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Abstract

The correlation gap of a real-valued set function f : 2V — R4 [ADSY10] measures the worst-case ratio
between two continuous extensions of f over all points in the unit cube; informally the gap measures the
worst-case benefit of correlations between the variables.

This notion plays an important role in several areas including algorithms for constrained submodular
function maximization via contention resolution schemes, mechanism design, and stochastic optimization.
The correlation gap of any monotone submodular set function is known to be at least (1 — 1/e), and this
bound is tight even for the rank function of a uniform matroid of rank 1. Via a connection established in
[CVZ14], this yields an optimal contention resolution scheme for rounding in a matroid polytope.

In this paper, we study the correlation gap of the rank function of the ¢-fold union of a matroid M, denoted
by M?, defined as the (matroid) union of ¢-copies of M. We prove that the correlation gap of M?E, for any
matroid M, is at most 1 — élj‘—;z; this bound behaves as 1 — \/ﬁ as ¢ grows. This generalizes the results
in [Yanll, BEFGG22, KS23|. They established this gap for the uniform matroid of rank ¢ which can be viewed
as the ¢-fold union of a uniform matroid of rank 1; moreover this bound is tight even for this special case. The
correlation gap yields a corresponding contention resolution scheme for M¢ which was the initial motivation
for this work.

1 Introduction

This paper is concerned with the correlation gap of the rank function of matroids, and its applications, in
particular, to contention resolution schemes. We start with basics of matroids which can be skipped by a reader
familiar with them. A matroid is a pair M = (N,Z) where N is a finite ground set and Z C 2% is a collection
of independent sets that satisfy the following properties: (i) () € Z (non-triviality), (i) VI € Z;J c I = J € T
(down-closedness), and (iii) VI,J € Z;|I| < |J| = 3j € J\ I;I + j € T (exchange property). The rank function
ram 2N = Zy of M = (N,I) is defined as: rp(S) = max{|I| : I C S,I € I}. rp(S) is the cardinality of
the largest independent set contained in S. The rank of a matroid is rap((N). It is well-known that the rank
function of a matroid is integer-valued, monotone, and submodular. A real-valued set function f is submodular
iff f(A)+ f(B)> f(AUB)+ f(ANB) for all A, B C N; it is monotone if f(A) < f(B) for all A C B. For a
matroid M, the convex hull of the characteristic vectors of its independent sets is the matroid polytope P(M).
From the work of Edmonds, P(M) = conv{1l; : I € I} = {x € [0,1]V : 3, g @; < raq(S) for all S C N}; see
[Sch03]. In this paper we will assume that all matroids are loop-less, that is, for all i € N, (i) = 1.

Matroids are fundamental objects in combinatorial optimization. They have many applications and rich
connections to a variety of areas. The uniform matroid of rank ¢ over n elements, denoted by Uy ,, is of particular
relevance to us. Its independent sets are all subsets of N with cardinality at most £.

Correlation gap: This notion was introduced in [ADSY10] for non-negative real-valued set-functions. Since the
definition is technical, and our main interest is in matroid rank functions, we first define it for this special setting.
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Consider a fractional point x € P(M) for some matroid M. The fractional value of this point is >, ;. Suppose
we randomly round each i independently with probability x; to obtain a random set R(x). How does the expected
value of the rank of this random set, E[ra(R(x))], compare with ), x;7 We are interested in the worst-case
ratio between these two quantities. This is the unweighted setting and we can also consider the weighted setting
where each element ¢ has a weight y; and we compare ), z;y; with the expected weight of a maximum weight
independent set in R(x). We now give a formal definition for a set function.

DEFINITION 1. For a set function f: 2N — R, the correlation gap is defined as

E[f(R(x

) i UL
x€0,1]¥  fT(x)

where R(x) is a random set containing each element i independently with probability x;, and

fH(x) = maX{Zasf(S) : Zasls = X,Zas =1,as >0}
s s 5

18 the maximum, over all distributions with expectation x, of the expected value of f.

