
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.

August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the

33rd USENIX Security Symposium

is sponsored by USENIX.

Scavy: Automated Discovery of Memory Corruption
Targets in Linux Kernel for Privilege Escalation

Erin Avllazagaj, Yonghwi Kwon, and Tudor Dumitraș, University of Maryland

https://www.usenix.org/conference/usenixsecurity24/presentation/avllazagaj

SCAVY: Automated Discovery of Memory Corruption Targets in Linux Kernel

for Privilege Escalation

Erin Avllazagaj, Yonghwi Kwon, Tudor Dumitras,
University of Maryland, College Park

Abstract

Kernel privilege-escalation exploits typically leverage

memory-corruption vulnerabilities to overwrite particular tar-

get locations. These memory corruption targets play a critical

role in the exploits, as they determine which privileged re-

sources (e.g. files, memory, and operations) the adversary may

access and what privileges (e.g. read, write, and unrestricted)

they may gain. While prior research has made important ad-

vances in discovering vulnerabilities and achieving privilege

escalation, in practice the exploits rely on the few memory

corruption targets that have been discovered manually so far.

We propose SCAVY, a framework that automatically dis-

covers memory corruption targets for privilege escalation in

the Linux kernel. SCAVY’s key insight lies in broadening the

search scope beyond the kernel data structures explored in

prior work, which focused on function pointers or pointers to

structures that include them, to encompass the remaining 90%

of Linux kernel structures. Additionally, the search is bug-type

agnostic, as it considers any memory corruption capability.

To this end, we develop novel and scalable techniques that

combine fuzzing and differential analysis to automatically

explore and detect privilege escalation by comparing the ac-

cessibility of resources between executions with and without

corruption. This allows SCAVY to determine that corrupting

a certain field puts the system in an exploitable state, inde-

pendently of the vulnerability exploited. SCAVY found 955

PoC, from which we identify 17 new fields in 12 structures

that can enable privilege escalation. We utilize these targets

to develop 6 exploits for 5 CVE vulnerabilities. Our findings

show that new memory corruption targets can change the se-

curity implications of vulnerabilities, urging researchers to

proactively discover memory corruption targets.

1 Introduction

Kernel exploitations typically start by triggering vulnerabili-

ties that enable memory corruption and end by overwriting

particular memory locations with specific values, to put the

Figure 1: Memory Targets in Exploit

system in an exploitable state where the attacker may change

the system’s behavior. These targeted memory locations for

corruption, which we call memory targets hereafter, are or-

thogonal to the exploited vulnerability: attackers may use

them again when exploiting other vulnerabilities, and defend-

ers often focus on the memory targets to prevent the exploita-

tion of unknown vulnerabilities. For example, Figure 1 shows

an exploit created by combining a vulnerability and a memory

target (A), resulting in multiple combinations (or exploits)

such as B and C . While prior research has focused on dis-

covering and exploring vulnerabilities, comparatively less

attention was given to the discovery of memory targets that

are needed in the last step of the exploitation process.

Assume that a privilege escalation exploit (B in Figure 1)

seeks to corrupt a function pointer in a kernel data struc-

ture to execute a malicious payload that escalates the priv-

ilege. Unfortunately, the attacker in this exploit utilizes an

unnecessarily strong capability, leading to a rather obvious

exploitation method (i.e., control flow hijacking) for privilege

escalation which is prevented by popular defenses such as

CFI (X). A new memory target can enable the attacker to

escalate the privilege (C) without being detected (S). For

USENIX Association 33rd USENIX Security Symposium 7141

example, corrupting other memory targets such as username,

inode numbers, or the task_struct::addr_limit field, can

accomplish privilege escalation. In particular, the addr_limit
field [1] was famously employed in 2019 by the NSO group

to install the Pegasus spyware on Android devices [2]. The

vulnerability had been found by Syzkaller in 2017, but it was

not patched in many released devices for many years, as its

security implications were unknown [2]. As a result, in 2020,

the addr_limit was used in over 40% of the Android kernel

exploits in the wild [3]. This results in the removal of the field

from the Linux kernel to prevent such attacks [4]. As such,

the discovery of new memory targets enables the exploitation

of many vulnerabilities including those that are previously

considered unexploitable or not critical [5]. Moreover, new

types of memory targets can enable exploits to evade exist-

ing defenses focusing on the popular memory targets [6–10].

Discovering memory targets is also beneficial in a defensive

context, as several techniques (e.g., freelist pointer obfusca-

tion [11]) can secure these kernel objects [12].

Despite its importance, finding memory targets has been

challenging and typically done manually, relying on exper-

tise in the Linux kernel code base. The prior research on

automating kernel exploit generation [13, 14] has focused on

exploring specific vulnerabilities with limited types of mem-

ory targets (e.g., function pointers or reference-count fields).

Consequently, the fields of Linux kernel data structures that

privilege-escalation exploits can target have not been system-

atically researched. For instance, among the 6,582 structures

in the Linux kernel version 5.15.80, only 746 (11.3%) of

them contain either function pointers (142; 2.1%) or pointers

to structures containing function pointers (604; 9.2%) that

are considered security-sensitive and have been actively ad-

dressed by previous work. The remaining 88.7% represent an

unexplored attack surface. Moreover, even for the previously

addressed 11.3%, an additional thorough search is desirable

as [13, 14] only examined reachable memory areas from ex-

isting proof-of-concept (PoC) code and [15] focuses on a few

kernel objects that induced crashes during the analysis.

We propose SCAVY
1, a framework for systematically dis-

covering memory targets in the Linux kernel for privilege es-

calation (P in Figure 1). SCAVY searches for broader types of

memory targets, beyond the pointer-type memory targets that

existing techniques focus on [16–19]. In particular, SCAVY

aims to discover new diverse types of targets that can impact

(or enable) many existing and unknown vulnerabilities.

During the analysis of the kernel structures and memory ar-

eas for the memory targets, SCAVY encounters two challenges:

(1) examining a large number of potential memory targets and

(2) lack of oracles that can detect diverse forms of potential

privilege escalations. SCAVY handles the two challenges by

leveraging a differential analysis-based multi-execution rea-

soning, that are more efficient than existing techniques rely

1SCAVY is an abbreviation for ‘Scavenger.’

on symbolic and taint analysis. Specifically, it runs multiple

executions with and without memory corruption and checks

the program states of the executions in terms of the accessi-

bility of security-sensitive resources. The results are analyzed

to guide the search process and detect privilege escalations.

SCAVY generated 955 PoC exploits that can potentially

escalate privileges, by corrupting 275 unique fields in 86 ker-

nel structures. From the PoC exploits from CVE-2022-27666,

we create two fully functional privilege escalation exploits

with new SCAVY identified memory targets (Section 3.1 and

Section A.2). Our exploits do not require bypassing popu-

lar kernel defenses (e.g., KASLR, SMEP/SMAP, and CFI),

unlike the original exploits that had to handle them.

In summary, we make the following contributions:

• We revisit the definitions of memory targets and post

corruption program states to identify broader types of

memory targets in the Linux kernel.

• We design and implement SCAVY, a framework that

systematically discovers memory targets, along with the

values needed to achieve privilege escalation. We discuss

the design choices for each step of the search and the

differential analysis-based execution reasoning.

• We evaluate the effectiveness of SCAVY by finding 20

memory targets in 12 kernel structures, where, notably,

17 of the targets have not been used in publicly avail-

able privilege escalation exploits. We demonstrate that

the memory targets found by SCAVY are vulnerability

agnostic by developing 6 exploits for 5 different CVEs.

• We open-source our technique for future research [20].

2 Problem Statement

Despite important advances in discovering software vulnera-

bilities, incorrect assessments of their security implications

remain common and can have a pernicious impact. For exam-

ple, expert recommendations for prioritizing patches [21, 22]

initially omitted CVE-2017-0144, the vulnerability later ex-

ploited by WannaCry and NotPetya; CVE-2019-2215 was dis-

covered in 2017 but was not patched in many Android devices

because its security implications were unknown, before it was

exploited by the NSO group [2]. Exploitability assessments

are challenging because they require reasoning about state ma-

chines with an unknown state space and emergent instruction

semantics [23], known as “weird machines”. For privilege

escalation, in particular, exploitability assessments hinge on

the ability to overwrite specific memory targets.

2.1 Problem Definition

SCAVY aims to solve a problem of finding memory targets

that can lead to privilege escalation. In our context, a memory

target is a field of kernel data structure and privilege escalation

is defined as a change of a privilege that allows access to an

7142 33rd USENIX Security Symposium USENIX Association

unauthorized resource without using legitimate methods (e.g.,

permission changing APIs). To facilitate the discussion, we

divide a program’s execution state into three different states

based on how an exploit progresses to achieve its ultimate

goal (e.g., taking over the system’s control).

1. Before an exploit starts, a process’s execution is in an

unexploited state.

2. After an exploit triggers a vulnerability to corrupt system

states to escalate privilege, granting access to resources

the exploit wants to compromise, the state becomes an

exploitable state. This state has access to the exploit’s

target resources, meaning that the exploit has achieved

all accesses needed for its ultimate objective but has yet

to achieve it (i.e., has not compromised the system yet).

3. After the exploit achieves its objective, the execution

state becomes an exploited state.

Threat Model. We assume a local unprivileged adversary

seeking to use a vulnerability in the Linux kernel with a mem-

ory target by SCAVY to escalate privileges. This threat model

is relevant in various settings, such as cloud computing (e.g.,

Docker), Android [24], and malware exploiting kernel vulner-

abilities [25]. As SCAVY finds memory targets for any given

exploits, our threat model includes a wide range of diverse

memory corruption capabilities of exploits. Note that it also

means that SCAVY found memory targets may require vulner-

abilities with certain capabilities. As described in Section 4

and Section 3, creating an end-to-end functional exploit from

the SCAVY identified memory targets requires manual efforts.

Automating the exploit generation process is out of the scope.

2.1.1 Unexploited, Exploitable, and Exploited States

Figure 2 illustrates the two critical states for our problem

definition (i.e., unexploited and exploited states), including

privileges of various resources under the states. We first define

five different types of privileged resources in Figure 2:

• Read-only Resources: These are the files that are con-

figured to be read-only (e.g., Apache [26]’s configura-

tion file are read-only to prevent unauthorized modifica-

tions [27]). setuid files are also read-only.

• Inaccessible Resources: Sensitive files or root owned

files/directories (e.g., /etc/shadow or /root) are not

readable and writable by an unprivileged process.

• Privileged System calls: There are system calls specific

privileges (e.g., mount and chroot). If an unprivileged

process calls them, the request will be denied and failed.

• Kernel/Other Processes’ Memory: An unprivileged

user process is not allowed to read/write kernel memory.

Other processes’ memory is also not accessible (i.e.,

cannot read/write) due to the memory space isolation.

We define the three states with privileged resources.

Unexploited State. An execution under this state follows

the permission configured for each resource. For example,

Figure 2: Unexploited and Exploited States

as shown in Figure 2-(a), it cannot read or write inacces-

sible files/folders (e.g., /etc/shadow and /root) and cannot

write read-only files such as /etc/passwd, without calling per-

mission/privilege changing APIs. Kernel memory, privileged

system calls, and memory of other processes are inaccessible.

