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Abstract

We study fair distribution of a collection of m indivisible
goods among a group of n agents, using the widely recog-
nized fairness principles of Maximin Share (MMS) and Any
Price Share (APS). These principles have undergone thor-
ough investigation within the context of additive valuations.
We explore these notions for valuations that extend beyond
additivity.
First, we study approximate MMS under the separable
(piecewise-linear) concave (SPLC) valuations, an important
class generalizing additive, where the best known factor was
1/3-MMS. We show that 1/2-MMS allocation exists and can
be computed in polynomial time, significantly improving the
state-of-the-art. We note that SPLC valuations introduce an
elevated level of intricacy in contrast to additive. For instance,
the MMS value of an agent can be as high as her value for
the entire set of items. Additionally, the equilibrium compu-
tation problem, which is polynomial-time for additive valu-
ations, becomes intractable for SPLC. We use a relax-and-
round paradigm that goes through competitive equilibrium
and LP relaxation. Our result extends to give (symmetric) 1/2-
APS, a stronger guarantee than MMS.
APS is a stronger notion that generalizes MMS by allowing
agents with arbitrary entitlements. We study the approxima-
tion of APS under submodular valuation functions. We de-
sign and analyze a simple greedy algorithm using concave
extensions of submodular functions. We prove that the al-
gorithm gives a 1/3-APS allocation which matches the best-
known factor. Concave extensions are hard to compute in
polynomial time and are, therefore, generally not used in ap-
proximation algorithms. Our approach shows a way to uti-
lize it within analysis (while bypassing its computation), and
hence might be of independent interest.

1 Introduction
We consider the problem of fairly allocating a setM of m
indivisible goods among a set N of n agents with hetero-
geneous preferences under the popular fairness notions of
Maximin share (MMS) (Budish 2011) and Any Price Share
(APS) (Babaioff, Ezra, and Feige 2021). These notions have
been extensively studied for the setting where the agents
have additive valuations (Barman and Krishna Murthy 2017;
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Ghodsi et al. 2018; Garg, McGlaughlin, and Taki 2018; Garg
and Taki 2020; Akrami, Garg, and Taki 2023; Akrami and
Garg 2023). This paper studies the problem beyond additive
valuations, particularly for the classical separable-concave
valuations (Vazirani and Yannakakis 2011; Chaudhury et al.
2022) and submodular valuations (Ghodsi et al. 2018; Bar-
man and Krishnamurthy 2020; Uziahu and Feige 2023).

MMS and APS are share based fairness notions, where
each agent is entitled to a bundle worth her fair share. Under
MMS, this fair share of an agent is defined as the maximum
value she can guarantee herself under the classical cut-and-
choose mechanism when she is the cutter; she partitions the
item set into n bundles and gets to pick last. Therefore, she
partitions so that the value of the minimum valued bundle is
maximized. Let ΠN (M) denote the set of all allocations of
M among the n agents. If (A1, . . . , An) denotes any allo-
cation into n bundles, and vi : 2

M → R+ denotes agent i’s
valuation function, then the MMS value of agent i is defined
as,

MMSi = max
(A1,...,An)∈ΠN (M)

min
j∈[n]

vi(Aj)

An MMS allocation is one where every agent i gets
a bundle worth at least MMSi. MMS treats all agents
equally. In some settings it is necessary to consider weighted
agents, where the weight or entitlement of agent i is
bi > 0; the weights are normalized to satisfy

∑
i bi =

1. There are multiple natural ways to define a weighted
generalization of MMS. Some notable definitions are the
weighted MMS by (Farhadi et al. 2019), normalized MMS
by (Chakraborty, Segal-Halevi, and Suksompong 2022), the
l-out-of-d-maximin share (Babaioff, Nisan, and Talgam-
Cohen 2019) and its closely related notion pessimistic share,
and the any price share (APS) notion by (Babaioff, Ezra, and
Feige 2021). It is known from their introductory papers that
better than linear (in the number of agents) factor guarantees
cannot be obtained for the weighted and normalized MMS
notions. The same works also give algorithms that match
these lower bounds. (Babaioff, Ezra, and Feige 2021) on
the other hand showed a constant 3/5-factor guarantee with
respect to the APS notion for the additive valuations set-
ting, and (Uziahu and Feige 2023) showed a constant 1/3-
factor guarantee for APS with submodular valuations. Fur-
ther, (Babaioff, Ezra, and Feige 2021) show that the APS
value of any agent is equal or better than their pessimistic
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share. This leads to the natural direction of investigating
constant factor approximation guarantees with respect to the
APS notion for fair division instances.

