ReplayAR: A Tool for Visual Evaluation of Mixed
Reality

Zijian Huang®, Cary Shu”
{zijianh,caryshu}@umich.edu
University of Michigan
Ann Arbor, Michigan, USA

Abstract

In world-locked mixed reality (MR), virtual content is locked
in place with respect to the real world. Pose estimation is a
key component to create world-locked MR experiences by
estimating the device’s position and orientation in order to
render the virtual content accordingly. Current methods of
evaluating world-locked MR include user studies, which are
time consuming, and absolute trajectory error (ATE), which
does not directly represent what is shown on the user’s dis-
play. In this work, we propose REPLAYAR, a tool that can
replay user movement traces and output the corresponding
visualizations (renderings) of the MR display. REPLAYAR can
be used to compare renderings from different MR pose es-
timation methods side by side, using our proposed Visual
Difference metric. We implemented REPLAYAR on a Hololens
2 MR headset and used it to evaluate open and closed-source
pose estimation methods on standard datasets and our own
collected traces. The results suggest that Visual Difference
better reflects what is shown on the MR display compared to
ATE. We hope that REPLAYAR can encourage reproducible
evaluation of world-locked MR, and towards this, we release
the open-source code.
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1 Introduction

World-locked mixed reality (MR) is an important class of
mixed reality experiences. For example, in an MR furniture
placement app [11], users expect the virtual furniture to re-
main locked in place as the user moves around the real world,
viewing the virtual furniture from different angles and loca-
tions in the room. To support world-locked MR experiences,
an MR device typically senses the environment using its cam-
eras and inertial measurement unit, runs a pose estimation
method to determine its pose (i.e., position and rotation), and
renders the virtual content accordingly on its display. For
example, if the pose estimation method determines that a
user is far away from a virtual sofa placed in the corner of the
room, the virtual sofa will appear smaller on the display. Com-
mon pose estimation algorithms include marker-based (e.g.,
ArUco markers [6]) or marker-free (e.g., ORB-SLAM3 [2])
approaches. In this work, we focus on marker-free pose esti-
mation methods because they are common on commercial
MR devices such as smartphones, Microsoft Hololens 2, and
the Apple Vision Pro.

Evaluating world-locked MR is challenging and, and there
are currently two main methods, as illustrated in Fig. 1. Eval-
uation methods from the HCI community include user ques-
tionnaires [9, 12]. While user studies are the gold standard,
they are time-consuming to run and can be difficult to re-
produce, hindering rapid prototyping and iterative improve-
ments of world-locked MR. Evaluation metrics from the ro-
botics community (where marker-free pose estimation is
common), include Absolute Trajectory Error (ATE) [2]. ATE
measures the distance between two camera pose trajectories
(e.g., the ground truth and estimated pose from a candidate
SLAM method); however, it misses a key aspect of MR — what
is rendered in the field of view — because it does not directly
measure camera orientation, only position. In other words,
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Figure 1: To evaluate MR, user questionnaires are slow
and absolute trajectory error is hard to interpret and
may not reflect user experience. REPLAYAR’s render-
ings show what the user actually sees, and can be used
to derive metrics like our proposed Visual Difference.

ATE could be very good (close to 0), but the MR display could
be very different from the ground truth if the device thinks it
faces a different direction. Furthermore, it is hard to interpret
ATE, which is commonly reported in meters, and understand
how this maps to what the users see. Overall, neither of these
methods (user questionnaires or ATE) allows visualization
of what the MR user sees.

