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Positive linear programs (LPs) model many graph and operations research

problems. One can solve for a (1+𝜖 )-approximation for positive LPs, for

any selected 𝜖 , in polylogarithmic depth and near-linear work via varia-

tions of the multiplicative weight update (MWU) method. Despite extensive

theoretical work on these algorithms through the decades, their empirical

performance is not well understood.

In this work, we implement and test an efficient parallel algorithm for

solving positive LP relaxations, and apply it to graph problems such as

densest subgraph, bipartite matching, vertex cover and dominating set. We

accelerate the algorithm via a new step size search heuristic. Our imple-

mentation uses sparse linear algebra optimization techniques such as fusion

of vector operations and use of sparse format. Furthermore, we devise an

implicit representation for graph incidence constraints. We demonstrate

the parallel scalability with the use of threading OpenMP and MPI on the

Stampede2 supercomputer. We compare this implementation with exact

libraries and specialized libraries for the above problems in order to evaluate

MWU’s practical standing for both accuracy and performance among other

methods. Our results show this implementation is faster than general pur-

pose LP solvers (IBM CPLEX, Gurobi) in all of our experiments, and in some

instances, outperforms state-of-the-art specialized parallel graph algorithms.
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1 INTRODUCTION
Designing general graph libraries for massively-parallel machines

is challenging as combinatorial graph algorithms often have limited

concurrency and arithmetic intensity [30]. Many have parallel depth

at least proportional to graph diameter, though in practice these

algorithms contain sufficient concurrency to achieve high-efficiency

on shared-memory machines [17, 33, 40, 41]. Designing efficient

distributed-memory parallelizations is more challenging, though it

has been achieved with use of graph partitioning [43], formulations

via sparse matrix products [12, 13, 42].

Another method for solving graph problems is to reformulate

or relax [46, 48] the graph problem into a linear program (LP). Re-

cent theoretical breakthroughs in both sequential and parallel algo-

rithms for several graph problems [5, 26, 28, 39, 44, 45] indicate that
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carefully designed LP solvers can enable algorithms with tunable

accuracy that have lower cost and depth than their combinatorial

counterparts. Given a matrix 𝑨 ∈ R𝑚×𝑛 , vector 𝒄 ∈ R𝑛 , and vector

𝒃 ∈ R𝑚 , an LP is the optimization problem,

max

𝒙∈R𝑛
⟨𝒄, 𝒙⟩ s.t. 𝑨𝒙 ≤ 𝒃, (1)

where ⟨𝒄, 𝒙⟩ = 𝑐1𝑥1 + 𝑐2𝑥2 + . . . + 𝑐𝑛𝑥𝑛 , and 𝒖 ≤ 𝒗 means 𝑢𝑖 ≤ 𝑣𝑖 ∀𝑖 .
[46, 48].

Typically, to solve a general LP, one employs variants of the sim-

plex or interior point methods. While these algorithms are efficient

in the sequential setting, they often have limited parallelism. LP

solving is P-Complete, which implies that a poly-logarithmic depth

parallel algorithm is believed unlikely to exist [23].

However, many graph problems can be solved via LPs that con-

tain only positive entries, and these class of LPs admit efficient

parallelizable solvers if some approximation is allowed. These ap-

proaches yield a parallel algorithm with depth that is a polynomial

in 1/𝜖 and log𝑛 (the number of variables), and is independent of

the structure of the constraint matrices 𝑷 and 𝑪 . It outputs a result
that is a (1 + 𝜖)-approximation, which, for a maximization problem

entails a relative error of (1 − 𝜖) in the objective value, and for a

minimization problem, a relative error of (1 + 𝜖).
The polynomial scaling with 1/𝜖 has been improved in recent

work. Our implementation is based on an accelerated version of a

more recent algorithm with an improved depth of 𝑂̃ (𝜖−3) for mixed

problems and 𝑂̃ (𝜖−2) for pure covering or pure packing problems.

The only other previously published study [32] of a distributed and

parallel LP solver built using this approach implemented and com-

pared run times of two earlier algorithms: MPCSolver and Young’s

algorithm, with 𝑂̃ (𝜖−5) and 𝑂̃ (𝜖−4) depth, respectively. Further de-
tails on theoretical developments in approximately solving positive

LPs in parallel are provided in Section 2.

The algorithm we focus on is from Mahoney et. al. [31], which

offers the fastest theoretical performance for pure packing, pure

covering, and mixed packing and covering LPs in a parallel setting.

We describe these problems and their associated graph problems

formally in Section 3. This algorithm we call MWU since it utilizes

the weights vector from the more general MWU method [6]. De-

spite the algorithm’s strong theoretical foundation, little is known

about its empirical performance, especially for solving real-world

graph problems over large datasets. Furthermore, understanding

how this algorithm compares to other LP solvers and specialized

graph libraries is an open question.

In this paper, we create a practical and scalable implementation

of a parallel (1+𝜖)-approximate positive LP solver by adapting the
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MWU algorithm with the current fastest theoretical performance,

and we also provide a comprehensive empirical study comparing

MWU against exact solvers, specialized libraries, and previous re-

lated work. We also test a line search method that finds the largest

step-size permitted without violating theoretical guarantees. This

step-size search reduces in the number of overall MWU iterations

in practice by multiple orders of magnitude. Our results suggest

that MWU can be fast in both theory and practice, with run times

comparable to even specialized libraries but with the added benefit

of, one, being generalizable and, two, more versatile, as it can benefit

from high-performance sparse linear algebra libraries. We believe

this marks MWU as a viable alternative for solving graph problems

approximately on a large dataset. Overall, our paper makes the

following contributions:

• the first shared and distributed-memory implementation of a

general-purpose approximate solver based onMahoney et. al. [31]

for positive LPs, called MWU

• a step size search method for MWU that empirically reduces the

iteration count by up to three orders of magnitude without adding

significant overhead

• an efficient implementation of MWU using an implicit represen-

tation of common constraint matrices observed in graph LPs as

well as other standard techniques for SLA. We show these opti-

mizations provide good scalability and lead up to 5.2x speedup

relative to MWU implemented with PETSc (a library for parallel

sparse linear algebra).

• the first comparison of an approximate positive LP solver against

general LP solvers as well as specialized parallel graph algorithms.

In particular, MWU finds (1 + 𝜖)-relative (𝜖 = 0.1) solutions up to

3-2800x and 5-1180x faster than CPLEX and Gurobi (which find

exact solutions for implicit ILPs and exact fractional solutions for

relaxed LPs), respectively, for solving several graph problems on

large real-world graphs on the Stampede2 supercomputer using

KNL compute nodes.

2 BACKGROUND ON LINEAR PROGRAM SOLVERS

2.1 Positive LP Solvers
Fast approximate solvers for positive LPs in the sequential settings

have been developed since the early 1990’s [20, 35], and there is

extensive and continued attention to this line of work. We mostly

focus on parallel algorithms and refer the reader to [36, 47] for ex-

tensive pointers. Luby and Nisan provide the first parallel algorithm

for explicit positive LPs which obtain a (1 + 𝜖)-approximation in

𝑂̃ (𝜖−4) iterations1 for pure packing and covering LPs [29]. Young

clarified and extended this work to solve the more general mixed

packing and covering LPs in parallel in 𝑂̃ (𝜖−4) iterations [49]. The
dependence on 𝜖 has remained unchanged for over 10 years until

the work of Allen-Zhu and Orecchia, who solve pure packing and

pure covering LPs in parallel with 𝑂̃ (𝜖−3) iterations [3]. They also

obtained better dependence on 𝜖 in the sequential setting [4] for

pure packing and covering LPs (see also [31]).

1
We write 𝑂̃ (𝑓 (𝑛) ) to be proportion to 𝑓 (𝑛) and a polylogarithmic of 𝑓 (𝑛) , i.e.,
𝑂̃ (𝑓 (𝑛) ) ∝ 𝑂 (𝑓 (𝑛) log𝑂 (1) (𝑓 (𝑛) ) )

Recently, Mahoney et. al. [31] utilized ideas of Young [50] on faster

near-linear time sequential solver to develop new parallel algorithms

for positive LPs. Formixed packing and covering LPs, their algorithm

converges in 𝑂
(
log(𝑚𝑝 +𝑚𝑐 ) log(𝑛/𝜖)/𝜖3

)
iterations and is also

work-efficient, i.e., work is near linear to the number of nonzeros in

the LP. For pure packing and pure covering LPs, the dependence on

𝜖 is 𝜖−2 instead. When 𝜖 is not too small, these algorithms have low

depth in the PRAM model.

Empirical studies of these fast approximate algorithms have been

mainly limited to relatively small problems. Koufogiannakis and

Young adapt a sequential mixed packing and covering LP and show

it outperforms simplex on randomly generated binary matrices with

dimension up to 2222 [25]. Allen-Zhu and Orecchia compare their

𝑂̃ (𝜖−1)-dependent sequential algorithm [2] to the algorithms of

Luby and Nisan [29] and Awerbuch and Khandekar [7] for solving

pure packing LPs with a randomly generated matrix of size 60 × 40.
Jelic et. al. implement a parallel primal-dual method on GPUs to

solve positive LPs, although their constraint matrices are randomly

generated binary matrices with dimensions up to 25000 [22]. The

most closely related work to ours is that of Makari et. al. [32], who

implement a gradient descent algorithm to solve generalized match-

ing on large real-world and synthetic graphs. Their implementation,

based on the algorithm from [7], has a 𝑂̃ (1/𝜖5) number of iterations,

and they confine their attention to a single graph problem.

