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Abstract—Dyadic physiological responses are correlated with 

the quality of interpersonal processes – for example, the degree of 

“connectedness” in education and mental health counseling. 

Pattern recognition algorithms could be applied to such dyadic 

responses to identify the states of specific dyads, but such pattern 

recognition has primarily focused on classification. This paper 

instead uses regression algorithms to estimate three conversation 

aspects (valence, arousal, balance) from heart rate, skin 

conductance, respiration, and skin temperature. Data were 

collected from 35 dyads who engaged in 20 minutes of 

conversation, divided into 10 two-minute intervals. Each interval 

was rated with regard to conversation valence, arousal, and 

balance by an observer. When regression algorithms (support 

vector machines and Gaussian process regression) were trained on 

other data from the same dyad, they were able to estimate valence, 

arousal and balance with lower errors than a simple baseline 

estimator. However, when algorithms were trained on data from 

other dyads, errors were not lower than those of the baseline 

estimator. Overall, results indicate that, as long as training data 

from the same dyad are available, autonomic nervous system 

responses can be combined with regression algorithms to estimate 

multiple dyadic conversation aspects with some accuracy. This has 

applications in education and mental health counseling, though 

fundamental issues remain to be addressed before the technology 

is used in practice. 

Keywords—affective computing, autonomic nervous system 

responses, conversation, physiological signals, psychophysiology, 

regression  

I. INTRODUCTION 

In the fields of affective computing and applied 
psychophysiology, physiological responses are frequently 
combined with pattern recognition algorithms to automatically 
recognize human psychological states [1]. This can include, for 

example, workload levels in air traffic controllers [2], 
engagement levels in patients undergoing rehabilitation [3], 
drowsiness/inattention levels in drivers [4], and enjoyment 
levels in computer game players [5]. Machines can then take 
action to bring users into a more desirable psychological state 
by, e.g., changing the amount of automated assistance or 
adapting the difficulty of an exercise [1].  

While most research in this area has focused on individuals, 
studies have also used physiological responses to identify 
psychological states of dyads (pairs) who compete, cooperate, 
or simply communicate with each other. Dyadic physiological 
responses are known to correlate with the intensity of 
competition [6], quality of cooperation [7] and the degree of 
“connectedness” in processes like education [8] and mental 
health counseling [9]. Pattern recognition algorithms could thus 
also be applied to such dyadic physiological responses to 
identify the state of a specific dyad. This would have many 
potential applications. For example, visual feedback about the 
interaction could be presented to users, allowing them to modify 
their own behavior in order to improve the interaction outcome 
[10], which may lead to better outcomes of technology-assisted 
education and mental health counseling. 

Pattern recognition algorithms to identify the psychological 
state of a specific dyad are predominantly based on supervised 
machine learning – either classification or regression. Most 
commonly, classification algorithms are used to classify 
psychological states into one of two classes (e.g., engaged or 
unengaged dyads) based on a single physiological response type 
(e.g., only electrocardiography or only electroencephalography) 
[11]–[16]. Less commonly, some studies perform classification 
into 3 or 4 classes based on a single physiological response type 
[17], [18] or multiple physiological response types [19], [20]. To 
our knowledge, regression algorithms have been used by only 
two dyadic physiology studies [21], [22], and classification is 
more popular than regression in similar studies involving 
individuals rather than dyads as well [1]. Nonetheless, 
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regression does have several advantages over classification, 
such as the potential to provide more granular information about 
psychological states, and thus represents a promising alternative. 

The goal of the current study is to combine multiple 
autonomic nervous system responses with supervised regression 
algorithms in order to automatically extract multiple 
psychological aspects of a dyadic conversation based on third-
person (observer) ratings of the conversation. The current study 
is based on our previous dyadic regression study [22], but with 
several expansions and modifications. Specifically, the previous 
study used physiological responses and regression to estimate a 
single conversation variable (engagement) obtained using an ad-
hoc self-report questionnaire completed by participant dyads. 
Conversely, this study estimates multiple conversation variables 
as coded by external observers. The observers were trained to 
produce consistent ratings of participant behavior, thus avoiding 
some of the weaknesses inherent in psychophysiological studies 
that are limited to self-report data [23]. 

