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Abstract. When multiple agents interact in a common environment, each agent’s
actions impact others’ future decisions, and noncooperative dynamic games nat-
urally capture this coupling. In interactive motion planning, however, agents typ-
ically do not have access to a complete model of the game, e.g., due to unknown
objectives of other players. Therefore, we consider the inverse game problem, in
which some properties of the game are unknown a priori and must be inferred
from observations. Existing maximum likelihood estimation (MLE) approaches
to solve inverse games provide only point estimates of unknown parameters with-
out quantifying uncertainty, and perform poorly when many parameter values ex-
plain the observed behavior. To address these limitations, we take a Bayesian
perspective and construct posterior distributions of game parameters. To ren-
der inference tractable, we employ a variational autoencoder (VAE) with an em-
bedded differentiable game solver. This structured VAE can be trained from an
unlabeled dataset of observed interactions, naturally handles continuous, multi-
modal distributions, and supports efficient sampling from the inferred posteriors
without computing game solutions at runtime. Extensive evaluations in simulated
driving scenarios demonstrate that the proposed approach successfully learns the
prior and posterior game parameter distributions, provides more accurate objec-
tive estimates than MLE baselines, and facilitates safer and more efficient game-
theoretic motion planning.

Keywords: Bayesian Inverse Games · Amortized Inference · Game-Theoretic
Motion Planning · Machine Learning in Robotics · Human-Robot Interaction

1 Introduction

Autonomous robots often need to interact with other agents to operate seamlessly in
real-world environments. For example, in the scenario depicted in Fig. 1, a robot en-
counters a human driver while navigating an intersection. In such settings, coupling
effects between agents significantly complicate decision-making: if the human acts as-
sertively and drives straight toward its goal, the robot will be forced to brake to avoid
a collision. Hence, the agents compete to optimize their individual objectives. Dynamic

noncooperative game theory [2] provides an expressive framework to model such inter-
action among rational, self-interested agents.

⇤Equal contribution
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Fig. 1: A robot interacting with a human driver whose goal position is unknown. We
embed a differentiable game solver in a structured variational autoencoder to infer the
distribution of the human’s objectives based on observations of their behavior.

In many scenarios, however, a robot must handle interactions under incomplete in-
formation, e.g., without knowing the goal position of the human driver in Fig. 1. To
this end, a recent line of work [1, 12, 15, 18, 20, 21, 26–28, 35] solves inverse dynamic

games to infer the unknown parameters of a game—such as other agents’ objectives—
from observed interactions.

A common approach to solve inverse dynamic games uses maximum likelihood
estimation (MLE) to find the most likely parameters given observed behavior [1, 12, 15,
18, 20, 21, 26–28]. However, MLE solutions provide only a point estimate without any
uncertainty quantification and can perform poorly in scenarios where many parameter
values explain the observations [18], yielding overconfident, unsafe motion plans [25].

Bayesian formulations of inverse games mitigate these limitations of MLE methods
by inferring a posterior distribution, i.e., belief, over the unknown parameters [17, 24].
Knowledge of this distribution allows the robot to account for uncertainty and generate
safer yet efficient plans [11, 17, 25, 30].

Unfortunately, exact Bayesian inference is typically intractable in dynamic games,
especially when dynamics are nonlinear. Prior work [17] alleviates this challenge by
using an unscented Kalman filter (UKF) for approximate Bayesian inference. However,
that approach is limited to unimodal uncertainty models and demands solving multiple
games per belief update, thereby posing a computational challenge.

The main contribution of this work is a framework for tractable Bayesian inference
of posterior distributions over unknown parameters in dynamic games3. To this end, we
approximate exact Bayesian inference with a structured variational autoencoder (VAE).
Unlike conventional VAEs, our method embeds a differentiable game solver in the de-
coder, thereby facilitating unsupervised learning of an interpretable behavior model
from an unlabeled dataset of observed interactions. At runtime, the proposed approach

3 Project website: https://xinjie-liu.github.io/projects/bayesian-inverse-games

https://xinjie-liu.github.io/projects/bayesian-inverse-games
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can generate samples from the predicted posterior without solving additional games.
As a result, our approach naturally captures continuous, multi-modal beliefs, and ad-
dresses the limitations of MLE inverse games without resorting to the simplifications
or computational complexity of existing Bayesian methods.

Through extensive evaluations of our method in several simulated driving scenar-
ios, we support the following key claims. The proposed framework (i) learns the under-
lying prior game parameter distribution from unlabeled interactions, and (ii) captures
potential multi-modality of game parameters. Our approach (iii) is uncertainty-aware,
predicting narrow unimodal beliefs when observations clearly reveal the intentions of
other agents, and beliefs that are closer to the learned prior in case of uninformative ob-
servations. The proposed framework (iv) provides more accurate inference performance
than MLE inverse games by effectively leveraging the learned prior information, espe-
cially in settings where multiple parameter values explain the observed behavior. As
a result, our approach (v) enables safer downstream robot plans than MLE methods.
We also qualitatively demonstrate the scalability of our inference scheme in a 4-player
intersection driving scenario.