In this paper we focus on only obtaining fractional solutions to the

LP problems. Since all LPs are polynomial time solvable, whereas the

discrete formulation of some of the graph problems we consider are

NP-hard, this allows us to have a more uniform and fair comparison

to prior art (e.g., [32], as well as state-of-the-art software for solving

LPs like Gurobi).

There also exists rounding techniques (which convert a fractional

solution to an integral one) or specialized algorithms to solve or

approximately solve the discrete problems, but these methods are

specific to the problem and have different levels of parallelism,

efficiency, and approximation guarantees. For example, an exact

parallel rounding technique for a maximummatching problem is im-

plemented in [32], but the run time can be three orders of magnitude

longer than solving the LP problem. On the other hand, rounding

techniques for dominating set are compared in [27], but these only

return approximately optimal solutions and the rounding is not par-

allelized. There are also specialized libraries for the aforementioned

graph problems [8, 18] (more details can be found in Section 6). But

again, these implementations are tailored to the problem at hand,

hence it would not be fair to compare the run time against our

general-purpose solver in terms of obtaining an integral solution.

2.2 The MWU Algorithm
We now introduce MWU, the algorithm of Mahoney et. al. [31] for

approximately solving the standard mixed packing and covering

LP in parallel. This section does not contain our modifications for

improving the empirical performance, which are found in Section 4.

First, we start describing how MWU solves the mixed packing

and covering feasibility LP [31, 49]. We will discuss how to modify

this into an optimization problem later in the section. The feasibility
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LP is:

∃ 𝒙 ∈ R𝑛 s.t. 𝑷𝒙 ≤ 1, 𝑪𝒙 ≥ 1, 𝒙 ≥ 0, (2)

where 𝑷 and 𝑪 are nonnegative. Vectors 1 and 0 are the all ones and

zeros vector, respectively. The algorithms we consider seek a (1+𝜖)-
relative approximation: that is, a solution 𝒙 such that 𝑷𝒙 ≤ (1 + 𝜖)1
and 𝑪𝒙 ≥ 1.
MWU (Algorithm 1) ensures that both packing and convering

constraints, 𝑷𝒙 ≤ 1 and 𝑪𝒙 ≥ 1, are approximately satisfied by

approximating max(𝑷𝒙) and min(𝑪𝒙) with smoothed maximum

and minimum functions,

smax𝜂 (𝒙) =
1

𝜂
log

( 𝑛∑︁
𝑖=1

exp(𝜂 · 𝑥𝑖 )
)
,

smin𝜂 (𝒙) = −
1

𝜂
log

( 𝑛∑︁
𝑖=1

exp(−𝜂 · 𝑥𝑖 )
)
,

where 𝜂 > 2 is a smoothing parameter. The MWU algorithm and

step size search make use of their gradients,

∇smax𝜂 (𝒙) =
exp(𝜂 · 𝒙)
⟨1, exp(𝜂 · 𝒙)⟩ ,∇smin𝜂 (𝒙) =

exp(−𝜂 · 𝒙)
⟨1, exp(−𝜂 · 𝒙)⟩ .

For more details on these functions, see Chapter 2 of [36].

Algorithm 1Multi-Update MWU Method for Mixed Packing and

Covering LPs

1: procedureMWU(𝑷 ∈ R𝑚𝑃 ×𝑛
+ , 𝑪 ∈ R𝑚𝐶 ×𝑛

+ , 𝜖 )

2: 𝜂 ← 10 log(𝑚)/𝜖 where𝑚 :=𝑚𝑃 +𝑚𝐶

3: 𝑥𝑖 ← 𝜖
𝑛∥𝑷

:,𝑖 ∥∞
∀𝑖 ∈ [𝑛] ⊲ ∥𝒙 ∥∞ = max𝑖 |𝑥𝑖 |

4: while constraints not approximately satisfied and 𝑪 ≠ ∅ do
5: 𝒈 ← 𝑷T∇smax𝜂 (𝑷𝒙 )
6: 𝒉← 𝑪T∇smin𝜂 (𝑪𝒙 )
7: 𝑑𝑖 ← 1

2𝜂
max{0, 1 − 𝑔𝑖

ℎ𝑖
} · 𝑥𝑖 ∀𝑖

8: if max(𝒅 ) = 0 then
9: Return “INFEASIBLE”

10: 𝒙 ← 𝒙 + 𝒅
11: 𝑪 ← {𝑐𝑖 : 𝑐𝑇

𝑖
𝑥 < 1} ⊲ Keep unsatisfied constraints

12: return 𝑥

The algorithm initializes the vector 𝒙 with small values so that

each starting packing constraint is at most 𝜖 (Line 3). The smoothing

parameter 𝜂 is set so that both smax𝜂 and smin𝜂 are within an 𝜖

additive error of max and min, respectively. In each MWU iteration,

the algorithm multiplicatively updates 𝒙 . This is done by defining a

step or update vector, 𝒅, where 𝑑𝑖 is a multiple of 𝑥𝑖 (Line 7), and

adding 𝒅 to 𝒙 (Line 10). Vectors 𝒈 and 𝒉, which are gradients of

the smoothed max packing and min covering constraints, respec-

tively, are also utilized to define 𝒅 (Lines 5, 6). In particular, 𝒅 is an

approximate solution to the Lagrangian relaxation,

∃𝒅 ∈ R𝑛≥0 s.t. ⟨𝒘𝑝 , 𝑷𝒅⟩ = ⟨𝑷𝑇𝒘𝑝 , 𝒅⟩ ≤ 1,

⟨𝒘𝑐 , 𝑪𝒅⟩ = ⟨𝑪𝑇𝒘𝑐 , 𝒅⟩ ≥ 1,
(3)

where𝒘𝑝 = ∇smax𝜂 (𝑷𝑥) and𝒘𝑐 = ∇smin𝜂 (𝑪𝑥).
If the positive LP is infeasible, then there exists some MWU it-

erations where 𝒅 = 0, in which case the algorithm reports the

LP is infeasible (Line 8) [31]. Assuming otherwise, the theoretical

analysis guarantees MWU will return an (1 + 𝜖)-relative solution.
Throughout the algorithm, we drop satisfied covering constraints,

as these can unnecessarily slow down progress (Line 11). Finally, the

algorithm returns 𝒙 when all the covering constraints are satisfied

or when there exists no covering constraints.

We note that Algorithm 1 can also solve pure packing or pure

covering LPs, which are, respectively,

max ⟨1, 𝒙⟩ s.t. 𝑷𝒙 ≤ 1, 𝒙 ≥ 0, 𝒙 ∈ R𝑛

min ⟨1, 𝒙⟩ s.t. 𝑪𝒙 ≥ 1, 𝒙 ≥ 0, 𝒙 ∈ R𝑛 .

For example, to solve a pure packing LP, we embed the objective

function as the added constraint,
1

𝑀
1𝑇 𝒙 ≥ 1, where 𝑀 is the esti-

mate of the maximum value, e.g., 𝑀 =
𝑛∑
𝑖=1

max𝑗 :𝑝 𝑗𝑖>0 1/𝑝 𝑗𝑖 . Then
we do binary search over𝑀 , using Algorithm 1 to determine if the

resulting mixed packing and covering LP is a feasible. Since there

is one covering constraint, then smin𝜂 (𝑪𝒙) = min(𝑪𝒙). This exact
approximation permits one to scale the step direction (Line 7) by

a factor of 2 in the theoretical analysis, which improves the num-

ber of iterations by a factor of 𝜖 [31]. Also, noting 𝑪 = 1

𝑀
1𝑇 and

∇smin𝜂 (𝑪𝒙) = 1, we have 𝒉 = 1

𝑀
1 (Line 6), so we do not need

to explicitly compute 𝒉. Solving a pure covering LP is done via a

similar transformation. Solving a mixed covering and packing opti-

mization problem, likewise, involves embedding the constraint that

corresponds to the direction of optimization.

3 GRAPH PROBLEMS AS POSITIVE LPS
We now consider several graph problems. We first define integer

programming (IP) formulations which exactly model the underlying

graph problem. We then obtain an LP by relaxing the integrality

constraints. For some problems, such as bipartite matching and

densest subgraph, the solution to the LP relaxation matches the IP’s

solution (i.e., the solution is integral), whereas for NP-hard problems

dominating set and vertex cover there is an integrality gap between

the solution to the LP relaxation and IP. See [46, 48] for the role

of LP relaxations in the development of approximation algorithms,

and also [27] for a performance study on rounding an LP relaxation

to an integral solution for dominating set. Our goal is to design a

general-purpose solver, and the design and performance of rounding

schemes are problem dependent (see the end of subsection 2.1 for

further details). Therefore, we do not consider rounding in our

implementation nor performance comparisons.

