Teaching Probabilistic Logical Reasoning to Transformers

Aliakbar Nafar
Michigan State University
nafarali@msu.edu

Kristen Brent Venable
Florida Institute for Human
and Machine Cognition

Parisa Kordjamshidi
Michigan State University
kordjams@msu.edu

bvenable@ihmc.org

Abstract

In this paper, we evaluate the capability of
transformer-based language models in making
inferences over uncertain text that includes un-
certain rules of reasoning. We cover both Pre-
trained Language Models (PLMs) and gener-
ative Large Language Models (LLMs). Our
evaluation results show that both generations
of language models struggle with reasoning
over uncertain text. We propose a novel end-to-
end fine-tuning approach, Probabilistic Con-
straint Training (PCT), that utilizes probabilis-
tic logical rules as constraints in the fine-
tuning phase without relying on these rules
in the inference stage. To assess the effec-
tiveness of PCT, we utilize the related cor-
pora and, additionally, create a new and more
challenging benchmark that, unlike the previ-
ous ones, uses instance-specific rules. Our
study demonstrates that PCT improves the
transformer-based language model’s intrinsic
reasoning and makes their probabilistic logical
reasoning process more explicit and explain-
able. Furthermore, PCT equips these models
to effectively handle novel situations, includ-
ing higher reasoning depth, new domains, and
complex probabilistic structures.

1 Introduction

Language models have demonstrated high perfor-
mance across a wide range of Natural Language
Processing (NLP) tasks (Liu et al., 2019) which
in the case of Large Language Models holds even
in zero-shot setting (Chen, 2023). However, they
struggle to reason over uncertain text involving
logical probabilistic rules (Saeed et al., 2021; Jin
et al., 2023). This is confirmed by the reported poor
results in arithmetic reasoning when using trans-
formers (Mishra et al., 2022) which is required
for probabilistic logical reasoning. Additionally,
logical probabilistic inference requires coherent
step-by-step reasoning. However, PLMs’ evalu-
ation of various question-answering (QA) bench-
marks shows they produce contradictory results

that violate the expected steps of reasoning, such
as following transitivity or symmetry rules (Asai
and Hajishirzi, 2020). This has led to the develop-
ment of hybrid approaches, where reasoning tasks
are outsourced to Neuro-Symbolic engines, bypass-
ing the need for reasoning by transformers (Zhang
et al., 2023). To overcome these limitations, we
embed probabilistic reasoning into transformers by
imposing the rules of logical probabilistic reason-
ing as constraints during their training phase.

There are only a few research efforts dealing
with uncertainty in text. Understanding logical
and uncertain rules in natural language form has
been investigated in recent research on question an-
swering (Clark et al., 2020; Saeed et al., 2021), and
there have been several attempts to teach transform-
ers how to follow these rules (Asai and Hajishirzi,
2020; Faghihi et al., 2023). While incorporating
hard logical rules is undoubtedly important and
is still being investigated, in the real world, most
of the external knowledge and rules involve uncer-
tainty. For example, only a small fraction of the log-
ical rules in DBpedia can be deemed certain (Saeed
et al., 2021). Inference over text that includes un-
certainty concerning facts, relations, and rules is
required in many natural language comprehension
tasks. For example, scientific content often utilizes
hedges to express the measure of certainty in fac-
tual statements (Pei and Jurgens, 2021; National
Academies of Sciences et al., 2017).

A related but different challenge is the explain-
ability of the solutions provided by transformer-
based language models. Without the capabil-
ity of providing the underlying components and
steps necessary to answer a question, a Language
Model’s reasoning remains inexplicable even when
it accurately answers a question (Clark et al., 2019).
In this paper, we propose a method that forces the
transformer to follow coherent reasoning steps to
answer the final question, as shown in Table 1,
yielding a more explainable model. This feature

1615

Findings of the Association for Computational Linguistics: EACL 2024, pages 1615-1632
March 17-22, 2024 (©)2024 Association for Computational Linguistics

RuleBERT

RuleTaker-pro

(Fact 1) David is a cousin of Ann.

(Fact 2) Mike is a child of Ann.

(Rule 1, 0.90) If A is a spouse of B and C is a child of B,
then C is a child of A.

(Rule 2, 0.15) If A is a cousin of B, then A is a spouse of B.

(Fact 1) Dave is big.

(Fact 2) Erin is sad.

(Rule 1) Usually, If someone is big then they are green.
(Rule 2) Normally, If someone is green then they are round.
(Rule 3) Seldom, If someone is sad then they are round.

(Query) Mike is a child of David.

(Query) Dave is round.

Required Steps of Reasoning to Answer

Fact 1 (1.00) & Rule 2 (0.15) =

Fact 3: David is a spouse of Ann. (0.15) (Inferred)
Fact 3 (0.15) & Fact 2 (1.00) & Rule 1 (0.90) —
Fact 4: Mike is a child of David. (0.135) (Inferred)
Answer: 0.135

Fact 1 (1.00) & Rule 1 (0.90) —>
Fact 3: Dave is green. (0.90) (Inferred)
Fact 3 (0.90) & Rule 2 (0.80) —>
Fact 4: Dave is round. (0.72) (Inferred)
Answer: (.72

Approach: Converting Probabilistic Reasoning Steps to Equality Constraints

Constraint 1: P(Fact 1) * 0.15 =P(Fact 3)
Constraint 2: P(Fact 3) * P(Fact 2) * 0.90 = P(Fact 4)

Constraint 1: P(Fact 1) * 0.90 = P(Fact 3)
Constraint 2: P(Fact 3) * 0.80 = P(Fact 4)

Table 1: Left column: an example from RuleBERT with two facts and two rules. Right column: an example from
RuleTaker-pro with two facts and three rules. The reasoning steps required to infer the Query and the constraints

applied in these steps are shown in the bottom rows.

is an inherent property and a byproduct of our us-
age of probabilistic logical constraints and Neuro-
Symbolic modeling in our approach.

In this paper, to deal with reasoning over un-
certain text, we look into a problem setting that
involves calculating the probability of a given hy-
pothesis (Query) based on a provided context that
includes linguistic expression of probabilistic log-
ical rules and facts. The underlying reasoning is
probabilistic logical inference. We utilize two QA
datasets: RuleBERT (Saeed et al., 2021) and our
newly developed RuleTaker-pro, created to include
context-specific rules. Table 1 shows examples of
our datasets and their required reasoning steps to
answer the Query. We convert the reasoning steps
to equality constraints (shown in the Approach sec-
tion of Table 1) and impose these constraints to
ensure consistency of the outputs with the rules
during the training of PLMs but not inference. De-
spite the simplicity of the reasoning patterns in our
approach, we will show the transferability of learn-
ing to more complex structures. In summary, our
contributions are as follows:

1) We propose a new approach, Probabilistic Con-
straint Training (PCT), that explicitly imposes prob-
abilistic reasoning rules during PLM fine-tuning.
This approach provides an effective level of ab-
straction to the models to generalize and transfer
reasoning under uncertainty to new domains and to
more complex depths of reasoning. 2) We develop
a novel evaluation benchmark for probabilistic rea-
soning over text with context-specific uncertain

rules whose probabilities can not be captured from
the training data and must be extracted from the
text.! 3) We conduct thorough experiments compar-
ing our constraint-based fine-tuning approach with
LLMs and show the superiority of our technique.

2 Related work

Previous works mostly looked into the integration
of crisp logic (Saha et al., 2020; Tafjord et al.,
2021). The earlier work on QA with probabilistic
rules in the text is RuleBERT (Saeed et al., 2021),
which serves as the baseline for our comparative
study. While RuleBERT pioneers this field and
introduces Weighted binary cross-entropy loss to
incorporate probabilistic learning in transformers,
it lacks a mechanism to follow the probabilistic
reasoning steps explicitly. Additionally, our exper-
iments revealed that the rules in textual form in
this dataset are not properly utilized by the models
(see Section 6.1), which prompted us to introduce
RuleTaker-pro with context-specific rules.

Reasoning Steps. Explicit elucidation of reason-
ing steps in QA models has been central in recent
literature. Saha et al. improve PLMs’ reasoning
by mapping their output to an inference graph, ne-
cessitating the model to learn its nodes and edges.
While Tafjord et al. utilize TS5 to create an inference
path, this and similar studies have focused on us-
ing non-probabilistic logical rules. In several other
related works, the reasoning for QA is approached

"The code and dataset are available at €).

1616

https://github.com/HLR/Probabilistic_Logical_Reasoning

by generating an output that follows a predefined
formal language for theorem proving given the log-
ical rules, which is a very different approach from
ours (Wang and Deng, 2020; Polu and Sutskever,
2020; Tafjord et al., 2021). Wu et al. introduce rea-
soning in LLMs by generating intermediate reason-
ing steps as an extra output. However, we enable
PLMs to incorporate this reasoning in training with
no additional output.

