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Abstract—Dyadic physiological responses are correlated with
the quality of interpersonal processes — for example, the degree of
“connectedness” in education and mental health counseling.
Pattern recognition algorithms could be applied to such dyadic
responses to identify the states of specific dyads, but such pattern
recognition has primarily focused on classification. This paper
instead uses regression algorithms to estimate three conversation
aspects (valence, arousal, balance) from heart rate, skin
conductance, respiration, and skin temperature. Data were
collected from 35 dyads who engaged in 20 minutes of
conversation, divided into 10 two-minute intervals. Each interval
was rated with regard to conversation valence, arousal, and
balance by an observer. When regression algorithms (support
vector machines and Gaussian process regression) were trained on
other data from the same dyad, they were able to estimate valence,
arousal and balance with lower errors than a simple baseline
estimator. However, when algorithms were trained on data from
other dyads, errors were not lower than those of the baseline
estimator. Overall, results indicate that, as long as training data
from the same dyad are available, autonomic nervous system
responses can be combined with regression algorithms to estimate
multiple dyadic conversation aspects with some accuracy. This has
applications in education and mental health counseling, though
fundamental issues remain to be addressed before the technology
is used in practice.
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I. INTRODUCTION

In the fields of affective computing and applied
psychophysiology, physiological responses are frequently
combined with pattern recognition algorithms to automatically
recognize human psychological states [1]. This can include, for
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example, workload levels in air traffic controllers [2],
engagement levels in patients undergoing rehabilitation [3],
drowsiness/inattention levels in drivers [4], and enjoyment
levels in computer game players [5]. Machines can then take
action to bring users into a more desirable psychological state
by, e.g., changing the amount of automated assistance or
adapting the difficulty of an exercise [1].

‘While most research in this area has focused on individuals,
studies have also used physiological responses to identify
psychological states of dyads (pairs) who compete, cooperate,
or simply communicate with each other. Dyadic physiological
responses are known to correlate with the intensity of
competition [6], quality of cooperation [7] and the degree of
“connectedness” in processes like education [8] and mental
health counseling [9]. Pattern recognition algorithms could thus
also be applied to such dyadic physiological responses to
identify the state of a specific dyad. This would have many
potential applications. For example, visual feedback about the
interaction could be presented to users, allowing them to modify
their own behavior in order to improve the interaction outcome
[10], which may lead to better outcomes of technology-assisted
education and mental health counseling.

Pattern recognition algorithms to identify the psychological
state of a specific dyad are predominantly based on supervised
machine learning — either classification or regression. Most
commonly, classification algorithms are used to classify
psychological states into one of two classes (e.g., engaged or
unengaged dyads) based on a single physiological response type
(e.g., only electrocardiography or only electroencephalography)
[11]-[16]. Less commonly, some studies perform classification
into 3 or 4 classes based on a single physiological response type
[17], [18] or multiple physiological response types [19], [20]. To
our knowledge, regression algorithms have been used by only
two dyadic physiology studies [21], [22], and classification is
more popular than regression in similar studies involving
individuals rather than dyads as well [1]. Nonetheless,



regression does have several advantages over classification,
such as the potential to provide more granular information about
psychological states, and thus represents a promising alternative.

The goal of the current study is to combine multiple
autonomic nervous system responses with supervised regression
algorithms in order to automatically extract multiple
psychological aspects of a dyadic conversation based on third-
person (observer) ratings of the conversation. The current study
is based on our previous dyadic regression study [22], but with
several expansions and modifications. Specifically, the previous
study used physiological responses and regression to estimate a
single conversation variable (engagement) obtained using an ad-
hoc self-report questionnaire completed by participant dyads.
Conversely, this study estimates multiple conversation variables
as coded by external observers. The observers were trained to
produce consistent ratings of participant behavior, thus avoiding
some of the weaknesses inherent in psychophysiological studies
that are limited to self-report data [23].