Let 𝐺 = (𝑉 , 𝐸) be an unweighted, undirected graph where 𝑉

is the set of vertices and 𝐸 is the set of edges, with 𝑛 = |𝑉 | and
𝑚 = |𝐸 |. For simplicity, we assume 𝐺 has no self-loops. Note that

our formulations can be extended towards weighted graphs as well.

For a vertex 𝑣 ∈ 𝑉 , let 𝑁 (𝑣) be the neighbor vertices of 𝑣 (𝑣 is not
included in 𝑁 (𝑣)), and inc(𝑣) be the set of edges incident to 𝑣 .
The neighbor relations between the vertices of 𝐺 can be repre-

sented as an adjacency matrix, 𝑨 ∈ {0, 1}𝑛×𝑛 , which is symmetric

and has a nonzero for each edge 𝑒 ∈ 𝐸. The incidence relation be-

tween the vertices and the edges can be represented as a vertex-edge

incidence matrix, 𝑴 , where

𝑴𝑢,𝑒 =

{
1 : 𝑢 ∈ 𝑒, 𝑒 ∈ 𝐸
0 : otherwise

, 𝑴 ∈ {0, 1}𝑛×𝑚 . (4)
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x0 x1

x2

x3

x4

(a) match

x0

x2

x1 x3

(b) dom-set

x0

x2

x1 x3

(c) vcover (d) dense-sub

Fig. 1. Four graph problems run on the same graph. Variables of LP with a
nonzero value are highlighted in red. An example of matching is given in
Figure 1a. The set of edges in the matching are marked with thick red lines.

In this work, we consider four graph applications: maximum match-
ing, dominating set, vertex cover, and densest subgraph.
Maximum Matching (match). A matching is a subset 𝐹 ⊂ 𝐸 of

edges such that no vertex is incident to more than one edge in 𝐹 .

We can write this optimization problem as the IP,

max

∑︁
𝑒∈𝐸

𝑥𝑒 s.t.
∑︁

𝑒∈inc(𝑣)
𝑥𝑒 ≤ 1 ∀𝑣 ∈ 𝑉

𝑥𝑒 ∈ {0, 1} ∀𝑒 ∈ 𝐸.
(5)

The 𝑥𝑒 variables indicate whether edge 𝑒 is in set 𝐹 . The constraints

are defined over the vertices of the graph such that at most one edge

(𝑥𝑒 ) in the incident edges of a vertex 𝑣 (inc(𝑣)) can be selected for

matching set 𝐹 . When the input graph is a bipartite graph, we call

this problem maximum bipartite matching (bmatch).
Given the vertex-edge incidence matrix 𝑴 of the graph, we can

write the LP relaxation for maximum matching as the pure packing

LP,

max ⟨1, 𝒙⟩ s.t. 𝑴𝒙 ≤ 1, 𝒙 ≥ 0, 𝒙 ∈ R𝑚 . (6)

It is well-known that this LP relaxation has no integrality gap for

bmatch while for general graphs there is an integrality gap of 2/3;
there is an exponential sized exact LP relaxation for general graph

matching but we do not consider it here.

Dominating Set (dom-set). Dominating set is the problem of find-

ing the smallest subset of vertices 𝑆 ⊆ 𝑉 such that every vertex in

the graph is either in 𝑆 or is a neighbor of a vertex in 𝑆 . We can

formulate the dom-set problem as the IP,

min

∑︁
𝑣∈𝑉

𝑥𝑣 s.t. 𝑥𝑣 +
∑︁

𝑢∈𝑁 (𝑣)
𝑥𝑢 ≥ 1, ∀𝑣 ∈ 𝑉

𝑥𝑣 ∈ {0, 1} ∀𝑣 ∈ 𝑉 .

(7)

The variable 𝑥𝑣 indicates whether vertex 𝑣 is in set 𝑆 or not. The

constraints are defined over the vertices such that either vertex 𝑣

itself or one of its neighbors is in the set 𝑆 . The LP relaxation is a

pure covering LP,

min ⟨1, 𝒙⟩ s.t. (𝑰 +𝑨)𝒙 ≥ 1, 𝒙 ≥ 0, 𝒙 ∈ R𝑛, (8)

where 𝑰 is the identity matrix.

Vertex Cover (vcover). In the vertex cover problem the goal is to

find the smallest subset of vertices 𝑆 ⊆ 𝑉 such that every edge has

one of its endpoints in 𝑆 (hence 𝑆 covers all the edges). A simple IP

formulation is

min

∑︁
𝑣∈𝑉

𝑥𝑣 s.t. 𝑥𝑢 + 𝑥𝑣 ≥ 1 ∀(𝑢, 𝑣) ∈ 𝐸

𝑥𝑣 ∈ {0, 1} ∀𝑣 ∈ 𝑉 .

(9)

Here, the𝑥𝑣 variables determineswhether a vertex 𝑣 is in set 𝑆 . These

variables are defined over the vertices. There is one constraint per

edge. The LP relaxation is a pure covering LP,

min ⟨1, 𝒙⟩ s.t. 𝑴T𝑥 ≥ 1, 𝒙 ≥ 0, 𝒙 ∈ R𝑛, (10)

where 𝑴𝑇
is the transpose of the vertex-edge incidence matrix of

the graph.

Densest Subgraph (dense-sub). Densest subgraph finds a sub-

graph 𝑆 ⊂ 𝐺 that maximizes the edge to vertex count ratio, i.e.,

|𝐸 (𝑆) |/|𝑆 |. The LP, as formulated in [14], is

max

∑︁
𝑒∈𝐸

𝑥𝑒 s.t. 𝑥𝑒 ≤ 𝑦𝑢 , 𝑥𝑒 ≤ 𝑦𝑣 ∀𝑒 = (𝑢, 𝑣) ∈ 𝐸∑︁
𝑣∈𝑉

𝑦𝑣 ≤ 1

𝑥𝑒 , 𝑦𝑣 ≥ 0 ∀𝑣 ∈ 𝑉 ,∀𝑒 ∈ 𝐸.

(11)

The variables 𝑥𝑒 represent the edges and the variables 𝑦𝑣 represent

the vertices, which are no longer binary. Since this problem is not a

positive LP, we consider its dual [11],

min𝐷 s.t. 𝑧𝑢,𝑒 + 𝑧𝑣,𝑒 ≥ 1 ∀𝑒 = (𝑢, 𝑣) ∈ 𝐸∑︁
𝑒∈inc(𝑣)

𝑧𝑣,𝑒 ≤ 𝐷 ∀𝑣 ∈ 𝑉

𝑧𝑣,𝑒 ≥ 0 ∀𝑣 ∈ 𝑉 , 𝑒 ∈ inc(𝑣) .

(12)

While (12) is still not a positive LP, we can convert it to a mixed pack-

ing and covering LP by fixing 𝐷 to be a constant and treating (12)

as a feasibility problem instead. We find an approximate minimum

value to (12) via binary search for 𝐷 and solving the feasibility LP

for each choice.

Unlike previous LPs, the variables 𝑧𝑣,𝑒 represent a vertex-edge

pair instead of vertices or edges, so we require new constraint ma-

trices. Let 𝑰 be an identity matrix of size 𝑚, and let the function

interweave take two equally-sized matrices and put the first and

second matrices’ first columns as the first two columns of the com-

bined matrix, then their second columns as the next pair of columns,

and so on. We call the resulting matrix𝑾 the interweaved identity
matrix, where

𝑾𝑒,2𝑒 ,𝑾𝑒,2𝑒+1 = 1, ∀𝑒 ∈ 𝐸,𝑾 ∈ {0, 1}𝑛×2𝑚 (13)

In order to model the vertex-edge pair variables, we can form

a matrix called vertex-edge pairs matrix. Vertex-edge pairs matrix

will have a column for each vertex 𝑣 and edge (𝑢, 𝑣). Specifically, we

can form the vertex-edge pair matrix, 𝑶 ∈ {0, 1}𝑛×2𝑚 , from a graph

𝐺 as follows:

𝑶𝑢,2𝑒+𝑏 =


1 : 𝑏 = 0, 𝑒 = (𝑢, 𝑣) ∈ 𝐸
1 : 𝑏 = 1, 𝑒 = (𝑣,𝑢) ∈ 𝐸
0 : otherwise

(14)

Then the feasibility variant of the dual to densest subgraph is

∃𝒛 ∈ R2𝑚
s.t.𝑾𝑧 ≥ 1, 𝑶𝒛 ≤ 𝐷 · 1, 𝒛 ≥ 0. (15)
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4 MWU WITH LINE SEARCH
Wepropose twomethods for finding a step size in StepSize (Line 11).
To motivate these methods, we cast them as 1-D optimization prob-

lems, similar to line search methods for (gradient) descent meth-

ods [34]. However, instead of finding a step size that minimizes the

objective function [34], we take the largest step that ensures a local

invariance condition is satisfied.