Constraints. Our approach’s primary contribution
is incorporating probabilistic constraints in the loss
function. While various studies incorporate logical
constraints into the loss function (Nandwani et al.,
2019; Li et al., 2019; Asai and Hajishirzi, 2020;
Ribeiro et al., 2019; Faghihi et al., 2023; Guo et al.,
2020), no work has explored the application of
probabilistic constraints in this context to date.
Neuro-Symbolic Methods. Central to our ap-
proach is the implementation of an end-to-end
model, ensuring the transferability of our model
to various domains without the need to modify
the model’s architecture or decision processes. In
contrast, numerous studies in this field rely on a
pipeline approach, often incorporating a Neuro-
Symbolic engine. Zhang et al. proposes a frame-
work in which Transformers extract the factual
knowledge in the text. Consequently, a symbolic
engine conducts the reasoning inference. More gen-
eral approaches use deep neural methods to process
the input and use either an existing engine (Man-
haeve et al., 2018) such as Problog (De Raedt et al.,
2007) or define a language to create a logical struc-
ture as an inference engine (Li et al., 2023).

3 Background
3.1 Problem Definition

We focus on the challenge of performing probabilis-
tic logical reasoning within a QA task where a set
of facts F', a set of rules R, and a hypothesis h are
provided in a textual context. While these rules,
facts, and hypothesis are provided only in their
textual form as a part of the input to the task, we
have their formal information as a part of the meta-
data. For example, fact Big(Dave) and the rule
Spouse(A, B) & Child(C,B) — Child(C, A)
would be given as input in forms: “Dave is big.”,
and “If A is a spouse of B and C is a child of B,
then C is a child of A.”, respectively. The facts and
hypothesis consist of factoids that define properties
for an entity “Has_Property(Entity)” or relations
between two entities “Relation(Entity1, Entity2)”.

The rules have the form (p1, p2, ..., pn) — ¢, Pr,
where p; represents a premise fact, ¢ is a new in-
ferred fact, and Pr is the probability of the rule. In
RuleBERT rules, Pr is not directly mentioned in
the rule’s text and must be learned from the data
(or extracted from the metadata to be used in the
loss during training), while in RuleTaker-pro, Pr
is mentioned in the form of adverbs of uncertainty.
q’s probability is computed as the rule probability
multiplied by the premise facts probabilities. If the
premise facts are mentioned in the context, they
would be certain and have a probability of 1.00;
otherwise, if they are inferred facts, their probabil-
ity is derived. The objective is to utilize I’ and R
to infer a probability between 0 and 1 as our task
output, which indicates the probability of a given
hypothesis h. For example, h="Sara and John are
cousins” obtains a probability of 0.20 by the model.

3.2 Base Model

The backbone of our model is RoOBERTa Large,
supplemented by two linear layers and a sigmoid
activation function applied to its classifier token
(CLS). The model takes the textual representations
of facts and rules (context) and hypothesis as input
formatted as [CLS] text(R)+text(F) [SEP] text(h)
[SEP]. Subsequently, it predicts a probability for
the given hypothesis.

The LLM models that we use as baselines
for comparisons are GPT3.5 and GPT4 (Brown
et al., 2020). Due to the high cost of fine-tuning
LLMs, we limit our experiments to zero-shot and
few-shot. Input comprises a task explanation,
text(R)+text(F), and text(h). The explanation in-
structs the model about the objective and output
format, either “True”,“False” (corresponding to a
probability greater or less than 0.5), or the hypoth-
esis probability (between 0.0 and 1.0).

3.3 Deep Learning with Logical Constraints

Among the research focused on constraint integra-
tion within neural models, we opt for the class of
methods that incorporate constraint violation in the
loss function during training without altering the
model’s architecture (Nandwani et al., 2019; Li
et al., 2019; Faghihi et al., 2023). In general, to em-
ploy the logical and symbolic constraints in deep
models, they must be converted into soft logic for
the sake of differentiability. Usually, three main
approaches are used for this conversion: Product,
Godel, and Lukasiewicz (Li et al., 2019). For in-
stance, the logical rule, (p1, p2, ..., pn) — ¢, using

1617

the Product surrogate, is written as follows,

min(1, P(q)/[P(p1) * P(p2) ... ¥ P(pn)]), (1)

where P(p;) is the probability of the fact p;. We
can express the enforcement of this implication’s
truth as follows,

[1—=min(1, P(q)/[P(p1) * P(p2) *...x P(pn)])| = 0, (2)

where |.| denotes the absolute value. These methods
of constraint conversion are defined for logical con-
straints and do not directly apply to probabilistic
reasoning rules, which is why we will introduce a
novel method of constraint integration for our goal
of enforcing probabilistic reasoning.

4 Training with Probabilistic Constraints

We aim to develop a model capable of following
probabilistic reasoning steps to infer the probability
of a given hypothesis. These reasoning steps for the
examples in Table 1 are outlined in the Required
Steps of Reasoning to Answer row. In each step, a
combination of facts and a rule results in a new in-
termediate inferred fact until the final hypothesis is
inferred. These steps are formulated as constraints,
and our proposed model is trained to adhere to them
by incorporating them into the loss function. The
Approach row of Table 1 shows examples of the rea-
soning steps’ conversion into constraints in which
the probabilities assigned to facts must follow the
rule definition. For instance, if Fact 1 and Rule 1
result in a new fact, Fact 1’s probability (P(Fact 1)
multiplied by Rule 1’s probability must be equal
to the inferred fact’s probability (P(inferred Fact)).
In the upcoming subsections, we will explain the
process of formulating and utilizing constraints.

4.1 Constraint Integration

We formulate the probabilistic reasoning as obey-
ing a set of constraints derived from probabilistic
inference calculations, based on an assumed prob-
abilistic network. We distinguish between Simple
and Complex probabilistic reasoning patterns based
on their underlying inference network. A proba-
bilistic reasoning pattern is Simple if any deducible
fact can be drawn from it via only a single reason-
ing path. The examples provided in Table 1 are
Simple because “Dave is round.” can be inferred
only from Rule 2 and Fact 3 and Fact 3 can only
be inferred from Fact 1 and Rule 1. On the other
hand, a Complex reasoning encompasses at least
one fact that can be deduced from two or more

different rules (reasoning paths). By altering the
second fact from “Erin is sad” to “Dave is sad”,
we create a Complex example because it enables
inference of “Dave is round” from Fact 2 and Rule
3 as well. Our focus lies primarily on formulat-
ing the simple version of probabilistic reasoning
for defining constraints. The Complex examples
are still incorporated in our datasets and used dur-
ing training and testing. Later, we investigate how
our proposed model can also generalize over the
Complex probabilistic networks.

Given a Simple network, our model ex-
ecutes probabilistic inference for the rule
(p1, P2y ---yPn) — q, Pr by multiplying the prob-
ability of premise facts by the probability of the
rules to obtain the probability of the inferred fact.
Formally, the model should fulfill the constraint,

|P(q) — P(p1) * P(p2) % ... x P(p,) * Pr| =0. (3)

Our unique definition of constraint constitutes the

key novelty of our approach (see Table 1 for Ex-
amples of constraints). To satisfy this constraint,
the left side of the above equation should approach
zero. Note that while this constraint guarantees
adherence to the probabilistic rules, it might not
ensure the best results on the end task accuracy,
and this remains subject to experimentation.

4.2 Training and Inference

Training To generate the constraints for each
dataset example, we use the chains of probabilistic
reasoning that include the paths of inference for
every inferable fact (available in the dataset meta-
data; see section 5). Examples of these constraints
can be found at the bottom of Table 1. We denote
the violation from each constraint as C;, a scalar
value that ranges from O to 1, that is, the left-hand
side of Equation 3. Our training objective centers
on minimizing the violation of these constraints.
We initiate the process with warm-up iterations on
the original QA task to train the model. Follow-
ing this, we continue the training while adding the
constraint violation losses to the primary loss.
There are multiple methods of incorporating con-
straints into loss. We utilize a training algorithm
inspired by (Nandwani et al., 2019), designed for
logical constraints, which we alter to apply to our
probabilistic constraints. This method keeps the
underlying architecture of the model the same, al-
lowing us to transfer this model to other domains.
It also assigns Lagrangian Multipliers A to each
rule, which signifies its difficulty during training.

1618

While there are variations and heuristics for in-
cluding constraint violation in the loss, such as (Li
etal., 2019), we found the employed version a more
principled way of implementing the optimization
objective. We explain our definition of constraints
in this method and our unique way of formulating
them as a part of the loss, but the details of the rest
of the optimization algorithm are not our contri-
bution and, thus, are not discussed here. We refer
the reader to see Appendix A.6 for details of the
training algorithm. As per the methodology out-
lined in (Nandwani et al., 2019), we apply the dual
formulation of the objective as follows,

Loss = TaskLoss + Z Aj * Cy, 4

i=1

where “TasklLoss” denotes the primary task loss
aiming to minimize the predicted probability error
for the hypothesis. The new additional term is the
constraint violation loss used in its dual form with
Lagrangian multipliers, \;, where j is the index
of rule j used in constraint violation i (C;). m is
the number of selected constraints. A; is adjusted
during training and ultimately indicates a rule’s
propensity to violation. Consequently, as training
progresses, the loss function predominantly im-
pacts the rules with the highest accumulated ;.
Inference During inference, the model receives
the context that includes textual rules and facts,
while the formal rules and constraints that were
employed during training, are not available to the
model. We expect the model to learn to obey the
rules that were utilized in the loss function during
training. This ensures the model’s generalizability
and transferability across various domains.