The APS value of an agent i is defined as the value she
can ensure herself with a budget of bi when the prices of
the items are chosen adversarially, subject to a normalization
constraint that the total sum of prices is 1. More formally, let
P = {(p1 . . . , pm) |

∑m
j=1 pj = 1, pj ≥ 0 ∀j} denote the

simplex of price vectors for the m goods. If the budget of
agent i is bi, then,

APSi = min
(p1,...,pm)∈P

max
S⊆M:

∑
j∈S pj≤bi

vi(S)

We note that when bi = 1
n , APSi ≥ MMSi (Babaioff,

Ezra, and Feige 2021). Thus, allocations that give guarantees
with respect to APSi at bi = 1

n automatically provide same
guarantees for MMSi.

Allocations achieving MMS and APS shares may not
exist even under additive valuations (Procaccia and Wang
2014; Feige, Sapir, and Tauber 2021). Therefore, the focus
has been on finding approximate solutions, where in an α-
MMS (APS) allocation, every agent receives a bundle worth
at least α times their MMS (APS) value. This problem has
been studied extensively for additive valuations (see (Ama-
natidis et al. 2022) for a survey and pointers) with much
progress (Procaccia and Wang 2014; Garg, McGlaughlin,
and Taki 2018; Kulkarni, Mehta, and Taki 2021). It is known
that a ( 34 + 3

3836 )-MMS always exists and can be computed
in polynomial time (Akrami and Garg 2023), while there are
examples showing that 39

40 -MMS may not exist (Feige, Sapir,
and Tauber 2021) even in the setting of three agents.

Additive valuations are inapplicable if agents have de-
creasing marginal gains, a crucial property in practice. This
raises the need to go beyond additive. Some well-known
classes of valuation functions such as subadditive, fraction-
ally sub-additive i.e. XOS, submodular, and their interest-
ing special cases have been studied in the literature (Barman
and Verma 2020; Li and Vetta 2021; Viswanathan and Zick
2022). Here we consider separable (piecewise-linear) con-
cave (SPLC) (Vazirani and Yannakakis 2011; Garg et al.
2012a; Magnanti and Stratila 2004; Chaudhury et al. 2022)
and submodular valuations. SPLC valuations generalize ad-
ditive valuations, and form a subclass of submodular valu-
ations. Such functions are separable across different types
of goods, and concave within each type capturing decreas-
ing marginal gains. Submodular functions allow decreasing
marginal gain across all goods. Formally, a real-valued func-
tion f : 2M → R is submodular iff f(A ∪ {e}) − f(A) ≥
f(B∪{e})−f(B) for all A ⊂ B and e ̸∈ B. For submodu-
lar valuations, (Ghodsi et al. 2018) gave an algorithm to find
a 1

3 -MMS allocation based on a certain local search proce-
dure, and (Barman and Krishna Murthy 2017) showed that
a simple round-robin procedure can achieve a 1

3 (1 − 1/e)-
MMS allocation. This was recently improved to 10

27 -MMS by
(Uziahu and Feige 2023), who also gave 1

3 -APS algorithm.
These results also apply to separable-concave functions and
remain the best known.

In terms of lower bounds, for submodular valuations, even
for special cases like assignment valuations and weighted
matroid rank valuations it is known that better than 2

3 -MMS
allocations may not exist (Barman and Krishnamurthy 2020;
Kulkarni, Kulkarni, and Mehta 2023). For a more general
class, namely fractionally subadditive valuations, it is known
that better than 1

2 -MMS allocations may not exist (Ghodsi
et al. 2018). Closing the gaps for these rich classes of valua-
tions is of much interest. A natural question here is whether
1
2 -MMS allocations exist for submodular valuations and it is
open even for SPLC valuations.

One of the difficulties in going beyond additive valuations
is the lack of good upper bound on the MMS (APS) values
of the agents. For example, if vi is additive and bi = 1

n

then MMSi ≤ APSi ≤ vi(M)
n , while if vi is separable-

concave or submodular then we can have MMSi = vi(M)
(the complete example is discussed in the full version of our
paper (Chekuri et al. 2023)).

1.1 Our Results

In this paper, we develop novel ways to upper bound the
MMS and APS values for monotone valuation functions via
market equilibrium and concave extensions. This is our con-
ceptual contribution. We leverage this to obtain two results.

First, we design an LP-relaxation-based method to find
a 1/2-MMS allocation for SPLC valuations in polynomial
time. Our result is in fact stronger; the algorithm outputs an
allocation that gives each agent a value at least 1/2-APSi
(for symmetric agents). SPLC valuations are a special case
of submodular valuations, and for the latter, the best known
result for MMS allocations is a very recent result (Uziahu
and Feige 2023) that yields a 10

27 -MMS allocation. Thus, for
SPLC valuations we obtain an improved approximation.

