Infusing Computational Thinking into a
Computer Science Gateway Course®

Younes Benkarroum, Mohammad . Azhar
Computer Information Systems
Borough of Manhattan Community College
New York, NY 10007

{ybenkarroum,mazhar}@bmcc. cuny.edu

Abstract

Computational thinking (CT) stands as a universal problem-solving
approach applicable across diverse disciplines, transcending the domain
of computer science. It embodies the mental process of structuring a
problem to enable a computational solution feasible for both humans and
machines. This methodology involves dissecting problems into smaller
parts that are easier to understand and solve. This study delineates
a meticulously designed series of CT activities within an introductory
computer science course and explores their profound impact on student
engagement and problem-solving proficiency. Our findings underscore
the pivotal role of hands-on CT practice in augmenting students’ ability
to decompose problems, recognize patterns, and abstract complexities,
and employ algorithms effectively. Notably, this infusion of CT not only
cultivates theoretical understanding but also bridges the gap between
conceptual knowledge and real-world application through the use of com-
putational tools like Python programming. As CT continues to emerge as
a cornerstone skill in diverse domains, this research presents compelling
evidence advocating for its integration into introductory courses, laying
a robust foundation for students to navigate the evolving technological
landscape with enhanced problem-solving capabilities.

*Copyright (©)2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1 Introduction

Promoting computational thinking (CT) has emerged as a pivotal educational
objective spanning both STEM and non-STEM domains. CT stands as an
inclusive problem-solving approach, extending beyond computer science to be-
come as fundamental as core competencies like literacy and numeracy, as artic-
ulated by Professor Wing [10]. Understanding the scope and constraints of CT,
as underscored by Lu and Fletcher [4], holds significant relevance, even for in-
dividuals outside the STEM sphere, contributing substantially to professional
and everyday contexts.

Computational thinking encapsulates the cognitive process of framing prob-
lems to accommodate solutions executable by humans, machines, or their amal-
gamation [11]. This methodology involves breaking problems down into sepa-
rate parts (decomposition), looking for similarities or common differences (pat-
tern recognition), filtering out information that is not necessary to solve the
problems (abstraction), and developing step-by-step instructions for solving
problems (algorithms) [9].

Between Fall 2021 and Fall 2023, as part of our NSF-funded project “Bridg-
ing the Gap: Designing a Technology Learning Community Integrating Com-
putational Thinking to Improve STEM Engagement across Disciplines”, we cu-
rated a series of five computational activities aimed at honing students’ skills in
practicing and perfecting their computational thinking abilities. The students
who participated in the activities were from the introductory course CSC 101
- Principles in Information Technology. This article details the approach and
outcomes observed among a total of 142 CSC 101 students in addressing these
computational thinking activities.

2 Related Work

Previous studies have underscored the synergy between creative thinking and
computational thinking (CT), advocating for their combined integration into
educational frameworks. Miller et al. [5] demonstrated the efficacy of introduc-
ing creative thinking exercises within introductory computer science courses, a
concept echoed in our approach. The introduction of our CT activities not only
mirrors this integration but also provides a practical platform where students
engage in creative problem-solving scenarios that revolve around computational
challenges.

Moreover, the study by the same research team [7]| that introduced Com-
putational Creativity Exercises (CCE) into an introductory computer science
course tailored for engineering students aligns closely with our methodologies.
Just as their outcomes highlighted an enhanced grasp of fundamental C'T prin-

ciples, our meticulously designed CT exercises aimed to not only introduce
core CT concepts but also engage students in practical problem-solving tasks,
observing similar positive impacts on students’ understanding and application
of CT methodologies.

Furthermore, the work by Shell et al. [6], emphasizing the correlation be-
tween self-regulation, creative competence, and CT skills, aligns with our ap-
proach of providing a scaffolded learning environment. Our activities aimed to
scaffold the development of CT skills by progressively guiding students through
the elements of decomposition, pattern recognition, abstraction, and algorithm
design, promoting a structured approach to problem-solving similar to that ad-
vocated by prior research.

Lu and Fletcher [4] proposed that the mental models and patterns fostered
by computational thinking create an environment conducive to teaching higher-
level computational processes and abstraction. Csizmadia et al. [3] presented
a guide for integrating computational thinking into curricula, emphasizing its
fundamental role in education. Swaid [8] promoted the universal relevance
of computational thinking as an underlying mindset in STEM projects and
education discussions. Castro et al. [2] analyzed the impact of a first-year
engineering course on the acquisition of computational thinking across various
student profiles.