Exploitable State. Suppose a prohibited operation (e.g., read-

/write) on any of the privileged resources in the unexploited

state becomes available after corrupting a memory target. In

that case, we consider that the execution’s state has changed

to an exploitable state. Note that there exist multiple instances

of different exploitable states depending on which resource’s

privilege is escalated. For example, an exploitable state can

have escalated privilege on /etc/passwd while another ex-

ploitable state provides access to a prohibited memory area.

Hence, depending on the exploit’s ultimate goal and its en-

vironment, a particular exploitable state would be needed.

To this end, describing the exact escalated privilege and pre-

requisite conditions of an exploitable state is important to

determine whether it can be used to achieve the exploit’s goal.

Exploited State. An exploitable state becomes the exploited

state, if the exploit achieves its ultimate goal with the esca-

lated privileges (e.g., adding a root user with the escalated

/etc/password and /etc/shadow). Note that the definition

of the exploited state is specific to each exploit’s goal. For

example, to change configurations of Apache, an exploitable

state execution with write access to httpd.conf is required.

2.2 Goal and non-goals

Goal. SCAVY aims to find a memory target that can change

an unexploited state to an exploitable state when the target is

corrupted. To clearly define the memory target’s applicability,

it is important to identify (1) the prerequisite of corrupting

the memory targets and (2) the post-conditions (or escalated

privileges) of the corrupted memory targets. In particular, the

prerequisites and post-conditions are defined as follows.

• Prerequisites: (1) Required privilege and method for allo-

cating the memory target, (2) Privilege required for cor-

rupting the memory target (e.g., memory write permis-

sion if the target is read-only), and (3) Memory corrup-

tion capability (i.e., corruptible memory location, size,

USENIX Association 33rd USENIX Security Symposium 7143

and possible values) for the memory target.

• Post-conditions: (1) Escalated privilege/permission, (2)

Name or path of the escalated resource, and (3) Area

(i.e., offset and the range) of the escalated resource.

Non-goals. SCAVY does not focus on identifying new vul-

nerabilities. SCAVY’s new memory targets may allow us, in

some cases, to repair exploits that have been rendered inoper-

able by system-level defenses (e.g., SMAP), but they do not

improve the exploits’ capability or reliability (as defined in

Section 4). While we demonstrate the ability to transit from

an exploitable to an exploited state by developing a few func-

tional exploits (see Section 3), automating this step is out of

our scope. Finally, our goal is not to construct an automated

end-to-end exploitation tool.

3 Motivating Examples

We describe two exploits using memory targets identified by

SCAVY, to motivate its impact and practicality.

3.1 Corrupting vm_area_struct::vm_file

Target Kernel Structure. The mmap system call creates a

memory-mapped file with an opened file descriptor. It will

create a memory buffer containing the file content, and if it is

created with the write permission, changes to the buffer will

be written back to the original file, when the file is closed.

The Linux kernel uses the vm_area_struct structure,

shown in Listing 1, for the memory-mapped files. The struc-

ture contains the address range of the mapped memory

(vm_start and vm_end), its permission (vm_page_prot), and

a pointer to the file (vm_file).

1 struct vm_area_struct {
2 unsigned long vm_start; /* mmap() retval. */
3 unsigned long vm_end;
4 ...
5 pgprot_t vm_page_prot; /* pg. permissions */
6 ...
7 struct file* vm_file; /* victim field */
8 ...
9 };

Listing 1: Declaration of vm_area_struct.

Discovery. SCAVY automatically discovers that corrupting

vm_file can impact the content of the corresponding memory-

mapped file, potentially causing privilege escalation. Specifi-

cally, SCAVY first creates two executions access the same file

(so that they will access vm_area_struct::vm_file). Then,

it corrupts the vm_file with a random value in one of the

executions. SCAVY compares the two executions (i.e., with

and without the corruption) to discover the two executions

obtain different contents of the file.

Next, SCAVY creates the third execution to check whether

it can achieve privilege escalation. This time, instead of a

random value, SCAVY uses other instances of valid values of

vm_area_struct::vm_file . Specifically, SCAVY opens a set

of both privileged and unprivileged files to obtain the values

of vm_file instances. SCAVY copies the values to corrupt the

vm_file and checks whether the third execution can access

contents of any files that their vm_file values were copied.

This checks whether copying the content of vm_file from

a privileged file to adversary-owned file would allow the

adversary to access the privileged file’s content using the

adversary-owned file’s permission. For example, if an adver-

sary copies the vm_area_struct::vm_file of the password

file (i.e., /etc/passwd) to an unprivileged temporary file’s

vm_area_struct::vm_file (e.g., /tmp/file), the adversary

can read and write the password file. To this end, SCAVY

identifies vm_area_struct::vm_file as a memory target.

Completing the Exploit. We use CVE-2022-27666, which

provides an out-of-bounds write capability [28], to corrupt the

memory target. The exploit first opens two files: (1) a dummy

file with a read/write permission and (2) the password file

(/etc/passwd) with a read permission. Then, it creates a few

thousand memory maps of the files using mmap (e.g., 3,000

times in this example). Note that each mmap call results in al-

locating an instance of vm_area_struct in kernel. We then

leverage the vulnerability to leak neighboring pages of the

created structures to read the vm_file that maps /etc/passwd.

Next, we use the vulnerability again to copy the content of

vm_file of the /etc/passwd into the dummy file’s vm_file.

Finally, the exploit calls msync with the corrupted

vm_area_struct::vm_start . This makes the kernel syn-

chronize the mapped page with the content of /etc/passwd,

using the permissions of the dummy file which is the read

and write permissions. To this end, the attacker can add a new

root-level account by modifying the /etc/passwd.

Appendix A.2 presents more details of this exploit, along

with the option of using file::f_mapping , another memory

target discovered by SCAVY, to exploit CVE-2022-27666. In

Section 7.3.3, we discuss the exploitation of two additional

vulnerabilities corrupting vm_area_struct::vm_file .

3.2 Corrupting key::description

Target Kernel Structure. The keyctl_instantiate sys-

tem call allocates the key structure in the kernel, shown

in Listing 2. It contains fields to store permissions (perm), the

owner’s identifiers (uid and gid), and a text description of the

key (description). This time, we target description, which

is a string pointer where its text is used by the keyctl_search
system call which allows a user to search a keyring.

1 struct key {
2 refcount_t usage;
3 ...
4 kuid_t uid;
5 kgid_t gid;
6 key_perm_t perm;
7 ...

7144 33rd USENIX Security Symposium USENIX Association

8 unsigned long len_desc;
9 char* description;

10 ...
11 };

Listing 2: Declaration of key.

Discovery. SCAVY discovers that once the description field

is corrupted, an attacker can call keyctl_describe to read

a string value from the corrupted address, allowing an ar-

bitrary memory read. Specifically, SCAVY creates two pro-

cesses which call (1) add_key() with a crafted description

including payload to create a key and (2) keyctl_read() to

access the created key. In one process, SCAVY injects a cor-

ruption that overwrites key::description with a value from

another instance of key . The other process runs without any

memory corruption. At the end of both executions, SCAVY

compares the return buffers of keyctl_read() to detect the

deviation, discovering a privilege escalation on the kernel

memory, which is inaccessible to unprivileged user processes.

Completing the Exploit. We modified an existing exploit

for CVE-2016-0728, that overwrites key::key_type::revoke .

The field is a function pointer; thus it allows an adversary to

hijack the control flow. However, in practice, this made the

exploit unreliable in Android devices, either due to lack of

kernel symbols [29] or SMEP/SMAP [30].

Instead of corrupting the function pointer, we focus on

key::description . As with the original, our exploit first

triggers the vulnerability by overflowing key::usage to ‘0’,

which is a reference count. This frees the structure prema-

turely and gives us a use-after-free primitive. We use this

primitive by allocating a ‘msg_msg’ object, which includes a

buffer where we can insert arbitrary data (a message). The

buffer overlaps with the fields of the key object and allows us

to overwrite the length (len_desc) and the description pointer

(description), which is the target. If done properly, this al-

lows an adversary to read from arbitrary kernel addresses.

With this capability, the adversary can bypass KASLR, leak

kernel memory, and read secret keys from other Android apps’

keyrings, potentially leaking session cookies.

4 SCAVY in the Kernel Exploitation Develop-

ment Pipeline

In this section, we contextualize our work with respect to the

prior research on the Linux kernel exploitation development.

As shown in Figure 3, a functional kernel exploit is created

through four stages: 1 Identifying a vulnerability causing

a crash, 2 Discovering the vulnerability’s other capabilities

that can corrupt various memory targets, 3 Combining the

capabilities to escalate privilege, and 4 Creating a reliable

exploit escalating privilege while bypassing defenses.

– Stage 1 . Vulnerability Discovery.

Fuzz Testing Approaches. To find a vulnerability that can

change a system’s behavior, various testing techniques, such

as fuzzing, have been proposed. Syzkaller [31] is a popular

fuzzer that is specialized for finding Linux kernel vulnerabili-

ties. Recently, various advanced fuzzers have been proposed,

including those leveraging hybrid fuzzing [32], symbolic exe-

cution [33], and state-based exploration [34–36] to improve

the effectiveness of testing for vulnerability discovery.

Exploiting Violation Detectors. Violation detectors [37–41]

are runtime techniques that raise exceptions when they

detect operations violating desired properties (e.g., out-of-

bounds reads/writes [37], use-after-free [38], and race condi-

tions [39,40]). When they are applied to the target system, they

essentially turn the violations into crashes, helping fuzzers

identify the violations that can be a strong indicator of poten-

tial vulnerabilities. Recently, leveraging such detectors has

become a typical tactic in the Linux kernel fuzzing [41].

Relevance to SCAVY. An exploit requires a vulnerability that

can corrupt a specific memory, which can lead to privilege

escalation. A vulnerability in this stage typically causes a

crash, often because it corrupts a critical memory. However,

it is unclear whether it can corrupt a specific memory target

with a desired value. SCAVY focuses on discovering memory

targets, but not finding the vulnerabilities.

In Section 3.1, this step is equivalent to choosing a known

vulnerability (i.e., CVE-2022-27666).

– Stage 2 . Capability Discovery.

Capability of a Vulnerability. A vulnerability is often re-

leased with a single memory corruption target, which typically

causes a kernel crash when triggered. However, such an ini-

tial capability may not be sufficiently powerful and versatile

enough to achieve privilege escalations. As a result, investigat-

ing a vulnerability’s other capabilities has become a critical

step to see if the vulnerability can be exploitable. A line of

research exists that searches a vulnerability’s full capabili-

ties [13–15]. Specifically, [13] introduced capability-guided

fuzzing to investigate out-of-bounds write vulnerabilities. [14]

leverages fuzzing and symbolic execution to explore various

contexts of a use-after-free (UAF) vulnerability and determine

if the attacker can control the system to reach an exploitable

state. [15] explores multiple crashes of the same bug in an

effort to observe more exploitable crashes. AlphaExp [42]

discovers fields of kernel structures that can be exploited to

achieve arbitrary code execution (ACE) or arbitrary address

writing (AAW) capabilities but not privilege escalation. It fo-

cuses on a different set of structure fields, missing structures

such as vm_area_struct that SCAVY found.

Relevance to SCAVY. This stage explores whether the vulner-

ability can corrupt a more diverse memory range. As SCAVY

discovers memory targets which are essentially kernel data

structures’ fields, capabilities of are vulnerability is critical

to see whether it can be used to corrupt the SCAVY’s mem-

ory targets. To use a SCAVY’s memory target, a vulnerability

should have a capability that can corrupt the memory target.