2 Related Work

This section provides an overview of the literature on dynamic game theory, focusing
on both forward games (Section 2.1) and inverse games (Section 2.2).

2.1 Forward Dynamic Games

This work focuses on noncooperative games where agents have partially conflicting but
not completely adversarial goals and make sequential decisions over time [2]. Since
we assume that agents take actions simultaneously without leader-follower hierarchy
and we consider coupling between agents’ decisions through both objectives and con-
straints, our focus is on generalized Nash equilibrium problems (GNEPs). GNEPs are
challenging coupled mathematical optimization problems. Due to the computational
challenges involved in solving such problems under feedback information structure [16],
most works aim to find open-loop Nash equilibria (OLNE) [2] instead, where players
choose their action sequence—an open-loop strategy—at once. Open-loop generalized
Nash equilibria (GNE) have been solved using iterated best response [29, 32, 32–34,
36], sequential quadratic approximations [4, 37], or by leveraging the mixed comple-
mentarity problem (MCP) structure of their first-order necessary conditions [7, 20, 25].
This work builds upon the latter approach.

2.2 Inverse Dynamic Games

Inverse games study the problem of inferring unknown game parameters, e.g. of ob-
jective functions, from observations of agents’ behavior [35]. In recent years, several
approaches have extended single-agent inverse optimal control (IOC) and inverse re-
inforcement learning (IRL) techniques to multi-agent interactive settings. Early ap-
proaches [1, 28] minimize the residual of agents’ first-order necessary conditions, given
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full state-control observations, in order to infer unknown objective parameters. This ap-
proach is further extended to maximum-entropy settings in [12].

More recent work [26] proposes to maximize observation likelihood while enforc-
ing the Karush–Kuhn–Tucker (KKT) conditions of OLNE as constraints. This approach
only requires partial-state observations and can cope with noise-corrupted data. Ap-
proaches [18, 20] propose an extension of the MLE approach [26] to inverse feed-
back and open-loop games with inequality constraints via differentiable forward game
solvers. To amortize the computation of the MLE, works [8, 20] demonstrate integration
with neural network (NN) components.

In general, MLE solutions can be understood as point estimates of Bayesian poste-
riors, assuming a uniform prior [22, Ch.4]. When multiple parameter values explain the
observations equally well, this simplifying assumption can result in ill-posed problems—
causing MLE inverse games to recover potentially inaccurate estimates [18]. Moreover,
in the context of motion planning, the use of point estimates without awareness of un-
certainty can result in unsafe plans [11, 25].

To address these issues, several works take a Bayesian view on inverse games [17,
24], aiming to infer a posterior distribution while factoring in prior knowledge. Since
exact Bayesian inference is intractable in these problems, the belief update may be ap-
proximated via a particle filter [24]. However, this approach requires solving a large
number of equilibrium problems online to maintain the belief distribution, posing a sig-
nificant computational burden. A sigma-point approximation [17] reduces the number
of required samples but limits the estimator to unimodal uncertainty models.

To obtain multi-hypothesis predictions tractably, works in [5] and [19] integrate
game-theoretic layers in NNs for motion forecasting. Both methods show that the in-
ductive bias of games improves performance on real-world human datasets. However,
both approaches are limited to the prediction of a fixed number of intents and offer no
clear Bayesian interpretation of the learned model.

To overcome the limitations of MLE approaches while avoiding the intractability of
exact Bayesian inference over continuous game parameter distributions, we propose to
approximate the posterior via a VAE [14] that embeds a differentiable game solver [20]
during training. The proposed approach can be trained from an unlabeled dataset of ob-
served interactions, naturally handles continuous, multi-modal distributions, and does
not require computation of game solutions at runtime to sample from the posterior.

3 Preliminaries: Generalized Nash Game

In this work, we consider strategic interactions of self-interested rational agents in the
framework of generalized Nash equilibrium problems (GNEPs). In this framework,
each of N agents seeks to unilaterally minimize their respective cost while being con-
scious of the fact that their “opponents”, too, act in their own best interest. We define a
parametric N -player GNEP as N coupled, constrained optimization problems,

Si
✓(⌧

¬i
) := argmin

⌧i
J i
✓(⌧

i, ⌧¬i
) (1a)

s.t. gi✓(⌧
i, ⌧¬i

) � 0, (1b)
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where ✓ 2 Rp denotes a parameter vector whose role will become clear below, and
player i 2 [N ] := {1, . . . , N} has cost function J i

✓ and private constraints gi✓. Further-
more, observe that the costs and constraints of player i depend not only on their own
strategy ⌧ i 2 Rmi , but also on the strategy of all other players, ⌧¬i 2 R

P
j2[N]\{i} mj .