The quantity F(x) = E[f(R(x))] is the multilinear extension of f [CCPV07], and hence the correlation gap is the
worst-case ratio of two continuous extensions of f. See [Dug09] for more on continuous extensions of submodular
functions.

We are interested in the correlation gap of the weighted rank function of a matroid M. For a weight vector
y: N =Ry, ry: 2V - Ry is defined as 7y (S) = maxscs rer > ic1 Yi- In considering the correlation gap of ry it
suffices to restrict attention to points in the matroid polytope (see Lemma 4.7 in [CVZ14]). With this in mind,
the correlation gap of the weighted rank function is then defined as:

E[maxscr(x),se1 D ics Vil

inf k(ry) = inf
y=>0 ( y) x€P(M) ZiGN TiY;
y=>0

Note that the infimum is taken over all weight vectors y. By a relatively simple argument, due to the optimality
of the greedy algorithm for maximum independent set in a matroid, one can show that infy>g k(ry) is achieved

E[r(R(x)]

for the unit weight vector, that is infy>o k(ry) = K(rm) = infyepum) > This was formally shown in

ieN Ti
[HKLV23]. Hence it suffices to focus on the unweighted case. We highligil‘é that this is only for the sake of
simplicity and is not necessary in our analysis. Our proof still holds after substituting all unit rank functions by
weighted rank functions.

An important result is that x(f) > (1 — 1/e) for any monotone submodular function [CCPV07, Von07,
ADSY10]. This implies that x(raq) > (1—1/e) for all M; as a function of the number of elements n in the matroid,
one can obtain a slightly refined bound of (1 — (1 —1/n)™) [CVZ14]. Interestingly, this bound is tight even for the
uniform matroid of rank 1; that is k(U1 ) = 1—(1—1/n)". The bound improves substantially for uniform matroids

of rank ¢ as ¢ grows. Yan [Yanll], and subsequently others [BFGG22, KS23] showed that x(Ue,,) > 1 — %,

and moreover this bound is tight as n — oco. This latter bound behaves as (1 — \/ﬁ) which tends to 1 as
¢ — oo. The setting of U, , arises two nice applications. The first is in prophet inequalities and mechanism
design involving selecting/selling ¢ identical items [Alal4]. Second is in the setting of improved approximation
algorithms for maximum multi cover [BFGG22]. Correlation gaps have several applications including the design
of contention resolution schemes, mechanism design, and stochastic optimization. A recent paper [HKLV23] gives
a nice overview of some of these applications.

{-fold union of a matroid: Although simple, cardinality constraints play an important role in various settings
including prophet inequalities, mechanism design, and also in approximation. Partition matroids, which are
disjoint union of uniform matroids, further amplify the range of applications. As we saw, the correlation gap
improves towards 1 as £ — oo. Matroids provide a rich and powerful way to model constraints. However, since
they contain the uniform matroid of rank 1 as a special case, the best CR scheme we have is limited to (1 —1/e).
In recent work Husic et al [HKLV23] ask whether this bound can be improved for interesting classes of matroids.
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They showed that improvements can be obtained by considering the girth! v of the matroid M. For a matroid
M with rank p and girth v, they proved that

K(ram) >1—1/e— % (S(’y— 1—1i) [(?)(e— 1)f — ZD > (1-1/e).

=0

As a corollary they prove that the uniform matroid of rank 1 is the worst-case example for matroids.

We ask a related but a different question. Is there a natural generalization of the cardinality constraint with
{ items to the matroidal setting? Our conceptual contribution is to suggest such a generalization via the classical
notion of matroid union that has several fundamental applications in combinatorial optimization [Sch03].

For a matroid M = (N,Z) and integer ¢ > 1 we consider the matroid obtained by taking the ¢-fold union of
M.

DEFINITION 2. (¢-FOLD MATROID) For a matroid M = (N,I), its {-fold union matroid is defined as

M= MVYMYV---v M= (N,TY

¢ times

where

I'={LULU---UIL | €Z,1<i<{(}.