Second, we show that a simple greedy algorithm achieves
1
3 -APS allocation for submodular valuations. This result was
independently obtained in a recent work by (Uziahu and
Feige 2023). Their proof technique is conceptually differ-
ent and uses the bidding game methodology of (Babaioff,
Ezra, and Feige 2021). We make use of an argument via the
concave extension approach. We believe that this may be of
independent interest and may offer helpful insights.

The entire technical discussion of our results can be found
in the full version of this paper (Chekuri et al. 2023). In this
article, we discuss all the key ideas, at times without their
full proofs. In the full version (Chekuri et al. 2023), we also
point out an example to show that a greedy-like approach
cannot yield a 1/2-MMS allocation for SPLC valuations.
This points to the importance of the LP-based approach that
we utilize.

2 Preliminaries

We use [k] to denote the set {1, 2, · · · , k − 1, k}.
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2.1 Fair Division Model
We study the problem of fairly dividing a set of m indivisible
goodsM = [m] among a set of n agents N = [n] who can
have asymmetric entitlements. The entitlement or weight of
agent i is denoted by bi, and the weights are normalized so
that their sum is 1, that is,

∑
i∈N bi = 1. The preferences

of an agent i ∈ N are defined by a valuation function vi :
2M → R≥0 over the set of goods. We represent a fair divi-
sion problem instance by (N ,M, (vi)i∈N , (bi)i∈N ). When
all agents have the same weight, we denote the instance by
(N ,M, (vi)i∈N ) and call it the symmetric fair division in-
stance. An allocation A := (A1, . . . , An) is a partition of
all the goods among the n agents, i.e. for all i, j ∈ [n]
with i ̸= j, Ai ∩ Aj = ∅ and ∪i∈[n]Ai = [m]. Note that
empty parts are allowed. We denote the set of all alloca-
tions by Π[n]([m]). We will also sometimes use fractional
allocations of goods. We denote these allocations by x and
the allocation of a particular agent, i ∈ N by xi. Formally,
x = (xij)i∈N ,j∈M such that

∑
i∈N xij ≤ 1 for all j ∈ M

and xi = (xij)j∈M where (xij)i∈N ,j∈M is a fractional al-
location.

Throughout this paper, we assume that the valuation func-
tions are monotone and non-negative. Further, Section 4 as-
sumes that valuations functions are SPLC and Section 5 as-
sumes that the valuation functions are submodular. We de-
fine these classes of functions next.

SPLC valuations. Separable-concave, a.k.a. separable
piecewise-linear concave (SPLC), valuations is a well-
studied class that subsumes additive valuations. Under
SPLC valuations, we have t types of goods, with each good
j ∈ [t] having kj copies. For an SPLC valuation function
f(·), a value fjk is associated with kth copy of good j.
The functions are concave so that for all j ∈ [t], we have
fj1 ≥ fj2 ≥ . . . ≥ fjkj . Finally, the valuations are additive
across different goods. Formally, we letM be the set of all
goods (that includes all copies of each type of good). For all
j ∈ [t], we denote byMj ⊆M the subset of goods that are
copies of good j. The value for any set S ⊆ M is given by
f(S) =

∑
j∈[t]

∑
k≤|S∩Mj | fjk.

Throughout this paper, when we refer to fair division
problems in the specific context of SPLC valuations, we de-
note the instance by (N , t, (kj)j∈[t], (vi)i∈N ).

Submodular Valuations. Submodular valuations are a
popular class of valuations in the complement-free hierar-
chy. The valuations are characterized by the property of de-
creasing marginal utility. In particular, a valuation function
f(·) is said to be submodular if and only if, for all goods
g ∈M and any subsets S ⊂ Q ⊆M, f(g | S) ≥ f(g | Q),
where f(g | S) denotes the marginal utility of good g on set
S, i.e. f(g | S) := f(g ∪ S)− f(S).

2.2 Fairness Notions
Maximin Share (MMS) Maximin Share (MMS) is de-
fined for symmetric agents, that is for all agents i ∈ [n],
bi = 1/n. Consider a symmetric fair division instance

(N ,M, (vi)i∈N ). The MMS value of an agent i ∈ N is
defined as,

MMSni ([m]) := max
(A1,...,An)∈Π[n]([m])

min
k∈[n]

vi(Ak) (1)

We refer to MMSni ([m]) by MMSi when the qualifiers n
and m are clear from the context. The following claim about
MMS, called single good reduction is well known and we
will use it in our analysis.
Claim 2.1. Given a fair division instance (N ,M, (vi)i∈N ),
the MMS value of an agent is retained if we remove any
single agent and any single good. That is, MMSni ([m]) ≥
MMSn−1

i ([m \ {g}]) for all g ∈ [m]

Any Price Share (APS) Let P denote the simplex of
price vectors over the set of goods M = [m], formally,
P = {(p1, . . . , pm) ≥ 0 |

∑
i pi = 1}. For an instance

(N ,M, (vi)i∈N , (bi)i∈N ), the APS value of agent i is de-
fined as,

APSni ([m]) := min
p∈P

max
S⊆[m],p(S)≤bi

vi(S) (2)

where p(S) is the sum of prices of goods in S. We will refer
to APS

[n]
i ([m]) by APSi when the qualifiers n and m are

clear.
An alternate definition without prices is as follows.