Algorithm 2 Multi-Update MWU Method with step size search for

Mixed Packing and Covering LPs

1: procedureMWU_STEPSIZE_SEARCH(𝑷 ∈ R𝑚𝑃 ×𝑛
+ , 𝑪 ∈ R𝑚𝐶 ×𝑛

+ , 𝜖 )

2: Initialize 𝜂, and 𝑥𝑖 as in Algorithm 1

3: 𝒚 ← 𝑷𝒙 , 𝒛 ← 𝑪𝒙
4: while constraints not approximately satisfied and 𝑪 ≠ ∅ do
5: 𝒈 ← 𝑷T∇smax𝜂 (𝒚 ) ⊲ Packing gradient

6: 𝒉← 𝑪T∇smin𝜂 (𝒛 ) ⊲ Covering gradient

7: 𝑑𝑖 ← 1

2𝜂
max{0, 1 − 𝑔𝑖

ℎ𝑖
} · 𝑥𝑖 ∀𝑖 ⊲ New step direction

8: if max(𝒅 ) = 0 then
9: Return “INFEASIBLE”

10: 𝒅 (𝑦) ← 𝑷𝒅 , 𝒅 (𝑧) ← 𝑪𝒅
11: 𝛼 ← StepSize(𝒅,𝒚, 𝒛, 𝒅 (𝑦) , 𝒅 (𝑧) , 𝜂 ) ⊲ Step size search

12: if 𝛼 < 1 then
13: Return “INFEASIBLE”

14: 𝒙 ← 𝒙 + 𝛼 · 𝒅
15: 𝒚 ← 𝒚 + 𝛼 · 𝒅 (𝑦) , 𝒛 ← 𝒛 + 𝛼 · 𝒅 (𝑧)
16: 𝑪 ← {𝑐𝑖 : 𝑐𝑇

𝑖
𝑥 < 1}

17: return 𝑥

We store the packing and covering constraints𝒚 = 𝑷𝒙 and 𝒛 = 𝑪𝒙
as well as 𝒅 (𝑦) = 𝑷𝒅 and 𝒅 (𝑧 ) = 𝑪𝒅 (Line 3 and 10) to minimize the

number of sparse matrix-vector products, or SpMVs. The step direc-

tion 𝒅 is unchanged (Line 7). While the algorithm drops satisfied

constraints (Line 16), in practice we keep satisfied constraints since

this simplifies the implementation and we did not find it impacts

the convergence on the problems we tested.

The sub-routine StepSize (Line 11) takes the step vector 𝒅 and

constraint vectors, and returns a step size 𝛼 > 0. We call this mod-

ification step size search and design algorithms for it in the next

subsection. When 𝛼 < 1, we report that finding a solution is infeasi-

ble, because otherwise a step size of 𝛼 = 1 is always possible due

to the theoretical analysis of Mahoney et. al. [31]. Therefore, we

call a step size 𝛼 = 1 found without step size search the standard
step size. Assuming 𝛼 ≥ 1, we scale the step direction 𝒅 by 𝛼 and

add it to 𝒙 (Line 14). Afterwards, we update 𝒚 = 𝑷𝒙 and 𝒛 = 𝑪𝒙
without SpMVs (Line 15). Note that 𝛼 may be large enough so that

𝑷𝒙 = 𝒚 + 𝛼 · 𝒅 (𝑧 ) ≥ 1, in which case we terminate MWU.

4.1 Line Search as a Constrained Optimization Problem
In this section, we consider algorithms for finding a step size for

StepSize. When selecting 𝛼 , we want it to be sufficiently large to

accelerate MWU convergence while ensuring that we recover a

feasible solution to (2).

First, we consider the case of the mixed packing covering LP. One

of the qualities of Mahoney et. al’s algorithm is that the algorithm

reaches a (1 + 𝜖)-approximation when the difference in a potential

function 𝑓 (𝑥) = 1

𝜂 (smax𝜂 (𝑷𝒙) − smin𝜂 (𝑪𝒙)) becomes sufficiently

small [31]. Each step that their algorithm takes is non-increasing

on 𝑓 (𝑥).

We can show that in order for the potential function to be non-

increasing, 𝑓 (𝑥 (𝑡+1) ) − 𝑓 (𝑥 (𝑡 ) ) = Ψ(𝛼) − Φ(𝛼) ≤ 0 where,

Φ(𝛼) = smin𝜂 (𝑪 (𝒙 + 𝛼 · 𝒅)) − smin𝜂 (𝑪𝒙)
Ψ(𝛼) = smax𝜂 (𝑷 (𝒙 + 𝛼 · 𝒅)) − smax𝜂 (𝑷𝒙) .

This gives us an equivalent invariant 𝑓 (𝛼) = Φ(𝛼)/Ψ(𝛼) ≥ 1.

Therefore, if we find a step size 𝛼 for which this invariant holds, then

for this 𝛼 we can still say 𝑓 (𝑥) is non-increasing, and furthermore,

if we can reach a point where 𝑷𝒙 ≤ (1 + 𝜖)1 and 𝑪𝒙 ≥ 1 then we

have converged to a feasible solution. Hence, our method is to find

the largest step size 𝛼 > 0 such that the “bang-for-buck” value is at

least one, or

𝑓 (𝛼) = Φ(𝛼)/Ψ(𝛼) ≥ 1, (16)

For pure packing and pure covering problems we instead have these

invariants, respectively:

⟨1, 𝛼𝒅⟩/Ψ(𝛼) ≥ 1

⟨1, 𝛼𝒅⟩/Φ(𝛼) ≤ 1

(17)

We now show MWU with line search maintains the same theo-

retical properties as MWU with the standard step size [31]. Recall

𝒙 ∈ R𝑛 and𝑚 is the number of rows in the matrices 𝑷 and 𝑪 .

Theorem 4.1. MWU with line search (Algorithm 2) either returns
an (1 + 𝜖)-relative approximate solution, i.e., an 𝑥 ≥ 0 such that
𝑷𝒙 ≤ (1+𝜖)1 and 𝑪𝒙 ≥ 1, or correctly reports the LP is infeasible. The
number of iterations is at most 𝑂̃ (𝜖−3), where 𝑂̃ hides polylogarthmic
dependence on 𝑛,𝑚, and 𝜖 .

The proof is similar to the one shown in [31], which implic-

itly sets the step size to 𝛼 = 1. There will be two main differ-

ences in the convergence proof, which we highlight here. First,

the proof of correctness in [31] shows the potential function, de-

fined as smax𝜂 (𝑷𝒙) − smin𝜂 (𝑪𝒙), is monotonically decreasing by

taking a first-order approximation of smooth max and min. On the

other hand, our bang-for-buck invariance (16) explicitly ensures this

monotonicity property. Second, the argument in [31] upper bounds

the number of MWU iterations by lower bounding the values in

step direction vector 𝒅. Since line search only increases 𝒅 because

𝛼 · 𝒅 ≥ 𝒅, then line search can only decrease the number of MWU

iterations.

While line search can decrease the number of iterations (in fact,

quite significantly in our experiments), finding a step size increases

the work per iteration. In the following lemma, we leverage the

monotonicitiy of 𝑓 (𝛼) to design efficient line search algorithms.

Proposition 4.2. 𝑓 is monotonically decreasing for 𝛼 ∈ R+.

Proof. We show that as 𝛼 increases Ψ(𝛼)/𝛼 is increasing while

Φ(𝛼)/𝛼 is decreasing, hence

𝑓 (𝛼) = (Φ(𝛼)/𝛼)/(Ψ(𝛼)/𝛼)

is decreasing. Note that Ψ is convex since smax𝜂 is convex, and

Φ is concave since smin𝜂 is concave. Since Ψ is convex, Ψ(𝛼) ≤
Ψ(0) + 𝛼Ψ′ (𝛼) = 𝛼Ψ′ (𝛼). Hence, we can show that Ψ(𝛼)/𝛼 is

increasing, since

(Ψ(𝛼)/𝛼)′ = 1

𝛼
(Ψ′ (𝛼) − Ψ(𝛼)/𝛼) ≥ 0.
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Analogously, since Φ is concave, the inequalities above are reversed,

and so Φ(𝛼)/𝛼 must be strictly decreasing in 𝛼 . □

4.2 Implementing Line Search
To approximate the maximum step size 𝛼∗ satisfying (16), we first

perform exponential search to find an integer 𝑝 where 𝑓 (2𝑝 ) ≥ 1

and 𝑓 (2𝑝+1) < 1. By Proposition 4.2, 𝛼∗ ∈ [2𝑝 , 2𝑝+1). Next, we run
binary search starting with a lower and upper bound of 𝑙 = 2

𝑝
and

𝑢 = 2
𝑝+1

, and update the lower and upper bounds so that 𝑙 (resp. 𝑢)

is the largest (smallest) value such that 𝑓 (𝑙) ≥ 1 (𝑓 (𝑢) < 1). Once

we find an 𝜖-relative step size, or when
𝑢−𝑙
𝑙
≤ 𝜖 , we return 𝑙 . We

formalize the aforementioned procedure in Algorithm 3.