In essence, these studies collectively underscore the significance of merging
creative thinking with CT, scaffolding learning experiences, and reinforcing
theoretical concepts through practical engagement — principles that resonate
strongly with the integrative C'T activities outlined in this study.

3 CT Exercise Design

Our activities introduced students to the problem of finding the shortest path
between multiple cities on a road map. The activities we designed aim to
cultivate computational thinking, which is foundational for problem-solving in
computer science. By breaking down complex problems into manageable parts
and devising algorithms, students develop crucial problem-solving strategies
applicable across various domains within computer science.

When traveling from one place to another, there are several factors to con-
sider; unless the intent is to visit some points and landmarks in a specific order,
people are often interested in the most efficient way to get somewhere. In our
activities, students used CT to experiment with different ways of creating paths
between multiple points to effectively travel through cities in a region. This
problem is also known as the Traveling Salesman Problem (TSP) [1] where the
salesman must take the shortest path that passes through each city exactly
once and returns back to the start. Thus, the problem statement of our exer-

cise is: Given a list of cities in South Africa, the goal is to reduce the cost for a
vendor whose duty is to distribute the COVID-19 vaccines in those cities. The
problem is therefore to find the shortest possible route that starts from Cape
Town and visits each city exactly once.

As stated earlier in the introduction, CT is a problem-solving process that
includes four elements: decomposition, pattern recognition, abstraction, and
algorithms. In the following, we focus on one CT element at a time.

Decomposition Pattern Recognition Abstraction Algorithm
—
v— a._ﬁ
= o[0) NS =

Figure 1: Elements of Computational Thinking Process

3.1 Decomposition

Breaking problems down into smaller parts can make complex challenges more
manageable. This allows other elements of CT to be applied more effectively
to complex challenges. Applying the decomposition element to our problem
leads to the following sub-tasks:

1. Given the list of cities, determine their geographic coordinates (i.e., lati-
tude and longitude) to find their exact positions on the map.

2. Find the distances between each pair of cities in the list.

3. Find the shortest path that passes through each city exactly once.

The first two sub-tasks are quite straightforward and easy to accomplish
using the available online maps and their geographic tools; but the last sub-
task is the main section of our activity. In the following, we will only describe
how the remaining CT elements can be applied to this section.

3.2 Pattern Recognition

Recognizing if a pattern exists and determining its sequence can simplify the
solution. For the task at hand, we noticed that the problem can be solved
recursively as follows.

Let the letter O (Origin) be the label of the departure city (Cape Town).
If we only need to visit two cities (A and B), then the strategy we use to

determine the shortest path will choose either the path O-A-B or the path
O-B-A. Thus, the number of possible paths to choose from is 2.

If the number of cities to visit is three (A, B, and C), then the first city
to be visited can be either O-A, O-B or O-C, then the remaining two cities
must be visited. Note that from the previous case, the strategy knows how to
determine the shortest path when visiting two cities, so the number of possible
paths in this case is & x 2 = 6.

In general, if the number of cities to visit is n, then the number of possible
paths to choose from is n x P(n-1), where P(n-1) is the number of possible
paths when visiting n-1 cities.

3.3 Abstraction

Stepping back from the specific details of a given problem and focusing on the
big picture allows us to create a more generic solution. Applying this CT ele-
ment in our case requires us to analyze the problem to leave out unnecessary
information such as the mode of transportation chosen, the purpose of the trip,
the time needed to visit all cities, whether the vendor is traveling with cowork-
ers, etc. Once done, we can start brainstorming a solution to the problem. The
important details to focus on are the list of cities, their exact locations, and
the distances between them.

3.4 Algorithms

An algorithm is a step-by-step strategy for solving a problem. It can be writ-
ten in plain language, with flowcharts, or pseudocode. In our activity, students
from CSC 101 and BUS 104 tried four different algorithms and compared their
outputs. All algorithms have been applied to the list of the given cities from
South Africa; the starting point was always Cape Town, and then the algo-
rithms produced routes that visit all other cities. The algorithms we considered
in this activity are listed below.