Generalized Nash Equilibria. For a given parameter ✓, the solution of a GNEP is an
equilibrium strategy profile ⌧⇤ := (⌧1⇤, . . . , ⌧N⇤

) so that each agent’s strategy is a best
response to the others’, i.e.,

⌧ i⇤ 2 Si
✓(⌧

¬i⇤
), 8i 2 [N ]. (2)

Intuitively, at a GNE, no player can further reduce their cost by unilaterally adopting
another feasible strategy.
Example: Online Game-Theoretic Motion Planning. This work focuses on applying
games to online motion planning in interaction with other agents, such as the intersec-
tion scenario shown in Fig. 1. In this context, the strategy of agent i, ⌧i, represents a tra-

jectory—i.e., a sequence of states and inputs extended over a finite horizon—which is
recomputed in a receding-horizon fashion. This paradigm results in the game-theoretic
equivalent of model-predictive control (MPC): model-predictive game-play (MPGP).
The construction of a trajectory game largely follows the procedure used in single-
agent trajectory optimization: gi✓(·) encodes input and state constraints including those
enforcing dynamic feasibility and collision avoidance; and J i

✓(·) encodes the ith agent’s
objective such as reference tracking. Adopting a convention in which index 1 refers to
the ego agent, the equilibrium solution of the game then serves two purposes simulta-
neously: the opponents’ solution, ⌧¬1⇤, serves as a game-theoretic prediction of their
behavior while the ego agent’s solution, ⌧1⇤, provides the corresponding best response.
The Role of Game Parameters ✓. A key difference between trajectory games and
single-agent trajectory optimization is the requirement to provide the costs and con-
straints of all agents. In practice, a robot may have insufficient knowledge of their oppo-
nents’ intents, dynamics, or states to instantiate a complete game-theoretic model. This
aspect motivates the parameterized formulation of the game above: for the remainder
of this manuscript, ✓ will capture the unknown aspects of the game. In the context of
game-theoretic motion planning, ✓ typically includes aspects of opponents’ preferences,
such as their unknown desired lane or preferred velocity. For conciseness, we denote
game (1) compactly via the parametric tuple of problem data � (✓) := ({J i

✓, g
i
✓}i2[N ]).

Next, we discuss how to infer these parameters online from observed interactions.

4 Formalizing Bayesian Inverse Games

This section presents our main contribution: a framework for inferring unknown game
parameters ✓ based on observations y. This problem is referred to as an inverse game [35].

Several prior works on inverse games [3, 18, 26] seek to find game parameters that
directly maximize observation likelihood. However, this MLE formulation of inverse
games (i) only provides a point estimate of the unknown game parameters ✓, thereby
precluding the consideration of uncertainty in downstream tasks such as motion plan-
ning; and (ii) fails to provide reasonable parameter estimates when observations are
uninformative, as we shall also demonstrate in Section 5.



6 X. Liu et al.

4.1 A Bayesian View on Inverse Games

In order to address the limitations of the MLE inverse games, we consider a Bayesian

formulation of inverse games, and seek to construct the belief distribution

b(✓) = p(✓ | y) = p(y | ✓)p(✓)
p(y)

. (3)

In contrast to MLE inverse games, this formulation provides a full posterior distribution
over the unknown game parameters ✓ and factors in prior knowledge p(✓).
Observation Model p(y | ✓). In autonomous online operation of a robot, y represents
the (partial) observations of other players’ recent trajectories—e.g., from a fixed lag
buffer as shown in orange in Fig. 1. Like prior works on inverse games [17, 18, 26],
we assume that, given the unobserved true trajectory of the human, y is Gaussian-
distributed; i.e., p(y | ⌧) = N (y | µy(⌧),⌃y(⌧)). Assuming that the underlying
trajectory is the solution of a game with known structure � but unknown parameters
✓, we express the observation model as p(y | ✓) = p(y | T� (✓)), where T� denotes a
game solver that returns a solution ⌧⇤ of the game � (✓).
Challenges of Bayesian Inverse Games. While the Bayesian formulation of inverse
games in Eq. (3) is conceptually straightforward, it poses several challenges: (i) The
prior p(✓) is typically unavailable and instead must be learned from data. (ii) The com-
putation of the normalizing constant, p(y) =

R
p(y | ✓)p(✓)d✓, is intractable in practice

due to the marginalization of ✓. (iii) Both the prior p(✓) and posterior p(✓ | y) are in
general non-Gaussian or even multi-modal and are therefore difficult to represent ex-
plicitly in terms of their probability density function (PDF). Prior work [17] partially
mitigates these challenges by using a UKF for approximate Bayesian inference, but
that approach is limited to unimodal uncertainty models and requires solving multiple
games for a single belief update, thereby posing a computational challenge.

Fortunately, as we shall demonstrate in Section 5, many practical applications of
inverse games do not require an explicit evaluation of the belief PDF, b(✓). Instead, a
generative model of the belief—i.e., one that allows drawing samples ✓ ⇠ b(✓)—often
suffices. Throughout this section, we demonstrate how to learn such a generative model
from an unlabeled dataset D = {yk | yk ⇠ p(y), 8k 2 [K]} of observed interactions.