When 𝑓 (𝛼) ≥ 1 and max

(
𝑪 (𝒙 + 𝛼 · 𝒅)

)
≥ 1 (Line 4), this means

the step size can lead MWU to completion, so we immediately

return 𝛼 . Moreover, binary search makes use of 𝒚 = 𝑷𝒙 , 𝒛 = 𝑪𝒙 ,
𝒅 (𝑦) = 𝑷𝒅, and 𝒅 (𝑧 ) = 𝑪𝒅, where 𝒙 is our current solution and 𝒅 is

the computed MWU update direction, to avoid additional SpMVs.

A similar line search, which is a coordinate binary search, was

proposed in [36, Section 2.8], but there are some important differ-

ences compared to our binary search. First, rather than taking a

step in the full gradient direction 𝒅 ∈ R𝑛
, the coordinate binary

search updates sequentially in each of the 𝑛 indices. Thus, the binary

search can have a critical path of length up to 𝑛 and is therefore not

parallel. Second, the coordinate binary search replaces the difference

in the smooth min and smooth max from Φ and Ψ with their respec-

tive first-order approximations, which incurs approximation errors

in (16) and can lead to more conservative step sizes. By conducting

line search in the full gradient 𝒅 and using the exact difference for

Φ and Ψ, our proposed binary search improves upon the previous

line search in non-trivial ways and can take more aggressive (i.e.,

larger) step sizes while maintaining feasibility.

Algorithm 3 Finding a step size via binary search

1: procedure BinSearch({𝒚, 𝒅 (𝑦) } ∈ R𝑚𝑝

≥0 , {𝒛, 𝒅 (𝑧) } ∈ R𝑚𝑐
≥0 , 𝜖)

2: 𝛼 ← 1

3: while 𝑓 (𝛼 ) ≥ 1 do ⊲ Exponential search. See (16)

4: if min(𝒛 + 𝛼 · 𝒅 (𝑧) ) ≥ 1 then
5: return 𝛼 ⊲ Return early if constraints are satisfied

6: 𝛼 ← 2 · 𝛼
7: 𝑙𝑏,𝑢𝑏 ← 𝛼/2, 𝛼
8: while 𝑢𝑏 − 𝑙𝑏 > (1 − 𝜖 )𝑙𝑏 do ⊲ Binary search

9: 𝛽 ← avg(𝑙𝑏,𝑢𝑏 )
10: if 𝑓 (𝛽 ) ≥ 1 then ⊲ See (16)

11: 𝑙𝑏 ← 𝛽

12: else
13: 𝑢𝑏 ← 𝛽

14: 𝛼 ← 𝑙𝑏 and return 𝛼

We can derive another line search method by using Newton’s

method, which has the update,

𝛼𝑘+1 = 𝛼𝑘 − 𝑔(𝛼𝑘 )/𝑔′ (𝛼𝑘 ), where 𝑔(𝛼) = 𝑓 (𝛼) − 1.
Because Newton’s method converges when its solution is in the

neighborhood of the optimal solution, we require estimates of 𝛼∗ to
ensure convergence. We do so via a warm start for Newton’s search,

where we set our initial 𝛼0 to the previous optimal step size, if

available, or use exponential search. The reason for the former strat-

egy is we observed in our tests that the optimal step size between

two MWU iteration are relatively close. Finally, we note that once

Newton’s method converges to some solution, it may not strictly

satisfy (16). Thus, we multiplicatively decrease the solution by a

factor of (1 − 𝜖)𝑝 for some integer 𝑝 (𝑝 is typically small) until (16)

is satisfied.

5 SOFTWARE OPTIMIZATIONS AND PARALLELIZATION
We now describe the details of our implementation and paralleliza-

tion of linear algebra operations withinMWU. To efficiently perform

sparse matrix-vector products with matrices introduced in Section 3,

such as the vertex-edge adjacency matrix, we leverage implicit rep-

resentations derived from a standard sparse vertex-vertex adjacency

matrix data structure. We accelerate vector operations with loop

fusion and vectorization.

5.1 Shared-Memory Optimizations
We design implicit SpMVs for matrices that arise in graph-based pos-

itive LPs such as vertex-edge incidence matrices. We adapt previous

fusion techniques for the needs of MWU framework [38].

5.1.1 Choice of Matrix Format. To efficiently traverse the non-zeros

in the adjacency matrix during SpMVs, we use the Compressed

Sparse Blocks (CSB) format [12], which can achieve good cache

locality for both SpMVs of the matrix and its transpose.

CSB divides the matrix into two-dimensional 𝑟 × 𝑘 tiles. Each

tile is represented as a list of tuples, where each tuple stores the

non-zeros in column major order in coordinate (COO) format. The

group of tiles that belong to 𝑟 consecutive rows is called a row-block
while the group of tiles that belong to 𝑐 consecutive columns is

called a column-block. In our implementation, we store the tiles in

row-major order.

r

k

row-
block

column-
block y = Ax

y = ATx

x
xy

y

A A

Fig. 2. CSB representation and its SpMV operation.

Similar to [1], we parallelize 𝒚 = 𝑨𝒙 and 𝒚 = 𝑨𝑇 𝒙 over the row-

blocks and column-blocks, respectively. Provided the tile size (𝑟 ×𝑘)
is selected carefully, the block of the input vector (𝒙) processed by

a tile and output vector 𝒚 corresponding to a row-block (updated

by a single thread) is contained in private L1 or L2 caches. Figure 2

illustrates the parallelization of SpMV using CSB format.

5.1.2 Implicit Representations. In each iteration of MWU, we per-

form one SpMV with the constraint matrix and with its transpose.

As seen in Section 3, the constraint matrices of many graph-based

LPs are the vertex-edge incidence matrix of the graph. We notice

that the edge (𝑢, 𝑒) encoded in an incidence matrix can be described

over over a vertex and a vertex pair (𝑢, (𝑣,𝑤)) where the pair (𝑣,𝑤)
represents an edge in the adjacency matrix. In addition, in the in-

cidence matrix, the value is 1 if 𝑢 = 𝑣 or 𝑢 = 𝑤 and 0 otherwise.
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Therefore, we can store the nonzero data in an vertex-edge inci-

dence matrix 𝑴 implicitly as an adjacency matrix in memory. This

reduces the memory cost of the constraint matrix by about half

and therefore also reduce the number of accesses to the memory

subsystem, particularly cache.

Having an implicit representation means that linear algebra op-

erations on these matrices can also be expressed implicitly by for-

mulating the computations on the adjacency matrix, 𝑨.
We emulate SpMVs for 𝑴 and 𝑶 by storing the edge, row, and

column index for each non-zero in𝑨, which we denote by 𝑒 , 𝑟 , and 𝑐 ,
respectively. For example, we can compute𝒚 = 𝑴𝒙 by accumulating

element 𝑥𝑒 to 𝑦𝑟 and 𝑦𝑐 for each (𝑟, 𝑐, 𝑒) in 𝑨, and likewise for

𝒚 = 𝑶𝒙 , then evaluating 𝑦 = 𝑦𝑟 +𝑦𝑐 . To parallelize this SpMV while

avoiding race conditions, we first traverse in row major order while

reading the row indices of 𝑨, then in column major order while

reading the column indices.

We compute 𝒚 = 𝑴𝑇 𝒙 by accumulating elements 𝑥𝑟 and 𝑥𝑐 to

𝑦𝑒 for all (𝑟, 𝑐, 𝑒) in 𝑨, and likewise for 𝒚 = 𝑶𝑇 𝒙 . Parallelizing
these SpMVs are straightforward, since we accumulate to any given

element of 𝒚 two and one times, respectively.

5.1.3 Loop Fusion and Vectorization Opportunities. In each iteration
of the MWU algorithm, we do several vector operations and our

augmentation to step size search adds many vector operations, too.

For some problems, such as vertex-cover or densest subgraph, the

vectors in these operations have size |𝐸 |, which means they can be

as costly as a single SpMV.

Since these vector operations loop to apply simple arithmetic to

each element in the vector, combining multiple vector operations in

one pass via loop fusions can accelerate these methods. We identify

two operations for fusion: (1) the gradient calculations using smax
and smin (Lines 5 and 6) and (2) the calculation of the new step

direction (16). In both cases, loop fusion can reducememory accesses

and facilitate automatic vectorization.

5.2 Distributed Parallelization
Distributed-memory parallelization of vector operations and ex-

plicit sparse matrix vector products in MWU can be done with

standard techniques. Therefore, in this section, we will focus on

describing and analyzing the benefits of the implicit representation

for distributed-memory communication.

We use the same implicit representation described in Section

5.1.2. We leverage a 2D matrix distribution of the adjacency matrix

to perform implicit SpMVs with the incidence matrix. A 2D data

layout is communication-efficient for matrix vector products since

each processor computes on only 𝑛/√𝑝 entries and contributes to

𝑛/√𝑝 outputs (for an 𝑛 × 𝑛 matrix on a

√
𝑝 × √𝑝 processor grid).

They are commonly employed for parallel processing of adjacency

matrices [13].

With a 2D layout of the adjacency matrix, we perform vertex-

edge incidence products with twice the communication cost of an

adjacency matrix product. To do so, we store vector information

corresponding to edges in the same processor layout as the adja-

cency matrix𝐴. This means that for an edge (𝑢, 𝑣) in𝐴, the machine

owning the edge would store vector information for indices corre-

sponding to 𝑢 and to 𝑣 .