Alternatively, a set A € Z iff A can be partitioned into at most ¢ independent sets in Z. We note that the uniform
matroid of rank ¢ can be viewed as the ¢-fold union of the uniform matroid of rank 1.

Main result: We prove the following theorem.
THEOREM 1.1. For any matroid M and any integer £ > 1,
AT
¢!
We briefly compare our theorem to that in [HKLV23]. We note that the girth of M* is at least £+ 1, however,
the rank p of M’ can be arbitrarily large when compared to £. When the rank is large for a fixed girth v, the

gap shown in [HKLV23| converges to (1 — 1/e) and does not provide an improvement, while our bound does not
depend on the rank of M*.

K(rae) >1—

Motivation and and some applications: Our motivation came from the intuition that as ¢ increases, the
packing constraint imposed by the cardinality constraint becomes loose, and random rounding behaves well. This
phenomenon is well-known in several contexts where larger capacity allows better bounds — we refer the reader
to the notion of width used in approximating packing integer programs [BKNS12, KRTV18, CQT20], and also
improved bounds obtained in various routing problems [BS00, KPP08, HSS11]. It is not quite clear how one
makes the constraint imposed by a matroid "loose”. We believe that considering M’ via matroid union is one
clean approach towards this. As far as we are aware, this question has not been explored previously.

Our focus in this paper is to formulate and prove Theorem 1.1. The applications of correlation gap are
well-known and we refer the reader to some past and recent papers for more detailed discussion [Yan11, ADSY10,
CVZ14, BFGG22, HKLV23|. Here we mention two of them briefly.

The first one is an application to contention resolution schemes (CR schemes). These are a class of randomized
rounding schemes that convert a fractional solution x in a polyhedral relaxation P for a constraint to an integer
solution. They were initially formalized [CVZ14] in the context of constrained submodular function maximization
and since then they have found several other applications. [CVZ14] established a tight connection between CR
schemes for a constraint imposed by an independence family Z C N and the correlation gap of the weighted
rank function corresponding to Z. Via this connection, they derived an optimal (1 — 1/e)-balanced CR scheme

for matroid polytopes. Theorem 1.1 implies that there is a (1 — Eej!_ *)-balanced CR scheme for M. One can

compose CR schemes for constraints when considering their intersections [CVZ14], and the scheme for M? can
be used in a black-box fashion to derive further applications.

TThe girth of a matroid is the smallest size of a circuit (a minimal dependent set) of M.
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The preceding application involves matroids as constraints. Another application is when one considers
weighted rank functions of matroids as a special case of submodular functions. Consider a submodular function
f:2N - R, where f = Z?=1 g; where each g; is a weighted rank function of a matroid M; on N. Maximum
k-Cover is a canonical example of such a function [CCPV07]; we are given n subsets S1, ..., S, of a universe X and
the goal is to pick k of these sets to maximize their union. Max k-Cover admits a tight (1 — 1/e)-approximation
via several methods. Barman et al [BFGG22] considered the maximum multicover problem where each element
can be covered up to ¢ times and showed that it admits an improved (1 — Zej!_ e) approximation. Their result
is obtained via the fractional relaxation framework following by pipage/swap rounding; a key difference between
this class of functions and general submodular functions is that one can solve an LP relaxation as opposed to
using the multilinear relaxation (see [CCPV07, BEGG22]). The key to the result in [BFGG22] is the correlation

gap for k(U ). Via Theorem 1.1, one can obtain a (1 — Zez; [) approximation for any submodular function of the

form 2?21 g; where each g; is a weighted rank function of a matroid Mﬁj where ¢; > ( for each j € [h].