5 Dataset Creation

Motivation RuleTaker-pro is created to address
some of the shortcomings of the RuleBERT dataset.
RuleBERT (Saeed et al., 2021) is built using about
100 rules with fixed probabilities that are applied
to many examples in the dataset. The probabilities
of these rules are extracted from an external source
and remain constant for all examples in the dataset.
However, we want a dataset with example-specific
rules to make the required reasoning more realistic.
For example, the probability of two married people
being cousins in the context of one culture is high,
while it is close to zero in another or, in the medical
domain, the prevalence or mortality of a disease

varies depending on gender or location (Zirra et al.,
2023; Menotti et al., 2023).

Rule Generation We developed RuleTaker-pro
by modifying RuleTaker’s crisp logical rules
(p1,p2, s Pn) — q (With Pr equal to 1.0) to in-
clude probabilities while the rest of the context
remains unchanged (examples shown in the right
side of Table 1). We leverage a Gaussian random
generator to produce probabilities. The mean and
variance of the Gaussian generator depend on the
depth of reasoning to ensure a balanced dataset
with a mean probability of 0.50 and an equal num-
ber of answers above and below 0.5 probability.
After assigning probabilities to the rules, we use
Problog (De Raedt et al., 2007), a probabilistic log-
ical inference tool that facilitates the encoding of
probabilistic facts and rules, to compute the proba-
bility of the hypothesis. The resulting rules are sim-
ilar to RuleBERT rules (p1,p2,...,pn) — ¢, Pr.
See Appendix A.2 for details of data creation and
distribution, which demonstrates its robustness.

Adverbs of Uncertainty In the context, we include
the probability of the rule as an adverb of uncer-
tainty like Usually, Normally, and Seldom with
associated probabilities of 0.90, 0.80, and 0.15,
respectively. A key difference between RuleTaker-
pro and RuleBERT is including instance-specific
rules. For example, the rule “If A is a cousin of
B, then A is a spouse of B.” from RuleBERT will
always have the probability of 0.15 in all the ex-
amples. However, in Ruletaker-pro, the same rule
may hold different probabilities depending on the
adverb assigned to it in different instances. A rule
such as “Usually, if someone is big, then they are
green.” carries a probability of 0.90 in one context,
while “Seldom, if someone is big then they are
green.” carries a probability of 0.15 in some other
context. Given this difference, the model has to
extract the rules from each context and can not use
the information learned about the rules from the
training data. See Appendix A.1 for more details.

Metadata Metadata about the inference of all facts
and their depths are in the dataset and will be used
to create constraints which would be used to train
our model in PCT during training but are not di-
rectly used during training or inference. No-
tably, ambiguity and cycles have already been re-
moved from the RuleTaker dataset for the logical
rules and are not an issue in our dataset, as con-
firmed by our ProbLog solver. In addition, 20% of
examples in RuleTaker had a Complex inference

1619

architecture, a ratio which we will keep as well.

6 Experiments

In this section, we address four questions using
our synthesized RuleTaker-pro and the RuleBERT
datasets: Q1. How do textual rules affect proba-
bilistic reasoning (6.1)? We will also discuss the
baseline results this section. Q2. To what extent
does the baseline language model improve with
PCT concerning probabilistic reasoning and inter-
mediate inferred facts (6.2)? We also include the
ablation study to investigate the impact of various
losses and datasets on our approach using multi-
ple metrics. Q3. Can we transfer the probabilistic
reasoning capabilities of the language model when
pre-trained with PCT(6.3)? Q4. How do LLMs
compare to fine-tuned BERT-based models (6.4)?

Evaluation Metrics. We use several performance
measures following (Saeed et al., 2021). Binary
Accuracy (BA) deems predictions correct if ground
truth and predicted probability both fall under or
over 0.5. The CA25, CA10, and CA1 require the
predicted probability to be in a window of +0.25,
40.10, and 4-0.01 of the ground truth, respectively.
(Saeed et al., 2021) applies CA10 and CA1 metrics
to dataset splits with isolated rules, while BA is
used for all reasoning depths for datasets involving
all the rules. For comparison, we use BA for Rule-
BERT, but we thoroughly evaluate RuleTaker-pro
using all relevant criteria. We use an extra met-
ric, CS, to measure soft Constraint Satisfaction
that deems the constraint (defined in Equation 3)
satisfied if the following inequality holds:

|P(q)—P(p1)*P(p2)*...x«P(pn)*Pr| < Threshold. (5)

This means that the difference between the pre-
dicted and calculated probability of an inferred
fact, based on premise facts, must be less than a
threshold. This threshold is 0.01 for CS1, 0.10 for
CS10, and 0.25 for CS25.

6.1 Q1: Effect of Rules in Textual Format

RuleBERT Firstly, we investigate whether
RoBERTa utilizes the text of the rule in the Rule-
BERT dataset by keeping and removing them from
the context in two different experiments. For exam-
ple, if we remove the textual rules in Table 1, the
input will only include Facts 1 and 2. We report
the results of these two settings in Table 2, where
columns indicate the maximum depth of reason-
ing in training (M1-M5), and rows correspond to

the reasoning depth of testing (D1-D5). We omit
MO as depth 0 does not use any rules, making it
irrelevant to our investigation of PCT. We observe
that the accuracy improves across most models and
depths when the rules’ text is excluded, suggest-
ing that RoBERTa is not using it, and including it
may even add unnecessary complexity. Thus, we
conjecture that in RuleBERT dataset, ROBERTa
can implicitly learn the probabilities of these rules
from the facts and hypothesis in training data alone
without using the textual rules explicitly.

Roberta With Text of the Rules
Ml M2 M3 M4 M5
DI | 76.9 79.8 79.9 70.7 64.9

D2 | 775 77.8 76.6 70.4 65.4
D3 | 78.4 76.9 76.2 78.8 71.6
D4 | 76.2 73.4 72.4 78.2 73.8
D5 | 77.1 73.0 69.6 77.5 78.1

Roberta Without Text of the Rules

DI | 76.8 82.0 82.2 _ 82.1
D2 | 754 78.8 78.2 80.0 78.5
D3 | 77.9 80.6 80.6 82.8 80.6

D4 | 75.0 76.2 77.2 79.6 77.0
D5 | 784 75.2 78.7 79.6 76.7
Roberta + PCT
D1 | 79.1 81.1
D2 | 78.5 71.7
D3 | 79.8 82.2
D4 | 774 81.3
D5 | 80.1

Table 2: BA results of RoBERTa fine-tuned on Rule-
BERT. Columns indicate the maximum depth of rea-
soning in training (M1-M5), and rows correspond to
the reasoning depth of testing (D1-D5). The results
are shown for three different training settings: Roberta
With Text of the Rules, Roberta Without Text of the
Rules and Roberta + PCT.

Our baseline differs from (Saeed et al., 2021).
This discrepancy arises from our approach of freez-
ing 22 transformer layers for faster training and
more fine-tuned hyper-parameters, which yield
superior accuracy at higher depths (We use the
same loss function, Weighted binary cross-entropy).
Moreover, we also train our models with (Saeed
et al., 2021) original setting, and again, the text of
the rules did not yield any positive impact on the
performance (see Appendix A.4.1 for details).
RuleTaker-pro We compare baseline results for
the RuleTaker-pro dataset using Cross-Entropy
(CE) and MSE loss functions for CA1 and CA10
metrics in Table 3. Here, the Weighted binary cross-
entropy was abandoned due to underperformance
on RuleTaker-pro. The models are trained with
maximum depths 1, 2, 3, and 5 (max), as these

1620

are the depths provided in the original RuleTaker
training data. However, the testing is done on all
depths 1 to 5, and their average accuracy is shown
according to CA1 and CA10. CS also averages
over all depths. Though MSE excels in CA10, it
underperforms in CA1 and CS1, especially when
trained at higher depths. Our investigation into mul-
tiple cases indicates that MSE’s low CS1 results
from the minor MSE approximation errors at lower
depths, magnified at higher depths when multiplied
along the chain of probabilities.

Loss Metric M1 M2 M3 Mmax

g | CAL [382 [383 | 204 | 338
CST 1478 | 357 | 162 | 207
CAT | 303 | 322 | 261 | 260

MSE —es7— 252 | 148 | 144 | 129

g | .CAI0_| 464 [496 | 499 532
CSTO | 522 | 449 | 356 | 382
CAIO | 581

MSE =570 1 45.1 | 344 | 328 | 33.3

Table 3: Baseline ROBERTa’s results for the RuleTaker-
pro dataset using Cross-Entropy (CE) and MSE loss
functions for CA1 and CA10 metrics. The models are
trained with maximum depths 1, 2, 3, and 5 (max). The
average accuracy of questions of all depths is shown
according to CA1 and CA10. C'S shows constraint sat-
isfaction as an average over all depths.

Given our goal of achieving exact inference prob-
abilities following the path of reasoning, CA1l is a
more relevant measure for PCT evaluation. Also,
given CE’s higher CA1 and CS1 performance, we
will focus mainly on CE and CA1’s results which
are detailed in Table 4. Detailed results for all
losses and depths for metrics CA1, CA10, BA,
MSE, and L1 are available in Appendix A.10.