For simplicity, we assume a square processor grid. With this

approach, the product with the vertex-edge incidence matrix, 𝒚 =

𝑴𝒙 , requires only a reduction of contributions to 𝒚 along rows and

columns of the processor grid. While for the product𝒚 = 𝑴𝑇 𝒙 , only
a broadcast of entries of 𝒙 along rows and columns of the processor

grid is needed. In both cases, each processor sends or receives a

subvector of size 𝑂 (
√
𝑛/𝑝).

6 EXPERIMENTAL SETUP

6.1 System Setup
We use Intel Knights Landing (KNL) nodes on the Stampede2 super-

computer as our testbed. Each KNL node has 68 1.4 GHz cores. Each

core has a 32 KB private L1 cache, and 2 neighboring cores share

a 1 MB L2 cache. KNL processors also support AVX2 and AVX-512

vector instructions. Each Stampede2 node has 112 GB of memory

capacity with 96 GB DRAM and 16 GB MCDRAM used in cache

mode.

6.2 Implementations
MWU Implementations.

We implement two different versions of MWU 1: (1)MWU-PETSc,
and (2) MWU-opt. MWU-PETSc relies on an efficient parallel BLAS

library PETSc [9] while MWU-opt is our hand-optimized implemen-

tation using optimizations discussed in Section 5. In our implemen-

tation of Algorithm 1, we do not drop satisfied constraints (i.e., we

skip Line 13). This simplifies the implementation, and we did not

find this affects convergence. We set 𝜖 = 0.1 and terminated the

algorithm if it exceeds 5000 iterations. To verify correctness, we

compare the solution from MWUwith an exact solution, if available.

max_iter=5000. These parameters control the accuracy and maxi-

mum number of iterations of MWU, respectively, which were found

by hand-tuning the algorithm. To verify correctness, we compare

the solution from MWU with an exact solution, if available.

PETSc is a suite of data structures and routines for large-scale dis-

tributed operations, including vector and sparse matrix operations

(which calls (sparse) BLAS under the hood), with a Python interface

(petsc4py) [9]. On Stampede2, we use PETSc with MKL version

19.1.1. We use C++ for ourMWU-opt optimized implementation and

OpenMP for parallelism. We compile our code with Intel compiler

version 19.1.1 and enable -O3, and -mAVX512 compiler flags. We

run the MWU-opt implementation by binding threads to physical

cores using numactl –physcpubind. For MWU-PETSc, we find that

creating 𝑁 processes each with 1 thread gives the best performance.

General LP Solvers. We compare our optimized MWU imple-

mentation to general LP solvers. We use IBM CPLEX [15] and

Gurobi [21], both in multi-threaded settings. If the problem is an

ILP, we do not round the fractional solution.

For CPLEX , we set the run mode to opportunistic to achieve the

fastest (but non-deterministic) run time. For Gurobi, we use the

concurrent optimization setting, which concurrently runs primal
simplex, dual simplex, and the barrier method. We report the fastest

run time out of these three methods. When the barrier method fin-

ishes first, we report its run time before crossover (unless otherwise
noted) for a more fair comparison to MWU, which outputs fractional

solutions. We implement all applications discussed in Section 3 with
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both CPLEX and Gurobi. Finally, we limit the solve time for both

CPLEX and Gurobi to 4 hours. All other parameters were set to

defaults.

Specialized Algorithms. We consider optimized custom imple-

mentations as baselines for the two implicitly integral LP problems:

bipartite matching and densest subgraph. For the former, we use

ms-bfs-graft [8], which employs the serial Karp-Sipser greedy ini-

tialization step [24] followed by a specialized breadth-first searches

to find augmenting paths. For the latter problem, we used the Graph

Based Benchmark Suite’s [18] (GBBS) approximate densest subgraph

algorithm, which implements Charikar’s greedy 2-approximation

algorithm [14]. Bothms-bfs-graft and GBBS are implemented in C++

with OpenMP. We compilems-bfs-graft using OpenMP and the Intel

compiler (version 19.1.1) with the -O2 flag. We compiled GBBS with
the g++ compiler version 9.1.0.

6.3 Input Graphs
We select a variety of real-world and synthetic undirected graphs

from the SuiteSparse Matrix Collection [16] and list them in Table 1.

Our real-world graphs come from diverse domains, such as a road,

social, and user-product network. We also use two sets of synthetic

graphs, the first set being random geometric graphs (rgg) which have
a planar-like structure, and the second set being Kronecker graphs

(kron) from Graph500 which show a strong community structure.

Note that none of the graphs we selected are bipartite, which is

required in bmatch. To obtain bipartite graphs, we read the input

adjacency matrix as a biadjacency matrix, meaning that the rows

and columns of the matrix correspond to the left and right sets of

vertices, respectively, where edges can only go between between

vertices in different sets.

Table 1. List of real-world and synthetic graphs

Graphs (Abv.) |𝑉 | |𝐸 |
usroads (usroads) 129,164 330,870

com-Amazon (amazon) 334,863 1,851,744

coPapersCiteseer (papers) 434,102 32,073,440

hollywood-2009 (hollyw) 1,139,905 113,891,327

com-Orkut (orkut) 3,072,441 234,370,166

kron-X X=2
17
-2

21 ≈X×80
rgg-Y Y=2

17
-2

24 ≈Y×15

7 EXPERIMENTAL RESULTS
In this section, first, we compare our implementation to state-of-

the-art software including general LP solvers, CPLEX and Gurobi, to
specialized parallel implementations for particular graph problems,

and to the parallel implementation of another multiplicative weights

update algorithm from Makari et. al [32].

Then, we evaluate the effectiveness of our algorithmic improve-

ments and software optimizations. We start by finding how the

incorporation of a step size search reduces the number of MWU

iterations. We then test the performance improvements from our

software optimizations and its scalability by comparing performance

between MWU-PETSc and MWU-opt.

7.1 Comparison of MWU to Other Algorithms
We now compare theMWU-opt implementation of MWU with New-

ton’s method and all the software implementation optimizations

to other state-of-the-art optimization libraries and custom imple-

mentations (ms-bfs-graft for bmatch and GBBS for dense-sub). All
experiments are run with 64 threads on a single KNL node. Table 2

shows the execution times to find (1 + 𝜖)-relative solutions for four
positive LPs on various graphs where 𝜖 = 0.1. A “-” in a cell means

that the input graph was either too large to be processed by the

library, or the run time exceeded 4 hours.

Comparison with Exact LP Solvers.
For all LP solvers, we do not do rounding as post-processing.

Therefore, for the exact solvers, we have integral solutions to graphs

problems that have implicitly integral LPs, and exact fractional

solutions for the relaxed LPs with integrality gaps. For approximate

solvers, we are not guaranteed an integral solution on integral LPs.

Note that CPLEX and Gurobi return exact solutions for the target

LPs, while MWU finds an (1 + 𝜖)-relative solution with a target

value of 𝜖 = 0.1. We find that our MWU-opt implementation is able

to find an 𝜖 = 0.1 solution in all cases except bmatch problem with

rgg-20. However, even for this case, our error rate is 0.104.

Our results show MWU-opt consistently outperforms CPLEX
and Gurobi libraries. For bmatch, dom-set, vcover , and dense-sub
graph LPs, MWU-opt is up to 2548x (rgg-21), 1482x (rgg-19), 43x
(kron-19), and 2860x (kron-17 ) faster than CPLEX , respectively. Al-
though Gurobi is generally faster than CPLEX , MWU-opt outper-
forms Gurobi by up to 1070x (rgg-21), 55x (rgg-19), 5x (rgg-21), and
816x (rgg-20) for bmatch, dom-set, vcover , and dense-sub graph LPs,

respectively, before crossover occurs. When comparing the time

when after crossover or one of the simplex methods from Gurobi
terminates (whichever comes first), the relative speedups are 1462x

(rgg-21), 3510x (rgg-19), 10x (usroads), and 878x (rgg-20) for bmatch,
dom-set, vcover , and dense-sub graph LPs, respectively. In addition

to significant speedups, we also observe that MWU is capable of run-

ning much larger problems. For instance, both CPLEX and Gurobi
can only solve kron-21 for dom-set but not for dense-sub, the latter
which contains three times more nonzeros than the former. More-

over, both LP solvers fail to solve any of the problems with the

largest graphs, hollywood and orkut.
Comparison with Custom Implementations. We compare

MWU-opt performance to ms-bfs-graft for bmatch and to GBBS for
dense-sub. The MS-BFS algorithm returns an exact solution. MWU-
opt returns an approximate solution with 𝜖 = 0.1. The MS-BFS

algorithm [8] initializes with a serial Karp-Singer greedy step and

finds augmenting paths in parallel using specialized BFS. The per-

formance of ms-bfs-graft heavily depends on the graph structure.