1. Longitude sorting: The task is to sort the cities by their longitudes,
then to visit them all in ascending order of this geographic coordinate.
By doing so, the path traveled will visit all cities from left to right (from
the farthest city in the west to the farthest city in the east). The total
route distance is the sum of the distances between each pair of cities on
the route.

2. Latitude sorting: The task now is to sort the cities by their latitudes,
and then visit them all in ascending order of that coordinate. In doing
so, the path traveled will visit all cities from the farthest city in the south
to the farthest city in the north.

3. Nearest neighbor: The nearest neighbor algorithm starts at Cape
Town and connects to the nearest unvisited city. It repeats until every
city has been visited.

4. Greedy algorithm: The greedy algorithm is an iterative algorithm that
builds a solution piece by piece, always choosing the next piece that offers
the most obvious and immediate benefit. In our activity, the edges are
the roads between the pairs of cities. All possible edges are sorted by
distance in ascending order; then at each iteration, we add the shortest
edge which will not make a city with more than 2 edges, nor create a
cycle.

4 Results and Discussion

It’s important to highlight that due to the staggered offering of activities across
various semesters and days, not all students engaged in every activity. While
some students participated in all activities, others took part in only specific
ones. Overall, among the various activities offered, a total of 142 unique stu-
dents participated in at least one. Figure 2 illustrates the distribution per
semester of the students who participated in the CT activities, while Table 1
and Figure 3 display the counts and rates of students who successfully com-
pleted each of the four algorithms.

N Fall 2021
m Winter 2022
m Spring 2022
W Fall 2022
W Fall 2023

Figure 2: Distribution per Semester of the Participants

From the description of each of the algorithms above, we can observe that
the initial two activities present relatively straightforward tasks. The initial
low success rate for the Longitude Sorting (75.3%) might indicate a lack of
clarity in instructions or unfamiliarity with the activity format. This could be
attributed to it being the first task. The lesson plan regarding the Longitude
Sorting activity is appended at the end of this article. The high success rate for

Table 1: Number of Participants and Success Rate by Activity

Algorithm Participants Successful Completion Success Rate
Longitude sorting 7 58 75.3%
Latitude sorting 69 61 88.4%
Nearest neighbor 85 66 77.6%
Greedy algorithm 41 23 56.1%

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0,

0%
Longitude sorting Latitude sorting Nearest neighbor Greedy algorithm

W Success M Failure

Figure 3: Success Rate by Activity

the Latitude Sorting (88.4%) indicates that once students understood the for-
mat and requirements (thanks to the prior task), they performed significantly
better. Familiarity likely contributed to this high success rate. The Nearest
Neighbor task had a relatively moderate success rate (77.6%) which seems rea-
sonable considering the complexity of the algorithm. The Greedy Algorithm
task had the lowest success rate (56.1%) as anticipated due to its difficulty. Be-
ing a challenging algorithm, it’s expected that a smaller percentage of students
would successfully complete this task, especially in an introductory course.

The varying success rates signify the students’ level of engagement and
understanding of CT concepts. Higher success rates, such as those observed
in tasks following simpler algorithms after initial exposure, indicate a growing
familiarity and grasp of CT principles. These observed rates offer pedagogical
insights, guiding educators in designing future CT activities. Understanding
which CT elements pose challenges or foster better comprehension can aid
in refining teaching methodologies and curriculum design to optimize student
learning experiences.

It’s worth noting that the participating students did not utilize program-
ming skills to determine the shortest routes for the four explored algorithms.
Instead, they manually executed each algorithm’s steps and solely employed the
Google Sheet SUM function to compute the total distance for each path. As

depicted in Table 2, there has been a progressive enhancement in the distance
of the shortest path generated by these algorithms.

Table 2: Distance of Shortest Path by Algorithm

Algorithm Distance
Longitude sorting 4,941 km
Latitude sorting 4,004 km
Nearest neighbor 3,846 km
Greedy algorithm 3,586 km

Before engaging in the computational thinking activity, students were prompted
with questions such as, 'Imagine planning a road trip with multiple stops; how
would you determine the route?’ Interestingly, some students independently
devised steps similar to those employed in the nearest neighbor algorithm, un-
aware of its formal designation. Notably, many perceived this approach as
highly efficient for solving the traveling salesman problem. Subsequently, upon
exposure to the greedy algorithm, students exhibited fascination, particularly
upon realizing the considerable distance saved by this algorithm. Their re-
action reflected an enthusiastic appreciation for the algorithm’s optimization
capabilities.