II. MATERIALS AND METHODS

A. Participants

Thirty-five dyads were recruited for the study from students
and staff of the University of Cincinnati. All dyads knew each
other prior to the session, and recruitment materials specifically
requested that participants volunteer in self-selected pairs.
Participants were 21.1 £ 3.9 years old (mean + standard
deviation). There were 11 dyads with two women, 9 dyads with
two men, 13 dyads with one woman and one man, 2 dyads with
one woman and one nonbinary participant, and one dyad with
two nonbinary participants. Each participant signed an informed
consent form.

B. Hardware

Participants’ physiological responses were recorded at 600
Hz using two g.USBamp biosignal amplifiers (g.tec Medical
Engineering GmbH, Austria) and their add-on sensors. Four
disposable wired electrodes were placed on the trunk to record
the electrocardiogram (ECG) using a placement suggested by
the manufacturer. The g.GSRsensor2 was used to record skin
conductance via two dry electrodes placed on distal phalanges
of the index and middle finger of the nondominant hand. The
g.Sensor Respiration Airflow was used to record respiration rate
via a thermistor-based sensor placed under the nose and above
the mouth. Finally, the g.Temp was used to record peripheral
skin temperature via a sensor on the distal phalanx of the fifth
finger of the nondominant hand. This sensor setup was very
similar to that in our previous work [19], [22]. It is worth noting
that, with this sensor setup, the respiration signal is likely
influenced by participants’ speech, and we will investigate
alternatives in future work.

Additionally, audio and video of the participants were
recorded throughout the session using a pair of consumer-grade
webcams (one pointed at each participant) and a Yeti X
microphone (Blue Microphones, USA) placed between the
participants. This sensor setup was also similar to that in our
previous work [22]. The sensors can be seen in Fig. 1, which
illustrates the overall study setup.
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Fig. 1. The study setup. Participants sit facing each other with
physiological sensors attached and connected to signal amplifiers (bottom
of photo). Webcams and a microphone between the participants are used
to collect audio and video of the conversation. Participants also filled out
self-report questionnaires, which were not analyzed for this paper.

C. Study Protocol

The study was approved by the University of Cincinnati
Institutional Review Board, protocol 2021-1107. Each dyad
took part in a single session. Participants sat at a table
approximately 1.5 m apart facing each other (Fig. 1). They self-
applied physiological sensors following the experimenter’s
guidance. Each dyad was randomly assigned an initial
conversation tone: positive, neutral, or negative. Dyads in the
positive group were asked to self-select an initial topic that both
participants liked and agreed on; conversely, dyads in the
negative group were asked to select a topic that they disagreed
on. In both groups, these turned out to be mostly “non-serious”
topics such as food, music and sports.

After the assignment and topic selection, participants first sat
facing each other silently for 2 minutes with eyes open to obtain
baseline physiological recordings. They then talked to each
other for 20 minutes, divided into ten 2-minute intervals. They
began the first interval by talking about their self-selected topic
(in the case of positive/negative groups) or about career goals
(for the neutral group). However, they could switch topics at any
time. After each 2-minute interval, the experimenter raised a
hand to pause the conversation, during which participants filled
out a brief self-report questionnaire (not analyzed in current
study). The conversation then continued. At the end of the
session, participants removed the sensors and received $15
Amazon gift cards as compensation.

To introduce more variability into conversations (which
were a priori expected to be mostly neutral-to-positive [22]), one
of the two participants was also provided with secret prompts to
modify the conversation after the fourth and seventh 2-minute
interval. That participant was told about the prompts at the start
of the session (by being asked to briefly leave the room by the
researcher) while the other participant was not told about them
until the end of the session. The prompts were “During the next
2-minute interval, show absolutely no emotion” and “During the
next 2-minute interval, point out every possible flaw with
whatever the other person says”. The two prompts were given in
random order (half the dyads receiving the no-emotion prompt



first) and were shown on the paper self-report questionnaire
between 2-minute intervals, though only to one of the two
participants.