In general, we observed the MWU-opt can outperform ms-bfs-graft
for graphs with planar structures by 1.8-22.4x for the rgg graphs

and usroads. On the other hand, for graphs which contain a strong

community-structure or vertices with high degrees, ms-bfs-graft
outperforms MWU. For example, amongst the kron graphs, ms-bfs-
graft can be up to 450x faster than MWU-opt. For these types of
graph instances, bmatch generally spends much less time on the

grafting process than with planar-structured graphs, which we often

find to be the dominating cost of bmatch.
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Table 2. Run time (in seconds) of MWU-opt compared to other optimization libraries and custom applications. Cells with a dash indicate the algorithm took
4+ hours to run or had a memory error, with the exception of vcover with Gurobi on all the kron graphs and hollyw., which had a ConstraintError.

bmatch dom-set vcover dense-sub
MWU CPLEX Gurobi graft MWU CPLEX Gurobi MWU CPLEX Gurobi MWU CPLEX Gurobi gbbs

rgg-15 0.08 9.15 6.93 0.07 0.38 5.56 3.60 2.38 3.99 7.88 0.16 24.01 12.90 0.04

rgg-16 0.09 21.23 14.38 0.14 0.34 15.62 10.64 3.37 10.72 6.86 0.22 54.57 25.61 0.05

rgg-17 0.24 45.35 31.68 0.32 0.68 43.11 22.91 5.65 28.98 15.90 0.54 141.95 119.43 0.09

rgg-18 0.15 114.31 76.76 0.71 3.54 561.23 49.01 9.85 82.43 38.42 0.66 349.34 344.72 0.13

rgg-19 0.54 283.79 170.81 1.86 2.08 3,045.28 111.90 23.48 114.63 86.94 1.41 1,202.33 877.80 0.21

rgg-20 0.43 716.66 406.77 4.44 7.79 - 255.15 44.84 292.40 226.01 2.34 4,081.44 2,017.68 0.32

rgg-21 0.85 2,186.03 917.63 11.12 17.25 - 555.60 87.95 659.18 504.65 5.15 - - 0.56

rgg-22 2.81 - - 30.67 46.37 - 1,313.81 183.67 - - 13.21 - - 0.90

rgg-23 3.92 - - 80.99 247.68 - - 367.86 - - 22.40 - - 1.69

rgg-24 21.00 - - 226.12 115.02 - - 856.06 - - 74.87 - - 3.18

kron-16 3.80 95.61 136.6 0.00 1.38 19.22 23.22 4.53 81.83 - 1.81 3,169.42 - 0.11

kron-17 1.87 200.79 335.18 0.01 10.97 63.81 59.44 55.16 194.90 - 2.85 8,053.81 - 0.17

kron-18 2.60 462.66 642.27 0.01 3.07 214.97 155.06 33.63 414.28 - 10.53 - - 0.26

kron-19 4.38 - - 0.01 10.24 657.11 379.04 53.06 2,354.63 - 12.88 - - 0.43

kron-20 10.36 - - 0.02 32.51 2,292.96 1,048.8 82.93 3,091.02 - 24.30 - - 0.67

kron-21 32.33 - - 0.04 584.85 7,072.73 2,342.73 210.92 - - 56.28 - - 1.13

usroads 0.07 20.24 12.30 0.04 1.49 16.30 8.85 1.07 12.31 5.22 0.27 35.25 16.80 0.03

amazon 0.71 93.93 126.34 0.05 22.14 115.10 98.99 2.13 72.38 - 1.52 750.42 1,040.63 0.09

papers 6.44 3,549.09 542.19 0.33 10.14 35.14 49.15 149.95 767.30 443.05 3.78 - 3,945.37 0.39

hollyw. 39.13 - - 0.56 43.86 - - 130.50 - - 24.79 - - 1.89

orkut 29.99 - - 29.12 162.24 - - 334.70 - - 201.09 - - 3.18

For dense-sub,GBBS implements Charikar’s greedy 2-approximation

algorithm for densest subgraph [14], but the relative error is usu-

ally much better in practice (but worse than 𝜖 = 0.1). Again, we

run MWU-opt with 𝜖 = 0.1. We observe that GBBS always outper-
forms MWU, achieving a maximum speedup of 63.2x and minimum

speedup of 4x.

Comparison with Previous Work. We compare MWU (Algo-

rithm 2) and an implementation of a gradient descent algorithm

with adaptive error [32], which uses a less theoretically efficient

multiplicative weights update algorithm but is the only other dis-

tributed study of multiplicative weights update methods on graph

problems. Their paper compared their algorithm, called MPCSolver,

against their implementation of Young’s parallel algorithm for feasi-

bility generalized matching, which is a mixed packing and covering

LP, for an (1 + 𝜖)-relative solution (𝜖 = 0.05) and found that the

implementation of MPCSolver outperformed Young’s algorithm. We

provide a detailed description of the problem, datasets, and gradient

descent algorithm in Appendix A.1.

We run the same experiment as them with MWU-opt, using the
same datasets as well: the Netflix and KDD datasets [10, 19]. Because

both algorithms solve the same LP with a multiplicative weight up-

date approach, there are only minor differences in vector operations

between the two algorithms. Consequently, for this section, we

compare iteration counts rather than time between the two algo-

rithms. The two proposed algorithms are compared in Figure 3. For

MWU, we consider both the standard step size and the Newton’s

method for step size search. The gradient descent data is manually

extracted from [32] using WebPlotDigiter [37]. The plot shows both

MWU with Newton’s method and gradient descent with adaptive

error find a (1 + 𝜖)-relative solution in less than 2000 iterations,

whereas MWUwith standard step size converges much more slowly.

Moreover, MWU with Newton’s method incurs 10× and 41× fewer

iterations than gradient descent for Netflix and KDD, respectively.

These results highlight the effectiveness of using a step size strat-

egy, such as Newton’s method, over the standard step size. Fur-

thermore, MWU with Newton’s method converges more rapidly

than gradient descent with an adaptive error. However, since both

methods use heuristics to accelerate the method, testing additional

positive LPs and datasets would be needed for a comprehensive un-

derstanding of the trade-offs between MWU and gradient descent.

The heuristic that MPCSolver uses prematurely stops the algorithm

once it detects that the per-iteration decrease in constraint violation

falls below a threshold.

Fig. 3. Max violation, defined as max{0,max(𝑷𝒙 ) − 1, 1 − min(𝑪𝒙 ) } for
MPCSolver, which is a gradient descent algorithm with adaptive error [32],
and MWU (Algorithm 2) with standard step size and Newton’s method.

7.2 Parallel Scalability of MWU
We now analyze the strong scaling behavior of MWU-PETSc and
MWU-opt. Figure 4 displays the speedup with respect to single-

threaded execution of the MWU-opt implementation.

When executing on a single node, all LP problem types are run

along a range of thread counts from single threaded to 68 threads,

which is the maximum number of hardware threads on one ma-

chine. Here, MWU-opt is able to achieve speedup over 16x with

68 threads in 90% of experiments and over 32x in 50% of experi-

ments. Overall, the MWU-opt implementation achieves speedups of

13-55x on 68 threads compared to its single threaded run times. The

largest differences betweenMWU-opt andMWU-PETSc are observed
on graph applications where we use specialized matrices such as

vcover , bmatch, and dense-sub problems. High parallel efficiency in

MWU-opt is achieved due to load balancing and high locality in

matrix-vector multiplications of transposed specialized matrices and

vector operations. On the other hand, we see that the MWU-opt can
only achieve 2-3x speedup compared toMWU-PETSc for dominating
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set LP (dom-set) application. Note that, for dom-set, MWU-opt can
only make use of format selection and memory access minimization

optimizations for SpMV operations.

For multi-node results, we execute MWU-opt and MWU-PETSc
with 64 MPI processes per node and 1 thread per process (this was

the most performant configuration for MWU-PETSc on a single

machine). We only run experiments where the total number of

processes is square, as that is a requirement for our implicit repre-

sentation. We run all algorithms with Newton’s optimization for

step size search and limit Newton’s methods to 5000 iterations. On

distributed memory, except for vertex cover on rgg-24, MWU-opt
runs faster than MWU-PETSc at scale. For the distributed problem,

we also observe almost linear scaling for all graphs except rgg-24
in MWU-opt. A matrix-vector product on the incidence matrix of

banded matrices, like rgg-24, reduces communication on a 1D data

distribution pattern, so a 1D parallelization (e.g., row-wise distribu-

tion of the matrix) is more efficient than a 2D distribution, which is

the layout we use.

For MWU-PETSc, we observe good scaling on dom-set, which
we expect as the LP for this problem does not use implicit rep-

resentation and is a 1D problem. We observe poor scaling in all

other problems on all graphs except rgg-24. For rgg-24,MWU-PETSc
achieves good performance due to its internal representation [9],

which, we believe communicates only the vector entries needed

by each processor based on the sparsity pattern of rows assigned

to it. However, MWU-PETSc performs extremely poorly on dense-
sub when we use multiple processors and does not complete in

under 2 hours. In conclusion, for general graphs, the implicit 2D

representation scales well compared to a explicit 1D representation.

7.3 Improvements from Step Size Strategy
We first evaluate the effectiveness of step size search (Section 4).

We run MWU-PETSc using 64 MPI proccesses, each with 1 thread

and list the results for rgg-18 in Table 3. We choose this graph since

we have exact solutions for all five graph problems, and the run

time with standard step size is not too large. The speedups for other

graphs are within an order of magnitude of the ones listed here.