4.2 Augmentation to Yield a Generative Model

To obtain a generative model of the belief b(✓), we augment our Bayesian model as
summarized in the top half of Fig. 2. The goal of this augmentation is to obtain a model
structure that lends itself to approximate inference in the framework of variational au-
toencoders (VAEs) [14]. As in a conventional VAE, we introduce an auxiliary random
variable z with known isotropic Gaussian prior p(z) = N (z | µ = 0,⌃ = I) to model
the data distribution as the marginal p�(y) =

R
p�(y | z)p(z)dz. We thus convert the

task of learning the data distribution into learning the parameters of the conditional dis-
tribution p�(y | z), commonly referred to as the decoder in terminology of VAEs. The
key difference of our approach to a conventional VAE is the special structure of this de-
coder. Specifically, while a conventional VAE employs an (unstructured) NN, say d�, to
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map z to the parameters of the observation distribution, i.e. p�(y | z) = p(y | d�(z)),
our decoder composes this NN with a game solver T� to model the data distribution
as p(y | (T� � d�)(z)). From the perspective of a conventional VAE, the game solver
thus takes the role of a special “layer” in the decoder, mapping game parameters pre-
dicted by d� to the observation distribution. In more rigorous probabilistic terminology,
our proposed generative model can be interpreted as factoring the conditional distribu-
tion as p�(y | z) =

R
p(y | ✓)p�(✓ | z)d✓, with p�(✓ | z) = �(✓ � d�(z)). Here, �

denotes the Dirac delta function4 and the observation model p(y | ✓) includes the game
solver T� as discussed in Section 4.1.

unaugmented model
game

solution observation

latent posterior surrogate

differentiable
game solver

game
parameters

encoder
NN

decoder
NN

auxiliary
variable

augmentation

Fig. 2: Overview of a structured VAE for generative Bayesian inverse games. Top (left
to right): decoder pipeline. Bottom (right to left): variational inference via an encoder.

4.3 Auto-Encoding Bayesian Inverse Games

The modeling choices made in Section 4.2 imply that the game parameters ✓ and obser-
vations y are conditionally independent given the latent variable z. Therefore, knowl-
edge of the distribution of z fully specifies the downstream distribution of ✓. Specif-
ically, observe that we can express the prior over the game parameters as p�(✓) =R
p�(✓ | z)p(z)dz and the corresponding posterior as p�(✓ | y) =

R
p�(✓ | z)p�(z |

y)dz. Intuitively, this means that by propagating samples from the latent prior p(z)
through d�, we implicitly generate samples from the prior p�(✓). Similarly, by propa-
gating samples from the latent posterior p�(z | y) through d�, we implicitly generate
samples from the posterior p�(✓ | y). We thus have converted the problem of (genera-
tive) Bayesian inverse games to estimation of � and inference of p�(z | y).

As in conventional VAEs, we can perform both these tasks through the lens of
(amortized) variational inference (VI). That is, we seek to approximate the latent pos-
terior p�(z | y) with a Gaussian q (z | y) = N (z | e (y)). Here, e takes the role of
an encoder that maps observation y to the mean µz(y) and covariance matrix ⌃z(y) of
the Gaussian posterior approximation; cf. bottom of Fig. 2. The design of this encoder
model directly follows that of a conventional VAE [14] and can be realized via a NN.

4 The modeling of p�(✓ | z) as a Dirac delta function—i.e. a deterministic relationship be-
tween z and ✓—is consistent with the common modeling choice in non-hierarchical VAEs [14]
which employ a deterministic decoder network. We found good performance with this setup in
our experiments; cf., Section 5. We discuss extensions to other modeling choices in Section 6.
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As is common in amortized VI, we seek to fit the parameters of both the encoder and
the structured decoder via gradient-based optimization. A key challenge in taking this
approach, however, is the fact that this training procedure requires back-propagation of
gradients through the entire decoder; including the game solver T� . It is this gradient
information from the game-theoretic “layer” in the decoding pipeline that induces an
interpretable structure on the output of the decoder-NN d�, forcing it to predict the
hidden game parameters ✓. We recover the gradient of the game solver using the implicit
differentiation approach proposed in [20] to differentiate through the PATH solver [6].
Remark on Inference Time. At inference time, to generate samples from the estimated
posterior q ,�(✓ | y) =

R
p�(✓ | z)q (z | y)dz, we do not need to evaluate the

game solver T� : posterior sampling involves only the evaluation of NNs d� and e ;
cf. y ! ✓ in Fig. 2. That is, given an observation y, we extensively sample from the
latent Gaussian distribution q (z | y) and map the latent samples z through the decoder
network d� to recover a posterior distribution q ,�(✓ | y). This inference pipeline can
operate repetitively at high frequencies, enabling the generation of updated posteriors
in real time for downstream receding-horizon motion planning.