II. MATERIALS AND METHODS 

A. Participants 

Thirty-five dyads were recruited for the study from students 
and staff of the University of Cincinnati. All dyads knew each 
other prior to the session, and recruitment materials specifically 
requested that participants volunteer in self-selected pairs. 
Participants were 21.1 ± 3.9 years old (mean ± standard 
deviation). There were 11 dyads with two women, 9 dyads with 
two men, 13 dyads with one woman and one man, 2 dyads with 
one woman and one nonbinary participant, and one dyad with 
two nonbinary participants. Each participant signed an informed 
consent form. 

B. Hardware 

Participants’ physiological responses were recorded at 600 
Hz using two g.USBamp biosignal amplifiers (g.tec Medical 
Engineering GmbH, Austria) and their add-on sensors. Four 
disposable wired electrodes were placed on the trunk to record 
the electrocardiogram (ECG) using a placement suggested by 
the manufacturer. The g.GSRsensor2 was used to record skin 
conductance via two dry electrodes placed on distal phalanges 
of the index and middle finger of the nondominant hand. The 
g.Sensor Respiration Airflow was used to record respiration rate 
via a thermistor-based sensor placed under the nose and above 
the mouth. Finally, the g.Temp was used to record peripheral 
skin temperature via a sensor on the distal phalanx of the fifth 
finger of the nondominant hand. This sensor setup was very 
similar to that in our previous work [19], [22]. It is worth noting 
that, with this sensor setup, the respiration signal is likely 
influenced by participants’ speech, and we will investigate 
alternatives in future work. 

Additionally, audio and video of the participants were 
recorded throughout the session using a pair of consumer-grade 
webcams (one pointed at each participant) and a Yeti X 
microphone (Blue Microphones, USA) placed between the 
participants. This sensor setup was also similar to that in our 
previous work [22]. The sensors can be seen in Fig. 1, which 
illustrates the overall study setup.  

C. Study Protocol 

The study was approved by the University of Cincinnati 
Institutional Review Board, protocol 2021-1107. Each dyad 
took part in a single session. Participants sat at a table 
approximately 1.5 m apart facing each other (Fig. 1). They self-
applied physiological sensors following the experimenter’s 
guidance. Each dyad was randomly assigned an initial 
conversation tone: positive, neutral, or negative. Dyads in the 
positive group were asked to self-select an initial topic that both 
participants liked and agreed on; conversely, dyads in the 
negative group were asked to select a topic that they disagreed 
on. In both groups, these turned out to be mostly “non-serious” 
topics such as food, music and sports. 

After the assignment and topic selection, participants first sat 
facing each other silently for 2 minutes with eyes open to obtain 
baseline physiological recordings. They then talked to each 
other for 20 minutes, divided into ten 2-minute intervals. They 
began the first interval by talking about their self-selected topic 
(in the case of positive/negative groups) or about career goals 
(for the neutral group). However, they could switch topics at any 
time. After each 2-minute interval, the experimenter raised a 
hand to pause the conversation, during which participants filled 
out a brief self-report questionnaire (not analyzed in current 
study). The conversation then continued. At the end of the 
session, participants removed the sensors and received $15 
Amazon gift cards as compensation.  

To introduce more variability into conversations (which 
were a priori expected to be mostly neutral-to-positive [22]), one 
of the two participants was also provided with secret prompts to 
modify the conversation after the fourth and seventh 2-minute 
interval. That participant was told about the prompts at the start 
of the session (by being asked to briefly leave the room by the 
researcher) while the other participant was not told about them 
until the end of the session. The prompts were “During the next 
2-minute interval, show absolutely no emotion” and “During the 
next 2-minute interval, point out every possible flaw with 
whatever the other person says”. The two prompts were given in 
random order (half the dyads receiving the no-emotion prompt 

 
Fig. 1.  The study setup. Participants sit facing each other with 

physiological sensors attached and connected to signal amplifiers (bottom 

of photo). Webcams and a microphone between the participants are used 
to collect audio and video of the conversation. Participants also filled out 

self-report questionnaires, which were not analyzed for this paper. 



first) and were shown on the paper self-report questionnaire 
between 2-minute intervals, though only to one of the two 
participants. 