Our proof of Theorem 1.1 is short and intuitively simple. Via a submodularity inequality first shown in
[Von07], it reduces the general case to the setting when M® = U ,,. The original proof of the correlation gap
for a submodular set function [CCPV07, Von07] is based on a Poisson clock process, and this approach has been
dominant in several subsequent works as well. Our proof is akin to a different proof in [CVZ14]; [CL21] also
build upon this latter proof. We had formulated Theorem 1.1 a few years ago following the work of Barman et al
[BFGG22]. Our initial attempts at a proof were based on using Karger’s matroid base sampling approach [Kar98§]
while the proof we provide here follows a simpler and direct approach via a reduction to the cardinality case.
Since the paper is short, we do not give a separate high-level overview. A reader who is somewhat familiar with
prior work on correlation gaps may directly go to the proof of Theorem 3.1 and work backwards to see the utility
of the supporting lemmas in Section 3.

2 Preliminaries

We need a characterization of the rank function of MY in terms of the rank function of M.

LEMMA 2.1. (SEE [ScHO3]) Let M = (N,I) be a matroid and let M* = (N,T") be its {-fold union. Then, for
SCN,
race(8) = min S\ 71+ £ 7aa(T)).

We provide some mathematical results required for proving our main theorem. In the following, we use Ber(-)
and Poi(-) to denote Bernoulli and Poisson random variables.

DEFINITION 3. (C.F. [SS07]) Let X andY be two random variables. X is said to be smaller that Y in the convex
order (denoted as X <. Y ) if

E[f(X)] <E[f(Y)] for any convex function f : R — R,

which is equivalent to

E[f(X)] > E[f(Y)] for any concave function f : R — R.
LEMMA 2.2. ([BFGG22]) For any p € [0,1], we have
Ber(p) <« Poi(p),

LEMMA 2.3. (THEOREM 3.A.12(D) IN [SS07]) Let X1, Xo, ..., Xm be a set of independent random variables and
let Y1,Ys, ..., Y, be another set of independent random variables. If X; <. Y; for 1 <i < m, then

m

ZXi Scx Z)/z

i=1 i=1
That is, the convex order is closed under convolutions.

We need the following inequality which is probably known in the literature but we give a proof for the sake
of completeness.
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LEMMA 2. 4 Let 3, ..., %= ben fractions and c1, ..., c, be n numbers such that a;, c; € R>o,b; € R fori € [n].

an

Suppose Z .- Z e and cp > > ¢y, then

Z:‘L:l Gii Z?:l a;
i cibi T X by

Proof. After rearranging terms, we want to prove

ZC‘ asz biiaj
j=1

=1

Considering the coefficient of the term a;b;, we have
n n n
Zci aiij—biZaj
i=1 j=1 j=1
n n
= Z Z aibj (C

i=1 j—1
—ZZaz ¢i —¢j) +ajbi(cj — ¢;)
=1 j 1+1
=Y D (e —ci)laghi —aibj) > 0.
i=1 j=i+1
The last inequality follows from c; > ¢; and > az for i>i 0

3 Proof of the Correlation Gap
We start with a lemma that enables us to make parallel copies of elements safely.

LEMMA 3.1. Let M = (N,I) a matroid and let e € N. Let M’ = (N' = N — e + {e1,e2},Z') be obtained from
M by replacing e with two copies e1, ey and defining I' as below:

={l:e¢l,IcT}U{I—e+er:ecl,JeT}U{l—e+ey:eccI,IcT}.

Then M’ is a matroid. Further, for any @ € P(MY), let @ € [0,1]N" be such that xf = x; fori € N\e and
al 4+, =x.. We have @ € P(M'Y) and

E[rpe (R(2))] = Elr e (R(a))].

Proof. Tt is straightforward to check that M’ is a matroid. For ease of notation, let r(-) = rp(-) be the rank
function of M* and 7/(-) = r () be that of M’*. By Lemma 2.1, it is clear that for any S C N —e, r(S) = '(S)
and r(S +e) = 1'(S + e1) = 7'(S + e3). Hence, it is easy to check that x' € P(M’*).