4.4 Training the Structured Variational Autoencoder

Below, we outline the process for optimizing model parameters in our specific setting.
For a general discussion of VAEs and VI, we refer to [23].
Fitting a Prior to D. First, we discuss the identification of the prior parameters �. We
fit these parameters so that the data distribution induced by �, i.e., p�(y) =

R
p�(y |

z)p(z)dz, closely matches the unknown true data distribution p(y). For this purpose,
we measure closeness between distributions via the Kullback–Leibler (KL) divergence

DKL (p k q) := Ex⇠p(x) [log p(x)� log q(x)] . (4)

The key properties of this divergence metric, DKL (p k q) � 0 and DKL (p k q) =

0 () p = q, allow us to cast the estimation of � as an optimization problem:

�⇤ 2 argmin
�

DKL (p(y) k p�(y)) (5a)

= argmin
�

�Ey⇠p(y)

⇥
logEz⇠p(z) [p�(y | z)]

⇤
. (5b)

With the prior recovered, we turn to the approximation of the posterior p�(✓ | y).
Variational Belief Inference. We can find the closest surrogate q (z | y) of p�(z | y)
by minimizing the expected KL divergence between the two distributions over the data
distribution y ⇠ p(y) using the framework of VI:

 ⇤ 2 argmin
 

Ey⇠p(y) [DKL (q (z | y) k p�(z | y))] (6a)

= argmin
 

E y⇠p(y)
z⇠q (z|y)

[`( ,�, y, z)] , (6b)

where `( ,�, y, z) := log q (z | y)
| {z }
N (z|e (y))

� log p�(y | z)
| {z }

N (y|(T� �d�)(z))

� log p(z)|{z}
N (z)

.
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We have therefore outlined, in theory, the methodology to determine all parameters of
the pipeline from the unlabeled dataset D.
Considerations for Practical Realization. To solve Eqs. (5) and (6) in practice, we
must overcome two main challenges: first, the loss landscapes are highly nonlinear due
to the nonlinear transformations e , d� and T� ; and second, the expected values cannot
be computed in closed form. These challenges can be addressed by taking a stochastic

first-order optimization approach, such as stochastic gradient descent (SGD), thereby
limiting the search to a local optimum and approximating the gradients of the expected
values via Monte Carlo sampling. To facilitate SGD, we seek to construct unbiased gra-
dient estimators of the objectives of Eq. (5b) and Eq. (6b) from gradients computed at
individual samples. We can construct an unbiased gradient estimator when the follow-
ing conditions hold: (C1) any expectations appear on the outside, and (C2) the sampling
distribution of the expectations are independent of the variable of differentiation; cf. [23,
Chapter 10.2]. The objective of the optimization problem in Eq. (6b) takes the form

L(q,�) := E y⇠p(y)
z⇠q(z|y)

[`( ,�, y, z)] , (7)

which clearly satisfies C1. Similarly, it is easy to verify that the objective of Eq. (5b)
can be identified as L(p�(z | y), ·). Unfortunately, this latter insight is not immediately
actionable since p�(z | y) is not readily available. However, if instead we use our
surrogate model from Eq. (6)—which, by construction closely matches p�(z | y)—we
can cast the estimation of the prior and posterior model as a joint optimization of L:

 ̃⇤, �̃⇤ 2 argmin
 ,�

L(q ,�). (8)

When e and d� are sufficiently expressive to allow DKL (q (z | y) k p�(z | y)) = 0,
then this reformulation is exact; i.e., �̃⇤ and  ̃⇤ are also minimizers of the original
problems Eq. (5) and Eq. (6), respectively. In practice, a perfect match of distributions
is not typically achieved and �̃⇤ and  ̃⇤ are biased. Nonetheless, the scalability enabled
by this reformulation has been demonstrated to enable generative modeling of complex
distributions, including those of real-world images [9]. Finally, to also satisfy C2 for the
objective of Eq. (8), we apply the well-established “reparameterization trick” to cast the
inner expectation over a sampling distribution independent of  . That is, we write

L(q ,�) = Ey⇠p(y)
✏⇠N

⇥
`( ,�, y, rq (✏, y))

⇤
, (9)

where the inner expectation is taken over ✏ that has multi-variate standard normal dis-
tribution, and rq (·, y) defines a bijection from ✏ to z so that z ⇠ q (· | y). Since we
model the latent posterior as Gaussian—i.e., q (z | y) = N (z | e (y))—the repa-
rameterization map is rq (✏, y) := µz(y) + Lz(y)✏, where LzL>

z = ⌃z is a Cholesky
decomposition of the latent covariance. Observe that Eq. (9) only involves Gaussian
PDFs, and all terms can be easily evaluated in closed form.
Stochastic Optimization. As in SGD-based training of conventional VAEs, at itera-
tion k, we sample yk ⇠ D, and encode yk into the parameters of the latent distribu-
tion via e k . From the latent distribution we then sample zk, and evaluate the gradient



10 X. Liu et al.

estimators r `( ,�k, yk, zk)| = k and r�`( k,�, yk, zk)|�=�k of L at the current
parameter iterates,  k and �k. Due to our model’s structure, the evaluation of these
gradient estimators thereby also involves the differentiation of the game solver T� .