D. Analysis of Audio and Video Data 

Each dyad’s audio/video recordings were divided into the 
ten 2-minute conversation intervals. Segments not belonging to 
these intervals were not analyzed further. Each 2-min interval 
was reviewed by independent researchers who were not 
involved in primary data collection or the analysis of 
physiological responses. Behavioral codes were developed to 
correspond to items from a modified version of the Self-
Assessment Manikin (SAM) [24]. The original SAM is a 3-item 
questionnaire assessing valence (positive vs. negative mood), 
arousal (degree of energy/activation), and dominance, with 
ratings made on a 9-point graphical scale [24]. For the modified 
SAM, the first two items were retained while the third was 
replaced with ratings of the balance of the interaction (i.e., the 
relative contribution of each participant to the conversation). 
Behavioral anchors for observer ratings of valence, arousal, and 
balance at the dyad level were developed using video from 5 
randomly selected participant pairs. Intervals from an additional 
three randomly selected dyads (30 unique intervals) were used 
to verify the consistency of ratings across coders before 
finalizing scores for the remaining 27 pairs. Nine of the 
remaining cases were selected at random to be coded by both 
reviewers as a formal assessment of interrater reliability. 
Estimates of consistency were excellent for valence (ICC = .87), 
arousal (ICC = .81), and balance (ICC = .91) codes. 

E. Physiological Feature Extraction 

Physiological recordings were divided into the 2-minute 
baseline interval and ten 2-minute conversation intervals. All 
recordings were analog and digital bandpass filtered with the 
same filters as in our previous work [22]. Multiple physiological 
features were extracted from each interval. These were divided 
into individual features (extracted from a single participant’s 
signal) and synchrony features (extracted from the same signal 
type of both participants – e.g., from both participants’ ECG 
signals).  

Individual ECG features consisted of each participant’s 
mean heart rate, minimum heart rate, maximum heart rate, 
standard deviation of interbeat intervals, root mean square value 
of consecutive differences between interbeat intervals, 
percentage of consecutive interbeat intervals with a difference 
greater than 50 ms (pNN50), power in low-frequency band, 
power in high-frequency band, and the ratio of the two powers 
(LF/HF ratio). These are standard time-domain and frequency-
domain measures of heart rate variability [25]. Individual skin 
conductance features consisted of mean skin conductance, final 
skin conductance, the difference between initial and final skin 
conductance values, number of skin conductance responses, 
mean skin conductance amplitude, and standard deviation of 
skin conductance response amplitudes. Skin conductance 
responses were detected using code from our previous work 
[20]. Individual respiration features consisted of mean 
respiration rate and standard deviation of respiration rate, again 
calculated using code from our previous work [20]. Finally, 
individual skin temperature features consisted of mean 

temperature, final temperature, and the difference between 
initial and final temperature values.  

Synchrony features were calculated from instantaneous heart 
rate and respiration rate signals (computed as a function of time 
from raw electrocardiogram and nose respiration signals [20]) 
as well as from bandpass-filtered skin conductance and 
temperature signals. The same features were calculated for all 4 
signals (ECG, respiration, skin conductance, skin temperature). 
They consisted of dynamic time warping distance (as introduced 
by Muszynski et al. [16]), nonlinear interdependence (also 
introduced by Muszynski et al. [16]), coherence (same algorithm 
used in our previous work [20]) and cross-correlation (same 
algorithm used in our previous work [20]).  

F. Regression 

Physiological features consisted of individual and synchrony 
features, obtained from 35 dyads with 10 data points (intervals) 
per dyad. Audio/video features consisted of observer ratings of 
valence, arousal, and balance, again obtained from 35 dyads 
with 10 data points (intervals) per dyad. The goal of the study 
was to create regression algorithms to infer valence, arousal, and 
balance ratings (outputs) from physiological features (input). 
Two regression methods were used for this: support vector 
machines (SVM - implemented using fitrsvm function in 
MATLAB 2022b) and Gaussian process regression (GPR - 
using fitgrp function in MATLAB 2022b). Additionally, two 
feature selection methods were tested prior to regression: 
bidirectional stepwise feature selection (using stepwisefit 
function in MATLAB 2022b) and recursive feature elimination 
with correlation bias reduction (RFE), implemented using open-
source MATLAB code [26]. 