5 Brute Force Algorithm

To evaluate whether the CT activity generated the optimal route, students
were tasked with employing the brute force method. This algorithm represents
the initial and most straightforward strategy when confronted with a problem.
In technical terms, it involves exhaustively considering all available possibilities
to resolve a problem. In our case, the brute force algorithm would generate
every conceivable path among the cities, subsequently computing the distance
for each path and selecting the shortest one. This approach seems to be sim-
ple and achievable. But practically this is not the case unless you get help
from a computing device. The number of all possible paths in our situation is
exceedingly large; we have already demonstrated that the number of possible
paths to choose from is P(n) = n x P(n-1). This sequence can be simplified
as follows:
Pn)=n(n—-1)(n—2)...1=n!

With eight cities to visit in our activity, the total count of potential paths
amounts to 8/ (i.e., 40,320). Manually calculating all these paths is impractical
for students. Hence, they employed a computer program to generate and eval-
uate all paths, subsequently selecting the one with the shortest distance. To

address this challenge, students were provided with a concise Python program
utilizing a for-loop to systematically generate and display the various paths
for visiting three cities (labeled as B, C, and D) from the initial city A and
computing their respective distances. The Python program listing is provided
below, and Figure 5 showcases the program’s output.

import itertools
Cities = "ABCD"

Distances = [[0, 40, 20, 90],
[40, O, 30, 70],
[20, 30, O, 55],
[90, 70, 55, 011

AllPaths = list(itertools.permutations(sorted(Cities[1:])))

for p in AllPaths:
path = list(p)
path.insert (0,"A")
path = tuple (path)
print (path, end = ' ')

sum = 0
for x in range(len(path) - 1):
sum += Distances[Cities.find(path[x])][Cities.find(path[x + 1])]

print("distance =", sum)

print ("\nNumber of paths =", len(AllPaths))

Figure 4: Brute Force Python Program

'C', '"D') distance

, 'B', 'D*, distance
'C', 'B', distance
‘c', 'D', distance
‘D', 'B', 'C') distance

, 'D', 'C", distance

Number of paths = 6

Figure 5: Brute Force Python Program

Building upon the above Python program, the students’ initial task involved
modifying the code to accommodate the traversal of eight cities in South Africa,
considering the actual distances between each pair of cities.

Due to the large number of paths presented on the program’s output (40,320),
students encountered difficulty identifying the path with the shortest distance.
To overcome this challenge, students were instructed to enhance the Python
program by integrating a decision-making statement (if-statement) and the nec-
essary variables to capture the smallest distance and its corresponding path,
and subsequently displaying this information on the screen. Among the 91 par-
ticipating students, 76 successfully completed this task, resulting in a 83.5%
success rate. Remarkably, the shortest path distance recorded aligned precisely
with the distance computed using the greedy algorithm. This alignment inten-
sified the students’ fascination with the efficiency and accuracy of the greedy
algorithm, solidifying their appreciation for its problem-solving prowess.

It’s important to note that while the optimal shortest path distance aligned
with the output of the greedy algorithm in this specific instance, this outcome
may not necessarily hold true for all scenarios. The apparent optimality ob-
served could be coincidental, and further investigation is warranted to deter-
mine the general applicability of the greedy algorithm across various problem
instances.

6 Conclusion

In summary, the infusion of computational thinking (CT) into the Computer
Science Gateway Course was instrumental in enhancing problem-solving skills
among students. Through a series of meticulously designed activities, partici-
pants were not only introduced to the core principles of CT but also engaged
in practical problem-solving scenarios. The findings from this study highlight
the progressive enhancement in students’ comprehension and application of CT
methodologies across diverse algorithms, with varying complexities.

The analysis of students’ performance revealed insightful patterns, showcas-
ing the impact of familiarity and task complexity on success rates. Notably, the
success rates varied across algorithms, shedding light on the challenges students
encountered and conquered. Despite the complexities, students demonstrated
a commendable grasp of CT elements, showcasing their ability to decompose
problems, recognize patterns, abstract details, and employ algorithms effec-
tively.

Moreover, the integration of CT wasn’t solely confined to theoretical un-
derstanding; rather, it required practical implementation, necessitating creativ-
ity and critical thinking. The utilization of computational tools like Python
programming served as a bridge between theoretical concepts and real-world
problem-solving, enhancing students’ ability to navigate complex scenarios.