USENIX Association 33rd USENIX Security Symposium 7145

Figure 3: SCAVY in the Linux kernel exploit development pipeline

In Section 3.1, the vulnerability’s exploit already has the

capability of corrupting the memory target.

– Stage 3 . Construction an Exploit.

Escalating Privilege. Privilege escalation is typically

achieved either (1) by gaining arbitrary code execution or

(2) by elevating privilege of the current user/resource to root.

First, existing approaches [13, 14, 43] automatically test

whether a vulnerability can corrupt a known field of data

structures that can hijack the control flow (e.g., function/data

pointers). Second, existing scripts [44] search for fields of ker-

nel structures related to known critical system configurations

(e.g., uid, gid, or credentials [5]) that can lead to privilege

escalation if corrupted. However, they focus on known fields

or limited types of fields (e.g., code or data pointers [13,14,43]

and reference counter [45–47]). While approaches searching

for other types of memory targets [45–49] exist, they are either

manually done or focusing on certain types. For example, [48]

focuses on structures handling variable-length data, which can

allow out-of-bound reads if corrupted and [49] looks for struc-

tures with data pointers, which allows adversaries to control

the referenced data if corrupted.

Some exploits require chaining multiple vulnerabilities (or

PoCs) to corrupt multiple memory targets (e.g., leaking a

value first and corrupting a field with the value), achieving

privilege escalation. Finally, a payload is followed to achieve

the exploit’s ultimate goal (e.g., taking over the system).

Relevance to SCAVY. Typically, only the vulnerabilities ca-

pable of corrupting a few known memory targets are used

to construct an exploit. Vulnerabilities that can corrupt other

memory targets but not those known ones were considered

usable. SCAVY discovers new memory targets, enabling more

vulnerabilities to be usable for an exploit. SCAVY found mem-

ory targets allow an exploit to achieve privilege escalation in

more diverse and subtle ways.

In Section 3.1, the vulnerability is used to corrupt a new

SCAVY found memory target, vm_area_struct::vm_file ,

achieving the privilege escalation of a single file, instead of

escalating an entire process’s privilege [50]. Note that we

chain two capabilities to first read the value of vm_file and

then write the leaked value to another vm_file field.

– Stage 4 . Improving Exploit Reliability.

Consistently Corrupting Memory Targets. While an exploit

is created in the previous stage, it might not reliably achieve

privilege escalation, due to the randomness of memory layout

and timing during the execution of the exploit. Hence, exploit

authors leverage various techniques [43, 51, 52] to achieve

an environment for reliable memory corruption. Specifically,

[52] shows a method called heap feng-shui that extends to

all slab caches and thus can be recycled for multiple kernel

exploits. [43] automatically finds system calls to allocate

objects of interest in a desired heap memory layout. [51]

tests commonly known heap layout manipulation and exploit

stabilization methods to aid the exploit development.

Bypassing Defenses. A reliable exploit should also evade

existing defenses [10, 53, 54]. To this end, researchers have

proposed various techniques to bypass the defenses. Specif-

ically, [55] chains kernel-side ROP gadgets to bypass mod-

ern control flow integrity-based protections (e.g., CFI [10]).

[56, 57] present methods to bypass the Kernel Address Space

Layout Randomization (KASLR) [53]. [54] and [58] have

proposed a method to bypass Supervisor Mode Execution

Prevention (SMEP) [59] and SMAP (Supervisor Mode Ac-

cess Prevention), respectively. [50] presents practical tricks

to improve the reliability of an exploit.

Relevance to SCAVY. While SCAVY is not directly relevant to

this stage, using some SCAVY found memory targets makes

it easier to achieve reliability. For example, an analysis of

the published PoC exploit for CVE-2016-0728 mentions that

existing defenses such as SMEP/SMAP [9, 59] can throttle

the success rate of the exploit [30], where some SCAVY found

memory targets can avoid the detection of those defenses.

7146 33rd USENIX Security Symposium USENIX Association

In Section 3.1, SCAVY found memory target can achieve

privilege escalation without violating the integrity of code

pointers, without requiring a defense bypass.

5 Design

Figure 4 shows an overall procedure of SCAVY, consisting of

three phases: (1) Instrumentation and Analysis (Section 5.1),

(2) Discovery of Potential Memory Corruption Targets (Sec-

tion 5.2), and (3) Detection of Memory Corruption Targets

for Privilege Escalation (Section 5.3).

5.1 Instrumentation and Analysis

Type Casting Instrumentation. To identify memory cor-

ruption targets, SCAVY needs to identify types of allocated

memory (e.g., types of structures) in the kernel and corrupt

them. While previous techniques such as GREBE [15] rely

on expensive taint analysis, they cannot be used for the sheer

number of potential memory corruption targets SCAVY deals

with. To this end, SCAVY instruments type casting operations.

Note that the Linux kernel coding-style guideline docu-

ment [60] indicates that a memory allocation should be type-

casted. In LLVM, it uses CastInst [61] for the type cast-

ing operation. Hence, we instrument CastInst by inserting

a call to a dummy function that takes two parameters: (1)

the memory address of the variable that is being type-casted,

and (2) its new data type, passed as a string at compile-time.

Note that we only instrument CastInst when its source and

destination types are different (e.g., ‘void*’ is assigned to a

structure). At runtime, we use Kprobe [62] to log the dummy

function’s parameters to user space along with the return value

of memory allocators (e.g., kmalloc()). Later, the fuzzer as-

sociates allocated memory addresses with their data type.

Analysis for Kernel Data Structures. During the instrumen-

tation and analysis process, SCAVY aims to extract memory

layouts of kernel structures of interest, so that it can guide the

subsequent analyses of SCAVY. While we can extract them

from the source code via an LLVM pass, they may not be

accurate if a compiler optimizes the memory layouts of the

structures. Specifically, structures that are not packed (i.e.,

structures without the ‘((packed))’ attribute) may have un-

used memory space between fields, making the offsets of

structures’ fields in a binary different from the structure’s

definition in the source code. For example, if a structure has a

6 bytes of character array followed by an integer (i.e., struct
{ char s[6]; int n; }), a compiler may insert two unused

bytes between the two fields (i.e., after s[6] and before n, re-

sulting in struct { char s[6]; char unused[2]; int n;
}). Hence, we use pahole [63] to find the sizes and offsets

of structures at the binary level. We use construct a lookup

dictionary mapping between a structure’s name and the struc-

ture’s fields’ offsets, sizes, and types. Note that structures

inside a structure are resolved recursively.

Memory Corruption Bridge. Most of SCAVY’s components

run in user mode, which do not have direct access to the kernel

memory. Hence, we implement a kernel module that allows

SCAVY’s user mode components to corrupt the kernel mem-

ory. Specifically, the kernel module exposes an interface via

ioctl(), providing read and write capabilities of the kernel

memory to the user mode programs. During the instrumenta-

tion process, we include the bridge module into the kernel.

5.2 Discovery of Potential Memory Targets

Three Stage Operations of Exploits. We observe that most

exploits in practice exhibit a pattern of three distinctive op-

erations: (1) allocating a resource associated with a memory

target, (2) corrupting the memory target to obtain sufficient

permissions for privilege escalations, and (3) conducting priv-

ileged actions or actions escalating privilege.

Figure 5-(a) shows the exploit described in Section 3. It

first creates two files. The memory targets are associated with

the files (1). Then, it corrupts the memory target, which is a

kernel structure storing information of the file via the vulnera-

bility (2). This allows an adversary to obtain the permission

of the root-owned file ‘/etc/passwd.’ It then adds a new user

by writing the ‘/etc/passwd’ file, escalating privilege (3).

Figure 5-(b) follows a similar procedure. It creates a process

that allocates the memory target task_struct (1), and then

corrupts the ‘task_struct::euid’ associated with the cre-

ated process, changing the process’s effective user to the root

user (2). Finally, it creates a privileged shell via execve().

Search Space for Each Stage. As each stage conducts a dif-

ferent operation, candidate operations for each stage may exist

in a different space, requiring a distinctive focus. Specifically,

to search operations for the first stage, one may look for sys-

tem calls that allocate memory buffers, regardless of whether

they will access the buffers or not. For the second stage, one

should focus on the contents of the memory buffers and the

impact of the corruption on the system. For the last stage, we

should focus on the system calls dependent on the corrupted

memory (i.e., system calls using the corrupted data).

Due to, in part, the different focus on each stage, in practice,

different tools are used. For example, Syzkaller [31] is effec-

tive for searching the first stage because it aims to achieve

higher code coverage. Intuitively, covering more code would

exercise more program paths that may allocate data structures.

For the second stage, KOOBE [13] and FUZE [14] are ef-

fective as they implement heuristics for detecting memory

corruptions, such as overflowing into other co-allocated ob-

jects. Unfortunately, there are no popular tools for the third

stage as it is manually done in practice.

SCAVY’s Approach. Unlike existing tools that are only ef-

fective for each stage, SCAVY proposes to apply different

criteria and metrics for each stage dynamically. Specifically,

for the first stage, we use code coverage of system calls as a

metric. Intuitively, by covering most of the code, it might also

USENIX Association 33rd USENIX Security Symposium 7147

Figure 4: Overall SCAVY Design

for (int i = 0; i < 100000; i++)

open("/etc/passwd", O_RDONLY);

int wf = open("/tmp/writablefile.txt", O_RDWR);

CORRUPT_FILE_MAPPING(/* SPRAYED OBJ. MAPPING */);

write(wf, "root2:x:0:0:root2:/:/bin/bash\n", 32);

close(wf);

1

2

3

4

5

6

7

8

int pid = fork();

if (pid == 0) {

CORRUPT_euid(0);

exit(0);

} else {

waitpid(pid);

setuid(0);

execve("/bin/sh");

}

9

10

11

12

13

14

15

16

17

euid

Figure 5: Exploits Consisting of Three Steps

cover all the kernel structure allocation code of interest. For

the second stage, we use coverage of instructions that load

the corrupted memory to identify whether the corruption has

an impact on the system or not. In the third stage, we focus

on code coverage of the code dependent on the corrupted

memory, to explore diverse consequences of the corruption.

5.2.1 Allocator Discovery

Objectives. This stage aims to identify a list of system calls

that allocate kernel structures, which are the memory corrup-

tion targets. We aim to find system calls allocating as many

unique kernel structures as possible because all the subse-

quent analyses are limited to the result of this stage. SCAVY

runs every system call, tracks accesses to all allocated memory

buffers, and detects types of allocated kernel structures.

Tracking Allocated Structures. We track memory allo-

cations and memory accesses to identify allocated kernel

structures as follows. We use Kprobe to set breakpoints on

kmalloc()2 and kmem_cache_alloc() to capture their return

values (i.e., base addresses of allocated kernel structures).3

We also set a breakpoint on the dummy function in Section 5.1

2While it is __kmalloc(), we simply call it kmalloc() hereafter.
3We track kmalloc() and kmem_cache_alloc() in the process of interest.

to capture its arguments. SCAVY then processes the Kprobe’s

output to associate addresses from typecasting operations

with their allocation addresses. Note that analyzing type cast-

ing (and not using expensive taint/symbolic analysis [15]) is

a key design choice that makes SCAVY scalable, allowing us

to conduct the analysis on millions of generated sequences.