As all data were collected in advance, crossvalidation was 
used to train and test the feature selection and regression 
methods. In crossvalidation, the algorithms are trained on a 
subset of data (selecting regression coefficients and selection 
thresholds, choosing “best” selection/regression method) and 
then tested on the remaining data. Specifically, two different 
types of crossvalidation were used: leave-interval-out 
crossvalidation and leave-dyad-out crossvalidation. In leave-
interval-out crossvalidation, the algorithms were trained on 9 
data points of a dyad and then tested on the remaining data point. 
This was repeated 10 times per dyad, with each data point 
serving as the “test” point once, and performed for each dyad. 
Conversely, in leave-dyad-out crossvalidation, the algorithms 
were trained on all data from 34 dyads and then tested on all 10 
data points from the remaining dyad. This was repeated 35 
times, with each dyad serving as the “test” dyad once. Thus, 
leave-interval-out crossvalidation uses training data from the 
same dyad, but only has 9 training data points; on the other hand, 
leave-dyad-out crossvalidation has no training data from the 
same dyad, but has 340 training data points.   

Errors in regression of valence/arousal/balance were 
calculated as the difference between the output of the regression 
algorithm and the corresponding valence/arousal/balance rating 
actually made by the observer. In both leave-interval-out and 
leave-dyad-out crossvalidation, a dyad’s regression 
performance was calculated as the root-mean-square (RMS) 



error over the 10 data points of that dyad: each of the 10 error 
values was squared, the mean of the 10 squared values was 
calculated, and the root of the mean was used as the dyad’s RMS 
error. The same outcome metric was used in our previous work 
[22]. 

As RMS errors in regression may be difficult to 
contextualize, a “baseline” estimator was used as well. This 
baseline estimator did not rely on physiological data. Instead, in 
leave-interval-out crossvalidation, the baseline estimator 
calculated the valence/arousal/balance of the test data point as 
the median valence/arousal/balance of the 9 training data points 
from a dyad. In leave-dyad-out crossvalidation, it calculated the 
valence/arousal/balance of the 10 “test” data points as the 
median valence/arousal/balance of the 340 training data points. 
A similar approach was used in our previous work [22].  

III. RESULTS 

In leave-interval-out crossvalidation, the best results were 
obtained using RFE and SVMs for all three outcome variables. 
In leave-dyad-out crossvalidation, the best results were obtained 
using stepwise feature selection and SVMs for valence, but 
using stepwise feature selection and GPR for arousal and 
balance. Table 1 shows means and standard deviations of RMS 
errors across all 35 dyads in both crossvalidation types.  

In leave-interval-out crossvalidation, paired t-tests showed 
that RMS errors with SVMs were significantly lower than with 
the baseline estimator for valence, arousal, and balance (p < 
0.001 for all three comparisons). In leave-dyad-out 
crossvalidation, however, paired t-tests found no significant 
differences (lowest p = 0.07 for balance).  

IV. DISCUSSION 

In leave-interval-out crossvalidation, SVM-based regression 
achieved lower RMS errors than the simple baseline estimator. 
This indicates that, given training data from the same 
participants, physiological measurements can be used to 
estimate multiple conversation aspects (valence, arousal, 
balance) with some degree of precision. These results are 
actually better than the results of leave-interval-out 
crossvalidation in our previous regression study [22], which did 
not find a difference in RMS errors between the baseline 
estimator and any regression estimator in leave-interval-out 
crossvalidation. The improvement relative to our previous study 
is likely due to methodological improvements such as the use of 
a more standard rating procedure – the SAM used in the current 
work is a very well-validated questionnaire compared to the ad-
hoc questionnaire used in our previous work [22]. It is 
particularly noteworthy that positive results were obtained even 
though the training dataset was very small (9 data points), and 
even better results could potentially be obtained using more 
training data from the same dyad.  

However, in leave-dyad-out crossvalidation, no regression 
algorithm achieved significantly lower RMS errors than the 
baseline estimator. This indicates that, without training data 
from the same participants, it is not possible to accurately 
estimate conversation aspects in this study design using these 
physiological signals and regression methods. While some 

improvements could likely be made by, e.g., introducing new 
physiological features or new regression algorithms, we believe 
that significant improvement of leave-dyad-out regression 
results would require either conceptually different algorithms or 
a different study protocol. For example, instead of training 
regression algorithms on data from all other dyads, the 
algorithms could be trained only on data from dyads that are 
similar to the “test” dyad with regard to age, personality traits or 
other characteristics. Alternatively, instead of observer ratings, 
self-report ratings could be used to obtain better insights into 
internal psychological processes that may not be visible to 
observers, though self-report ratings may have their own 
reliability issues [23].  