Definition 2.1 (Any Price Share). The APS value of an
agent i for an instance (N ,M, (vi)i∈N , (bi)i∈N ) is the so-
lution of the following program.

APSi = max z∑
T⊆[m]

λT = 1

λT = 0 ∀T such that vi(T ) < z∑
T⊆[m]:j∈T

λT ≤ bi ∀j ∈ [m]

λT ≥ 0 ∀T ⊆ [m]

These definitions and their equivalence is stated in
(Babaioff, Ezra, and Feige 2021). We also note the following
claim that was proved in (Babaioff, Ezra, and Feige 2021)
Claim 2.2. For any symmetric fair division instance,
(N ,M, (vi)i∈N ), APSni ([m]) ≥ MMSni ([m]) for all agents
i ∈ [n].

Similar to Claim 2.1, single good reduction also holds for
APS when agents are symmetric. We give a proof of the fol-
lowing claim in the full paper (Chekuri et al. 2023).
Claim 2.3. Given a symmetric fair division instance
(N ,M, (vi)i∈N ), the APS value of an agent is retained if
we remove any single agent and any single good. That is,
APSni ([m]) ≥ APSn−1

i ([m \ {g}]) for all g ∈ [m]

α-Approximate Allocations. Given a symmetric fair di-
vision instance, (N ,M, (vi)i∈N ), we say that an allo-
cation A = (A1, . . . , An) is α-MMS if for all i ∈
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[n], vi(Ai) ≥ αMMSi. Similarly, for an instance
(N ,M, (vi)i∈N , (bi)i∈N ), we say an allocation is α-APS
if for all agents i ∈ N , vi(Ai) ≥ αAPSi. The notion of
α-MMS or α-APS allocations also applies to fractional al-
locations.

2.3 Concave Extension
The valuation functions of agents are discrete set functions.
In Section 3 we discuss new upper bounds on MMS and APS
values of agents. These upper bounds require us to consider
fractional allocations. Therefore, we must extend the input
valuation function to include values for fractional sets. We
assume f : 2V → R+ is a non-negative monotone real-
valued set function over a finite ground set V . A natural way
to extend f to a continuous concave function over the hyper-
cube [0, 1]V is called the concave closure or concave exten-
sion, and is denoted by f+. It is defined as follows.
Definition 2.2 (Concave extension of f ).

f+(x) = max
(αS)S⊆2M

{
∑
S⊆V

f(S)αS |
∑
S

αS = 1 and

∑
S∋i

αS = xi ∀i ∈ V and αS ≥ 0 ∀S ⊆ V }. (3)

Remark 2.1. For submodular valuations, concave exten-
sions NP-hard to evaluate. Therefore, another extension
called the Multilinear Extension is more widely used in Fair
Division literature with these functions. For those familiar
with this theory, we show in the full version of this pa-
per (Chekuri et al. 2023) that under Multilinear Extension
with submodular valuations, there are instances where no
fractional 1-MMS allocation exists. This is the main reason
we work with concave extension here.

2.4 Market (Competitive) Equilibrium
The theory of market equilibrium typically considers frac-
tional allocations of goods. Therefore, in this part we will
assume that agents have continuous valuation function. Con-
sider an instance (N ,M, v̂i(·), (bi)i∈N ) where, for m =
|M|, v̂i : Rm → R+ is a non-negative non-decreasing con-
tinuous valuation function of agent i. A market equilibrium
constitutes prices p = (pj)j∈M of goods and an allocation
x = (xij)i∈N ,j∈M, where xij is the amount of good j allo-
cated to agent i, such that the following conditions are satis-
fied (Arrow and Debreu 1954)

1. Each agent i ∈ N is allocated her optimal bundle, i.e.,
(xi1, . . . , xim) ∈ argmaxy∈Rm

+ :Σj∈M:yjpj≤bi v̂i(y).

2. Market clears: all goods j ∈ M are completely sold, i.e.∑
i∈N xij = 1, or if

∑
i∈N xij < 1 then pj = 0.