Coverage Guided Searching. SCAVY tries to cover more

code allocating kernel structures, aiming to discover allocators

for diverse memory targets. We use code coverage, without

changing the fuzzer and the coverage, as, intuitively, cover-

ing more invocations of kmalloc() and kmem_cache_alloc()
would likely find allocators for various memory targets.

5.2.2 Memory Target (Structure Field) Discovery

Objectives. Corrupting certain parts of the kernel structures

change the system’s behavior, while other parts may not have

an observable impact on the system. Hence, SCAVY aims

to find which fields of the structures can be memory targets

causing an observable impact. Specifically, among all the

allocated structures in the first stage, we search, one field at a

time, which fields of structures can impact the system when

corrupted (e.g., a crash). Similar to Section 5.2.1, we search

conservatively, as the subsequent analyses depend on it.

Conservative Target Searching. We use a conservative def-

inition that if a corrupted field of a kernel structure is read

at least once, it may impact the system, meaning that it is a

potential memory corruption target. Specifically, we corrupt

each 4-8 byte field of the kernel structures with random bytes

and use the hardware watchpoint [64] to monitor instruc-

tions that load the corrupted field. If we identify any such load

instructions, the field is considered a potential memory target,

and SCAVY moves on to the search for the next field. The

watchpoint is lightweight and reports sufficient information

on the memory access (i.e., whether the field was accessed).

5.2.3 Memory Target Discovery

Objectives. With the potential memory target for structures,

SCAVY uses a fuzzer to execute various system calls that may

access corrupted memory and cause a crash. In this stage, we

prioritize code that accesses the corrupted memory (i.e., the

7148 33rd USENIX Security Symposium USENIX Association

corrupted field of structures). However, during fuzzing, there

can be crashes (i.e., kernel panic) on the first access of the

corrupted memory, which we call premature crashes. Those

crashes may prevent the fuzzer from exploring the full impact

of the corruption, missing later corrupted memory accesses.

Focused Fuzzing on Relevant Code. To facilitate the search

in this stage, we make two adjustments on our fuzzing process.

First, we make it focus on the code that is accessing the kernel

structures of interest. Specifically, we make our fuzzer only

accept coverage from functions accessing structures.

Second, we prioritize the instructions loading the corrupted

memory by detecting executions running the instructions and

seed them. Specifically, recall that SCAVY collects informa-

tion about the code related to the structures of interest in the

instrumentation and analysis phase, as shown in Figure 4

(Structure Access Code). SCAVY uses hardware breakpoints4

to detect those instructions and make them seed.

Avoiding Premature Crashes. We propose an approach that

executes a generated program call twice to avoid premature

crashes. In the first execution, we run it without corrupting

the memory target. The fuzzer collects the code coverage ac-

cordingly and re-executes it by corrupting the memory target

with a random value. If the execution crashes or we see a

deviation in the code coverage (indicating potential privilege

de-escalation), we log the execution to be analyzed later.

5.3 Detection of Privilege Escalation

The outcome of Section 5.2 is a list of programs causing

crashes, some of which may cause privilege escalations. In

this phase, we aim to detect which of them from the previous

phase are causing privilege escalation. Specifically, SCAVY

uses a differential-analysis-based approach to detect privilege

escalation as follows. First, we run a given program thrice:

one run without corruption, one with corruption using a ran-

dom value, and another with corruption copying the value of

the memory target from other valid structures created by a

privileged process. Second, all three runs will execute privi-

leged operations (e.g., operations requiring root permission)

such as setuid(0) and read/write on privileged resources.

If the first and the third runs have differences, we consider it

may have escalated or de-escalated privilege.

5.3.1 Inserting Privilege Dependent Operations

Read and Write System Calls. For each PoC, we insert read

and write system calls for all the resources (e.g., files and

sockets) created during the PoC, as their behaviors will be dif-

ferent if privilege escalation happened. For example, as shown

in Figure 5-(a), we add read and write system calls for all the

files (i.e., ‘/etc/passwd’ and ‘/tmp/writablefile.txt’).

4Since hardware breakpoints require addresses of the instructions, we use

addr2line [65] to obtain the corresponding instruction addresses.

Privileged Operations. As shown in Figure 5-(b), privileged

operations behave differently based on the current privilege.

We add privileged operations (i.e., root) such as seteuid(0)
and setegid(0). sync(), msync(), and fsync() are added

for all the resources created before the memory corruption.

We provide a list of all the added syscalls in Table 7.

5.3.2 Detecting Exploitable States

Three Executions for Privilege Escalation Testing. SCAVY

runs three executions to detect a potential privilege escalation.

First, we run the exploit on an unprivileged system without

memory corruption. We expect all the privileged operations

to fail and unprivileged operations to succeed. Second, we

run the exploit on the same system with memory corruption

using a random value. If privileged/unprivileged operations

behave differently from the first execution, we consider it to

have reached an exploitable state. Third, we run the exploit

on the unprivileged system with memory corruption using the

memory contents of another instance of the same type kernel

structure. Specifically, we borrow a value of a structure’s field

from a root process with the same structure. Again, any de-

viations from the first run suggest privilege (de-)escalation.

Note that the random and cloned values are complementary.

Cloning works well for complex kernel data structures with

certain formats as they are difficult to generate randomly.

However, cloned values limited to what the system created.

For example, cloning uid will never result in an invalid/un-

known uid, which a randomly generated value can.

Detecting Exploitable States. For each run, we collect 4

indicators: (1) the return value of system calls, (2) the system

call’s return buffer’s (or read buffer’s) data, (3) the addresses

of instructions loaded the corrupted memory, and (4) the code

coverage. We consider two executions to be the same if the

following 4 conditions are satisfied: (1) return values of the

system calls are identical, (2) return buffers’ contents of the

system calls are identical, (3) executed load instructions on

the memory target are identical, and (4) Jaccard similarity [66]

of the code coverage is greater than 0.9 (accounting for noise

in Kcov). Note that we have three runs to compare (2 pairs to

compare). We compare the run without corruption with the

two other runs with different corruption methods. If the run

with corruption is different with any of the comparisons are

not the same, we consider it to reach an exploitable state.

For example, in Figure 5-(a), SCAVY first runs it without

a memory corruption (line 5). The write() at line 7 will fail

due to the missing privilege. In the second run, it corrupts the

memory target (i.e., file mapping pointer) with a random value.

The execution will crash or fail due to the invalid file mapping

pointer. In the third run, it corrupts the memory target by

cloning a valid file mapping pointer. Now, write() at line 7

will succeed and SCAVY detects differences in code coverage

and write()’s returns. Similarly, in Figure 5-(b), executions

have different coverages and setuid() return values.

USENIX Association 33rd USENIX Security Symposium 7149

6 Implementation

SCAVY is written in Go (2068 LoC), C (331 LoC), C++ (827

LoC), and Python (2199 LoC). We customized the Syzkaller

in Go. In C, we wrote the in-tree kernel driver used by the

fuzzer to corrupt and set up hardware tracing. We also devel-

oped 3 LLVM passes, two of which produce the input to the

fuzzer and the third to instrument the kernel typecast. Our

privilege escalation detector module is written in Python.

Modifying Syzkaller. We modify syz-executor to execute

the same program twice, as mentioned in Section 5.2.3. For

each execution, we collect data from KCOV, Kprobe, and dmesg.

The original Syzkaller collects the code coverage from KCOV.

Our modification allows it to collect the memory allocation,

deallocation (i.e., kfree()), and typecasts from Kprobe and

memory hits of the corrupted memory from dmesg. To col-

lect data from Kprobe, our Syzkaller instructs Kprobe to set

up its probe points for kmalloc, kmem_cache_alloc, kfree,

instrument_typecast_instruction, and the instrumented

dummy functions added after each typecast instruction. The

fuzzer instructs Kprobe to print all parameters of the instru-

mented functions and kfree, including the return values of

the memory allocators. The fuzzer spawn two threads in

parallel to the fuzzing executions to (1) parse the output

logs of Kprobe and filter out logs that are not generated by

syz-executor and (2) parse the output of dmesg. To imple-

ment the focused fuzzing for memory corruption relevant

code (Section 5.2.3), our fuzzer generates a large number of

fake instruction pointers for each new corruption, making the

fuzzer think that hitting an instruction accessing the corrupted

memory leads to a significant coverage increase. This results

in the fuzzer prioritizing the code and using it as a seed. We

also disable the fork server, which makes it terminate after

executing the requested sequence of system calls.

Privilege Escalation Detector. Our privilege escalation de-

tector needs to reproduce the executions observed during the

fuzzing, including the memory corruptions. To achieve that,

we use syz-prog2c that generates a C program reproduc-

ing the fuzzing execution, provided by Syzkaller and add C

statements that corrupts the target memory to the C program.

Then, we implement a module that executes the C program

(i.e., instrumented PoCs) with different mutation methods.

Specifically, we wrote a C library (827 LoC C++) that spawns

2 threads along with the original running PoC code: (1) a

thread to set up Kprobe and a custom driver interacting code

we wrote into syz-fuzzer and (2) another root user thread

that synthetically opens the privileged resources. The first

thread tracks the structures created by all the three processes.

7 Evaluation

We evaluate SCAVY from three aspects. First, we measure

the coverage of the typecast instructions with respect to all

the Linux kernel structures to evaluate the effectiveness of

our typecast instrumentation5. Second, we evaluate the effec-

tiveness of the fuzzer in exploring crashes that can lead to

exploitable states. Third, we analyze the detection results of

the differential analysis module and evaluate their reachability

on real world exploits. We also compare our exploitable state

definition with FUZE’s to show that our broader definition

helps discover new memory targets. All experiments were

done on a system running Ubuntu 20.04 LTS with an 3.70

GHz Intel Xeon E3-1245 v6 and 32 GB of RAM.

7.1 Typecast Coverage

SCAVY statically instrumented 2,313 source code files (85%

of the 2,700). 23% (2,130 out of 9,169) of the kernel data

structures are instrumented6 to track their types after their allo-

cation at runtime. While analyzing the low coverage result, we

find many structures that are covered are irrelevant to us. First,

there are 2,587 structures for debugging purposes such as

kprobe_insn_cache and trace_event_raw_kfree are used

by Kprobe and Ftrace and are mostly unavailable on produc-

tion kernels. Second, there are 1,989 stack-allocated structures

that are destroyed on function return (e.g., msg_receiver and

msg_sender in do_msgrcv() and do_msgsnd()). Those short-

lived structures typically do not hold critical system states

and, hence, are not our target. Third, 1,931 structures are

members of our instrumented structures, which we can con-

sider instrumented. For example signal_struct is contained

within sigpending – there is no code that directly allocates

it. Fourth, many of the remaining structures are processor-

related global variables (e.g., intel_watermark_params) and

architecture-specific structures (i.e., defined in arch) that we

do not instrument or helper structures for accessing their other

structures (e.g., xfrm_skb_cb for accessing sk_buff->cb).

To this end, we prune out 4,576 from 9,169 and addition-

ally consider 1,931 structures to be covered, resulting in a

new coverage of 88.4% (4,061/4,593). Our coverage can be

interpreted as a lower bound of what our fuzzer can corrupt.

7.2 Fuzzer Effectiveness

We evaluate the effectiveness of our fuzzer, compared to the

stock version (commit: 61f86278) of Syzkaller. Specifically,

we measure the coverage of the code that is relevant to struc-

tures (e.g., allocating and accessing the structures of interest).