In conclusion, this study has significant implications for educational strate-
gies, emphasizing the importance of hands-on engagement and practical ap-

10

plications in computational thinking education. As CT continues to emerge
as a foundational skill in various domains, its integration into introductory
courses lays a robust foundation for students, equipping them with essential
problem-solving abilities crucial in today’s evolving technological landscape.
As a part of future work, the authors aim to conduct a comparative study
between students enrolled in CS introductory courses where computational
thinking (CT) was infused and those where it was not. This comparative
analysis will focus on evaluating the performance of students when confronted
with novel problems demanding solution methodologies. It is hypothesized
that students exposed to CT methodologies will showcase enhanced problem-
solving capabilities in tackling new challenges. This comparative analysis holds
the potential to offer valuable insights into the tangible impact of integrating
CT into introductory CS courses. The aim is to discern the influence of CT
infusion on students’ adaptability and efficacy in addressing novel problems,
ultimately gauging the efficacy of CT as a foundational educational approach.

Acknowledgements

This work was supported by the U.S. National Science Foundation under Award
#2122690. The content is solely the responsibility of the authors and does not
necessarily represent the official views of the National Science Foundation.

References

[1] David L. Applegate et al. The Traveling Salesman Problem: A Compu-
tational Study. Princeton, New Jersey: Princeton University Press, 2006.

[2] Laura Melissa Cruz Castro et al. “Analyzing Students’ Computational
Thinking Practices in a First-Year Engineering Course”. In: IEEE Access
9 (2021), pp. 33041-33050.

[3] Andrew Csizmadia et al. “Computational Thinking - a Guide for Teach-
ers”. In: Computing at School (2015), p. 18.

[4] James J. Lu and George H.L. Fletcher. “Thinking About Computational
Thinking”. In: Proceedings of the 40th ACM technical symposium on
Computer science education (2009), pp. 260—264.

[5] L. Dee Miller et al. “Improving Learning of Computational Thinking Us-
ing Creative Thinking Exercises in CS-1 Computer Science Courses”. In:
43rd ASEE/IEEE Frontiers in Education Conference Proceeding (2013),
pp. 1426-1432.

11

[6] Duane F. Shell et al. “Associations of Students’ Creativity, Motivation,
and Self-Regulation with Learning and Achievement in College Computer
Science Courses”. In: IEEE Frontiers in Education Conference (2013).

[7] Duane F. Shell et al. “Improving Learning of Computational Thinking
Using Computational Creativity Exercises in a College CS1 Computer
Science Course for Engineers”. In: IEEE Frontiers in Education Confer-
ence (2014).

[8] Samar I. Swaid. “Bringing Computational Thinking to STEM Educa-
tion”. In: Procedia Manufacturing 3 (2015), pp. 3657-3662.

[9] Kristen Thorson. “Early Learning Strategies for Developing Computa-
tional Thinking Skills”. In: Getting Smart (2018).

[10] Jeannette M. Wing. “Computational Thinking”. In: Communications of
the ACM 49 (2006), pp. 33-35.

[11] Jeannette M. Wing. “Computational Thinking: What and Why?” In: The
Link Magazine (2010), pp. 20-23.

Appendix — Longitude Sorting Lesson Plan

Finding the Shortest Path Challenge — Activity 1
There are several factors to consider when traveling from one place to another.
Unless the intent is to visit some points and landmarks in a specific order,
people are often interested in the most efficient way to get somewhere. In this
activity, students will use computational thinking to experiment with different
ways of creating paths between multiple points to effectively travel through
cities in a region.

Factors involved when choosing a route:

Question: If you are traveling from one place to another, how do you
decide what route to take? What are the factors that influence your decision?

Question: Imagine you were asked to create a road trip with multiple
stops, how would you decide what route to take?

Traveling Salesman Challenge:

Given a list of cities, their geographic coordinates, and the distances be-
tween each pair of them, the goal is to reduce the cost for a salesperson whose
duty is to distribute COVID-19 vaccines in those cities. The task is therefore
to find the shortest possible route that visits each city exactly once. The list
we consider in this activity includes the following cities in South Africa:

e A - Cape Town

12

B - Bhisho

D - Bloemfontein
E - Kimberley

F - Johannesburg
G - Mahikeng

H - Nelspruit

I - Polokwane

The list of cities above along with their geographic coordinates are also
included in the Shortest Path Challenge workbook that you will use in this
computational thinking activity. The exact locations of the cities are shown

on the map below.