Unlike RuleBERT, RuleTaker-pro uses example-
specific rules, requiring the text of the rules to de-
termine the answer. Without rules, the predictions
of our model are not better than random guesses.
In RuleTaker-pro, we initially generated probabilis-
tic rules by including the probability in the text,
such as "With the probability of 15%, if someone
is green, then they are sad". However, we also
considered using adverbs of uncertainty (Farkas
et al., 2010) instead of numbers, changing the rule
to "Seldom, if someone is green, then they are sad".
Adverbs of uncertainty improved the models in Dev
BA by 0.5%-2%, thus we followed this approach
in RuleTaker-pro creation (see Appendix A.1).

RoBERTa

D/M M1 M2 M3 Mmax

Total 38.2 38.3 20.4 33.8
D1 29.6 43.7
D2 36.4 38.2 20.3 32.8
D3 29.3 31.3 14.9 28.3
D4 27.4 28.5 14.0 27.1
D5 24.9 26.7 14.7 28.2
CS1 47.8 35.7 16.2 20.7

RoBERTa + PCT
Total 38.0 39.5 41.1 37.6
D1 46.9
D2 37.4 40.4 42.2 37.0

D3 26.4 329 36.0 324
D4 26.5 31.9 33.9 31.8
D5 23.3 30.4 334 314
CS1 44.9 42.6 34.5 35.2

Table 4: Results of ROBERTa fine-tuned on RuleTaker-
pro with CE loss, according to CA1 metric. Columns
indicate the maximum depth of reasoning in training
(M1-Mmax), and rows correspond to the reasoning
depth of testing (D1-D5). The bottom section shows
the improved results after the incorporation of PCT.

6.2 Q2: Effectiveness of PCT

RuleBERT Table 2 displays the impact of PCT on
improving RuleBERT’s accuracy over the baseline
results of ROBERTa, especially at deeper depths.
These results are for the baseline without the text
of the rules (results with the rule’s text yield sim-
ilar outcomes; see Appendix A.4.2). Using PCT,
the CS25 accuracy of intermediate inferred facts
increases from an average of 50% to over 90%.
Increasing the constraint satisfaction of interme-
diate inferred facts works synergistically with the
accuracy of the model by compelling the model
to reason, thus, enhancing it, especially at deeper
depths. Appendix A.5 includes more details about
inferred intermediate facts.

RuleTaker-pro By deploying PCT in RuleTaker-
pro, we observe a similar trend to RuleBERT. As
illustrated in Table 4, by incorporating exact prob-
abilities into the constraints, PCT improves the
accuracy of CAl in most models. Another place
where PCT shows improved generalization is when
it is used to train the models at lower depths, i.e., 2
and 3, and tested at higher depths. This shows that
the reasoning learned with PCT is transferred to
higher depths. However, at depth 1, due to the lim-
ited number of applicable constraints, the change
in accuracy is minor. Similar to RuleBERT, we
observe a sharp increase of about 50% in the CS in
all the models trained with PCT.

Error Analysis. Our findings indicate that im-

1621

provements in constraint consistency are not al-
ways proportionate to improvements in accuracy.
This discrepancy is prevalent in nearly all tasks
involving constraints, as evidenced by related stud-
ies (Ribeiro et al., 2019). Notably, to maintain
the consistency of outputs, the model might yield
incorrect results. Incorporating PCT encouraged
the model to output lower probabilities than the
baseline model, thus reducing the magnitude of the
constraint loss. For instance, in the model trained at
depth 3 with PCT, the average output probabilities
for all the test dataset questions declined from a
baseline of 52% to 45%. When the model is trained
with depth 1 with PCT, the constraint satisfaction
decreases, likely due to its reduced ability to accu-
rately process questions with a higher reasoning
depth. In short, while the best results are achieved
when both CS and CA increase, a high CS does not
invariably guarantee a corresponding increase in
CA. See Appendix A.8 for detailed examples.

6.3 Q3: Transferability Analysis

Experiments in Section 6.2 highlighted the effec-
tiveness of PCT in transferring reasoning from a
model trained at lower depths to answer questions
at higher depths. Here, we evaluate the transferabil-
ity of PCT from different perspectives.

Transferring Reasoning From Simple to Com-
plex Examples. As highlighted in Section 5, 20%
of the inference questions in RuleTaker-pro have
the complex architecture. Table 5 presents our
models’ performance on simple and complex ques-
tions separately, with the models predictably far-
ing better on the former. Employing CE+PCT in-
creases accuracy for both question types, making
the difference between them negligible. This sug-
gests that the models can do probabilistic reasoning
even in complex instances. However, for MSE and
MSE+PCT models, the difference between the per-
formance over different question types remains sub-
stantial. Using PCT along with cross-entropy loss
in the CE+PCT model was more effective in learn-
ing probabilistic reasoning because PCT directs
the model to output the exact probability values
that do not violate the rules. However, the MSE
model does not see the same benefit due to cascad-
ing errors in the approximated probabilities of the
inferred facts, as discussed in Section 6.2. In the
case of MSE, adding PCT still improves accuracy.

Domain Transfer. We evaluated the transferabil-
ity of the probabilistic reasoning and constraint

CE CE+PCT

M2 M3 Mmax M2 M3 Mmax
S 39 20 34 37
C || 34 18 32 36 38 36

MSE MSE+PCT

M2 M3 Mmax || M2 M3 Mmax
S 33 27 27 36 37 35
C || 24 19 20 27 28 30

Table 5: RuleTaker-pro results on Simple (S) and Com-
plex (C) examples trained with Cross Entropy and
MSE, before after addition of PCT.

satisfaction capabilities to another domain by train-
ing our model on RuleTaker-pro with CE+PCT
and fine-tuning it on RuleBERT. This transfer di-
rection is selected due to the superior constraint
satisfaction of the model that was trained on the
RuleTaker-pro dataset. We compare the RuleBERT
baseline with two transfer learning approaches:
1) Pre-training ROBERTa on the RuleTaker-pro
dataset with a simple CE loss (Augmented Data)
to ensure the improvements are not the result of
increased data alone, 2) Pre-training ROBERTa on
RuleTaker-pro dataset with CE+PCT loss (Transfer
Learning of PCT), aiming to understand the spe-
cific impact of pre-training with PCT. The findings,
detailed in Table 6, show that only lower-depth re-
sults improved by data augmentation, while higher
depths and overall accuracy improved by transfer-
ring from CE+PCT. Transferring from the CE+PCT
also increased CS measures for depths 2, 3, and
5 by about +4, +14, and +7, respectively. In con-
trast, using Augmented Data did not result in any
changes in CS measures.

6.4 Q4: LLM Results

To evaluate LLLMs, we add instructions and ex-
amples (for few-shot settings) to their prompts.
The LLM results for RuleTaker-pro for CA1 are
shown in Table 7. We observe that even GPT3.5
with few-shot examples and GPT4 fall short of
RoBERTa’s accuracy. GPT4 with few-shot is not
included in the table since adding few-shot exam-
ples to GPT4 or using COT did not improve but
hurt our model. A similar outcome is reported
on a different dataset (Shi et al., 2022) where in-
corporation of COT either marginally helped the
model or hurt its accuracy at different depths of
reasoning for multi-hop spatial reasoning (Yang
et al., 2023). We believe that COT can potentially
improve the LLLM results, but it requires a signif-
icant time investment in prompt engineering and

1622

Baseline RoBERTa
M2 M3 M5
D2 | 77.8 76.6 65.4
D3 | 76.9 76.2 71.6
D4 | 73.4 72.4 73.8
D5 | 73.0 69.6 78.1
Augmented Data

D2 | 76.8 80.6
D3 | 759
D4 | 70.4
D5 | 68.0

Transfer Learning of PCT

Table 6: Improvements in the binary accuracy (BA) and
constraints satisfaction of RuleBERT models in Table 2
after transfer learning from RuleTaker-pro. The results
include the Baseline RoBERTa, the Augmented Data
model that is trained on RuleBERT and then finetuned
on RuleTaker-pro and Transfer Learning of PCT.

example selection. LLMs are undermined even
more after we add PCT and improve RoBERTa’s
results. The gap in accuracy becomes even wider
if we use the CA10 metric, where the CA10 ac-
curacies remain almost the same as in CA1. This
indicates that if the LLM cannot predict the exact
probability, its prediction will not be even close
to the correct answer. The results of LLMs on the
RuleBERT dataset are as poor as a random baseline
in all settings, even with the addition of COT for
GPT4. See Appendix A.9 for the details of prompt
instructions, RuleTaker-pro CA10, and RuleBERT
results. We further discuss the underperformance
of LLMs on these and similar datasets in the same
section of the appendix.

RoBERTa | GPT3.5 | GPT3.5* | GPT4
DI 28] |
D2 33 20 26 27
D3 28 23 25 26
D4 27 18 20 17
D5 28 18 20 21

Table 7: LLM results on RuleTaker-pro for CA1 and
CA10 metrics. * indicates using few-shot examples.
The chosen RoBERTa model is M5 trained with CE
since it performs the best regarding CA1.