3 Upper Bounds via Market Equilibrium
and Concave Extension

In this section we give new upper bounds that we can use
to approximate APS and MMS. These upper bounds are on
APS value of agents and by Claim 2.2 they also upper bound

the MMS value. Section 3.1 finds an upper bound using Mar-
ket Equilibrium and section 3.2 finds an upper bound using
concave extensions of functions. They are based on primal
and dual definitions of APS respectively. The proofs of these
upper bounds are discussed in the full version of this pa-
per (Chekuri et al. 2023).

3.1 Market Equilibrium Based Bound
A continuous extension of a valuation function v(·) de-
fined for an indivisible set of goods, is a function defined
over the extended feasible space of all fractional alloca-
tions of the goods, and whose value for any integral allo-
cation S matches that of v(S). For a fair division instance
(N ,M, (vi)i∈N , (bi)i∈N ), let v̂i(·) be any continuous ex-
tension of vi(·) under which a market equilibrium exists.
Then we can prove the following lemma.
Lemma 3.1. For any fair division instance,
(N ,M, (vi)i∈N , (bi)i∈N ), let (x∗,p∗) denote a mar-
ket equilibrium with continuous extension v̂i(·). Then, for
all i ∈ N , APSi ≤ v̂i(x

∗
i ).

Remark 3.1. For any monotone, non-negative set function,
v(·), its concave extension v+(·) will be non-decreasing,
non-negative, continuous, and concave. As long as agents
together are non-satiated for the available supply of goods,
i.e., have non-zero marginal up to consuming all the goods,
a market (competitive) equilibrium is known to exist (Arrow
and Debreu 1954). This will give us an upper bound to work
with.

3.2 Concave Extension Based Bound
For a given set function f : 2V → R+ and a real value
γ ≥ 0 we define the truncation of f to γ, denoted by f↓γ ,
as follows: f↓γ(A) = min{f(A), γ} for each A ⊆ V . It is
well-known and easy to verify that truncation of a monotone
submodular function yields another monotone submodular
function. We make a connection between APS value and the
concave closure via the following lemma.
Lemma 3.2. Consider a fair division instance,
(N ,M, (vi)i∈N , (bi)i∈N ). For all agents i ∈ N ,
APSi = sup{z : v+i↓z(bi, bi, . . . , bi) = z}.
Remark 3.2. Note that the truncation is important in the
indivisible setting, for otherwise the relaxation is too weak.
We also see that APSi can be computed if one can evaluate
the concave closure of the truncation of vi

4 1/2-MMS for SPLC Valuations
In this section, we give a polynomial time algorithm for
computing an allocation that gives each agent a bundle they
value at least half as much as their MMS value. As men-
tioned in the Introduction, all our results in this section hold
for symmetric APS also. The section is organized as fol-
lows. In Section 4.1 we give a linear relaxation for SPLC
valuations and show that under this relaxation, there exists a
fractional allocation that gives each agent their MMS value.
In Section 4.2 we give a linear program and show that if
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the program is feasible, we can, in polynomial time find an
integral solution where each agent loses at most one good.
Then in Section 4.3 we use the results in Sections 4.1 and 4.2
to prove existence of 1

2 -MMS allocation under SPLC valu-
ations. Finally in Section 4.4, we address the computational
aspects and give a polynomial time algorithm to compute
the 1

2 -MMS allocation. We defer some of the proofs of this
section to the full paper (Chekuri et al. 2023).

4.1 Fractional 1-MMS Allocation Exists
Recall that under SPLC valuations, we have t goods and for
each good, j ∈ [t] there are kj copies. Every agent i ∈ [n]
has a value vijk associated with kth copy of jth good. For
an SPLC valuation vi(·), we denote its linear extension by
vLi (·) and define it as follows.
Definition 4.1 (Linear Extension for SPLC function). Let
variables xijk denote the fraction of kth copy of good j that
agent i receives. We use xi = (xijk)j∈[t],k∈[kj ] to denote the
vector of fractional allocation received by agent i. The value
of the set is then defined as

vLi (xi) :=
∑
j∈[t]

∑
k∈kj

vijkxijk (4)

It is known from (Vazirani and Yannakakis 2011) that a
market equilibrium exists under this linear relaxation. Com-
bining this with Lemma 3.1, we immediately get the follow-
ing lemma.
Lemma 4.1. Given an SPLC fair division instance
(N , t, (kj)j∈[t], (vi)i∈N ), there exists a fractional alloca-
tion x = (xijk)i∈[n],j∈[t],k∈[kj ] such that vLi (xi) ≥ MMSi.

The above lemma proves existence of 1-MMS fractional
allocations under linear relaxation. However, market equi-
librium under this relaxation is PPAD-hard to compute
(Garg et al. 2012b). In the next section we give a linear pro-
gram that uses Lemma 4.1 to compute a (fractional) 1-MMS
allocation in polynomial time.