To overcome this, we propose a tool, REPLAYAR, to visu-
alize renderings of an MR experience based on previously
collected user traces. REPLAYAR enables researchers and de-
velopers to compare the outputs of different pose estima-
tion methods or user movement patterns. The comparison
can be done quantitatively using the Visual Difference met-
ric that we propose, which scores the difference between
two renderings from the same MR experience (e.g., to com-
pare two pose estimation methods from the same MR user
trace). We implement REPLAYAR on a Hololens 2 and use
it to evaluate several pose estimation methods; namely, the
open-source ORB-SLAMS3 and the closed-source pose esti-
mation method of Hololens 2. We evaluate these methods
using our own traces collected by a Hololens 2 as well as on
a standard dataset. To encourage reproducible evaluation of
world-locked MR by others, we release our tool, data, and
data collection methodology to the community!.

In summary, the contributions of this paper are as follows.

e We build the REPLAYAR tool, which takes an MR user
trace as input and outputs the resulting rendered holo-
grams on a Hololens 2.

e We propose an evaluation metric, Visual Difference, to
quantify the differences between two MR renderings.

e We use REPLAYAR to compare two popular pose esti-
mation methods (ORB-SLAM3 and the default method

Ihttps://github.com/mavens-lab/replayAR
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Figure 2: System overview. REPLAYAR enables the MR
headset (a Hololens 2 in our implementation) to replay
input traces collected from an MR headset and visual-
ize the output renderings.

(1) Input traces

on Hololens 2 with stereo cameras), and find there are
significant differences.

e We collect our own user movement traces on a Hololens
2,in addition to evaluating on a standard public dataset.

e Our results suggest that both rotation error and trans-
lation error contribute to the final visual quality in
terms of Visual Difference, which is not captured by
ATE alone.

2 REePLAYAR Design

2.1 Data Processing Pipeline

The goal of REPLAYAR is to visualize what would be displayed
on the MR headset from a trace of the user’s movements,
and record the visualized rendering for further analysis via
the Visual Difference metric. We break this down into the
processing pipeline shown in Figure 2:

(1) Input traces: The headset records a data trace con-
sisting of sensor readings from cameras and an IMU.
Optionally, the headset’s estimated pose can also be
saved for later comparison.

(2) Pose estimation: A pose estimation method (e.g.,
ORB-SLAM3) receives the input trace and estimates
the poses of the headset over time.

(3) Rendering: The rendering module receives the es-
timated poses, renders the virtual objects in the MR
scene for every frame, and sends the rendered frames
to the headset for display. The example outputs are
shown in Figure 3.

(4) Visual Difference: The system saves the visualized
frames for later comparison with another trace using
our proposed metric, Visual Difference.

In our implementation, we choose the Hololens 2 as be-
cause it is widely commercially available, has a multitude of
sensors for accurate pose estimation, and reasonably open re-
search APIs enabling collection of raw sensor data. We specif-
ically utilize the Holographic Remoting functionality [18],
which consists of a Player app running on the headset and a
Remote app running on a desktop computer or a server. This
provides an ideal interface to visualize the results because
the majority of the replay functionality, which is compu-
tationally heavier (pose estimation and rendering in Steps
2 and 3) can be done on a computer, and the final results
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Trace 5 Ground Truth

Trace 5 ORB-SLAM3

Figure 3: Example outputs from REPLAYAR (corre-
sponding to trace 5, use case 2 in §3). The differences be-
tween the ground truth (left) and ORB-SLAMS3 pose es-
timation method (right) are shown. The colorful cubes
are the virtual objects, and a black background is ren-
dered instead of the real world environment for clarity.

streamed to the headset for display. The example results from
the headset are shown in Figure 3. Note that we placed many
virtual objects in the environment so that a subset of them
will always be visible regardless of the pose of the user.

Challenge: Replaying camera movements. In order to
recreate the MR renderings in step (3) above, the movements
of the virtual camera in the scene must be replayed following
the user movement trace, so that the appropriate holograms
are rendered with the right orientation and position. How-
ever, a key challenge we faced is that we could not modify
the device (camera) pose of the Hololens during real-time
operation. This is because the camera pose values are written
directly by the MR operating system, based on sensor inputs,
and thus cannot be modified by developer code. We found
this to be true for the Hololens 2 and other headsets such
as the Quest Pro. Therefore, to recreate the rendering, we
came up with a “mirroring” solution: we simulated the user’s
movement by moving the virtual content instead, resulting in
the same visualization. For example, if the user trace showed
the camera moved to the left by 2 meters, we instead moved
the virtual content to right by 2 meters.