D. Analysis of Audio and Video Data

Each dyad’s audio/video recordings were divided into the
ten 2-minute conversation intervals. Segments not belonging to
these intervals were not analyzed further. Each 2-min interval
was reviewed by independent researchers who were not
involved in primary data collection or the analysis of
physiological responses. Behavioral codes were developed to
correspond to items from a modified version of the Self-
Assessment Manikin (SAM) [24]. The original SAM is a 3-item
questionnaire assessing valence (positive vs. negative mood),
arousal (degree of energy/activation), and dominance, with
ratings made on a 9-point graphical scale [24]. For the modified
SAM, the first two items were retained while the third was
replaced with ratings of the balance of the interaction (i.e., the
relative contribution of each participant to the conversation).
Behavioral anchors for observer ratings of valence, arousal, and
balance at the dyad level were developed using video from 5
randomly selected participant pairs. Intervals from an additional
three randomly selected dyads (30 unique intervals) were used
to verify the consistency of ratings across coders before
finalizing scores for the remaining 27 pairs. Nine of the
remaining cases were selected at random to be coded by both
reviewers as a formal assessment of interrater reliability.
Estimates of consistency were excellent for valence (ICC =.87),
arousal (ICC = .81), and balance (ICC =.91) codes.

E. Physiological Feature Extraction

Physiological recordings were divided into the 2-minute
baseline interval and ten 2-minute conversation intervals. All
recordings were analog and digital bandpass filtered with the
same filters as in our previous work [22]. Multiple physiological
features were extracted from each interval. These were divided
into individual features (extracted from a single participant’s
signal) and synchrony features (extracted from the same signal
type of both participants — e.g., from both participants’ ECG

signals).

Individual ECG features consisted of each participant’s
mean heart rate, minimum heart rate, maximum heart rate,
standard deviation of interbeat intervals, root mean square value
of consecutive differences between interbeat intervals,
percentage of consecutive interbeat intervals with a difference
greater than 50 ms (pNN50), power in low-frequency band,
power in high-frequency band, and the ratio of the two powers
(LF/HF ratio). These are standard time-domain and frequency-
domain measures of heart rate variability [25]. Individual skin
conductance features consisted of mean skin conductance, final
skin conductance, the difference between initial and final skin
conductance values, number of skin conductance responses,
mean skin conductance amplitude, and standard deviation of
skin conductance response amplitudes. Skin conductance
responses were detected using code from our previous work
[20]. Individual respiration features consisted of mean
respiration rate and standard deviation of respiration rate, again
calculated using code from our previous work [20]. Finally,
individual skin temperature features consisted of mean

temperature, final temperature, and the difference between
initial and final temperature values.

Synchrony features were calculated from instantaneous heart
rate and respiration rate signals (computed as a function of time
from raw electrocardiogram and nose respiration signals [20])
as well as from bandpass-filtered skin conductance and
temperature signals. The same features were calculated for all 4
signals (ECG, respiration, skin conductance, skin temperature).
They consisted of dynamic time warping distance (as introduced
by Muszynski et al. [16]), nonlinear interdependence (also
introduced by Muszynski et al. [16]), coherence (same algorithm
used in our previous work [20]) and cross-correlation (same
algorithm used in our previous work [20]).

F. Regression

Physiological features consisted of individual and synchrony
features, obtained from 35 dyads with 10 data points (intervals)
per dyad. Audio/video features consisted of observer ratings of
valence, arousal, and balance, again obtained from 35 dyads
with 10 data points (intervals) per dyad. The goal of the study
was to create regression algorithms to infer valence, arousal, and
balance ratings (outputs) from physiological features (input).
Two regression methods were used for this: support vector
machines (SVM - implemented using fitrsvm function in
MATLAB 2022b) and Gaussian process regression (GPR -
using fitgrp function in MATLAB 2022b). Additionally, two
feature selection methods were tested prior to regression:
bidirectional stepwise feature selection (using stepwisefit
function in MATLAB 2022b) and recursive feature elimination
with correlation bias reduction (RFE), implemented using open-
source MATLAB code [26].