4.2 Linear Program to Compute a Fractional
1-MMS Allocation

Given an SPLC fair division instance,
(N , t, (kj)j∈[t], (vi)i∈N ), consider the following Lin-
ear Feasibility Program parameterized by (µi)i∈N .∑

j

∑
k vijkxijk ≥ µi for all i ∈ N∑

i

∑
k xijk ≤ kj for all j ∈ [t]

0 ≤ xijk ≤ 1 for all i, j, k

(5)

We say that (µi)i∈N are feasible if there exists a feasible
solution to (5) for the given (µi)i∈N .

The rest of this section is dedicated to proving the follow-
ing lemma which says that if LP (5) is feasible, we can get an
integral allocation where each agent gets a value of at least
µi − Maxi where Maxi is the maximum value that agent i
has for any good, i.e. Maxi = maxj,k vijk.

Lemma 4.2. Given (µi)i∈N that are feasible, in polynomial
time we can find an integral allocation such that for all i ∈
N , agent i gets a set Ai with vi(Ai) ≥ µi −maxj,k vijk.

Remark 4.1. The rest of this section proves Lemma 4.2.
Readers not wanting to go into technical details of this proof
can move to Section 4.3 to see how to use it for proving the
existence of 1

2 -MMS allocations.

To prove Lemma 4.2, we need to start with a fractional so-
lution that satisfies some properties enabling us to round it.
Towards this, we consider the fractional solution that maxi-
mizes the following optimization program.

max
∑

i,j,k vijkxijk∑
j

∑
k vijkxijk ≥ µi for all i ∈ N∑

i

∑
k xijk ≤ kj for all j ∈ [t]

xijk ≤ 1 for all i, j, k

xijk ≥ 0 for all i, j, k

(6)

Denote the optimal of this program with x∗ =
(x∗

ijk)i∈N ,j∈[t],k∈[kj ]. We start with the following simple
claim.

Claim 4.1. x∗ can be modified so that for all i ∈ N , j ∈ [t],
x∗
ijk is fractional for exactly one k.

Therefore, for each agent and each good, we have only
one copy fractionally allocated1. This lets us define the fol-
lowing graph of fractional allocations.

Definition 4.2 (Fractional Allocation Graph). This is a bi-
partite graph with agents on one side and one single copy of
each good on the other side. We draw edge between agent
i and good j if there is a copy of good j that agent i gets
fractionally. The weight of this edge is the fractional amount
of the good assigned to the agent.

The optimal solution obtained might be such that the Frac-
tional Allocation Graph has cycles in it. In the full ver-
sion (Chekuri et al. 2023), we prove the following Lemma
that says even if the graph has cycles, they can be eliminated
without reducing the value received by any agent.

Lemma 4.3. Given any fractional optimal solution to LP (6)
x∗, we can get a fractional solution, x̄ such that the Frac-
tional Allocation Graph corresponding to x̄ has no cycles
and vLi (x

∗
i ) = vLi (x̄i) for all i ∈ N .

Algorithm 1 describes the rounding algorithm that lets us
prove Lemma 4.2.

Proof of Lemma 4.2. Consider the rounding procedure de-
scribed in Algorithm 1. From Lemma 4.3, we get that the
agents have lost no value up to step 2. After that in Step

1Note that in the fractional allocation, there might be more than
one copy of a good that is fractionally allocated among the agents,
however each agent is only allocated one copy fractionally.
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Algorithm 1: Rounding the Fractional Optimal of
LP (6)

Input : x∗ that is an optimal solution to LP (6).
Output: Integral Allocation A = (A1, . . . , An)

where each agent i ∈ N receives a value of
at least µi −maxj,k vijk.

1 Use Lemma 4.3 to convert x∗ to x̄ such that the
Fractional Allocation Graph corresponding to x̄ has
no cycles and value of each agent is same.

2 Create Fractional Allocation Graph corresponding to
x̄.

3 In the forest obtained, root every tree by an arbitrary
agent.

4 For each tree, assign all the children goods to the
parent agent.

4, every agent loses at most one good – the parent good in
the tree. This proves the lemma’s claim on value of agent.
To see that the algorithm runs in polynomial time, note that
solving a Linear Program can be done in polynomial time
using any of the well known algorithms. We detail in the full
paper (Chekuri et al. 2023) that cycle cancellation removes
a cycle by deleting one edge. Since there are at most n · t
edges in the graph, this also runs in polynomial time. There-
fore, overall the subroutine runs in polynomial time.

