithms in [14] are
associated with overwriting memory. In the original algorithms, a robot might
“pass back” its memory and its position to an upstream robot. The recipient then



Scalable Continuous Sculpting 11

Fig. 3. Example box addition (panes a-e) and subtraction (panes f-j). Robot colors in-
dicate the critical node (red), the change carrier (orange), and robot category (0=grey,
1=blue, 2=green, 3=purple). Arrows indicate path direction. Letters indicate unique
robot ids. Numbers indicate non-adjusted edge counts.

follows the “pass back” robot to the pass back robot’s node and overwrites its
memory with that of the pass back robot. This facilitated non-default behavior
of robots downstream of the change carrier in the movement-based method.
Likewise, in the communication-based method, robots in receipt of the change
carrier message overwrote their memory with that of the senders. They then
appended their own location and box information to their new memory before
passing the message further downstream. In this paper, we have altered these
behaviors to use edge counts instead of memory lists. Specifically, in a pass
back scenario, a robot passes back its location and edge count information. The
recipient follows the sender and overwrites its edge count to that of the sender.
Similarly, in the communication based method, robots overwrite their edge count
(and minimum in-box edge count) to that of the sender. They then add one to
the edge count value before passing the message further downstream.

Shape Change Examples We provide two shape change examples to demon-
strate the preceding adaptability concepts: one addition and one subtraction. A
few important snapshots of each change process are provided; the rest are omit-
ted for brevity. Description of the behaviors is in accordance with the original
algorithms in [14] and the alterations presented in this paper. The first example
is a box addition captured in the top row of Fig. 3.

In Fig. 3a, a box (dark grey) is added to the shape, and robot H is located at
ncp, so Cncp

= 4. Robots with edge count values less than 4 (robots I, J, K and
L) are upstream, so they execute the default behavior and file into the new box
after passing through ncp. Robots with edge count values greater than 4 (robots
A through G) are downstream robots. They remain still as the new box is filled
and then inflate their edge count values by 4 so that there is a monotonically
increasing sequence of edge count values along the new interim path (Fig. 3b). At



12 Curtis and Rubenstein

this point, primary changes are finished, and the change carrier is identified at
the SCSN. We then employ the communication-based method for this example.

In Fig. 3c, robots determine their category with respect to C∗ = 4 and
C∗

min = 2. Per the communication-based method, the change carrier then sends
a message robot-to-robot through the swarm along the preferred path of the new
shape. Fig. 3d shows the state of the swarm after the message has traveled from
robot L to robot K. Since robot K is now the change carrier (and category 1), all
robots in its box convert to category 3 per Algorithm 2 lines 9-10. Fig. 3e shows
the state of the swarm after the message has traveled 3 more edges through
robot J and robot I to robot D. As before, category 2 in-box robots convert to
category 3. Further, per Algorithm 2 lines 1-2, robot D will inflate the count
value of robot H prior to determining vn. In other words, even though robot H
has the same edge count value as robot D (the current change carrier), robot D
still evaluates robot H’s node as an unvisited node.

The second example is a box subtraction. In Fig. 3f, a box (dark grey) is
removed from the shape and primary changes begin. Robot C is at ncp, so
Cncp

= 21. As robots file out of the removed box, they inherit an edge count
value of C = 21 and continue counting as they move. For example, robot S
assumes C = 21 as it exits the removed box. Robot R did the same and then
shows a count C = 22 one step later (Fig. 3g to Fig. 3h).

As secondary changes begin (Fig. 3h), robots determine their category with
respect to the edge count values of the robot at the SCSN (robot T in this case).
For this example, we employ the movement-based method, so all robots move
as the path change is addressed. Fig. 3i shows the state of the swarm after each
robot has moved one edge. The category 2 robots are in a loop separate from
the rest of the shape due to pass back behavior. Therefore, robot F overwrites
its edge count of 19 with the preceding robot’s count of 7. Fig. 3j shows the
state of the swarm 4 movements later. Robot T receives Crmin

= 7 from robot K
which would indicate that robot T has already traveled in robot K’s box because
CT = 9 > 7. However, because robot K is category 2 and robot T is category 1,
robot T inflates the received value per Algorithm 2 lines 3-4 to correctly identify
robot K’s box as unvisited. Robot T enters the unvisited box its next move.

5 Simulations and Demonstrations

We demonstrated scalable continuous sculpting in both simulation and on a
swarm of physical ground robots called Coachbot V2.0 [3]. Each Coachbot is
equipped with a two-wheeled differential drive system, onboard position and
orientation (x, y, θ) sensing, an onboard battery, an onboard Raspberry Pi com-
puter, and an onboard Wi-Fi module for robot-to-robot communication. The
physical experiments were performed with similar parameters as the experiments
in [14]: a grid graph of l =0.2m and a communication range of 0.3m.

For the physical robot experiments, a human initiated shape changes via both
the movement-based and communication-based methods while robots cycled to
and from a fixed charging rail (video: [20]). The experiments were similar to those



Scalable Continuous Sculpting 13

Fig. 4. Sequence of shape additions to build a shape from 4 to 632 robots.

in [14], and the fixed-memory algorithms resulted in nearly identical behavior to
the original algorithms. The only minor differences were related to the stochastic
nature of robot clock synchronization and human behavior. The near identical
behavior indicates that the fixed memory algorithms are just as capable as their
predecessors without the required memory overhead.