The detailed mathematical operations behind this idea are
as follows. Let R be a 3 X 3 rotation matrix, t be a 3x 1 transla-
tion vector, and K is the total number of frames in a trace. We
are given trajectory a with poses 7% = (Rg‘, tg‘), e (RI"é, tl”(’),
along with a comparison trajectory 7#. The initial pose of
the headset is (R?MD, thMD ) and the pose of a virtual object

(Rgbj, tgbj ). To move a virtual object so that the rendering
result is the same as if the user had moved according to the
trajectory %, for frame k, we compute the virtual object’s
pose as:

-1 HMD HMD , obj
1= (RY)T'RE (150 + Ryt — tf + 1) (1)

RY = (RY)'RERIMPRS )

Essentially, these equations find the inverse transformation
of the user’s movements in order to apply them to a virtual
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object. The equations account for the effect of different head-
set pose initializations each time after the device restarts,
the virtual object’s initial pose in the system and in the tra-
jectory, and counteracts the translation and rotation of the
user’s movements through subtraction and the matrix in-
verse operations. These calculations are implemented in the
rendering module in step (3) of Figure 2. More details are
provided in Appendix A.

2.2 Quantifying Visual Differences

Next, we discuss how to quantify the differences between two
renderings, in Step (4) of Figure 2. We propose two variants
of our Visual Difference metric below.

Visual Difference (pixels). We define Visual Difference
(pixels) as:

M

Z 1 4
P&, #P..
- ijk ijk

®)

where Plf"jk is value of pixel (i, j) in frame k from trace «,

M=

K

1

Visual Diff ixels) = ——
isual Difference (pixels) KNMZ

after the images are converted to grayscale. This equation
counts the number of pixels that are not the same in two
images, summed across all frames, and normalized by the
total number of frames and pixels. A lower value means that
the two sequences of MR renderings are similar to each other.
Visual Difference (IoU). One issue with Visual Differ-
ence (pixels) is that it is sensitive to the user’s distance to
the virtual objects. For example, a larger distance and hence
a small virtual object will cause a smaller values of the Vi-
sual Difference (pixels), because it is normalized to the total
number of pixels in the frame. Therefore, we propose an
alternative measure of Visual Difference based on the IoU of
the virtual objects. Specifically, we define:
K a B
Visual Difference (IoU) = 1 Z A N A

o (4)
K acu Al

where A}’ is the area of virtual objects in frame k of trajectory
a. A higher value means the two sequences of MR renderings

are similar to each other.

3 Experiments and Results

We consider three evaluation scenarios for REPLAYAR, sum-
marized in Table 1. In Scenario 1, the goal is to show the basic
performance of REpLAYARand to show that it can accurately
replay MR traces. In scenario 2, the goal is to visualize the MR
renderings on a standard dataset, comparing the renderings
from an imperfect pose estimation method (ORB-SLAM3) to
the ground truth. In sceanrio 3, the goal is to compare two
pose estimation methods, that of ORB-SLAM3 and the de-
fault pose estimation method running on a Hololens 2 (which
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Scenario | Input data Pose estimation method Visualization Goal
1 Custom Hololens | Hololens 2 Live vs. REPLAYAR | Accurately replay AR traces at a later time.
2 EuRoC ORB-SLAMS3 vs. ground truth | REPLAYAR Visualize MR results from a SLAM pose estima-
tion method.
3 Custom Hololens | ORB-SLAM3 vs. Hololens 2 ReEPLAYAR Compare MR visualizations from different pose
estimation methods.