4.3 Existence of 1
2 -MMS Allocations

Algorithm 2 gives an algorithm that proves the existence of
1
2 -MMS allocations. It does so by assuming we can com-
pute MMS values for all agents. While these are NP-hard to
compute making the algorithm non-polynomial time, it ex-
hibits all other important ideas in getting a polynomial time
1
2 -MMS allocation.

Algorithm 2: Existence of 1
2 -MMS Algorithm for

SPLC valuations
Input : (N , t, (kj)j∈[t], (vi)i∈N )
Output: Allocation A where for every agent

vi(Ai) ≥ MMSi/2

1 Define µi := MMSi for all i ∈ N .
2 Initialize set of active agents A = N and set of

active goods G =M.
3 while there exists i ∈ N and j ∈ [t] such that

vij1 ≥ µi

2 do
4 Ai ← {j}
5 A ← A \ {i}
6 Remove one copy of j from G
7 Solve the Linear Program (6) for the reduced instance

(A,G, (vi)i∈N ) and obtain fractional allocation x.
8 Use Lemma 4.2 to get an integral allocation and

assign appropriate bundles to agents in A.
9 Return A = (Ai)i∈N .

Theorem 4.1. Given an SPLC fair division instance,
(N , t, (kj)j∈[t], (vi)i∈N ), Algorithm 2 gives each agent a
bundle Ai such that vi(Ai) ≥ 1

2MMSi.

Proof. Note that for any agent who gets allocated an item in
Steps 3 to 6, they get a value of MMSi

2 by definition of µi =
MMSi. Recall from Claim 2.1 that removal of one good and
one agent retains the MMS value of the agent. Therefore, for
all remaining agents, at the end of while loop from Step 3 to
6, the MMS value of active agents is retained in the reduced
instance. Further the reduced instance satisfies the property
that for each agent i ∈ N , maxj,k vijk ≤ MMSi

2 . Finally,
using Lemma 4.1, note that µi := MMSi for all i ∈ A (the
set of Active agents left after single good reduction), form
feasible (µi)i∈A. Therefore, we can use Lemma 4.2 to get
an integral allocation where each agent, i ∈ A gets a value
of vi(Ai) ≥ MMSi −maxj,k vijk ≥ MMSi

2 . This completes
the proof.

4.4 Algorithm : Computational Aspects
We now address the final computational aspect of finding
MMSi values here. Since they are NP-hard to compute, we
use µi values as follows:

µi =
∑
j∈[t]

 ∑
k≤

kj
n

vijk + vij⌈kj/n⌉

(
kj
n
−
⌊
kj
n

⌋) (7)

In the full paper (Chekuri et al. 2023), we give the complete
algorithm that shows how to use these µi to get a 1

2 -MMS
allocation. We only state the main theorem here.
Theorem 4.2. There exists an algorithm which in polyno-
mial time outputs an allocation that gives 1

2 -MMS to each
agent.
Remark 4.2. The values µi defined in Equation 7 are upper
bounds on APS also. From Claim 2.3, single good reduction
also holds for APS with symmetric agents. These two things
together give us that all our results of this section also go
through for APS approximation for symmetric agents.

5 Approximate APS Allocations with
Submodular Valuations

We now move to the more general case of submod-
ular valuations and agents with non-symmetric entitle-
ments. In this section, given a fair division instance,
(N ,M, (vi)i∈N , (bi)i∈N ), we show that a greedy algorithm
gives us an allocation A = (A1, . . . , An) such that vi(Ai) ≥
1
3APSi for all i ∈ N . While this algorithm is simpler than
the Algorithm for SPLC valuations seen in previous section,
we give an example in our full paper (Chekuri et al. 2023) to
show that a natural modification fails to give a 1

2 approxima-
tion for even SPLC valuations. The section is organized as
follows. In Section 5.1, we outline some basic properties for
APS. Section 5.2 describes the details of the greedy algo-
rithm assuming we can compute the APS values for agents.
Section 5.3 analyses the algorithm and shows how to bypass
the computational aspect of computing APS values.
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5.1 Properties of APS
We will use the following properties of APS in our analysis.
The proofs are simple and we omit them here.
Claim 5.1. For any z ≤ APSi, v+i↓z(bi, bi, . . . , bi) = z.
Moreover, if αS , S ⊆ [m] is a feasible solution to the LP
defining the value v+i↓z(bi, bi, . . . , bi) then αS > 0 implies
that vi↓z(S) = z.
Claim 5.2. [Scale-freeness] If a valuation function v :
2M → R≥0 is multiplied by any scalar value α, the APS
value of an agent with the scaled function is α times the
APS value of an agent with the original function and same
entitlement.
Claim 5.3. [Capping retains APS] If an agent with some en-
titlement b and valuation function v : 2M → R≥0 has APS
value γ, then the APS value of an agent with the same enti-
tlement and the capped function v′(S) := min{APS, v(S)}
∀Set ⊆M is also γ.