In simulation, we demonstrated scalability by sculpting a large “N” and a
large “U” from just a single box of four robots (video: [21]). Every robot was
programmed to know the entry and exit nodes (same as in [14]), and they inferred
the initial one-box shape. Once robots began cycling between the initial shape
and the charging station, a virtual human began sculpting the shape into the
letter “N” formed by 632 robots. Fig. 4 shows the sequence of building the
“N.” The “N” was then converted through a series of shape changes (using the
communication-based method) to a “U” formed by 464 robots. The charging
station was omitted for brevity, and robots simply “appeared” at the shape fully
charged and “disappeared” when leaving the shape.

The simulation shows the inherent scalability of the fixed-memory algorithms
as the swarm scaled from 4 to 632 to 464 robots in a single experiment. Addi-
tionally, the swarm demonstrated persistence and adaptability as robots contin-
uously cycled in and out of the shape over the course of 181 additions and 66
subtractions to sculpt the “N” and the “U.”

6 Conclusion

The algorithms presented in this paper facilitate adaptive and persistent swarm
shape formation with a fixed memory dependence. Since the required onboard
memory does not inhibit scalability, practical swarms need not overburden their
robots with excessive memory. This reduces cost and complexity, making it easier
to employ continuous sculpting algorithms in applications such as agricultural
monitoring and emergency response ad-hoc communication networks.

Finally, by reducing the required memory to execute continuous sculpting, we
have brought our work one step closer to execution on a swarm of physical flying
robots since we can now build a swarm of simple flyers with limited processing
and memory capabilities. In addition to execution on a flying swarm, we intend
to continue work on a 3D version of continuous sculpting and the challenges
associated with a human interacting with flying robots.



14 Curtis and Rubenstein

References

[1] H. Xu et al., “A multi-robot pattern formation algorithm based on dis-
tributed swarm intelligence,” in IEEE ICCSEA, 2010.

[2] H. Wang and M. Rubenstein, “Generating goal configurations for scalable
shape formation in robotic swarms,” in DARS, Springer, 2022.

[3] H. Wang and M. Rubenstein, “Shape formation in homogeneous swarms
using local task swapping,” IEEE T-RO, 2020.

[4] S. Morgan and J. Hereford, “Path formation using a robot swarm with
limited sensing capabilities,” in 2020 SoutheastCon, IEEE, 2020.

[5] W. Hönig et al., “Trajectory planning for quadrotor swarms,” IEEE T-RO,
2018.

[6] B. Araki et al., “Multi-robot path planning for a swarm of robots that can
both fly and drive,” in IEEE ICRA, 2017.

[7] J. P. Hecker and M. E. Moses, “Beyond pheromones: Evolving error-
tolerant, flexible, and scalable ant-inspired robot swarms,” Swarm Intelli-

gence, 2015.
[8] Q. Lu, J. P. Hecker, and M. E. Moses, “Multiple-place swarm foraging

with dynamic depots,” Autonomous Robots, 2018.
[9] Q. Lu et al., “Swarm foraging review: Closing the gap between proof and

practice,” Current Robotics Reports, 2020.
[10] S. Hauert et al., “Reynolds flocking in reality with fixed-wing robots: Com-

munication range vs. maximum turning rate,” in IEEE IROS, 2011.
[11] F. Schilling, F. Schiano, and D. Floreano, “Vision-based drone flocking in

outdoor environments,” IEEE RA-L, 2021.
[12] C. Virágh et al., “Flocking algorithm for autonomous flying robots,” Bioin-

spiration & biomimetics, 2014.
[13] J. D. Bjerknes and A. F. Winfield, “On fault tolerance and scalability of

swarm robotic systems,” in DARS, Springer, 2013.
[14] A. G. Curtis, M. Yim, and M. Rubenstein, “Continuous sculpting: Per-

sistent shape formation adaptable to human-swarm interaction,” arXiv

preprint arXiv:5512447, 2024.
[15] P. Fraigniaud and D. Ilcinkas, “Digraphs exploration with little memory,”

in STACS, Springer, 2004.
[16] H. Hamann, Swarm robotics: A formal approach. Springer, 2018.
[17] W. Cha et al., “Carbon fiber–aluminum sandwich for micro-aerial vehicles

and miniature robots,” MRS Advances, 2021.
[18] J. Augustine and W. K. Moses Jr, “Dispersion of mobile robots: A study

of memory-time trade-offs,” in ICDCN, 2018.
[19] J. Werfel and R. Nagpal, “Extended stigmergy in collective construction,”

IEEE Intelligent Systems, 2006.
[20] A. G. Curtis and M. Rubenstein, Scalable continuous sculpting with mobile

robots, 2024. [Online]. Available: https://youtu.be/DXFS2vgs9TA.
[21] A. G. Curtis and M. Rubenstein, Scalable continuous sculpting simulation,

2024. [Online]. Available: https://youtu.be/yRYwIwJXYtc.