Let Y be a random subset of N — e obtained by picking each ¢/ € N — e independently with probability
Ze. Let R(x) =Y + e with probability z. and R(x) = Y with probability 1 — z.. We analyze E[r(R(x))] and
E[r'(R(x'))] conditioned on Y = T. Note that r(T) = +'(T) and (T +¢) =r'(T + e1) = r'(T + e2). Hence,

E[r(Rx)|Y =T =1 —z)r"(T) + xer’ (T +€) = (1 — 2)r'(T) + v’ (T + €1)
and
E[r'(R(X)) | Y =T] = (1 -2, )(1 — 2,)r'(T)

+ (e, (L= ap,) +ag, (1 =2 )" (T +e1)
+al, ao,r (T +e1 + eg).
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Since x7,, + 7, = .,

E[r(R()) | Y = T — B[ (R(x)) | Y = T]

=, x,, (QT/(T +e1)—r'(T) =7 (T +e + 62))

— 2t ol (7 (T + e) = /(1)) = (T + 1 + e2) = 7/(T + 2) ).
By the submodularity of the rank function, we have

(T +e1) =7 (T)>r'(T + e +e2) —r'(T + e2).
Thus, E[r(R(x)) | Y =T] - E[/(R(x)) | Y = T] > 0, and by unconditioning we obtain the desired claim. O
The following lemma plays an important role in the proof.

LeEMMA 3.2. ([VONO7]) Let f : 2V — Ry be a monotone submodular function, and let Ay,...,A,, C N. For
each i € [m] independently, sample a random subset A;(p;) which contains each element of A; with probability p;.
Let J be a random subset of [m] containing each element i € [m| independently with probability p;. Then

(U]

We will use Lemma 3.2 for f(-) = r ¢ (+); recall that the rank functions of matroids are monotone submodular.

For the RHS of the inequality, consider the scenario that {A;};c[y are disjoint independent sets in M and
the set A; appears with probability p; for ¢ € [m]. Then we can regard each A; as an element with “weight”
Tae(Ai) = |Ai] and 74 (U ; Ai) means that we can choose at most ¢ elements among {A;}ic[m) to form an
independent set in M¢. This is very similar to the cardinality constraint case.

The preceding observation inspires us to decompose x € P(M?) into several disjoint independent sets in M.
Then we can reduce the problem to the case with cardinality constraint £, i.e. rank-£ uniform matroid, and follow
the proof techniques used in [Yanll, BFGG22, KS23]. We will show in the following formally how the reduction
step is performed and provide a clean proof of the cardinality constraint case for the sake of completeness.

Elf|l U 4@ ||>E

i€[m]

LEMMA 3.3. For a matroid M = (N,T), let () be the rank funtion of M’ and let Ay, ..., A,, € T be disjoint
independent sets of M. For each i € [m] independently, sample a random subset A;(p;) which contains each
element of A; with probability p;. If Z:il p; =4, then

m

tlet
i€[m] i=1

Proof. By Lemma 3.2, we only need to show

(Ua)])= -5 S

Assume without loss of generality that r(A;) > r(As) > -+ > r(A,). We remark that r(A;) = |A;| since
each A; is an independent set in M, however we use r(A;) to indicate that the proof can be easily generalized
to the weighted setting without an explicit reduction to the unweighted setting. Let X, ~ Ber(p;) be a random
variable indicating whether ¢ € .J. Consider the first ¢ elements appearing in J, the corresponding sets are ¢
independent sets in M. Hence the union of them is an independent set in M¥. Since they are disjoint, we have

(Us)

E

E

m i—1
ZZ]&PI‘ ZXJ<£ T’(Ai)
i=1 j=1
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After rearranging terms, we want to prove that

Sy e Pr X2 X < £ r(A))

zée—f

>1-—

S pir(Ad) N

4

We note that we have essentially reduced the problem to the cardinality case. One can appeal to previous work

here but we give a self-contained proof.