5.2 Algorithm
The main subroutine of our algorithm is Algorithm
3, which takes as input a fair division instance
(N ,M, (vi)i∈N , (bi)i∈N ) along with a vector of numbers
(βi)i∈N . It outputs an allocation with the following prop-
erty: each agent i receives a bundle of value at least 1

3βi if
βi ≤ APSi; note that the guarantee holds for agent i even
if the β values for other agents are larger than their APS
values. In particular, if we have the APS values of all agents,
the algorithm is efficient and gives each agent 1

3 fraction of
her APS. Although computing the APS value of an agent is
NP-hard, we show in the full version (Chekuri et al. 2023)
that we can bypass this issue and use Algorithm 3 to derive
a polynomial time algorithm for a 1

3 -approximate APS
allocation.

Algorithm 3 works as follows. Given an instance of the
fair division problem, and guesses for the APS values of all
agents (βi for agent i), it performs two pre-processing steps.
The intuition is the following. Suppose we knew the exact
APSi values for each i. Since our algorithm is greedy, we
must normalise valuations. APS values are scale invariant
(Claim 5.2) therefore, we scale vi such that APSi = nbi
implying

∑
i APSi = n. More over, if we knew APSi then

truncating vi to APSi is convenient and does not affect the
value (Claim 5.3). In our algorithm we do have βi values
rather than APSi values. Nevertheless we will proceed as if
these values are correct estimates. After scaling and truncat-
ing we have for each agent i a valuation function v̂i. We have
the property that v̂i is truncated at nbi.

The key part of the algorithm is the following greedy strat-
egy. The algorithm allocates goods in multiple rounds. Each
round greedily chooses an agent and a good that maximizes
the objective min{2nbi/3, vi(j | Ai)} over all agents and
goods. Recall that vi(j | Ai) is the marginal value of the
(unallocated) good j to agent i’s current bundle Ai. The se-
lected good is allocated to the selected agent. As soon as an
agent receives a bundle of value at least nbi/3, it is satisfied
and removed from consideration in future rounds.

It is easy to see that the algorithm will terminate in at
most m rounds. We will show that at termination the follow-
ing property is true: for each agent i such that βi ≤ APSi,
vi(Ai) ≥ βi/3 where Ai is the allocation to i. This will be
used to obtain a polynomial time algorithm for a 1

3 -APS al-
location (complete details in the full paper (Chekuri et al.
2023)).

Algorithm 3: Greedy Procedure for APS with Sub-
modular Valuations

Input : (N ,M, (vi)i∈N , (bi)i∈N ), vector (βi)i∈N
Output: Either (i) allocation A where for every

agent vi(Ai) ≥ βi/3,
or (ii) some agent i : βi > APSi

1 Normalization: v′i := normalized vi so that βi = nbi
that is, for all sets S ⊆M, v′i(S) = vi(S) · nbiβi

2 Truncation: v̂i := vi↓nbi
3 Initialize Aπ ← (∅)i∈N ,Mr ←M,N r ← N

// N r is list of active agents and
Mr is unallocated items

4 whileMr ̸= ∅ and N r ̸= ∅ do
5 Let S = {(i, j) | i ∈ N r, j ∈Mr} // all

remaining agent-good pairs
6 (i∗, j∗) ∈ argmax

(i,j)∈S

min{ 23nbi, v̂i(j | Ai)}

// greedily choose the agent
with the highest marginal capped
at 2nbi/3

7 Ai∗ ← Ai∗ ∪ {j∗},Mr ←Mr\{j∗}
// allocate the chosen good to
the agent

8 if v̂i∗(Ai∗) ≥ nbi∗/3 then
9 N r ← N r\{i∗} // remove agent if

they received at least nbi/3

10 if ∃i ∈ [n], vi(Ai) < βi/3 then
11 return one such i

12 return Aπ

5.3 Analysis
The following is the main theorem of our section.
Theorem 5.1. If βi ≤ APSi for an agent i ∈ A, then Al-
gorithm 3 terminates with an allocation such that vi(Ai) ≥
1
3βi.

We prove Theorem 5.1 by contradiction. Fix an agent i
and suppose βi ≤ APSi and v̂i(Ai) < nbi/3. The algorithm
removes i from consideration during the algorithm if at time
t, v̂i(At

i) ≥ nbi/3, thus i must have stayed active until ter-
mination and the algorithm allocated all goods to agents. We
compute the total sum of marginals that agent i sees for all
the goods (allocated to her and other agents). We compute
this value in two different ways and obtain a contradiction.
The details of the proof and of the computational aspects of
the algorithm are deferred to the full paper (Chekuri et al.
2023).
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