Table 1: Summary of evaluation scenarios and their goals.
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Figure 4: User movement patterns in our own Hololens
dataset. The initial distance to the virtual cube is ap-
proximately 2 meters.

is closed source). We evaluated the scenarios qualitatively
by watching their replay videos, as well as quantitatively by
computing their Visual Difference.

3.1 Experimental Setup

Datasets. To show the effectiveness of our method, we eval-
uate our method on the following two datasets.

e EuRoC [1]: The EuRoC dataset is one of the most pop-
ular benchmark datasets for SLAM-based pose estima-
tion. It is collected in 2 different scenarios (Machine
Hall and Vicon Room) with varying difficulty levels by
a drone equipped with stereo cameras and an IMU sen-
sor. A Leica MS50 laser tracker or a Vicon 6D motion
capture system provide the ground truth pose.

o Custom Hololens dataset: Although there are many
excellent datasets to evaluate SLAM methods (e.g., [1, 7,
14, 21]), they are insufficient for MR evaluation because
they do not reflect the real environment captured by
the headsets. Therefore we collected our own dataset
using the HoloLens 2 to record sensor data [5] and
also log the poses estimated by the headset at the same
time. The dataset consists of 5 trajectories of controlled
movements, with Traces 1-3 illustrated in Figure 4.
Traces 4 and 5 consist of more complicated movements
recorded in an office environment, moving between
tables and a corridor with a longer walking distance.

Evaluation Metrics. To evaluate the performance of
open-source pose estimation algorithms like ORB-SLAM3

Trace 1 | Trace 2 | Trace 3
Visual Difference (pixels) | 0.030 0.036 0.069

Visual Difference (IoU) 0.27 0.68 0.89
Table 2: Scenario 1: Comparison between live recording
and REPLAYAR on traces from our custom Hololens
dataset. The Visual Difference generally suggests a
good degree of agreement between the live and offline
replay.

against commercial SLAM algorithms such as the one de-
ployed in HoloLens 2 and show that ATE is not the ideal
metric in general MR scenarios, we compute the ATE and Vi-
sual Difference between them. Additionally, we also compute
the rotation error as a helper metric to further understand
the results.

e Absolute Trajectory Error (ATE): ATE is a popu-
lar way to evaluate a pose estimation method. It first
requires two aligned pose trajectories 7% and 7, for ex-
ample aligned using the Horn method [10]. These two
trajectories could be the ground truth trajectory and
the trajectory from another pose estimation method.
The ATE is the summation of the I, distances between
each pair of positions in the two trajectories.

¢ Rotation Error: Compared to ATE, rotation error re-
ceives less attention, but it is actually very important
given that rendering issue and MR sickness is highly
affected by rotation error [15]. For rotation matrix R;
and rotation matrix Ry, we compute the rotation er-
ror as the angle between these two rotation matrices,
which is arccos(trace(RyR;1)).

e Visual Difference (pixels): Our proposed metric, de-
fined earlier in (3).

¢ Visual Difference (IoU): Our supplementary metric,
defined earlier in (4).

3.2 Scenario 1: Accurately replay MR traces

The goal in Scenario 1 is to evaluate whether the offline
replay from REPLAYAR renders the same images as in the
live experiment. To test this, we recorded a live trace on
the Hololens 2, then replayed the same trace using REpLA-
YAR. Then, using a video recorded from a remote view of
the Hololens display during both the live run and replay,
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Figure 5: Scenario 2: Compared to the ATE and Rota-
tion Error, Visual Difference (IoU) can more accurately
capture the rendering error caused by SLAM pose esti-
mation, as it accounts for rotation error. Traces sorted
by increasing ATE.

the Visual Difference between the live run and replay was
calculated.

The results of these trials are shown in Table 2. The Vi-
sual Difference (pixels) is low, close to 0, indicating good
agreement between the live trial and the replay. Similarly,
the Visual Difference (IoU) is fairly high. When we watched
the videos, Trace 3 had the highest agreement between live
operation and offline replay, suggesting that the IoU variant
of Visual Difference most accurately captures user percep-
tion. However, a formal user study is needed in the future to
fully evaluate this.