5 Experiments

To assess the proposed approach, we evaluate its online inference capabilities and
its efficacy in downstream motion planning tasks in several simulated driving sce-
narios. Experiment videos can be found in our supplementary video: https://xinjie-
liu.github.io/projects/bayesian-inverse-games.

5.1 Planning with Online Inference

First, we evaluate the proposed framework for downstream motion planning tasks in
the two-player intersection scenario depicted in Fig. 3. This experiment is designed to
validate the following hypotheses:

– H1 (Inference Accuracy). Our method provides more accurate inference than
MLE by leveraging the learned prior information, especially in settings where mul-
tiple human objectives explain the observations.

– H2 (Multi-modality). Our approach predicts posterior distributions that capture
the multi-modality of agents’ objectives and behavior.

– H3 (Planning Safety). Bayesian inverse game solutions enable safer robot plans
compared to MLE methods.

Experiment Setup In the test scenario shown in Fig. 3, the red robot navigates an
intersection while interacting with the green human, whose goal position is initially
unknown. In each simulated interaction, the human’s goal is sampled from a Gaussian
mixture with equal probability for two mixture components: one for turning left, and
one for going straight. To simulate human behavior that responds strategically to the
robot’s decisions, we generate the human’s actions by solving trajectory games in a
receding-horizon fashion with access to the sampled ground-truth game parameters.

We model the agents’ dynamics as kinematic bicycles. The state at time step t in-
cludes position, longitudinal velocity, and orientation, i.e., xi

t = (pix,t, p
i
y,t, v

i
t, ⇠

i
t), and

the control comprises acceleration and steering angle, i.e., ui
t = (ait, ⌘

i
t). We assign

player index 1 to the robot and index 2 to the human. Over a planning horizon of
T = 15 time steps, each player i seeks to minimize a cost function that encodes in-
centives for reaching the goal, reducing control effort, and avoiding collision:

J i
✓ =

T�1X

t=1

kpit+1�pigoalk22+0.1kui
tk22+400max(0, dmin�kpit+1�p¬i

t+1k2)3, (10)

where pit = (pix,t, p
i
y,t) denotes agent i’s position at time step t, pigoal = (pigoal,x, p

i
goal,y)

denotes their goal position, and dmin denotes a preferred minimum distance to other
agents. The unknown parameter ✓ inferred by the robot contains the two-dimensional
goal position p2goal of the human.

https://xinjie-liu.github.io/projects/bayesian-inverse-games
https://xinjie-liu.github.io/projects/bayesian-inverse-games
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We train the structured VAE from Section 4.3 on a dataset of observations from 560
closed-loop interaction episodes obtained by solving dynamic games with the oppo-
nent’s ground truth goals sampled from the Gaussian mixture described above. The 560
closed-loop interactions are sliced into 34600 15-step observations y. Partial-state ob-
servations consist of the agents’ positions and orientations. We employ fully-connected
feedforward NNs with two 128-dimensional and 80-dimensional hidden layers as the
encoder model e and decoder model d�, respectively. The latent variable z is 16-
dimensional. We train the VAE with Adam [13] for 100 epochs, which took 14 hours.

Baselines We evaluate the following methods to control the robot interacting with a hu-
man of unknown intent, where both the robot and the human trajectories are computed
game-theoretically at every time step in a receding-horizon fashion:

Ground truth (GT): This planner generates robot plans by solving games with ac-
cess to ground truth opponent objectives. We include this oracle baseline to provide a
reference upper-bound on planner performance.

Bayesian inverse game (ours) + planning in expectation (B-PinE) solves multi-
hypothesis games [25] in which the robot minimizes the expected cost E✓⇠q ,�(✓|y)

⇥
J1
✓

⇤

under the posterior distributions predicted by our structured VAE based on new obser-
vations at each time step.

Bayesian inverse game (ours) + maximum a posteriori (MAP) planning (B-MAP)

constructs MAP estimates ✓̂MAP 2 argmax✓ q ,�(✓ | y) from the posteriors and solves
the game � (✓̂MAP).

Randomly initialized MLE planning (R-MLE): This baseline [20] solves the game
� (✓̂MLE), where ✓̂MLE 2 argmax✓ p(y | ✓). Hence, this baseline utilizes the same

game structure as our method but only makes a point estimate of the game parameters.
The MLE problems are solved online via gradient descent based on new observations at
each time step as in [20]. The initial guess for optimization is sampled uniformly from
a rectangular region covering all potential ground truth goal positions.

Bayesian prior initialized MLE planning (BP-MLE): Instead of uniformly sampling
heuristic initial guesses as in R-MLE, this baseline solves for the MLE with initial
guesses from the Bayesian prior learned by our approach.