For a fair comparison, we improve the stock version of

Syzkaller by adding hardware tracking of memory reads, our

object allocation implementation, and corrupted memory ac-

cess tracking. We run both fuzzers for 3 days on the identical

QEMU VM (with 1 core and 1 GB RAM).

5If a typecast instruction is not instrumented, SCAVY may not analyze

the specific use of kernel structure, possibly missing a memory target.
6We noticed that instrumenting certain boot files caused the kernel to

crash. Hence, we restrict the instrumentation to directories other than ‘arch’,

‘boot’, ‘kernel/panic’, and ‘signal’.

7150 33rd USENIX Security Symposium USENIX Association

26 Running time1d-17:40 46 2d-07:33 2d-21:

2000

1000

0
0d-00:00 0d-13:53 1d-03:

3000

4000

5000

6000

7000

To
ta

l n
um

be
r o

f c
or

ru
pt

io
n

hi
ts

Number of corruption hits over 3 days
Syzkaller
SCAVY

Figure 6: # of Observed Loading of the

Corrupted Fields

26Running time

0
 0d-00:00 0d-13:53 1d-03:46 1d-17:40 2d-07:33 2d-21:

200

400

600

800

1000

1200

Nu
m

be
r o

f c
ra

sh
es

Number of crashes found over 3 days
Syzkaller
SCAVY

Figure 7: # of Crashes Observed

26 Running time
1d-17:40

0
0d-00:00 0d-13:53 1d-03: 46 2d-07:33 2d-21:

50

100

150

200

250

300

350

Nu
m

be
r o

f u
ni

qu
e

co
rru

pt
io

ns

Number of unique corruptions performed over 3 days
Syzkaller
SCAVY

Figure 8: Comparison of the Number of

Unique Fields Corrupted over Time

Code Coverage. Figure 6 shows the total number of read

operations on any corrupted memory during the 3 days of

fuzzing. This number indicates the number of instructions

loading the corrupted memory executed during fuzzing. The

graph shows that for the first 14 hours, the 2 fuzzers perform

similarly, but the stock fuzzer seems to hit the corruption at a

slower rate. When manually checking the corpus we find this

happens because, in part, the stock fuzzer prioritizes explor-

ing code paths, where some of them may not access the fields

of structures of our interest. For example, the stock fuzzer

may prefer to open a file and then immediately open a socket,

instead of writing to the opened file, since opening a socket

can lead to higher code coverage. In contrast, SCAVY priori-

tizes covering the code that is relevant to the data structures

of interest (e.g., accessing the file in the example).

of Crashed Observed. Figure 7 presents the number of

crashes observed from the two fuzzers. While both fuzzers in-

ject memory corruptions into the least represented structures,

the stock Syzkaller does not prioritize hitting the memory it

corrupts. This can be inferred by the lower number of crashes,

suggesting the de-prioritization of corrupted memory access-

ing code while prioritizing the overall coverage. In contrast,

our SCAVY fuzzer was able to generate more crashes as it

prioritizes the instructions accessing corrupted memory. This

is further evidence of the effectiveness of our approach, which

prioritizes the exploration of the search space for exploitable

states; focusing on the code coverage from source code that

operates on the target structure type and adding synthetic code

coverage based on code that loads corrupted memory.

of Corrupted Fields. We measure the number of corrupted

fields during the experiments to show that SCAVY covers

diverse kernel data structures than state-of-the-art techniques.

Specifically, we plot the number of unique fields of structures

that are corrupted. Figure 8 shows that both fuzzers exhibit a

similar rate of exploration in discovering new fields to corrupt.

While SCAVY focuses on a set of structures of interest, this

graph suggests that our fuzzer does not become stuck corrupt-

ing limited types of structures. As described in Section 5.2.1,

while SCAVY leverages redefined coverage that may focus on

specific structures, our fuzzer still operates with some guid-

ance from unfiltered code coverage, and as a result, it works

well for both exploration and exploitation. Note that we re-

peat the 24-hours experiment 10 times, following the best

evaluation practices for fuzzers [67]. We present the extended

results in Section A.4. After proving distinction between the

two distributions using the U-test [68], we conclude that the

fuzzer without corruption-hit-guidance tends to cover more

code, because, in part, they do not deal with crashes caused by

the corruptions. However, the crashes caused by corruptions

are potential privilege escalations detected by SCAVY, mean-

ing that the original fuzzers’ high code coverage is irrelevant

to finding memory targets. In Section A.4 we show the effects

of the modifications of the fuzzer on the code coverage.

7.3 Exploitable State Detection

To understand the impact of our new definition of exploitable

state in finding memory targets, we conduct two evaluations.

First, we compare the scope of our exploitable state defini-

tion to the commonly studied ones, such as write-what-where

and control flow hijacking. Second, we demonstrate the ef-

ficacy of SCAVY by presenting its ability to discover both

previously known and new memory targets. To conduct this

experiment, we ran the fuzzer for 7 days. We identified 2,811

unique fields from 139 distinct kernel structures that could be

exploited. The fuzzer generated a total of 3,863 PoCs whose

corresponding object corruptions crashed the kernel.

7.3.1 Evaluation of the Exploitable State Definition

We run FUZE’s symbolic executor and SCAVY to detect the

exploitable states for all the PoC. To avoid the FUZE being

stuck in an infinite loop, we disabled around 700K function

call sites corresponding to KCOV, Ftrace, our custom driver,

and part of KASAN. For a fair comparison, we used a 5-

minute timeout (FUZE uses the same timeout). We then ran

the same PoCs through our privilege escalation detector step.

FUZE found 354 PoCs that lead to at least one exploitable

state, meaning that during the unconstrained symbolic execu-

tion, more than one value satisfies the branches taken to reach

an exploitable state. The exploitable states FUZE found are

mostly attacker-controlled write with a symbolic destination

address. We show the number of PoCs that FUZE detected to

reach at least 1 exploitable state in Table 3 (in Appendix).

USENIX Association 33rd USENIX Security Symposium 7151

Structure::field Prerequisites Post. CVE Structure::field Prerequisites Post. CVE

file::f_mapping RW, CS, 216, 8, p RW, (F) >♠♣ pipe_inode_info::bufs W, CG, 152, 8, p R, (Mv) ♦

0 task_struct::cred RW, CS, 1712, 8, p X, (S) ♦ kioctx::aio_ring_file RW, CS, 512, 8, p R, (Mv) >

task_struct::mm RW, CS, 1080, 8, p R, (Mp) ♦ kioctx::internal_pages RW, CS, 448, 8, p R, (Mv) ♣

task_struct::active_mm RW, CS, 1088, 8, p R, (Mp) ♦ aio_kiocb::ki_filp RW, CS, 0, 8, p RW, (Mv) —

task_struct::vma_cache RW, CS, 1104, 8, p R, (Mp) ♦ key::user RW, CS, 72, 8, p RW, (Mv) >

address_space::i_pages RW, CG, 8, 8, p W, (F) > key::description W, CS, 32, 8, p R, (Mk) H>

vm_area_struct::vm_file RW, CS, 160, 8, p RW, (Mv) >♠♥ key::perm W, CS, 112, 8, 3«25 R, (Mv) >

inode::i_uid W, CS, 4, 4, 0 W, (F) ♣♠ shmem_inode_info::i_mapping RW, CS, 168, 8, p R, (Mv) >

inode::i_mapping RW, CS, 4, 4, p RW, (F) ♣♠ 0 cred::cap_bset W, CS, 64, 8, 221 R, (Mv) ♦

inode::i_pipe RW, CS, 568, 8, p R, (M) ♣♠ 0 cred::euid W, CS, 20, 4, 0 X, (S) ♦

Table 1: Corruptions Found to Lead to Exploitable States. Prerequisites are of the form: <exploit capabilities, generic/special

slab cache,offset,size, value (kernel pointer or specific value)>. Post-conditions are of the form <observed capability, resource>.

Resources are: Files(F), Syscall (S) and Memories of Process(Mp), Kernel(Mk) and other Virtual(Mv). 0 indicates known

field. We evaluate the exploitability of the corruptions using real-world CVEs marked in the table as: CVE-2010-2959 (♣),

CVE-2014-3153 (♦), CVE-2016-0728 (H), CVE-2017-7184 (♥), CVE-2017-7308 (♠), CVE-2022-27666 (>).

Meanwhile, the detection step of SCAVY flagged 955 PoCs

for having a deviation that can lead to an exploitable state.

While our definition of exploitable state does not include

control flow hijacking and write-what-where (i.e., it is not a

superset of the prior work), the additional PoCs SCAVY found

may imply the effectiveness of SCAVY’s broader definition.

Among the 955 PoCs, many are corrupting the same field.

Therefore, we decided to prioritize our manual analysis of

the fields with the most positive detections and the ones we

found within our expertise to analyze. In Table 1, we show 20

fields that were manually verified to lead to privileged opera-

tions and the exploitable state that was detected based on our

definition in Section 2. The rest of the fields are presented in

Table 6 in the Appendix. It is worth noting that the corruptions

we report in this paper are a subset of PoCs we detected (in

total, we detect 68). In Appendix A.1, we present details of

the manual analysis we performed on the deviations detected

by SCAVY. In the second column of Table 1, we summarize

the capabilities required for the attacker to correctly corrupt

the field, such as requiring both read and write or just write

capability. For example, to exploit using key::description,

the attacker needs to have the capability to Write 8 bytes into

the key cache at offset 32 the object with the value 0. In the

third column, we summarize the post-conditions, essentially

escalated privileges, such as reading a pipe or writing a file.

For example, after corrupting key::description with a valid

kernel pointer, the attacker can read arbitrary kernel memory.

Evaluating with Real world Vulnerabilities. In the last col-

umn, we evaluate the reachability of SCAVY found memory

targets using real-world exploits. Specifically, we first obtain

exploits from KHeaps [51], as the authors provide vulnerable

kernel environment that can reproduce their exploits. For each

exploit, we first identify the part of the exploit that creates

(or sprays) the victim kernel structure. Then, we check the

exploit’s memory corruption capability with the SCAVY’s

memory target’s requirements. If the exploit has sufficient

capability, we massage the memory layout [50] for our victim

kernel structure (i.e., SCAVY’s memory target) to be within

the corruption range. Next, we replace the victim kernel struc-

ture creation (or spraying) code with SCAVY’s PoC’s code to

allocate SCAVY’s memory target. Finally, we trigger the vul-

nerability to corrupt SCAVY’s memory target with an arbitrary

value. After that, we replace the part accessing the corrupted

memory in the original exploit with SCAVY’s PoC’s privilege

escalation checking code, which invokes privilege-assessing

system calls that eventually access corrupted memory and

raise crashes if corrupted. If we get a crash with the corrupted

value in its panic dump, we mark column 4 of this field with

the respective CVE ID. We publish the modified exploits that

can corrupt SCAVY targets in our repository.

7.3.2 Evaluation of the Privilege Escalation Detector

Among the 955 detected behavior deviations, we find that

code coverage is the most common deviation. Other signif-

icant deviations include accessing random addresses (when

modifying data pointer fields) and privilege de-escalations

(when modifying non-pointer fields). Table 4 (in Appendix)

summarizes our results. We also analyze the common system

calls where the deviations occur. Table 5 (in Section A.3)

shows the top 10 system calls exhibit deviations, helping de-

tect reaching exploitable states. Among them, we observe the

seteuid system call that we additionally instrument, helping

16 cases out of 955 (1.5%). Others are mostly I/O related sys-

tem calls (e.g., pread64, ioctl, socketpair, and sendmsg).