During watching the videos, we noticed that the replays
are not always perfectly identical to the live run. This is
borne out in Table 2, as the IoU is not exactly 1 or the pixel
difference exactly 0. We hypothesize that this is due to the
Hololens OS tweaking the hologram poses slightly during
the live run. Specifically, lower Visual Difference (pixels) is
observed when there is greater change in depth from the
initial position during the trace; the change in depth may
change the focus point of the Hololens and cause misplaced
virtual content, as an artifact of the Microsoft Mixed Real-
ity Capture [19]. However, these tweaks by the OS are out
of our control, and we believe them to be negligible upon
examining the videos. Overall, the results suggest that
REPLAYAR replays traces accurately, with slight dis-
crepancies due to run-time tweaks by the Hololens OS.

3.3 Scenario 2: Visualize MR results from a
SLAM pose estimation method

In Scenario 2, we seek to evaluate our hypothesis that ATE is
not the ideal metric in MR environments. To do so, we calcu-
late the ATE, rotation errors, and Visual Difference between
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REPLAYAR’s renderings from the ground truth trajectory vs
the ORB-SLAMS3 estimated trajectory. The results are shown
in Figure 5. From Figure 5, we can see that even though the
difficulty level of the EuRoC MHO01 to MHO5 traces is gener-
ally from the easiest to the hardest, and is sorted that way on
the horizontal axis of the plot, the Rotation Error and Visual
Difference do not correlate well with ATE. Instead, Visual
Difference is actually worse in the MHO03 and MHO5 traces,
although ATE is increased compared to MHO01 and MH02.
We believe this is due to the high rotation error in MH03 and
MHO5. In other words, the translation error (ATE) and the
rotation error both contribute to the differences between the
final renderings (represented by Visual Difference), not just
ATE alone.

Considering the relative ATE and Rotation Error between
the traces in case 2, we can see that the rotation error corre-
lates inversely with IoU when the ATE is close in general (e.g.
MHO02 vs MH03), while the ATE also correlates inversely with
IoU when the rotation error is close (e.g. MH03 vs MHO5).
We hypothesis that Visual Difference (IoU) is better than
Visual Difference (pixels) due to the bias caused by the depth
issue in Visual Difference (pixels).

The MH04 trace is an exception, as it has the highest ATE
and moderate Visual Difference values, bucking the trend
of negative correlation between ATE and Visual Difference.
Upon examining the replay videos, we observed that the
device was mostly stationary at the beginning of the trace,
contributing to the high IoU value and skewing the results of
this specific trace. Generally, the results suggest that high
rotation errors contribute to worse Visual Difference,
which ATE alone cannot capture.

3.4 Scenario 3: Compare AR visualizations
from different SLAM methods

In Scenario 3, the goal is to test whether different pose estima-
tion methods produce substantially different results. These
experiments were carried out with our custom Hololens
dataset as input, fed into open source SLAM (ORB-SLAM3)
vs. commercial SLAM (on a HoloLens 2), and the resulting
renderings from REPLAYAR compared. An example trace is
shown in Figure 6. The Visual Difference (pixels) changes
over time, indicating that the two pose estimation methods
produce different visualizations despite receiving the same
raw sensor data. In particular, the lower values correspond
to when the user is farther from the virtual object and the
object is smaller in the field of view. The intermediate values
during the middle of the trace are because there are few fea-
tures in the environment at that time, causing noisier pose
estimation and hence less accurate final renderings.