Static Bayesian prior planning (St-BP) samples ✓̂ from the learned Bayesian prior

and uses the sample as a fixed human objective estimate to solve � (✓̂). This baseline is
designed as an ablation study of the effect of online objective inference.

For those planners that utilize our VAE for inference, we take 1000 samples at each
time step to approximate the distribution of human objectives, which takes around 7ms.
For B-PinE, we cluster the posterior samples into two groups to be compatible with the
multi-hypothesis game solver from [25]. We note that the observation distributions may
differ between training and testing because, during runtime, observations are generated
based on inferred objectives and may originate from different solvers, such as B-PinE.

Qualitative Behavior Figure 3 shows the qualitative behavior of B-PinE and R-MLE.
B-PinE: The top row of Fig. 3 shows that our approach initially generates a bimodal

belief, capturing the distribution of potential opponent goals. In the face of this uncer-
tainty, the planner initially computes a more conservative trajectory to remain safe.
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Fig. 3: Qualitative behavior of B-PinE (ours) vs. R-MLE. In the bottom row, the size of
the green stars increases with time.

As the human approaches the intersection and reveals its intent, the left-turning mode
gains probability mass until the computed belief eventually collapses to a unimodal dis-
tribution. Throughout the interaction, the predictions generated by the multi-hypothesis
game accurately cover the true human plan, allowing safe and efficient interaction.

R-MLE: As shown in the bottom row of Fig. 3, the R-MLE baseline initially esti-
mates that the human will go straight. The true human goal only becomes clear later
in the interaction and the over-confident plans derived from these poor point estimates
eventually lead to a collision.

Observability Issues of MLE: To illustrate the underlying issues that caused the poor
performance of the R-MLE baseline discussed above, Fig. 4 shows the negative obser-
vation log-likelihood for two time steps of the interaction. As can be seen, a large region
in the game parameter space explains the observed behavior well, and the baseline in-
correctly concludes that the opponent’s goal is always in front of their current position;
cf. bottom of Fig. 3. In contrast, by leveraging the learned prior distribution, our ap-
proach predicts objective samples that capture potential opponent goals well even when
the observation is uninformative; cf. top of Fig. 3.

In summary, these results validate hypotheses H1 and H2.

Quantitative Analysis To quantify the performance of all six planners, we run a Monte
Carlo study of 1500 trials. In each trial, we randomly sample the robot’s initial position
along the lane from a uniform distribution such that the resulting ground truth interac-
tion covers a spectrum of behaviors, ranging from the robot entering the intersection
first to the human entering the intersection first. We use the minimum distance between
players in each trial to measure safety and the robot’s cost as a metric for efficiency.
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Fig. 4: Negative observation log-likelihood � log p(y | p2goal) for varying human goal
positions p2goal at two time steps of the R-MLE trial in Fig. 3.

We group the trials into three settings based on the ground-truth behavior of the
agents: (S1) The human turns left and passes the intersection first. In this setting, a
robot recognizing the human’s intent should yield, whereas blindly optimizing the goal-
reaching objective will likely lead to unsafe interaction. (S2) The human turns left, but
the robot reaches the intersection first. In this setting, we expect the effect of inaccurate
goal estimates to be less pronounced than in S1 since the robot passes the human on the
right irrespective of their true intent. (S3) The human drives straight. Safety is trivially
achieved in this setting.

Fig. 5: Quantitative results of S1: (a) Minimum distance between agents in each trial.
(b) Robot costs (with GT costs subtracted).

Results, S1: Figure 5(a) shows that methods using our framework achieve better
planning safety than other baselines, closely matching the ground truth in this metric.
Using the minimum distance between agents among all ground truth trials as a colli-
sion threshold, the collision rates of the methods are 0.0% (B-PinE), 0.78% (B-MAP),
17.05% (R-MLE), 16.28% (BP-MLE), and 17.83% (St-BP), respectively. Moreover,
the improved safety of the planners using Bayesian inference does not come at the cost
of reduced planning efficiency. As shown in Fig. 5(b), B-PinE and B-MAP consistently
achieve low interaction costs.



14 X. Liu et al.

Fig. 6: Quantitative results of S2 and S3: (a) Minimum distance between agents in each
trial of S2. (b-c) Robot costs of S2-3 (with GT costs subtracted).

Results, S2: Figure 6(a) shows that all the approaches except for the St-BP base-
line approximately achieve ground truth safety in this less challenging setting. While
the gap between approaches is less pronounced, we still find improved planning safety
of our methods over the baselines. Taking the same collision distance threshold as in
S1, the collision rates of the methods are 0.86% (B-PinE), 2.24% (B-MAP), 7.59%
(R-MLE), 6.03% (BP-MLE), and 7.59% (St-BP), respectively. B-MAP gives less ef-
ficient performance in this setting. Compared with B-PinE, B-MAP only uses point
estimates of the unknown goals and commits to over-confident and more aggressive be-
havior. We observe that this aggressiveness results in coordination issues when the two
agents enter the intersection nearly simultaneously, causing them to accelerate simulta-
neously and then brake together. Conversely, the uncertainty-aware B-PinE variant of
our method does not experience coordination failures, highlighting the advantage of in-
corporating the inferred distribution during planning. Lastly, St-BP exhibits the poorest
performance in S2, stressing the importance of online objective inference.