Since both Pr [Z;;ll X, < 4 and r(A4;) are decreasing in i, plugging

i—1

ai =piPr | > X; <] ,bi=pi,c; =r(4)

j=1

into Lemma 2.4 gives

>y piPr [22;11 Xj < 4 r(Ai) L piPr [22;11 Xj < 4

™ >
> imy pir(Ai)

Hence it suffices to show that

m i—1 64674 m
z;piPr Z;Xj<e 2(1— i >Z
1= Jj=

To see this, note that

221 bi

m i—1 m £—1 i—1
ZpiPr ZXJ-<€ ZZZpiPr ZXj:k
i=1 j=1 i=1 k=0 =1 ]
1 m [i-1 i
= Zpi Pr ZXJ =k
k=0 i=1 =1 ]
14 m
=3 Pr|) X;>k
k=1 =1

For 1 < j < m, since X; ~ Ber(p,), we have X; <.« Poi(p;) by Lemma 2.2. Then by Lemma 2.3 we have

in <ex iPoi(pj) = Poi ipj = Poi(¥).
j=1 j=1

j=1

402
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Since f(z) = min(z,¢) is a concave function, by the definition of convex order, we have

E [min ZXJ-,Z > E[min(Poi(¢), £)]
j=1

L oo
Phe—t he—t
- Z k- A Z b
k=0 k=0+1

k=0 k=0+1
-1 1. [e's)
ok ok
4 E
k=0 k=(+1
¢ A
_ ¢ 4 —
—eefe =)= (- 5r)-

d

THEOREM 3.1. For any matroid M = (N,Z) and integer £ > 1, k(rpe) > 1 — ﬂz;e.

Proof. As discussed in Section 1, it suffices to show that

0 ,—L
nf E[r e (R(x))] S e
x€P(MY) D ien Ti 14

Fix x € P(M"). It can be written as the convex combination x = > g.7¢ aglg such that > gz g = 1,
as > 0. Each S € Z* can be further decomposed into ¢ disjoint independent sets I, I, . .. ,I,;g in Z, that is,

¢
15 = Z 1;s.
i=1
Let 19 = {I{,I5, ..., I7}. Let (A, Bi)iem) denote the independent sets in M where A; € 7 and

Bi = Z as < 1.

SeZt A;el’s
We have
L m
X = E asls = E asg 11,525 Bila,
Sez* Sezt i=1 i=1
and

Zﬁizz Z OZSZZf-as:K
i=1

i=1 SeTZ? A;el’s SeTt

Since {A;}ie[m) may not be disjoint, in order to apply Lemma 3.3, we build a new matroid M’, x" € P(M') and
{A}, BiYicim) such that x" = 37" Bi14,. We will ensure that {A]};c[, are disjoint.

Let r(-) be the rank function of M* and /() be that of M. At the start, set A; = A’ for i € [m]. For an
element e € N, suppose it is contained in A;,, A;,,..., A;,. Then we make k copies ey, e, ..., ex of e in M'. We
assign ;= f;; and let e; be the replacement of e in A;j for 1 < j < k. Since z, = 2521 . by iteratively
using Lemma 3.1, we have x’ € P(M’?) and

E[r(R(x))] = E[(R(X))].
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After performing this procedure to every element in N, clearly we get disjoint {A}};c[m). Now we are able to
apply Lemma 3.3 on M’, (A}, Bi)ic(m)- Since Y.7", B; = £, we have

et
B (e =B | | U Ao || > (1- 5

i€[m]

)gﬁ#'(%)-

Note that /(A}) = |A}| here. By the construction of M’ and x’, we see that Y,y & = ;e ns @) = 1oy Bir’ (A]).
Therefore

E[r(R(x))] = E[r'(R(x'))]
> (1- 5 ) S
- (1 _ gé;i) Py !
- (1 - %Z_é> lein.

This finishes the proof. ]

We obtain the following corollary via the connection between correlation gap and CR schemes [CVZ14].

COROLLARY 3.1. For any matroid M and integer £ > 1, there exists a (1 — gz‘lf!%

)-balanced CR scheme for M*.

There has been substantial work on prophet inequalities and secretary problems with matroid constraints,
and on various special cases of matroids such as U ,, and others. It would be interesting to see which of the
results for Uy ,, can be ported over to matroids of the form ME.

Acknowledgements: CC thanks Vasilis Livanos and Kent Quanrud for discussions on this topic.
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