The evaluation metrics for the five traces are plotted in
Figure 7. From Figure 7, we can see that the Visual Differ-
ence (both pixel and IoU) is significant even though the
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Figure 6: Time series of Visual Difference (pixels) for
trace 2 in case 3. The values change over time, indi-
cating that the two pose estimation methods produce
different visualizations despite receiving the same sen-
sor inputs.
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Figure 7: Scenario 3: There is significant Visual Dif-
ference between traces, and ATE can only be a good
measure when there is less rotation error, such as Trace
2. Traces sorted by increasing ATE.

translation difference (i.e., ATE) between the pose trajecto-
ries estimated by the two SLAM pose estimation methods is
small, for example in traces 2 and 3. The significant differ-
ence in Trace 1 is because this trace is mainly moving around
a center which is mostly caused by rotation difference; in
the contrary, the trace 4 and 5 is relatively a larger map and
mostly movements are translation, which means that most of
the visual difference is caused by translation difference. The
results suggest that there is still a significant difference
between commercial and open-source pose estimation

Zijian et al.

methods. Overall, these results demonstrate that the vi-
sual effect in MR systems is complicated and it is not
sufficient to compare the translation difference / error
only.

4 Related Work

MR Evaluation. A large proportion of the MR literature fo-
cuses on tracking [17], which is based on SLAM pose estima-
tion methods that are evaluated with the ATE metric [4, 13].
However, with the rapid development of MR technology,
some MR evaluation tools have been built by researchers.
[20] proposes to use ArUco markers as a reference to com-
pare with the rendered virtual objects, in order to evaluate
the spatial inconsistency and drift estimation performance
of an MR system. [22] extends this to evaluate the spatial
drift of a virtual object over time by tracking the position of
virtual objects. Other methods to evaluate MR experiences
include user studies and questionnaires [9, 12] as discussed
previously. Other recent work [23] comparing open-source
SLAM (ORB-SLAM3) with commercial headsets (Meta Quest
3, rather than Hololens 2 in this work) and reached a simi-
lar conclusion that commercial SLAM generally has better
performance.

MR Evaluation Datasets. HoloSet [3] includes traces
collected by a HoloLens in a variety of environments (in-
door, outdoor) and scene setups (trails, suburbs, downtown)
under multiple user action scenarios (walk, jog). However,
the ground truth pose is missing, making it hard to use for
evaluation. Standard visual-inertial odometry datasets such
as EuRoC [1] or KITTI [8] are recorded by drones and cars.
The SenseTime dataset [16] is recorded by handheld mobile
phones, which is closer to MR but still differs from head-
mounted devices.

5 Conclusions and Future Work

We propose a new tool called REPLAYAR to evaluate pose
estimation methods in MR in terms of their visual renderings.
We show that REPLAYAR can accurately replay traces and
evaluate the visual output of an MR device better than tradi-
tional metrics such as ATE. Our analysis reveals that rotation
error has a significant impact on the visual result, and Visual
Difference (IoU) can reveal user experience quality better
according to our results. In the future, we plan to render real
world backgrounds in REPLAYAR’s output, and also transfer
the current offline operation into an online tool. Furthermore,
we plan to conduct a user study to evaluate the correlation
between ATE, rotation error, IoU, Visual Difference, and user
MOS scores, in order to develop a better understanding of
what metrics best reflect the MR user experience.
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Appendix
A Implementation details

In practice, we do not need to account for the movement of
the Hololens during the replay, as this remains stationary
and the output can be viewed from a remote window as a
result of the Holographic Remoting functionality. Moreover,
since the Hololens initializes its own position at the origin,
we do not need to account for this when creating the initial
transformation for the replay. This allows us to simplify the
implementation from equations (1) and (2) to the following
using 4x4 transformation matrices, letting P be the 4x4
matrix of the pose of the virtual object in the space:

te = RERE (£ — t&)REMPPMI[3,0 : 3] (5)
R = (RERG(tF — t&)REMPpob) 1] 3, 3] (6)

Where [3,0:3] denotes the translation component of the ma-
trix and [:3,:3] denotes the rotation component, where the
indices of the matrix are 0-indexed.
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