7.3.3 Exploiting Real Vulnerabilities

We evaluate SCAVY found memory targets in terms of writing

exploits with real-world vulnerabilities to illustrate its real-

world impact and practicality. Our result is summarized in Ta-

ble 2. Note that the vulnerabilities are from different software

weaknesses, as denoted by the CWE (Common Weakness

Enumeration), showing that SCAVY’s memory targets do not

7152 33rd USENIX Security Symposium USENIX Association

CVE CWE Exploited Struct/Field

1 2017-7308 Type Conversion vm_area_struct::vm_file

2 2017-7184 Input Validation vm_area_struct::vm_file

3 2010-2959 Int Overflow kioctx::internal_pages

4 2016-0728 Use-After-Free key::description

5 2022-27666∗ OOB Write vm_area_struct::vm_file

6 2022-27666∗ OOB Write file::f_mapping

7 2009-3547 nullptr deref. pipe_inode_info::bufs

8 2014-3153 Input Validation cred::euid

9 2017-11176 Use-After-Free task_struct::cred

10 2004-1235 Race condition file_struct::fops

Table 2: Modified Real World Exploits (∗ indicates con-

structed fully functional exploit).

have specific requirements on the type of vulnerabilities.

We obtain the exploits from various sources. The first three

exploits (1∼3) are from the original KHeaps [51] paper. The

fourth exploit is borrowed from a public PoC7. Other exploits

are from publicly available PoCs [50, 69]. For all the exploits

except for the 2016-0728’s exploit, we follow the procedure

described in Section 7.3.1 to modify the exploits to corrupt

SCAVY memory targets. The exploit for 2016-0728 is shown

in Section 3.2. The exploits 5 and 6 are end-to-end exploits

using 2022-27666 with SCAVY found memory targets. The

entire exploits are presented in Section A.2. The exploits 7∼9,

we found that the original exploits corrupt kernel structures

that contains SCAVY’s memory targets (in Table 1), while

they target a different field to corrupt.

Note that we were unable to reproduce the 2004-1235 ex-

ploit as we could not reproduce the vulnerable environment

(e.g., the kernel and OS); however, based on the developer

email chain [70], we deduced that the exploit could control

the content of a vm_area_struct and it had the vm_file field

in the target kernel version (2.6), implying that the exploit

can corrupt a SCAVY memory target. We release the exploits

and vulnerable systems’ VMs on [20].

8 Discussion

SCAVY Facilitating Defenses. There exist defenses for kernel

data structure fields, such as XOR’ing their values, redzoning

the fields [71], and applying write-once memory [72], while

they cause significant overhead if applied to every kernel struc-

ture [6], Applying them only on SCAVY found memory targets

would result in lower overhead, making them deployable.

Limitations. There exist a few sources of false positive in

SCAVY’s analysis. First, since SCAVY considers any differ-

ences between the executions with and without memory cor-

ruption as a potential privilege escalation if a divergent is

caused by other reasons, such as a corrupted semaphore or

lock fields causing an execution to hang and timeout, it would

lead to a false positive. Second, if the device-specific point-

ers are corrupted, an execution may divert and be detected

7https://gist.github.com/PerceptionPointTeam/18b1e86d1c0f8531ff8f

by SCAVY without escalating privilege, meaning it is a false

positive case. For example, bio::bi_private is dedicated

to device-specific structs and is usually null. When releas-

ing, the kernel frees the pointer if it is not null, causing a

deviation in code coverage. While SCAVY detects it, as per

our definition, it does not lead to an exploitable state. Hence,

it is considered a false positive. However, it is still a valid

exploitation (while not a privilege escalation) as an attacker

can corrupt this field to get an arbitrary-free capability. The

refcount fields are also considered false positives as they do

not escalate privilege but they can lead to valid use-after-free

capabilities. Third, if it corrupts a file head, which maintains

the file’s current position for read and write, the file read

API will return a different file portion, leading to different

buffer contents. However, it does not escalate privilege. At

last, we rely on a differential analysis method to detect priv-

ilege changes, meaning that SCAVY can only detect when

system calls have visible changes from userland via the sys-

tem calls in Table 7. For example, corrupting addr_limit to

a larger value would not have immediately observable execu-

tion divergence, which will be missed by SCAVY.

Responsible Disclosure. We have responsibly informed and

shared all the findings and artifacts (e.g., exploits) with the

Linux maintainers and discussed its potential security conse-

quences. We have their approval to disclose.

Future Work. Our work focuses on the impact of single-

field corruption, while, in reality, an attacker may corrupt

multiple fields. Also, SCAVY relies on manual analysis of the

capabilities of prior exploits to provide a suitable target. We

leave automating such tasks as a future work.

9 Conclusions

We designed and implemented SCAVY, which efficiently

searches for memory targets that can lead to privilege escala-

tion in the Linux kernel. Our design includes a new definition

of the exploitable state for the Linux kernel in the context

of local unprivileged attacks and differential analysis-based

multi-execution reasoning to effectively detect potential privi-

lege escalation. SCAVY discovered 17 memory targets in 12

kernel structures that can lead the system into an exploitable

state when corrupted. We show the impact of SCAVY-found

memory targets by demonstrating real-world PoCs of 9 CVEs

corrupting the 17 memory targets.

Acknowledgments

We thank the anonymous referees for their constructive

feedback. The authors gratefully acknowledge the support

of DARPA (Young Faculty Award), NSF (2427783 and

2426653), and an Amazon Research Award. Any opinions,

findings, conclusions, or recommendations expressed in this

material are those of the authors and do not necessarily reflect

the views of the sponsors.

USENIX Association 33rd USENIX Security Symposium 7153

References

[1] D. Rosenberg. (2010) Interesting kernel exploit posted.

[Online]. Available: https://lwn.net/Articles/419141/

[2] M. Stone. (2020) Cve-2019-2215: Android

use-after-free in binder. [Online]. Avail-

able: https://googleprojectzero.blogspot.com/2019/11/

bad-binder-android-in-wild-exploit.html

[3] M. Brand. (2021) In-the-wild series: Android exploits.

[Online]. Available: https://googleprojectzero.blogspot.

com/2021/01/in-wild-series-android-exploits.html

[4] M. Rutland and C. Marinas. (2020) arm64: uaccess:

remove set_fs(). [Online]. Available: https://github.com/

torvalds/linux/commit/3d2403fd10a1db

[5] Z. Lin, Y. Wu, and X. Xing, “Dirtycred: Escalating priv-

ilege in linux kernel,” in Proceedings of the 2022 ACM

SIGSAC Conference on Computer and Communications

Security, 2022, pp. 1963–1976.

[6] T. Yamauchi, Y. Akao, R. Yoshitani, Y. Nakamura, and

M. Hashimoto, “Additional kernel observer: Privilege

escalation attack prevention mechanism focusing on

system call privilege changes,” Int. J. Inf. Secur., vol. 20,

no. 4, 2021.

[7] K. Cook. (2017, Nov) security things in linux v4.14.

[Online]. Available: https://outflux.net/blog/archives/

2017/11/14/security-things-in-linux-v4-14/

[8] T. Garnier. (2016, Apr) mm: Slab freelist randomization.

[Online]. Available: https://lwn.net/Articles/685047/

[9] J. Corbet. (2012, Sep) Supervisor mode access

prevention. [Online]. Available: https://lwn.net/Articles/

517475/

[10] X. Ge, N. Talele, M. Payer, and T. Jaeger, “Fine-grained

control-flow integrity for kernel software,” in 2016 IEEE

European Symposium on Security and Privacy (Eu-

roS&P). IEEE, 2016, pp. 179–194.

[11] K. Cook. (2017) Add slub free list pointer obfus-

cation. [Online]. Available: https://lists.openwall.net/

linux-kernel/2017/07/07/546

[12] R. GONG. (2023) Randomized slab caches for kmalloc.

[Online]. Available: https://lwn.net/Articles/938246/

[13] W. Chen, X. Zou, G. Li, and Z. Qian, “Koobe: Towards

facilitating exploit generation of kernel out-of-bounds

write vulnerabilities,” in USENIX Security, 2020, pp.

1093–1110.

[14] W. Wu, Y. Chen, J. Xu, X. Xing, X. Gong, and W. Zou,

“Fuze: Towards facilitating exploit generation for ker-

nel use-after-free vulnerabilities,” in USENIX Security,

2018, pp. 781–797.

[15] Z. Lin, Y. Chen, Y. Wu, D. Mu, C. Yu, X. Xing, and

K. Li, “Grebe: Unveiling exploitation potential for linux

kernel bugs,” in 2022 IEEE Symposium on Security and

Privacy (SP), 2022, pp. 2078–2095.

[16] (2023) Corjail: From null byte overflow to docker

escape exploiting poll_list objects in the linux kernel.

[Online]. Available: https://syst3mfailure.io/corjail/

[17] V. Nikolenko. (2023) Cve-2016-6187: Ex-

ploiting linux kernel heap off-by-one.

[Online]. Available: https://duasynt.com/blog/

cve-2016-6187-heap-off-by-one-exploit

[18] A. Nguyen. (2023) Cve-2021-22555: Turn-

ing \x00\x00 into 10000$. [Online]. Avail-

able: https://google.github.io/security-research/pocs/

linux/cve-2021-22555/writeup.html

[19] A. Konovalov. (2023) Cve-2017-1000112: Exploiting

an out-of-bounds bug in the linux kernel ufo

packets. [Online]. Available: https://xairy.io/articles/

cve-2017-1000112

[20] Scavy github repo. [Online]. Available: https://github.

com/BadDataLab/SCAVY

[21] “Microsoft resumes security updates with ’largest’

patch tuesday release,” Redmont Mag, 30 March

2017, https://redmondmag.com/articles/2017/03/14/

march-2017-security-updates.aspx.

[22] “Massive microsoft patch tuesday security up-

date for march,” Qualys, 30 March 2017, https:

//blog.qualys.com/laws-of-vulnerabilities/2017/03/14/

massive-security-update-from-microsoft-for-march.

[23] T. F. Dullien, “Weird machines, exploitability, and prov-

able unexploitability,” IEEE Transactions on Emerging

Topics in Computing, 2017.

[24] Linux. (2023) Android application sandbox. [Online].

Available: https://source.android.com/docs/security/

app-sandbox

[25] E. Avllazagaj, Z. Zhu, L. Bilge, D. Balzarotti, and

T. Dumitras, , “When malware changed its mind: An em-

pirical study of variable program behaviors in the real

world,” in USENIX Security, 2021.

[26] (2023) Apache web server. [Online]. Available:

https://httpd.apache.org/

7154 33rd USENIX Security Symposium USENIX Association

[27] mitre. (2023) Cwe-548: Exposure of information

through directory listing. [Online]. Available: https:

//cwe.mitre.org/data/definitions/548.html

[28] NVD. (2023) Cve-2022-27666 detail. [Online]. Avail-

able: https://nvd.nist.gov/vuln/detail/CVE-2022-27666

[29] C. Mulliner. (2023) Cve-2016-0728 vs android. [On-

line]. Available: http://www.mulliner.org/blog/blosxom.

cgi/security/CVE-2016-0728_vs_android.html

[30] M. Mimoso. (2023) Serious linux kernel vulnerability

patched. [Online]. Available: https://threatpost.com/

serious-linux-kernel-vulnerability-patched/115923/

[31] D. Vyukov. (2023) Syzkaller. [Online]. Available:

https://github.com/google/syzkaller

[32] K. Kim, D. R. Jeong, C. H. Kim, Y. Jang, I. Shin, and

B. Lee, “Hfl: Hybrid fuzzing on the linux kernel.” in

NDSS, 2020.