7 Conclusion and Future Work

Addressing the problem of reasoning over uncer-
tain rules in textual format, we create a new dataset,
RuleTaker-pro, extending the limited resources for
studying this problem. We investigate how uncer-

tain rules can be represented in the text and used
by the learning models. We propose a novel ap-
proach that explicitly uses the rules of probabilistic
reasoning as constraints in the loss. This approach
improves the performance and reasoning of the
backbone language models. Our experiments on
LLM:s have revealed that they struggle to perform
probabilistic reasoning in zero-shot and few-shot
scenarios, despite their impressive capabilities in
solving other NLP tasks. Our future objective is
to develop models that utilize the text of the rules
more effectively and transfer their reasoning abili-
ties to more realistic QA domains featuring uncer-
tainty and more advanced structures of probabilis-
tic reasoning. Also, it is worth exploring prompt
engineering methods for Large Language Models
to ease the use of uncertain text and inference on
them.

Acknowledgements

This project is supported by the National Science
Foundation (NSF) CAREER award 2028626 and
partially supported by the Office of Naval Research
(ONR) grant N00014-20-1-2005 and grant NO0014-
23-1-2417. Any opinions, findings, conclusions,
or recommendations expressed in this material are
those of the authors and do not necessarily reflect
the views of the National Science Foundation nor
the Office of Naval Research. We thank all review-
ers for their thoughtful comments and suggestions.

Limitations

One limitation of our work is the fixed structure of
the rules in our datasets, which limits the model’s
transferability to other domains with more open
forms of explaining probabilistic rules. Another
limitation is that we take a small step to formal-
ize probabilistic reasoning over text. However,
this does not mean the outcome language models
are fully capable of language understanding and
reasoning. Finally, running our models, based on
RoBERTa large while possible, is computationally
expensive, limiting their usage with all our different
settings. This is exacerbated when it comes to uti-
lizing Large Language Models that, in their current
state, are very expensive to use even in zero-shot
and few-shot settings.

1623

References

Akari Asai and Hannaneh Hajishirzi. 2020. Logic-
guided data augmentation and regularization for con-
sistent question answering. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 5642-5650, Online. As-
sociation for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,
Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates,
Inc.

Wenhu Chen. 2023. Large language models are few(1)-
shot table reasoners. In Findings of the Associ-
ation for Computational Linguistics: EACL 2023,
pages 1120-1130, Dubrovnik, Croatia. Association
for Computational Linguistics.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of BERT’s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for
NLP, pages 276-286, Florence, Italy. Association
for Computational Linguistics.

Peter Clark, Oyvind Tafjord, and Kyle Richardson.
2020. Transformers as soft reasoners over language.
CoRR, abs/2002.05867.

Luc De Raedt, Angelika Kimmig, and Hannu Toivonen.
2007. Problog: A probabilistic prolog and its appli-
cation in link discovery. In Proceedings of the 20th
International Joint Conference on Artifical Intelli-
gence, IJICAT’07, page 2468-2473, San Francisco,
CA, USA. Morgan Kaufmann Publishers Inc.

Hossein Rajaby Faghihi, Aliakbar Nafar, Chen Zheng,
Roshanak Mirzaee, Yue Zhang, Andrzej Uszok,
Alexander Wan, Tanawan Premsri, Dan Roth, and
Parisa Kordjamshidi. 2023. Gluecons: A generic
benchmark for learning under constraints.

Richard Farkas, Veronika Vincze, Gyorgy Moéra, Janos
Csirik, and Gyorgy Szarvas. 2010. The CoNLL-
2010 shared task: Learning to detect hedges and
their scope in natural language text. In Proceed-
ings of the Fourteenth Conference on Computational
Natural Language Learning — Shared Task, pages
1-12, Uppsala, Sweden. Association for Computa-
tional Linguistics.

Quan Guo, Hossein Rajaby Faghihi, Yue Zhang,
Andrzej Uszok, and Parisa Kordjamshidi. 2020.

Inference-masked loss for deep structured output
learning. In Proceedings of the Twenty-Ninth In-
ternational Joint Conference on Artificial Intelli-
gence, IJCAI-20, pages 2754-2761. International
Joint Conferences on Atrtificial Intelligence Organi-
zation. Main track.

Zhijing Jin, Yuen Chen, Felix Leeb, Luigi Gresele,
Ojasv Kamal, Zhiheng Lyu, Kevin Blin, Fernando
Gonzalez, Max Kleiman-Weiner, Mrinmaya Sachan,
et al. 2023. Cladder: Assessing causal reasoning in
language models.

Tao Li, Vivek Gupta, Maitrey Mehta, and Vivek Sriku-
mar. 2019. A logic-driven framework for consis-
tency of neural models. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3924-3935, Hong Kong,
China. Association for Computational Linguistics.

Ziyang Li, Jiani Huang, and Mayur Naik. 2023. Scal-
lop: A language for neurosymbolic programming.
Proc. ACM Program. Lang., 7(PLDI).

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kim-
mig, Thomas Demeester, and Luc De Raedt. 2018.
Deepproblog: Neural probabilistic logic program-
ming. In Advances in Neural Information Process-
ing Systems, volume 31. Curran Associates, Inc.

Alessandro Menotti, Paolo Emilio Puddu, Hanna Tolo-
nen, and Anthony Kafatos. 2023. Cardiovascular
mortality in northern and southern european cohorts
of the seven countries study at 60-year follow-up.
Journal of Cardiovascular Medicine, 24(2):96—104.

Swaroop Mishra, Arindam Mitra, Neeraj Varshney,
Bhavdeep Sachdeva, Peter Clark, Chitta Baral, and
Ashwin Kalyan. 2022. NumGLUE: A suite of fun-
damental yet challenging mathematical reasoning
tasks. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 3505-3523, Dublin, Ire-
land. Association for Computational Linguistics.

Yatin Nandwani, Abhishek Pathak, Mausam, and Parag
Singla. 2019. A primal dual formulation for deep
learning with constraints. In Advances in Neural
Information Processing Systems, volume 32. Curran
Associates, Inc.

Engineering National Academies of Sciences,
Medicine, Division of Behavioral, Social Sci-
ences, Education, and Committee on the Science of
Science Communication: A Research Agenda.
2017. Communicating Science Effectively: A
Research Agenda. National Academies Press (US),

1624

https://doi.org/10.18653/v1/2020.acl-main.499
https://doi.org/10.18653/v1/2020.acl-main.499
https://doi.org/10.18653/v1/2020.acl-main.499
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/2023.findings-eacl.83
https://doi.org/10.18653/v1/2023.findings-eacl.83
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
http://arxiv.org/abs/2002.05867
http://arxiv.org/abs/2302.10914
http://arxiv.org/abs/2302.10914
https://aclanthology.org/W10-3001
https://aclanthology.org/W10-3001
https://aclanthology.org/W10-3001
https://doi.org/10.24963/ijcai.2020/382
https://doi.org/10.24963/ijcai.2020/382
https://doi.org/10.18653/v1/D19-1405
https://doi.org/10.18653/v1/D19-1405
https://doi.org/10.1145/3591280
https://doi.org/10.1145/3591280
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://proceedings.neurips.cc/paper_files/paper/2018/file/dc5d637ed5e62c36ecb73b654b05ba2a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/dc5d637ed5e62c36ecb73b654b05ba2a-Paper.pdf
https://doi.org/10.2459/JCM.0000000000001425
https://doi.org/10.2459/JCM.0000000000001425
https://doi.org/10.2459/JCM.0000000000001425
https://doi.org/10.18653/v1/2022.acl-long.246
https://doi.org/10.18653/v1/2022.acl-long.246
https://doi.org/10.18653/v1/2022.acl-long.246
https://proceedings.neurips.cc/paper/2019/file/cf708fc1decf0337aded484f8f4519ae-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/cf708fc1decf0337aded484f8f4519ae-Paper.pdf
https://doi.org/10.17226/23674
https://doi.org/10.17226/23674

Washington (DC). Copyright 2017 by the National
Academy of Sciences. All rights reserved.

Jiaxin Pei and David Jurgens. 2021. Measuring
sentence-level and aspect-level (un)certainty in sci-
ence communications. CoRR, abs/2109.14776.

Stanislas Polu and Ilya Sutskever. 2020. Generative
language modeling for automated theorem proving.
CoRR, abs/2009.03393.

Marco Tulio Ribeiro, Carlos Guestrin, and Sameer
Singh. 2019. Are red roses red? evaluating con-
sistency of question-answering models. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 6174-6184,
Florence, Italy. Association for Computational Lin-
guistics.

Mohammed Saeed, Naser Ahmadi, Preslav Nakov, and
Paolo Papotti. 2021. RuleBERT: Teaching soft rules
to pre-trained language models. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1460—1476, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Swarnadeep Saha, Sayan Ghosh, Shashank Srivastava,
and Mohit Bansal. 2020. PRover: Proof gener-
ation for interpretable reasoning over rules. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 122-136, Online. Association for Computa-
tional Linguistics.

Zhengxiang Shi, Qiang Zhang, and Aldo Lipani. 2022.
Stepgame: A new benchmark for robust multi-hop
spatial reasoning in texts. ArXiv, abs/2204.08292.

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. 2021.
ProofWriter: Generating implications, proofs, and
abductive statements over natural language. In Find-
ings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 3621-3634, Online.
Association for Computational Linguistics.

Mingzhe Wang and Jia Deng. 2020. Learning to prove
theorems by learning to generate theorems. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 18146-18157. Curran Associates,
Inc.