Results, S3: In Fig. 6(c), B-MAP achieves the highest efficiency, while B-PinE pro-
duces several trials with increased costs due to more conservative planning. Again, the
St-BP baseline exhibits the poorest performance.

Summary: These quantitative results show that our Bayesian inverse game approach
improves motion planning safety over the MLE baselines, validating hypothesis H3.
Between B-PinE and B-MAP, we observe improved safety in S1-2 and efficiency in S2.

5.2 Additional Evaluation of Online Inference

To isolate inference effects from planning, we consider two additional online inference
settings. In these settings, agents operate with fixed but unknown ground-truth game
parameters. Our method acts as an external observer, initially aware only of the robots’
intent, and is tasked to infer the humans’ intent online.

Two-Player Highway Game This experiment is designed to validate the following
hypotheses:

– H4 (Bayesian Prior). Our method learns the underlying multi-modal prior objec-
tive distribution.

– H5 (Uncertainty Awareness). Our method computes a narrow, unimodal belief
when the unknown objective is clearly observable and computes a wide, multi-
modal belief that is closer to the prior in case of uninformative observations.
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We consider a two-player highway driving scenario, in which an ego robot drives in
front of a human opponent whose desired driving speed is unknown. The rear vehicle is
responsible for decelerating and avoiding collisions, and the front vehicle always drives
at their desired speed. To simplify the visualization of beliefs and thereby illustrate
H4-5, we reduce the setting to a single spatial dimension and model one-dimensional
uncertainty: we limit agents to drive in a single lane and model the agents’ dynamics as
double integrators with longitudinal position and velocity as states and acceleration as
controls. Furthermore, we employ a VAE with the same hidden layers as in Section 5.1
but only one-dimensional latent space. The VAE takes a 15-step observation of the two
players’ velocities as input for inference.

We collect a dataset of 20000 observations to train a VAE. In each trial, the robot’s
reference velocity is sampled from a uniform distribution from 0m s

�1 to the max-
imum velocity of 20m s

�1; the human’s desired velocity is sampled from a bi-modal
Gaussian mixture distribution shown in grey in Fig. 7(a) with two unit-variance mixture
components at means of 30% and 70% of the maximum velocity.

(a) Prior distributions. (b) Posterior distributions.

Fig. 7: (a) Learned and ground truth priors for the human’s objective. (b) Inferred ob-
jective posterior distributions.

Figure 7(a) shows that the learned prior objective distribution captures the underly-
ing training set distribution closely and thereby validates our hypothesis H4. Figure 7(b)
shows beliefs inferred by our approach for selected trials. The proposed Bayesian in-
verse game approach recovers a narrow distribution with low uncertainty when the op-
ponent’s desired speed is clearly observable, e.g., when the front vehicle drives faster
so that the rear vehicle can drive at their desired speed (Fig. 7, subfigures 1, 3). The rear
driver’s objective becomes unobservable when they wish to drive fast but are blocked
by the car in front. In this case, our approach infers a wide, multi-modal distribution
with high uncertainty that is closer to the prior distribution (Fig. 7, subfigures 2, 4).
These results validate hypothesis H5.

Multi-Player Demonstration To demonstrate the scalability of our method, we tested
our inference approach in a four-agent intersection scenario. As shown in Fig. 8, a red
robot interacts with three green humans, and our structured VAE infers the humans’ goal
positions. Initially, our method predicts multi-modal distributions with high uncertainty
about the humans’ objectives. As more evidence is gathered, uncertainty decreases,
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and the belief accurately reflects the true objectives of the other agents. The objective
distribution inference operates in real-time at approximately 150Hz without requiring
additional game solves.

Fig. 8: Belief evolution of our structured VAE in a 4-player intersection scenario.

6 Conclusion & Future Work

We presented a tractable Bayesian inference approach for dynamic games using a struc-
tured VAE with an embedded differentiable game solver. Our method learns prior game
parameter distributions from unlabeled data and infers multi-modal posteriors, outper-
forming MLE approaches in simulated driving scenarios.

Future work could explore this pipeline with other planning frameworks, incorpo-
rating active information gathering and intent signaling. Furthermore, in this work we
employed a decoder architecture that assumes a deterministic relationship between the
latent z and game parameters ✓—a modeling choice that is consistent with conventional
VAEs [14]. Future work could extend our structured amortized inference pipeline to
models that assume a stochastic decoding process as in hierarchical VAEs [31] or re-
cent diffusion probabilistic models [10]. Finally, our pipeline’s flexibility allows for
investigating different equilibrium concepts, such as entropic cost equilibria [21].
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