Overall, results indicate that, as long as training data from 
the same dyad are available, autonomic nervous system 
responses can be combined with regression algorithms to 
automatically estimate multiple dyadic conversation aspects 
with some accuracy. Thus, while such approaches may not be 
useful in situations where participants meet only once, they 
could potentially be useful in situations where people interact 
with each other over longer time periods – for example, in 
education [8] and mental health counseling [9], where 
teachers/students and therapists/clients establish longer-term 
relationships. In such situations, data from a first session could 
potentially be used to train the algorithms. The trained 
algorithms could then be used to analyze the quality of 
interpersonal interaction in further sessions – for example, to 
identify moments of efficient vs. inefficient communication. 
Alternatively, the algorithms could be used to provide real-time 
feedback about the conversation as it occurs, allowing 
participants to modify their own behavior if they realize the 
conversation is going poorly [10].  

However, several additional issues would need to be 
addressed before the regression algorithms could be used in 
practical situations. For example, dyadic physiological 
responses are different in populations such as chronically 
depressed people [27], which may limit their usability in mental 
health counseling. Furthermore, it is unclear whether the 
obtained accuracies are practically useful, as an RMS error of 
approximately 0.7 on a 9-point scale may be no better than what 
the participants themselves can glean from the interaction. Other 
technologies such as facial expression analysis and eye tracking 

TABLE I.  ROOT-MEAN-SQUARE ERRORS WHEN ESTIMATING THREE 

ASPECTS OF THE CONVERSATION: VALENCE, AROUSAL, AND BALANCE. 
ERRORS WERE CALCULATED IN LEAVE-INTERVAL-OUT AND LEAVE-DYAD-OUT 

CROSSVALIDATION. BOTH CROSSVALIDATION TYPES FOCUSED ON REGRESSION 

ALGORITHMS FOR ESTIMATION, BUT A SIMPLE BASELINE ESTIMATOR WAS 

ALSO USED. ALL VALUES ARE MEANS ± STANDARD DEVIATIONS. AS VALENCE, 
AROUSAL, AND BALANCE ARE MEASURED ON 9-POINT SCALES, THE MINIMUM 

POSSIBLE ERROR IS 0 AND THE MAXIMUM POSSIBLE ERROR IS 8. 

 
Root-mean-square errors 

Valence Arousal Balance 

Leave-interval-out 

baseline estimator 
1.10 ± 0.40 1.07 ± 0.30 2.07 ± 0.60 

Leave-interval-out 

regression algorithm 
0.69 ± 0.26 0.74 ± 0.25 1.34 ± 0.44 

Leave-dyad-out 

baseline estimator 
1.16 ± 0.39 1.25 ± 0.45 1.99 ± 0.50 

Leave-dyad-out 

regression algorithm 
1.15 ± 0.37 1.15 ± 0.41 1.91 ± 0.42 

 



may also be able to achieve better performance, and similar 
issues of practical usefulness have been raised in other areas of 
affective computing [28]. Finally, due to intrasubject variability, 
it is unclear whether the trained regression algorithms would be 
stable on a day-to-day basis, and multiple sessions on multiple 
days would be needed to evaluate their robustness. We will 
continue exploring these topics in our future work.  

V. CONCLUSION 

In leave-interval-out crossvalidation, regression algorithms 
applied to physiological data were able to estimate conversation 
valence, arousal and balance with an accuracy better than that of 
a simple baseline estimator. However, in leave-dyad-out 
crossvalidation, regression algorithms did not outperform the 
baseline estimator. This indicates that autonomic nervous 
system responses can be combined with regression algorithms 
to automatically estimate multiple dyadic conversation aspects 
with some accuracy, but only if training data are available from 
the same dyad. In the long term, such analysis of physiological 
responses could potentially be used to automatically analyze the 
quality of interpersonal interactions. It could even be used to 
provide real-time feedback about the interaction as it occurs, 
allowing participants to modify their own behavior if they 
realize the conversation is going poorly. However, several 
questions would need to be answered before the technology is 
used in practice, such as whether physiological responses 
provide any information that cannot be obtained more easily 
through other means. 
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