Dingjun Wu, Jing Zhang, and Xinmei Huang. 2023.
Chain of thought prompting elicits knowledge aug-
mentation. In Findings of the Association for Com-
putational Linguistics: ACL 2023, pages 6519—
6534, Toronto, Canada. Association for Computa-
tional Linguistics.

Zhun Yang, Adam Ishay, and Joohyung Lee. 2023.
Coupling large language models with logic program-
ming for robust and general reasoning from text.
In Findings of the Association for Computational
Linguistics: ACL 2023, pages 5186-5219, Toronto,
Canada. Association for Computational Linguistics.

Hanlin Zhang, Jiani Huang, Ziyang Li, Mayur Naik,
and Eric Xing. 2023. Improved logical reason-
ing of language models via differentiable symbolic
programming. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 3062—
3077, Toronto, Canada. Association for Computa-
tional Linguistics.

A.Zirra, S. C. Rao, J. Bestwick, R. Rajalingam, C. Mar-
ras, C. Blauwendraat, 1. F. Mata, and A. J. Noyce.
2023. Gender differences in the prevalence of

parkinson’s disease. Movement Disorders Clinical
Practice, 10(1):86-93.

A Appendix
A.1 Adverbs in RuleTaker-pro

In creation of RuleTaker-pro, we utilize 8 different
adverbs of frequency shown in the Table 8. Using
adverbs of frequency improved the Dev binary ac-
curacy consistently in all depths. The results are
shown in Table 9.

A.2 RuleTaker-pro Generation Algorithm

In order to make a balanced dataset with an equal
number of labels, we generate a random probability
for each rule based on a Gaussian random gener-
ator. Then the adverb with the closest probability
to the generated probability is chosen. The rule
probability generations are generated so that half
of the answers are above and half are below 0.50.
The algorithm to change a logical context to
a probabilistic one is shown in Algorithm 1.
“FIND_ADVERB” function gets a random prob-
ability from O to 100 as input and returns an
adverb to it based on the closest probability
of an adverb in Table 8. In the procedure
“ADD_PROBABLITIES”, a logical context and
question are given as input. Then, in line 6, it
is randomly decided whether or not the final an-
swer to this instance should be above or below 0.50
to ensure balance in the final results of the dataset.
In the rest of the algorithm, until the pre-selected
above or below 0.50 probability for the answer is
achieved, random probabilities would be assigned
to the rules in the context. The random function
that assigns these probabilities is a Gaussian func-
tion with a mean of 40 and std of 60. The random
probabilities are added with the value h, initially
set to depth = 10, and it increases or decreases
slightly to help achieve the desired answer after
reaching failure. h is created based on the depth of
the dataset group to create a balanced average of
answer probabilities. A real example of the created
dataset is shown and analyzed in section A.8.

1625

http://arxiv.org/abs/2109.14776
http://arxiv.org/abs/2109.14776
http://arxiv.org/abs/2109.14776
http://arxiv.org/abs/2009.03393
http://arxiv.org/abs/2009.03393
https://doi.org/10.18653/v1/P19-1621
https://doi.org/10.18653/v1/P19-1621
https://doi.org/10.18653/v1/2021.emnlp-main.110
https://doi.org/10.18653/v1/2021.emnlp-main.110
https://doi.org/10.18653/v1/2020.emnlp-main.9
https://doi.org/10.18653/v1/2020.emnlp-main.9
https://api.semanticscholar.org/CorpusID:248228026
https://api.semanticscholar.org/CorpusID:248228026
https://doi.org/10.18653/v1/2021.findings-acl.317
https://doi.org/10.18653/v1/2021.findings-acl.317
https://proceedings.neurips.cc/paper/2020/file/d2a27e83d429f0dcae6b937cf440aeb1-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d2a27e83d429f0dcae6b937cf440aeb1-Paper.pdf
https://doi.org/10.18653/v1/2023.findings-acl.408
https://doi.org/10.18653/v1/2023.findings-acl.408
https://doi.org/10.18653/v1/2023.findings-acl.321
https://doi.org/10.18653/v1/2023.findings-acl.321
https://doi.org/10.18653/v1/2023.findings-acl.191
https://doi.org/10.18653/v1/2023.findings-acl.191
https://doi.org/10.18653/v1/2023.findings-acl.191
https://doi.org/10.1002/mdc3.13584
https://doi.org/10.1002/mdc3.13584

Adverbs | always | usually | normally | often | sometimes | occasionally | seldom | never
Probability 1.00 0.90 0.80 0.65 0.50 0.30 0.15 0.0
Table 8: The adverb of uncertainty and their respective probabilities that we link to them.
CE M1 M2 M3 Mmax
With adverbs 96.24 | 9497 | 93.12 | 89.71
With probabilities | 95.78 | 93.71 | 92.52 | 88.01

Algorithm 1 Assigning Gaussian-based probabili-
ties to logical rules to crate a probabilistic dataset
while ensuring that the resulting dataset is balanced
with heuristics.

1: function FIND_ADVERB(x)

2: Determine adverb and its associated proba-
bility based on the range of x in Table 8
3: return adverb

4: end function

5: procedure ADD_PROBABLITIES(c,q,d) >c
is context, ¢ is question and d is the depth of
the dataset group (not the instance)

6 Above0.50 < RANDOM(False, True)

7: h < 10 * depth

8 while not Answer is Above0.50 do

9

new_c =c¢
10: for each rule in context do
11: p; = RANDOMGAUSS(40,60)+h
12: adverb = FIND_ADVERB(p;)
13: add adverbd to new_c
14: Answer < PROBLOG(new_c, q)
15: if Above(.50 then
16: h=h+5
17: else
18: h=h-5

19: end procedure

Table 9: Dev BA for models M1 to Mmax trained with
CE loss.

Statistics about the splits, their unique context
and questions, and their balanced average answer
produced by our algorithm are shown in Table 10.

Split | D | Rows | Queries | MA
Train | 1 | 13549 807 0.49
Train | 2 | 16145 810 0.48
Train | 3 | 19960 812 0.48
Train | 5 | 23805 812 0.50
Dev | 1 | 1946 551 0.50
Dev | 2 | 2290 586 0.48
Dev | 3 | 2837 629 0.48
Dev | 5 | 3412 694 0.50
Test | 1 | 3930 690 0.49
Test | 2 | 4592 718 0.48
Test | 3 | 5687 765 0.48
Test | 5 | 6829 789 0.50

Table 10: RuleTaker-pro Dataset Statistics. Split deter-
mines the split of the dataset which could be train, dev
or test. D determines the depth of the question. Rows
shows the total rows and Queries shows the number of
unique queries. MA is the Mean of all Answers which
should be around 0.50 for a balanced dataset.

RuleTaker-pro depth distribution for all depths
and the number of True and False labels are shown
in Table 11.

A.3 ProbLog

ProbLog is a tool that allows us to encode prob-
abilistic facts and rules. Then it will calculate
any queries in the context of the defined facts and
rules, which is exactly what we need for RuleTaker-
pro. For example, Table 1’s right column would be
shown in Problog pseudo code in the Figure 1a.

A more complicated example would occur when
there is more than one way to reach an inferred
intermediate fact. Imagine that the second fact in
the example of Table 1’s right column is “David is

1626

| [M1 | M2 [M3 | Mmax |

DOT || 10626 | 9590 | 7441 | 2616
DOF || 10719 | 9485 | 7650 | 2720
DIT || 6422 | 4613 | 4438 | 3802
DI F || 6452 | 4465 | 4272 | 3692
D2T 0 3441 | 2930 | 2442
D2 F 0 3469 | 2949 | 2520
D3T 0 0 2597 | 2118
D3 F 0 0 2642 | 2026
D4T 0 0 0 1852
D4 F 0 0 0 1858
D5T 0 0 0 1761
D5 F 0 0 0 1734
Table 11: RuleTaker-pro depth distribution for all

depths and the number of True and False labels. M*
shows the distribution for the training set of max depth
*. T and F stand for True and False labels which would
indicate a probability of final answer being higher or
lower than 0.50.

Input: Input:
Dave_is_big . Dave_is_big .
Erin_is_sad. Dave_is_sad.

0.90:: Green :- Big .
0.80:: Round :- Green .
0.15:: Round :- Sad .

0.90:: Green :- Big .
0.80:: Round :- Green .
0.15:: Round :- Sad .
query(Dave_is_round). query(Dave_is_round).
query(Erin_is_round).

Output:
Output:

[(Dave_is_round, 0.762)]
[(Dave_is_round, 0.72),

(Erin_is_round, 0.15)]

(b) Encoding of the Ta-
ble 1’s right column ex-
ample in ProbLog pseudo
code if the second fact is
replaced with “David is
sad.”

(a) Encoding of the Ta-
ble 1’s right column ex-
ample in ProbLog pseudo
code.

sad.”. In that case, the probability that “David is
round” would be 0.762 as shown in Figure 1b.

A4 RuleBERT’s Additional Results
A.4.1 RuleBERT’s Original Setting

The original RuleBERT baseline from (Saeed et al.,
2021) is shown in Table 12. We also train our
models with their settings, both with and without
including the text of the rules. These new results
are shown in Table 13. The text of the rules is still
not useful for the models.