As all data were collected in advance, crossvalidation was
used to train and test the feature selection and regression
methods. In crossvalidation, the algorithms are trained on a
subset of data (selecting regression coefficients and selection
thresholds, choosing “best” selection/regression method) and
then tested on the remaining data. Specifically, two different
types of crossvalidation were used: leave-interval-out
crossvalidation and leave-dyad-out crossvalidation. In leave-
interval-out crossvalidation, the algorithms were trained on 9
data points of a dyad and then tested on the remaining data point.
This was repeated 10 times per dyad, with each data point
serving as the “test” point once, and performed for each dyad.
Conversely, in leave-dyad-out crossvalidation, the algorithms
were trained on all data from 34 dyads and then tested on all 10
data points from the remaining dyad. This was repeated 35
times, with each dyad serving as the “test” dyad once. Thus,
leave-interval-out crossvalidation uses training data from the
same dyad, but only has 9 training data points; on the other hand,
leave-dyad-out crossvalidation has no training data from the
same dyad, but has 340 training data points.

Errors in regression of valence/arousal/balance were
calculated as the difference between the output of the regression
algorithm and the corresponding valence/arousal/balance rating
actually made by the observer. In both leave-interval-out and
leave-dyad-out  crossvalidation, a dyad’s regression
performance was calculated as the root-mean-square (RMS)



error over the 10 data points of that dyad: each of the 10 error
values was squared, the mean of the 10 squared values was
calculated, and the root of the mean was used as the dyad’s RMS
error. The same outcome metric was used in our previous work
[22].

As RMS errors in regression may be difficult to
contextualize, a “baseline” estimator was used as well. This
baseline estimator did not rely on physiological data. Instead, in
leave-interval-out crossvalidation, the baseline estimator
calculated the valence/arousal/balance of the test data point as
the median valence/arousal/balance of the 9 training data points
from a dyad. In leave-dyad-out crossvalidation, it calculated the
valence/arousal/balance of the 10 “test” data points as the
median valence/arousal/balance of the 340 training data points.
A similar approach was used in our previous work [22].

III. RESULTS

In leave-interval-out crossvalidation, the best results were
obtained using RFE and SVMs for all three outcome variables.
In leave-dyad-out crossvalidation, the best results were obtained
using stepwise feature selection and SVMs for valence, but
using stepwise feature selection and GPR for arousal and
balance. Table 1 shows means and standard deviations of RMS
errors across all 35 dyads in both crossvalidation types.

In leave-interval-out crossvalidation, paired t-tests showed
that RMS errors with SVMs were significantly lower than with
the baseline estimator for valence, arousal, and balance (p <
0.001 for all three comparisons). In leave-dyad-out
crossvalidation, however, paired t-tests found no significant
differences (lowest p = 0.07 for balance).

IV. DISCUSSION

In leave-interval-out crossvalidation, SVM-based regression
achieved lower RMS errors than the simple baseline estimator.
This indicates that, given training data from the same
participants, physiological measurements can be used to
estimate multiple conversation aspects (valence, arousal,
balance) with some degree of precision. These results are
actually Dbetter than the results of leave-interval-out
crossvalidation in our previous regression study [22], which did
not find a difference in RMS errors between the baseline
estimator and any regression estimator in leave-interval-out
crossvalidation. The improvement relative to our previous study
is likely due to methodological improvements such as the use of
a more standard rating procedure — the SAM used in the current
work is a very well-validated questionnaire compared to the ad-
hoc questionnaire used in our previous work [22]. It is
particularly noteworthy that positive results were obtained even
though the training dataset was very small (9 data points), and
even better results could potentially be obtained using more
training data from the same dyad.