The distances in kilometers (km) between each pair of cities are shown in

the following matrix:

C - Pietermaritzburg

[}
—IG)""HUH@PE

0 991 | 1,558 | 1,004 | 941 | 1,398 | 1,318 | 1,743 | 1,719
991 o 590 557 659 890 966 | 1,198 | 1,241
1,558 | 590 0 556 714 490 746 616 796
1,004 | 557 556 0 165 397 445 743 718
941 659 714 165 0 478 365 814 789
1,398 | 830 430 397 478 0 291 327 331
1,318 | 966 746 445 365 291 0 632 545
1,743 | 1,198 | 616 743 814 327 632 0 301
1,719 | 1,241 | 796 718 789 331 545 301 0

Note: The above matrix is symmetric since the distance to travel from X

to Y is the same as the distance to travel from Y to X.

Developing a strategy for traversing all points: In this activity, you will
compare four different algorithms and choose the best one. Algorithms will be
applied to all the above cities (from South Africa); the starting point is always
city A, then the algorithms will produce routes that visit all the other cities.
The algorithms we are considering are:

13

Longitude sorting
Latitude sorting

Nearest neighbor
Greedy algorithm

Longitude sorting algorithm:

The task is to sort the cities by their longitudes, and then to visit them
all in ascending order of this geographic coordinate. By doing so, the path
traveled will visit all cities from left to right (from the farthest city in the west
to the farthest city in the east).

Create your local copy of the Shortest Path Challenge workbook. To do
this, click on the File tab and then select "Make a copy" from the drop-down
menu.

Give your local copy a name, then click OK.
The workbook has five worksheets.

+ = Cities ~ Longitudes ~ Latitudes ~ Nearest ¥ Greedy ~

The first worksheet (Cities) includes the list of cities along with their ge-
ographic coordinates and the distance matrix.

Click on the second worksheet (Longitudes) that we will be using in this
task. This page has the list of cities and their longitudes. Use the sort function
to sort cities by longitude in ascending order. To do this, click on the arrow in
column C, then select "Sort sheet A —> Z".

e~ o P 100% « %
HS -

Cape Town 18.4241
Bhisho 27.4411
Pietermaritzburg | 30.3794
Bloemfontein 26.1596
Kimberley 24,7499

ol on 4 W~ -

Once sorted, fill in the second column (City) of the Order table in the same
worksheet using the resulting order.

Use the distance matrix to fill in the third column (Distance from Pre-
vious City) of the Order table.

14

Once all the distances are entered, the spreadsheet will automatically cal-
culate and display the total distance at the bottom of the Order table. The
total distance is the sum of the distances between each pair of cities on the
route.

Answer the following questions using this form.

Question 1: What is the order of each city in the route produced by the
longitude sorting algorithm?

Question 2: What is the total distance of the route?

Question 3: Does it look like an efficient route?

Question 4: What is the difficulty of applying this algorithm? Use 1 for
the easiest and 5 for the most difficult.

Traveling salesperson simulator:
Now you can use an online mapping tool to check the results of the longitude
sorting algorithm. The steps are listed below.

1. Open the Traveling salesperson simulation. Click OK in the message
window that appears.

2. Use the drop-down menu in the upper-right to set the region to South
Africa. Click OK again.

3. Use the "Sort by" drop-down menu in the upper-left to select to sort
the cities by Longitude.

4. Press the green "Start road trip" button to begin the trip.

< & () https://idiste.org/files/ect-traveling-salesperson.htm| 1

Sortby: Longitude 3~ Route Distance: 0 meters Region: SouthAfrica 2~
4

1. Western Cape, Cape Town =
2. Northem Cape, Kimberley
R Marth Wast Mahikenna

Once the road trip is complete, review the route on the map and compare
the accumulated distance traveled with the total distance you found (your an-
swer to question 2). Note that the distance returned by the online mapping
tool uses the meter (m) as the unit of measure. The distance you calculated
in the worksheet uses kilometers (km).

Well done! You've successfully completed the first computational thinking
activity and are ready to move on to the second activity (Latitude Sorting).

15