[33] D. Jones. (2023) Trinity: Linux system call fuzzer.

[Online]. Available: https://github.com/kernelslacker/

trinity

[34] H. Han and S. K. Cha, “Imf: Inferred model-based

fuzzer,” in Proceedings of the 2017 ACM SIGSAC CCS,

ser. CCS ’17. New York, NY, USA: Association for

Computing Machinery, 2017, p. 2345–2358.

[35] FSecureLABS. (2023) Kernelfuzzer: Cross platform

kernel fuzzer framework. [Online]. Available: https:

//github.com/FSecureLABS/KernelFuzzer

[36] B. Zhao, Z. Li, S. Qin, Z. Ma, M. Yuan, W. Zhu, Z. Tian,

and C. Zhang, “Statefuzz: System call-based state-aware

linux driver fuzzing,” in USENIX Security, 2022.

[37] (2023) The kernel address sanitizer (kasan). [On-

line]. Available: https://www.kernel.org/doc/html/latest/

dev-tools/kasan.html

[38] (2023) The kernel memory sanitizer (kmsan). [Online].

Available: https://docs.kernel.org/next/dev-tools/kmsan.

html

[39] (2023) Kernel thread sanitizer (ktsan). [Online]. Avail-

able: https://google.github.io/kernel-sanitizers/KTSAN.

html

[40] (2023) The kernel concurrency sanitizer (kcsan). [On-

line]. Available: https://docs.kernel.org/5.19/dev-tools/

kcsan.html

[41] Google. (2023) Linux kernel sanitizers. [Online].

Available: https://github.com/google/kernel-sanitizers

[42] R. Wang, K. Chen, C. Zhang, Z. Pan, Q. Li, S. Qin,

S. Xu, M. Zhang, and Y. Li, “Alphaexp: An expert sys-

tem for identifying security-sensitive kernel objects,” in

USENIX Security, Aug. 2023.

[43] Y. Chen and X. Xing, “Slake: Facilitating slab manipu-

lation for exploiting vulnerabilities in the linux kernel,”

in Proceedings of the 2019 ACM SIGSAC Conference

on Computer and Communications Security, 2019, pp.

1707–1722.

[44] C. Polop. (2023) Peass - privilege escalation awesome

scripts suite. [Online]. Available: https://github.com/

carlospolop/PEASS-ng

[45] X. Tan, Y. Zhang, X. Yang, K. Lu, and M. Yang, “De-

tecting kernel refcount bugs with two-dimensional con-

sistency checking,” in USENIX Security, Aug. 2021.

[46] J. Mao, Y. Chen, Q. Xiao, and Y. Shi, “Rid: Finding ref-

erence count bugs with inconsistent path pair checking,”

SIGPLAN Not., vol. 51, no. 4, p. 531–544, mar 2016.

[47] J. Liu, L. Yi, W. Chen, C. Song, Z. Qian, and Q. Yi,

“Linkrid: Vetting imbalance reference counting in linux

kernel with symbolic execution,” in USENIX Security,

Boston, MA, aug 2022.

[48] Y. Chen, Z. Lin, and X. Xing, “A systematic study of

elastic objects in kernel exploitation,” ser. CCS ’20.

New York, NY, USA: ACM, 2020.

[49] D. Liu, P. Wang, X. Zhou, W. Xie, G. Zhang, Z. Luo,

T. Yue, and B. Wang, “From release to rebirth: Exploit-

ing thanos objects in linux kernel,” IEEE Transactions

on Information Forensics and Security, vol. 18, pp. 533–

548, 2023.

[50] X. Zou and Z. Qian. (2022) Cve-2022-27666: Exploit

esp6 modules in linux kernel. [Online]. Available:

https://etenal.me/archives/1825

[51] K. Zeng, Y. Chen, H. Cho, X. Xing, A. Doupé, Y. Shoshi-

taishvili, and T. Bao, “Playing for k(h)eaps: Understand-

ing and improving linux kernel exploit reliability,” in

USENIX Security, 2022.

[52] V. Nikolenko. (2018) Linux kernel universal heap

spray. [Online]. Available: https://duasynt.com/blog/

linux-kernel-heap-spray

[53] J. Edge. (2013, Oct) Kernel address space layout

randomization. [Online]. Available: https://lwn.net/

Articles/569635/

[54] V. Nikolenko. (2023) Practical smep bypass techniques

on linux. [Online]. Available: http://bit.ly/3GVjvEn

USENIX Association 33rd USENIX Security Symposium 7155

[55] W. Wu, Y. Chen, X. Xing, and W. Zou, “Kepler: Facil-

itating control-flow hijacking primitive evaluation for

linux kernel vulnerabilities,” in USENIX Security 19,

2019.

[56] Y. Jang, S. Lee, and T. Kim, “Breaking kernel address

space layout randomization with intel tsx,” in Proceed-

ings of the 2016 ACM SIGSAC Conference on Computer

and Communications Security, 2016, pp. 380–392.

[57] B. F. S. GmbH. (2020, Jun) Meltdown

reloaded: Breaking windows kaslr by leak-

ing kva shadow mappings. [Online]. Avail-

able: https://labs.bluefrostsecurity.de/blog/2020/06/30/

meltdown-reloaded-breaking-windows-kaslr/

[58] V. P. Kemerlis, M. Polychronakis, and A. D. Keromytis,

“ret2dir: Rethinking kernel isolation,” in USENIX Secu-

rity, 2014.

[59] linxz. (2023) Supervisor mode execution prevention.

[Online]. Available: https://linxz.tech/post/architecture/

2021-10-19-smep/

[60] Linux. (2022) Linux kernel coding style. [On-

line]. Available: https://www.kernel.org/doc/html/v6.1/

process/coding-style.html#allocating-memory

[61] llvm. (2023) llvm::castinst class reference. [On-

line]. Available: https://llvm.org/doxygen/classllvm_1_

1CastInst.html

[62] J. Keniston, P. S. Panchamukhi, and M. Hiramatsu.

(2023) Kernel probes. [Online]. Available: https:

//www.kernel.org/doc/html/latest/trace/kprobes.html

[63] G. Rodrigues. (2009) Poke-a-hole and friends. [Online].

Available: https://lwn.net/Articles/335942/

[64] P. Krishnan, “Hardware breakpoint (or watchpoint) us-

age in linux kernel,” in Proceedings of the Linux Sympo-

sium. Citeseer, 2009, pp. 149–158.

[65] (2023) addr2line(1) — linux manual page.

[Online]. Available: https://www.man7.org/linux/

man-pages/man1/addr2line.1.html

[66] scikit learn. (2023) Jaccard similarity. [Online]. Avail-

able: https://scikit-learn.org/stable/modules/generated/

sklearn.metrics.jaccard_score.html

[67] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks,

“Evaluating fuzz testing,” ser. CCS, New York, NY, USA,

2018.

[68] H. B. Mann and D. R. Whitney, “On a test of whether

one of two random variables is stochastically larger than

the other,” The annals of mathematical statistics, pp.

50–60, 1947.

[69] SecWiki. (2023) linux-kernel-exploits. [Online]. Avail-

able: https://github.com/SecWiki/linux-kernel-exploits

[70] P. Starzetz. (2005) Linux kernel uselib() privi-

lege elevation. [Online]. Available: https://isec.pl/en/

vulnerabilities/isec-0021-uselib.txt

[71] L. H. (2009) Linux kernel heap tampering detection.

[Online]. Available: http://phrack.org/issues/66/15.html

[72] J. Corbet. (2018) The slab and protected-memory

allocators. [Online]. Available: https://lwn.net/Articles/

753154/

[73] R. Landley. (2007). [Online]. Available: https://www.

kernel.org/doc/html/latest/core-api/rbtree.html

[74] Will. (2021). [Online]. Available: https://www.willsroot.

io/2021/08/corctf-2021-fire-of-salvation-writeup.html

[75] E. Avllazagaj. (2023) Cve-2022-27666: My file your

memory. [Online]. Available: https://albocoder.github.

io/exploit/2023/03/13/KernelFileExploit.html

A Appendix

A.1 Analysis of Detected Exploitable States

We present our manual analysis for the proof-of-concept code

detected by SCAVY, focusing on exploring concrete privilege

escalation exploits from the detected exploitable states.

A.1.1 Case 1: file::f_mapping

The file::f_mapping memory target can be leveraged to

create exploits for two different scenarios.

Scenario 1: Attacking Inaccessible File. An exploit cre-

ates a root-owned process opening a privileged file, which

is completely inaccessible in an unprivileged process. For

example, it can spawn many ‘passwd’ processes, spraying

the slab memory with the ‘/etc/shadow’ file’s file ker-

nel structures. Then, the exploit also creates an unprivi-

leged file such as a temp file (e.g., /tmp/file). Next, the

exploit leverages a vulnerability with a read capability to read

the file::f_mapping of the ‘/etc/shadow,’ which will be

copied to the file::f_mapping of the temp file through a

vulnerability with a write capability. In other words, the val-

ues of file::f_mapping of /etc/shadow and the temp file

are swapped. After this, reading and writing the temp file is

accessing the /etc/shadow’s content.

Scenario 2: Attacking Unwritable (but readable) File. Sce-

nario 1 creates many root-owned processes (e.g., passwd pro-

cesses), which might raise suspicion. If one wants to write

an unwritable file (instead of read and write an inaccessible

file, as we see in scenario 1), one can achieve it more subtly.

Specifically, an exploit can open many ‘/etc/passwd’ files

7156 33rd USENIX Security Symposium USENIX Association

in read mode and a temp file in read/write mode. Swapping

the file::f_mapping of the ‘/etc/passwd’ and the temp file

allows the exploit to write the ‘/etc/passwd’, escalating the

privilege. With the privilege, it can create a root-level account

by editing the ‘/etc/passwd’ file.

A.1.2 Case 2: vm_area_struct::vm_file

This memory target can, in practice, be used to access privi-

leged files’ contents if they exist in shared memory-mapped

files (i.e., mapped with mmap() with the MAP_SHARED flag).

Specifically, an exploit first creates a shared memory of a

temp file with read and write permissions, which will create

a vm_area_struct::vm_file kernel structure. Then, it over-

writes the vm_area_struct::vm_file of the temp file with

the values of the vm_area_struct::vm_file of a root-owned

file, using vulnerabilities with read and write capabilities. Af-

ter the corruption, an exploit invokes msync to synchronize the

mapping with the corrupted new vm_area_struct::vm_file .

Note that, in Section 3.1, we show that one can modify our

exploit of CVE-2022-27666 to write into any of the dummy

file’s vm_area_struct so that it would access the content of

/etc/passwd.