However, in leave-dyad-out crossvalidation, no regression
algorithm achieved significantly lower RMS errors than the
baseline estimator. This indicates that, without training data
from the same participants, it is not possible to accurately
estimate conversation aspects in this study design using these
physiological signals and regression methods. While some

TABLE L ROOT-MEAN-SQUARE ERRORS WHEN ESTIMATING THREE
ASPECTS OF THE CONVERSATION: VALENCE, AROUSAL, AND BALANCE.
ERRORS WERE CALCULATED IN LEAVE-INTERVAL-OUT AND LEAVE-DYAD-OUT
CROSSVALIDATION. BOTH CROSSVALIDATION TYPES FOCUSED ON REGRESSION
ALGORITHMS FOR ESTIMATION, BUT A SIMPLE BASELINE ESTIMATOR WAS
ALSO USED. ALL VALUES ARE MEANS + STANDARD DEVIATIONS. AS VALENCE,
AROUSAL, AND BALANCE ARE MEASURED ON 9-POINT SCALES, THE MINIMUM
POSSIBLE ERROR IS 0 AND THE MAXIMUM POSSIBLE ERROR 1S 8.

Root-mean-square errors
Valence Arousal Balance

Leave-interval-out 1104040 | 1.07+030 | 2.07+0.60
baseline estimator

Leave-interval-out 0694026 | 0.74+025 | 134044
regression algorithm

Leave-dyad-out 1164039 | 1254045 | 1.99+0.50
baseline estimator

Leave-dyad-out 1152037 | 1154041 | 191042
regression algorithm

improvements could likely be made by, e.g., introducing new
physiological features or new regression algorithms, we believe
that significant improvement of leave-dyad-out regression
results would require either conceptually different algorithms or
a different study protocol. For example, instead of training
regression algorithms on data from all other dyads, the
algorithms could be trained only on data from dyads that are
similar to the “test” dyad with regard to age, personality traits or
other characteristics. Alternatively, instead of observer ratings,
self-report ratings could be used to obtain better insights into
internal psychological processes that may not be visible to
observers, though self-report ratings may have their own
reliability issues [23].

Overall, results indicate that, as long as training data from
the same dyad are available, autonomic nervous system
responses can be combined with regression algorithms to
automatically estimate multiple dyadic conversation aspects
with some accuracy. Thus, while such approaches may not be
useful in situations where participants meet only once, they
could potentially be useful in situations where people interact
with each other over longer time periods — for example, in
education [8] and mental health counseling [9], where
teachers/students and therapists/clients establish longer-term
relationships. In such situations, data from a first session could
potentially be used to train the algorithms. The trained
algorithms could then be used to analyze the quality of
interpersonal interaction in further sessions — for example, to
identify moments of efficient vs. inefficient communication.
Alternatively, the algorithms could be used to provide real-time
feedback about the conversation as it occurs, allowing
participants to modify their own behavior if they realize the
conversation is going poorly [10].

However, several additional issues would need to be
addressed before the regression algorithms could be used in
practical situations. For example, dyadic physiological
responses are different in populations such as chronically
depressed people [27], which may limit their usability in mental
health counseling. Furthermore, it is unclear whether the
obtained accuracies are practically useful, as an RMS error of
approximately 0.7 on a 9-point scale may be no better than what
the participants themselves can glean from the interaction. Other
technologies such as facial expression analysis and eye tracking



may also be able to achieve better performance, and similar
issues of practical usefulness have been raised in other areas of
affective computing [28]. Finally, due to intrasubject variability,
it is unclear whether the trained regression algorithms would be
stable on a day-to-day basis, and multiple sessions on multiple
days would be needed to evaluate their robustness. We will
continue exploring these topics in our future work.

V. CONCLUSION

In leave-interval-out crossvalidation, regression algorithms
applied to physiological data were able to estimate conversation
valence, arousal and balance with an accuracy better than that of
a simple baseline estimator. However, in leave-dyad-out
crossvalidation, regression algorithms did not outperform the
baseline estimator. This indicates that autonomic nervous
system responses can be combined with regression algorithms
to automatically estimate multiple dyadic conversation aspects
with some accuracy, but only if training data are available from
the same dyad. In the long term, such analysis of physiological
responses could potentially be used to automatically analyze the
quality of interpersonal interactions. It could even be used to
provide real-time feedback about the interaction as it occurs,
allowing participants to modify their own behavior if they
realize the conversation is going poorly. However, several
questions would need to be answered before the technology is
used in practice, such as whether physiological responses
provide any information that cannot be obtained more easily
through other means.
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