Ml | M2 | M3 | M4 | M5
D1 | 86.0 | 88.4 | 88.7 | 88.9 | 88.9
D2 | 655 | 73.0 | 75.1 | 75.0 | 72.0
D3 | 58.1 | 63.6 | 68.4 | 69.0 | 65.6
D4 | 46.8 | 54.7 | 62.6 | 66.6 | 62.7
D5 | 356 |49.6 | 703 | 785 | 744

Table 12: RuleBERT baseline results trained and tested
on different depths (Saeed et al., 2021).

RoBERTa With Rules’ Text
DM | Ml | M2 | M3 | M4 | M5
D1 76 | 91 | 87 | 91 93
D2 | 76 | 87 | 79 | 83 83
D3 | 67 | 85 | 76 | 76 73
D4 | 66 | 82 | 69 | 63 51
D5 | 53 | 75 | 54 | 34 28
RoBERTa Without Rules’ Text

D1 88 | 90 | 88 | 92 89
D2 | 87 | 88 | 77 | 78 74
D3 | 84 | 8 | 73 | 72 67
D4 | 82 | 80 | 65 | 60 51
D5 | 80 | 68 | 44 | 29 21

Table 13: M shows the maximum depth of the train-
ing data, and D shows the depth of the test data. Here
RoBERTa is trained with the original (Saeed et al.,
2021)’s training setting and parameters.

A.4.2 PCT With Rules’ Text

Since the text of the rules decreases the accuracy
of our models, we removed it in our original PCT
result, but if we do include the text, PCT would
still improve the accuracies as shown in Table 14.

A.5 CA2S Accuracy of Intermediate Inferred
Facts

CA25 Intermediate Inferred Facts for M5 is de-
picted in Figure 2. The model is trained for 6
epochs to show the accuracy over time. PCT ac-
curacy remains consistently over 0.90 while the
baseline models accuracy fluctuates and remains
below 0.60.

A.6 PCT Algorithm Pseudo-Code

The PCT algorithm pseudo-code is shown in Algo-
rithm 2. Lines 2-4 apply the taskloss, and lines 5-13
apply constraints loss and update the \;. The rate
at which); is updated depends on PCT variable
(o) decayed at each iteration’s end.

1627

RoBERTa

Ml [M2 [M3 [M4 | M5
DI | 769|798 | 79.9 | 70.7| 64.9
D2 | 77.5| 77.8 | 76.6 | 70.4 | 65.4
D3| 784|769 | 76.2 | 78.8 | 71.6
D4 | 76.2| 73.4 | 72.4 | 7182 | 73.8
D5 | 77.1| 73.0 | 69.6 | 77.5 | 78.1

RoBERTa + PCT

D1 | 783 {83 77.5 | 77.9 | 67.7
D2 | 78.9| 79.7| 76.6 | 78.0 | 68.9
D3| 79.1| 80.8 | 81.3 | 81.3 | 78.9
D4 | 77.7| 77.0 | 79.0 | 80.8 | 82.6
D5 | 77.8 | 74.1 [841 82.7 [88.6

Table 14: BA results of RoBERTa fine-tuned on Rule-
BERT when the rule’s text is included with and without
PCT. Columns indicate the maximum depth of reason-
ing in training (M1-M5), and rows correspond to the
reasoning depth of testing (D1-D5).

Baseline Model

60%

40%
Accuracy
20%

0 1
PCT Model

2 Epoch3 4 5 6

80%

60%
Accuracy
40%

20%

0 1 2 Epoch3

Figure 2: The CS25 of intermediate inferred facts over
6 Epochs of training for MS5.

A.7 Training Parameres

A.7.1 RuleTaker-pro

To train RuleTaker-pro, we use RoOBERTa Large for
four epochs with a learning rate of 1e — 5. When
we use PCT, the alpha (PCT variable) varies from
1.0 to 0.001 depending on the depth of the training
dataset with higher depths training with smaller
alphas.

A.7.2 RuleBERT

To train RuleBERT, we also use RoBERTa Large
for four epochs, but we freeze the first 22 layers of
the transformer. The learning rate varies between
numbers 1e — 6 for higher depth datasets with more
examples and 2e—6 for lower depth datasets. When
using PCT, the alpha is 0.01 for lower depths (1-3)
and 0.001 for higher depths (4-5). In Table 15, the

Algorithm 2 PCT algorithm
1: for each batch in data do

2 Apply model on batch to get the logits

3 Calculate Taskloss (CE/MSE/L1loss)

4 Backward propagate the loss

5 if Not warm-up iteration then

6: Get the next constraints batch

7 Apply model on constraints batch

8 cl <+ 0 > initialize constraints loss
9: for each constraint do
10: l < abs(q—p1 X pa... X pp X Pr)
11: cl < cl+1x A
12: Aj—axl
13: Backward propagate the cl
14: Take optimizer step,and Reset gradients
15: decay «

effect of alpha on the PCT Dev BA is shown. As
shown, a higher alpha will help the model reach
higher accuracy earlier. However, the best result is
achieved with an alpha of 0.01.

A.8 Error Analysis Examples

We analyze an example shown in Figure 3 that ben-
efited from PCT. Initially, the base model predicted
0.50 for the final answer, which was incorrect, as
the answer should have been 0.85. After training
the model using PCT, the model correctly predicted
0.85. This demonstrates the potential of the PCT
model for incorporating additional constraints in
the inference process. However, it should be noted
that this is an ideal case that may not always be
reproduced in practice. The PCT model can be
adapted to alter the probability of the depth?2 fact to
satisfy the constraint if needed. In other scenarios,
the model may keep the 0.50 prediction for depth
3 and change the prediction for depth 2. In this
case, the model satisfies the constraint, yet the final
prediction is incorrect. In the worst case, the model
may predict 0.0 for all elements and still satisfy the
constraint.

It has been observed that the predicted probabili-
ties of the PCT models are lower on average than
those of the baseline models. This is due to the fact
that lower predicted probabilities make it easier
to satisfy the constraints, and thus, even models
that improve overall accuracy tend to have lower
average predicted probabilities.

1628

Depth3 Epochl | Epoch2 | Epoch3 | Epoch4 | Epoch5 | Epoch6
Baseline 49 70 77.95 75.85 | 70.925 | 72.62
PCT with a = 0.1 49 79.15 78.42 76.9 77 64.51
PCT with a = 0.01 49 79.32 80.87 79.32 78.17 78.57
PCT with o = 0.001 49 70.90 78.55 80.85 78.55 78.75

Table 15: Accuracy obtained using PCT during training with different hyper-parameter (o) for depth 3 of reasoning
for 6 epochs on RuleBERT dataset. Normally we train our models for 4 epochs, but here we use 6 epochs to observe

the learning process better.

Context:

The cow is round. Always, If something is nice and round then it
does not visit the lion. The mouse visits the cow. The rabbit does
not see the cow. The lion is round. The rabbit is big. The cow likes
the rabbit. The lion likes the rabbit. Always, If something is big and
it does not see the rabbit then it visits the mouse. The mouse is
green. Usually, If something visits the lion then it visits the
mouse. Always, if something is green, then it visits the lion.
Always, if the rabbit is big, then the rabbit is green.

Hypothesis:
The rabbit visits the mouse. (Depth 3), P3 = 85%

Required Intermediate Facts:

The rabbit visits the lion. (Depth 2), P2 = 100%
The rabbit is green. (Depth 1), P1 = 100%

The rabbit is big. (Depth 0), PO = 100%

Base model:

The rabbit visits the mouse. (Depth 3), P3 = 50%

The rabbit visits the lion. (Depth 2), P2 = 100%
Constraint:

P2*85% # P3 (violated Constraint and Incorrect Answer)

PCT Model The Ideal Case:

The rabbit visits the mouse. (Depth 3), P3 = 85%

The rabbit visits the lion. (Depth 2), P2 = 100%
Constraint:

P2*85% = P3 (Satisfied Constraint and Correct Answer)

PCT Model The Problem Case:

The rabbit visits the mouse. (Depth 3), P =50 %

The rabbit visits the lion. (Depth 2), P =59 %
Constraint:

P2*85% = P3 (Satisfied Constraint and Incorrect Answer)

PCT Model The Worst Case:

The rabbit visits the mouse. (Depth3),P=0%

The rabbit visits the lion. (Depth 2),P=0%

Constraint:

P2*85% = P3 = 0 (Satisfied Constraint and Incorrect Answer)

Figure 3: In the given example, the fact “The rabbit
visits the lion.” can be inferred from the context with
a probability of 1.00 at depth 2. Both the base model
and the PCT model accurately predicted the probability
of this fact. However, only the PCT model took into
account the additional bold rule in the text, which led
to an 0.85 probability for the hypothesis.

A.9 LLM Prompt Instructions and
Additional Results

To effectively evaluate LLMs like, we adjust our
approach with our datasets to make them suitable
for zero-shot and in-context settings for generative

models. These adaptations involved adding a text
explaining the task before the context. For Rule-
BERT, we use the following explanation, “Answer
the following logical probabilistic question with
only one word, True or False.” and add the proba-
bility of the rules to their text. For RuleTaker-pro,
we use “Answer the following logical probabilistic
question in the format .##, which is the probability
of the question asked rounded to 2 decimals, for
example, .13%”. After this text, we provide the
context and pose the hypothesis as a question.