1 #23:08:35 executing program 0 (corruption ‘%struct.
anon_vma_chain*+40 (8)‘ at call 4):

2 r0 = semget(0x3, 0x3, 0x481)
3 getgroups(0x2, &(0x7f0000000180)=[<r1=>0xee01,<r2=>0xee01])
4 ioctl$NS_GET_OWNER_UID(0xffffffffffffffff, 0xb704,&(0

x7f0000000200)=<r3=>0x0)
5 semctl$IPC_SET(r0, 0x0, 0x1, &(0x7f0000000240)={{0x2,0xee01,

r2, r3, 0xee01, 0xa0,
6 0x5f3}, 0xffffffff,0x0, 0x0, 0x0, 0x0, 0x0, 0x7})
7 r4 = semget(0x3, 0x4, 0x40)
8 semctl$GETVAL(r4, 0x2, 0xc, &(0x7f0000000000)=""/248)
9 semget(0x0, 0x2, 0x4)

10 getgroups(0x1, &(0x7f0000000100)=[<r5=>r1])
11 r6 = getegid()
12 getgroups(0x5, &(0x7f0000000140)=[r5, r2, r2, r6, r5])

Listing 3: Syzkaller representation of the PoC.

A.1.3 Case 3: anon_vma_chain::rb

SCAVY found this kernel data structure field as a potential

memory target. However, we did not include it as a memory

target as corrupting it does not escalate privilege.

SCAVY discovered this memory target by observing a

crash during the execution of semctl() after corrupting the

anon_vma_chain::rb field with a random value. Specifically,

it crashes at semctl$GETVAL shown in line 8 in Listing 3. We

further analyze the structure to understand the crash. In partic-

ular, the anon_vma_chain structure is used for anonymous vir-

tual memory, which is essentially shared memory not backed

by a file system. The rb field links the anon_vma_chain struc-

ture into a red-black tree [73] for search optimization. As a

result, corrupting it with a random value, which is not a valid

pointer, caused a memory dereference error. While we could

Figure 9: Visualizing Exploit of CVE-2022-27666.

not enhance the case to replace the rb’s value with another

valid rb’s value, replacing a valid value may impact the search

operations using the red-black tree.

A.2 Exploiting CVE-2022-27666

The exploit requires memory massaging of Linux page al-

locator. Hence, we borrow the same noise-mitigation and

massaging technique from an existing exploit [50]. The rest

of the exploit is summarized in six steps as follows:

1. Allocate user_key_payload next to the vul-

nerable structure. Then, overflow and corrupt

user_key_payload::datalen to obtain the read

out of the bounds (OOB) capability.

2. Open two files: one dummy file with read/write per-

missions and another root-owned unwritable file that

can only be opened read-only by non-root users (e.g.,

/etc/passwd).

3. Repeatedly call open()8 to assure the file::f_mapping
structures allocate next to user key payload. Leak the two

vm_area_struct::file pointers of the opened files.

4. Rearrange the memory to now put the msg_msg struc-

ture next to the vulnerable structure and overflow into it

such that the msg_msg::next points to the leaked file

structure. With the corruption, reading msg_msg leaks

the content of the file structure of the /etc/passwd.

5. Rearrange the kernel memory to use the msg_msg to

achieve arbitrary write capability [74], and use it to over-

write the file::f_mapping of the dummy file with the

leaked f_mapping value of the /etc/passwd.

6. Call write() with the dummy file’s descriptor to append

a new root-level account on /etc/passwd. As shown in

the blog post [75], the root privilege can be obtained by

simply running su with the appended account.

In Figure 9, we illustrate the memory layout for the steps

3 to 5. After step 5, as SCAVY detected, the /etc/passwd
becomes writable through the dummy file’s descriptor.

8There is a limit of 1,000 invocations of open(). However, most of the

allocations would fall in the memory holes created in step 1, without exhaust-

ing the limit. If necessary, one can use the following method to overcome

the 1,000 limit: open both files once and mmap the opened files until the

vm_area_struct are allocated next to the corrupted user_key_payload .

USENIX Association 33rd USENIX Security Symposium 7157

0 1 2 3 4 5 6 7 8 9
Running time (hours)

0

5000

10000

15000

20000

25000

30000

35000

40000

To
ta

l c
ov

er
ag

e

Code coverage over 24 hours

SCAVY
Base Syzkaller

10 11 12 13 14 15 16 17 18 19 20 21 22 23

Figure 10: Code coverage of SCAVY VS

the unmodified fuzzer.

Running time (hours)

0

2000

4000

6000

8000

10000

12000

To
ta

l c
ov

er
ag

e

Code coverage over 24 hours
SCAVY
Syzkaller

20 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Figure 11: Code Coverage Over Time

Running time (hours)

0

50

100

150

200

250

300

350

400

Nu
m

be
r o

f c
ra

sh
es

Number of crashes over 24 hours
SCAVY
Syzkaller

20 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Figure 12: # of Crashes Observed

Structure Field # PoCs

proc_inode pid 52

anon_vma root 36

anon_vma parent 41

socket_alloc vfs_inode.i_flags 2

socket_alloc vfs_inode.xa_head 6

pde_opener c 20

io_uring_probe ops 6

file f_ra 5

io_wq worker_done.pprev 1

sk_security_struct peer_sid 7

others - 178

Table 3: Memory Targets Found by FUZE’s Symbolic Ex-

ecution. Multiple PoCs for each memory target are detected.

A.3 Evaluation of SCAVY’s Detector Step

Deviation Count

Coverage 658

Corruption hits 452

Return values 200

Buffers 176

Table 4: Count of deviation conditions.

Deviating Syscall Count

pread64 283

io_submit 35

ioctl$sock_SIOCGIFINDEX_802154 27

ioctl$ifreq_SIOCGIFINDEX_team 26

ioctl$sock_SIOCGIFINDEX_80211 23

seteuid 16

ioctl$BTRFS_IOC_GET_SUBVOL_ROOTREF 12

ioctl$BTRFS_IOC_INO_LOOKUP_USER 11

socketpair$nbd 10

sendmsg$ETHTOOL_MSG_LINKINFO_GET 9

Table 5: Count of syscalls demonstrating deviation

A.4 Comparing with the unmodified Syzkaller

We compare SCAVY’s fuzzer against an unmodified Syzkaller

baseline using the same methodology described in Section 7.2.

We disabled the reproducer and ran it on 1 VM with the debug

flag. Figure 10 shows that SCAVY’s fuzzer achieved a lower

code coverage than the original Syzkaller. This does not mean

Structure::Field (offset) Structure::Field (offset)

anon_vma::parent::rb_root (+0) mount::mnt_mounts::prev (+0)

anon_vma::refcount (+0) pde_opener::file (+0)

anon_vma::root::count (+0) pid_namespace::ucounts (+0)

anon_vma::rwsem (+0) pipe_buffer::ops (+0)

anon_vma::rwsem (+24) proc_inode::pid (+0)

avc_node::ae::pprev (+16) proc_inode::pid (+4)

bio::bi_private (+0) proc_inode::sibling_inodes (+8)

ctl_table_header::(anon) (+16) proc_inode::sysctl (+0)

dentry::d_lockref (+0) proc_inode::vfs_inode::i_acl (+0)

dentry::d_op (+0) proc_inode::vfs_inode::i_data (+0)

dnotify_mark::fsn_mark (+56) proc_inode::vfs_inode::i_data (+8)

ext4_inode_info::vfs_inode (+280) proc_maps_private::mm (+0)

file_lock::fl_link::prev (+0) shmem_inode_info::swaplist (+0)

file_lock::fl_list::pprev (+0) vfs_inode::i_data (+0)

file_lock::fl_wait (+8) vfs_inode::i_lock (+0)

files_struct::fdtab (+64) vfs_inode::i_mapping (+0)

fs_struct::pwd::dentry (+0) sock::sk_callback_lock (+0)

fs_struct::seq (+0) sock::sk_peer_cred (+0)

fs_struct::users (+0) socket::i_acl (+0)

hugetlbfs_inode_info::vfs_inode (+272) socket::i_default_acl (+0)

hugetlbfs_inode_info::vfs_inode (+60) socket::i_op (+0)

inode::i_data::prev (+0) vfs_inode::i_data::prev (+0)

inode::i_lock (+0) vfs_inode::i_lru::next (+0)

journal_head::b_triggers (+0) vfs_inode::i_sb_list::next (+0)

kioctx::users (+0) user_struct::epoll_watches (+32)

Table 6: Potential Privilege Escalations Detected by SCAVY

but Unverified.

our fuzzer is ineffective, but highlights that SCAVY’s fuzzer

is more focused on the memory target accessing code rather

than exploring irrelevant kernel code.

open("/etc/passwd",O_APPEND)
open("/etc/shadow",O_APPEND)
open("/etc/shadow",O_RDONLY)
setuid(0)
setgid(0)
open("/proc/self/mem",O_RDONLY)
open("/proc/1/mem",O_RDONLY)
opendir("/root")
socket(AF_INET, SOCK_RAW, IPPROTO_RAW)
mount("dev/sda1", "/mnt", "ext4", MS_RDONLY, NULL);
chmod("/etc/shadow", S_IRUSR | S_IWUSR)
kill(1, SIGKILL)
mknod("/dev/mydevice", S_IFCHR | 0600, makedev(10, 100)
unlink("/etc/shadow")
symlink("/etc/passwd", "/tmp/passwd")

Table 7: List of system calls that conduct operations depen-

dent on privilege.

7158 33rd USENIX Security Symposium USENIX Association

	Introduction
	Problem Statement
	Problem Definition
	Unexploited, Exploitable, and Exploited States

	Goal and non-goals

	Motivating Examples
	Corrupting push0 g 0 Gpop0*ADJBOXdotteddddottedoodottedttdottedttdottedeedotteddddotteddddottedoodottedttdottedttdottedeedottedddpush0 g 0 Gpopadjbox,Gin,adjcalcgray!15vm_area_struct::vm_file
	Corrupting gray!15key::description

	Scavy in the Kernel Exploitation Development Pipeline
	Design
	Instrumentation and Analysis
	Discovery of Potential Memory Targets
	Allocator Discovery
	Memory Target (Structure Field) Discovery
	Memory Target Discovery

	Detection of Privilege Escalation
	Inserting Privilege Dependent Operations
	Detecting Exploitable States

	Implementation
	Evaluation
	Typecast Coverage
	Fuzzer Effectiveness
	Exploitable State Detection
	Evaluation of the Exploitable State Definition
	Evaluation of the Privilege Escalation Detector
	Exploiting Real Vulnerabilities

	Discussion
	Conclusions
	Appendix
	Analysis of Detected Exploitable States
	Case 1: push0 g 0 Gpop0*ADJBOXdotteddddottedoodottedttdottedttdottedeedotteddddotteddddottedoodottedttdottedttdottedeedottedddpush0 g 0 Gpopadjbox,Gin,adjcalcgray!15file::f_mapping
	Case 2: push0 g 0 Gpop0*ADJBOXdotteddddottedoodottedttdottedttdottedeedotteddddotteddddottedoodottedttdottedttdottedeedottedddpush0 g 0 Gpopadjbox,Gin,adjcalcgray!15vm_area_struct::vm_file
	Case 3: push0 g 0 Gpop0*ADJBOXdotteddddottedoodottedttdottedttdottedeedotteddddotteddddottedoodottedttdottedttdottedeedottedddpush0 g 0 Gpopadjbox,Gin,adjcalcgray!15anon_vma_chain::rb

	Exploiting CVE-2022-27666
	Evaluation of Scavy's Detector Step
	Comparing with the unmodified Syzkaller