To test RuleBERT in LLMs, we included the
probability of the rules in the text; Otherwise, the
model has no way of extracting them. The results
are shown in Table 16.

Model | GPT3.5 | GPT3.5* | GPT4
Depthl 19% 43% 29%
Depth2 58% 53% 46%
Depth3 58% 58% 60%
Depth4 51% 56% 46%
Depth5 56% 43% 58%

Table 16: RuleBERT BA results are show for GPT3.5
and GPT4. * indicates few-shot setting.

RuleTake-pro results for CA1 and CA10 are
compared in Table 17. The only model that im-
proves with regard to an increase in the threshold
of the final answer is ROBERTa. This suggests that
if the LLM can now predict the final answer, it
would not predict anything close to it.

As we mentioned previously COT did not im-
prove our models. Normally, one would expect
CoT to always improve the results by adding a lit-
tle extra reasoning and explanation for the LLM,
but here it does not do the same for the following
reasons: 1)The reasoning here is very complex and
may require a combination of up to 5 rules and five
facts, which are explained with long text to infer the
final answer 2) In addition to the previous reason,
the text of the rules is very large, and the context
includes random rules mixed with useful rules that

1629

CAl

RoBERTa | GPT3.5 | GPT3.5*% | GPT4

CA10

Table 17: LLM results on RuleTaker-pro for CA1 and
CA10 metrics. * indicates using few-shot examples.
The chosen RoBERTa model is M5 trained with CE
since it performs the best regarding CA1.

are not needed to answer the final question. 3)The
task requires math and number extraction, which
LLMs historically struggle with.

(Shi et al., 2022) is another dataset who suffers
from the first two reasons and as a results dose not
improve with COT. Given these complexities, the
provided instructions and examples in COT that we
initially tried ended up actually hurting the model
counterintuitively. For example, in some cases, the
model would try to imitate the exact solutions in
the few-shot examples to answer the questions and
hallucinate the probabilities that don’t exist in the
text in its reasoning. Given these complexities, in
these datasets, CoT is not just a baseline model and
needs significant careful prompt engineering to be
useful.

A.10 Additional RuleTaker-pro Results

In Table 18, The binary results for RuleTaker-pro
trained with MSE and CE is shown.

Additional detailed baseline and PCT results of
RuleTaker-pro are shown in Tables 19 and 20.

1630

’ ‘ CE Loss MSE Loss

BA Ml M2 M3 Mmax Ml M2 M3 Mmax
Total | 76.93 82.65 | 88.74 | 91.05 | 76.19 | 84.84 | 87.73 | 91.39
D1 97.19 | 94.85 | 92.18 | 9339 | 9728 | 9592 | 92.64 | 94.33
D2 75.58 | 89.11 91.26 | 91.26 | 7441 90.91 91.88 | 91.74
D3 68.19 | 77.35 | 89.42 | 91.00 | 42.88 | 81.93 88.59 | 90.34
D4 65.16 | 71.35 84.93 88.70 | 38.04 | 74.38 | 81.82 | 89.17
D5 58.61 65.05 | 80.96 | 88.31 57.70 | 66.96 | 76.43 88.21

MSE | Ml M2 M3 Mmax Ml M2 M3 Mmax
Total | 0.1574 | 0.1278 | 0.0965 | 0.0716 | 0.4693 | 0.6585 | 0.6298 | 0.0716
D1 | 0.0866 | 0.0996 | 0.1076 | 0.0983 | 0.1992 | 0.0173 | 0.0190 | 0.0983
D2 | 0.1939 | 0.1261 | 0.1065 | 0.0876 | 0.1902 | 0.0257 | 0.0247 | 0.0876
D3 | 0.2352 | 0.1826 | 0.1149 | 0.0818 | 0.1915 | 0.0698 | 0.0313 | 0.0818
D4 | 0.2511 | 0.2003 | 0.1281 | 0.0710 | 0.1910 | 0.0982 | 0.0423 | 0.0797
D5 | 0.3082 | 0.2436 | 0.1428 | 0.710. | 0.1963 | 0.1237 | 0.0618 | 0.0710

L1 Ml M2 M3 Mmax Ml M2 M3 Mmax
Total | 0.2505 | 0.2216 | 0.1903 | 0.1664 | 0.3628 | 0.1055 | 0.0798 | 0.1664
D1 | 0.2004 | 0.2138 | 0.2236 | 0.2175 | 0.3693 | 0.0525 | 0.0581 | 0.2175
D2 | 0.3118 | 0.2434 | 0.2243 | 0.2076 | 0.3638 | 0.0770 | 0.0786 | 0.2076
D3 | 0.3528 | 0.3010 | 0.2316 | 0.1972 | 0.3642 | 0.1570 | 0.1032 | 0.1972
D4 | 03672 | 0.3182 | 0.2443 | 0.1960 | 0.3659 | 0.2090 | 0.1326 | 0.1960
D5 | 0.4136 | 0.3519 | 0.2495 | 0.1761 | 0.3737 | 0.2480 | 0.1627 | 0.1761

Table 18: The Binary accuracy, MSE and L1 of the baseline model trained and tested on the RuleTaker-pro dataset
at different depths.

CE (CAl) MSE (CA1)
D/M M1 M2 M3 | Mmax | Ml M2 M3 | Mmax
Total | 38.21 | 38.34 | 20.45 | 33.89 | 30.39 | 32.26 | 26.17 | 26.04
D1 56.03 | 52.71 | 29.63 | 43.77 | 50.46 | 49.48 | 38.15 | 37.26
D2 | 3640 | 38.28 | 20.31 | 32.87 | 26.49 | 31.13 | 25.52 | 28.43
D3 | 2930 | 31.30 | 1498 | 28.39 | 18.81 | 22.06 | 18.98 | 19.90
D4 | 2749 | 28.53 | 14.03 | 27.11 | 18.54 | 21.37 | 17.79 | 17.32
D5 | 2497 | 26.78 | 14.70 | 28.29 | 19.83 | 21.14 | 19.33 | 15.50
CS1 | 47.88 | 3579 | 16.22 | 20.78 | 25.24 | 14.88 | 14.47 | 12.97
CE (CA10) MSE (CA10)
D/M Ml M2 M4 | Mmax | Ml M2 M3 | Mmax
Total | 46.45 | 49.69 | 49.95 | 53.25 | 58.15 | 62.75 | 66.67 | 74.80
D1 61.56 | 59.55 | 53.41 | 56.17 | 91.76 | 84.45 | 80.94 | 82.81
D2 | 4576 | 52.08 | 52.42 | 51.59 | 53.60 | 69.97 | 77.25 | 77.32
D3 38.88 | 44.87 | 48.37 | 51.45 | 42.88 | 51.20 | 61.44 | 71.60
D4 | 37775 | 4245 | 47.36 | 51.97 | 38.04 | 46.51 | 51.50 | 69.39
D5 33.63 | 38.67 | 43.80 | 53.07 | 32.62 | 37.05 | 43.30 | 63.64
CS10 | 52.24 | 4497 | 35.67 | 38.25 | 45.13 | 34.49 | 32.86 | 33.34

Table 19: The accuracy of the baseline models trained and tested on the RuleTaker-pro dataset. The rows show
different test depths (depths 1 to 5). Total indicates the weighted average accuracy of all depths, and CS* shows
the constraint satisfaction at the indicated thresholds. The best results for each depth are in bold.

1631

CE+PCT (CAl) MSE+PCT (CA1)
DM | MI | M2 | M3 | Mmax | M1 | M2 | M3 | Mmax
Total | 38.0 | 39.5 | 41.1 | 37.6 | 37.4 | 347 | 36.4 | 343
DI | 533 | 50.8 | 505 | 46.9 |56.50 | 49.8 | 52.6 | 37.6
D2 | 374 | 404|422 | 37.0 | 3599 | 342 |38.1| 338
D3 | 264 | 329|360 | 324 | 259 | 258|265 | 326
D4 | 265 | 31.9(339| 31.8 | 24.1 | 255|249 | 316
D5 | 233 | 304 |334| 314 | 220 | 24.0 | 240 | 33.1
CSI | 449 | 426|345 352 | 205 | 193 | 154 | 13.0
CE+PCT (CA10) MSE+PCT (CA10)
D/M | MI | M2 | M3 | Mmax | MI | M2 | M3 | Mmax
Total | 46.6 | 50.8 | 52.5 | 529 | 589 | 633 | 672 | 68.7
DI | 59.7 | 578 | 505 | 57.9 | 924 | 827 | 835 | 709
D2 | 4778 | 514 | 422 | 51.8 | 57.7 | 73.2 | 76.1 | 682
D3 | 392 | 474 |505| 500 | 41.5 | 522 | 604 | 68.6
D4 | 362 | 47.0|50.1| 504 | 36.1 | 473|514 | 70.0
D5 | 35.1 | 470|486 | 498 | 340 |38.1 | 446 | 638
CSI10 | 497 | 473 | 456 | 468 | 49.6 | 36.0 | 349 | 33.7

Table 20: RuleTaker-pro results trained with PCT. The rows show different test depths (depths 1 to 5). Total
indicates the weighted average accuracy of all depths, and CS* shows the constraint satisfaction at the indicated
thresholds.

1632