Table 3. Convergence of MWU to find (1 + 𝜖 )-relative (𝜖 = 0.1) solution on
rgg-18 with standard step strategy (Std), binary search (Bin), and Newton’s
method (Nwt). For the latter two step strategies, we use the previous step
size as the initial step size.

# MWU iters Avg # step
size iters Time (sec)

Std Bin Nwt Bin Nwt Std Bin Nwt
match 25477 13 13 8.31 4.86 79.3 0.87 0.94

bmatch 28210 15 13 8.00 5.07 261 1.08 1.05

dom-set 18837 96 166 5.78 2.58 41.3 1.30 1.58

vcover 30531 76 110 5.93 2.68 106 1.99 2.19

dense-sub 20021 21 18 8.00 4.79 170 0.60 0.47

The results verify that a step size search strategy significantly

reduces the number of MWU iterations compared to the standard

step size prescribed in theoretical algorithms. Since an MWU itera-

tion tends to be more expensive than a search step iteration (due

to the SpMV), these results suggest that finding accurate step sizes,

at the expense of a higher search cost, reduces the overall run time.

The performance difference between binary search or Newton’s

method is relatively small. While Newton’s method on average re-

quires fewer step size search iterations than binary search, it has

more MWU iterations than binary search for the two pure cover-

ing problems, dom-set and vcover . The additional MWU iterations

observed when using Newton’s method may be attributed to the

(1 − 𝜖) multiplicative decrease (where 𝜖 = 0.1) applied to step sizes

violating the bang-for-buck inequality (16).

7.4 Effect of Software Optimizations
We now analyze the acceleration of an MWU iteration with our soft-

ware optimizations. To do so, we will compare the execution times

of MWU-PETSc and MWU-opt implementations with 68 threads.

Later, we will also compare the execution times of MWU-PETSc and
MWU-opt implementations for problems with implicit matrix vector

multiplication.

7.4.1 Performance Breakdown. First, we consider where the cycles
are spent in our MWU-PETSc implementation. Figure 5a shows

the fraction of time spent in matrix-vector products (matvec), step
size search (search), and other vector operations (vec). The gradients
(Line 5, 6) and new direction (Line 7) are included in the vec category
while all other vector operations done during step size search are

included in the search category.

We observe that both applications and input graphs affect the

distribution of execution cycles among these three components. For

example, while match, bmatch and dom-set problems spend most

of their time during matvec, vcover and dense-sub problems spend

more than 50% of their execution time for vec and search operations.

matvec takes on average 75%, 78%, and 82% of the execution time

for match, bmatch, and dom-set problems, respectively. In contrast,

for vcover and dense-sub, matvec takes only 45% and 38% of the

execution time on average. Due to this variable behavior, it is crucial

to optimize bothmatrix-vectormultiplications and vector operations

for MWU.

7.4.2 Shared-Memory Performance Optimizations. Figure 5c shows
the speedup obtained by our optimized implementation relative

to the PETSc-based implementation when executing on a single

node. In this section, we report geometric mean speedups when

referring to average speedup across graphs. For dom-set, the speedup
is obtained from using a favorable format (CSB) and minimizing

memory accesses. Our optimizations accelerate matvec operations
by 1.8x on average. Although vec and search operations also get

speedups, their contribution to overall performance is smaller. On

the other hand, for match, bmatch, and vcover problems, we can

observe the benefit of specialized vertex-incidence matrix vector

multiplications. In these cases, matvec operations are 3.28x, 5.06x,
and 3.49x faster on average, respectively. For dense-sub problem,

we also see benefits of vertex-edge pair matrix and interweaved-

identity matrix specializations. matvec operations are 4.64x faster
on average.

Moreover, vcover and dense-sub problems spend a large amount of

time for vec and search operations. We see that, in these cases,MWU-
opt implementation can obtain significant speedups for both vec
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Fig. 4. Scalability ofMWU-opt andMWU-PETSc (see subfigure (j) for the legend). Axes are in 𝑙𝑜𝑔2 scale. All values are normalized to single-threaded execution
of MWU-opt . We omit the results for MWU-PETSc, if the execution time is slower than single-threaded execution of MWU-opt .

(6.85x, and 4.08x on average, respectively) and search (8.92x and 5.79x
on average, respectively) thanks to fusing and SIMD optimizations.

7.4.3 Distributed-Memory Optimizations. We record run time im-

provements in the context of multi-node exeuction MWU-opt over
MWU-PETSc in Table 4. In parenthesis is the ratio ofmatvec product
time to matvec communication time for MWU-opt. All experiments

are run with 64 OMP threads per MPI process. We observe that for 4

nodes, the use of implicit matrix-vector products accelerates matvec
operations in MWU-opt by 1.4-3x compared to MWU-PETSc for all
graphs except rgg-24, for which it is slower by 9x. As previously

discussed in Section 7.2, MWU-PETSc uses a 1D communication

layout, which is more efficient on banded matrices like rgg-24 than
our 2D communication layout.

Table 4. Speed-up in run time of our implicit implementation of the product
of the edge-incidence matrix and a vector. The ratio of computation to
communication time in MWU-opt is parenthesized.

hollyw orkut rgg-24 kron-21

4 nodes 1.4 (0.57) 3 (1.1) 0.11 (0.09) 3 (0.83)

16 nodes 120 (0.39) 46 (0.19) 0.04 (0.02) 97 (0.18)

64 nodes 186 (0.3) 259 (0.12) 0.09 (0.01) 516 (0.19)

8 CONCLUSION
Our work demonstrates that approximate positive LP solvers are an

efficient and scalable approach for solving a wide range of graph

problems. We show that with carefully chosen modifications and

implementation of the MWU algorithm from Mahoney et. al. [31]

– namely, a step size search strategy and specialized linear algebra

operations that leverage shared and distributed-memory resources

– the algorithm exceeds the performance of general purpose LP

solvers for finding a (1 + 𝜖)-relative solution. Our implementation

also matches the performance of hand-tuned parallel graph libraries

for some graphs.

ACKNOWLEDGMENTS
This research has been supported by funding from the United States

National Science Foundation (NSF) via grant #1942995 and #2016136,

as well as NSF grant CCF-1910149. This material is based upon work

supported by the U.S. Department of Energy, Office of Science, Office

of Advanced Scientific Computing Research, Department of Energy

Computational Science Graduate Fellowship under Award Number

DE-SC0022158.

REFERENCES
[1] H. M. Aktulga, A. Buluc, S. Williams, and C. Yang. 2014. Optimizing Sparse

Matrix-Multiple Vectors Multiplication for Nuclear Configuration Interaction

Calculations. In 2014 IEEE 28th International Parallel and Distributed Processing
Symposium. 1213–1222. https://doi.org/10.1109/IPDPS.2014.125

[2] Zeyuan Allen-Zhu and Lorenzo Orecchia. 2014. Using optimization to break the

epsilon barrier: A faster and simpler width-independent algorithm for solving

positive linear programs in parallel. In Proceedings of the twenty-sixth annual
ACM-SIAM symposium on Discrete algorithms. SIAM, 1439–1456.

[3] Zeyuan Allen-Zhu and Lorenzo Orecchia. 2016. Using Optimization to Solve

Positive LPs Faster in Parallel. arXiv:1407.1925 [cs.DS]

[4] Zeyuan Allen-Zhu and Lorenzo Orecchia. 2019. Nearly linear-time packing and

covering LP solvers. Mathematical Programming 175, 1-2 (2019), 307–353.

[5] Alexandr Andoni, Clifford Stein, and Peilin Zhong. 2020. Parallel approximate

undirected shortest paths via low hop emulators. In Proceedings of the 52nd Annual
ACM SIGACT Symposium on Theory of Computing. 322–335.

[6] Sanjeev Arora, Elad Hazan, and Satyen Kale. 2012. The multiplicative weights

update method: a meta-algorithm and applications. Theory of Computing 8, 1

(2012), 121–164.

[7] Baruch Awerbuch and Rohit Khandekar. 2009. Stateless distributed gradient

descent for positive linear programs. SIAM J. Comput. 38, 6 (2009), 2468–2486.
[8] Ariful Azad, Aydın Buluç, and Alex Pothen. 2016. Computing maximum cardinal-

ity matchings in parallel on bipartite graphs via tree-grafting. IEEE Transactions
on Parallel and Distributed Systems 28, 1 (2016), 44–59.

[9] Satish Balay, Shrirang Abhyankar, Mark Adams, Jed Brown, Peter Brune, Kris

Buschelman, Lisandro Dalcin, Alp Dener, Victor Eijkhout, W Gropp, et al. 2019.

PETSc users manual. (2019).

, Vol. 1, No. 1, Article . Publication date: February 2024.

https://doi.org/10.1109/IPDPS.2014.125
https://arxiv.org/abs/1407.1925


12 • Ju et. al.

or
ku

t
ho

lly
w

rg
g-

24
kr

on
-2

1

0.00

0.25

0.50

0.75

1.00
match

or
ku

t
ho

lly
w

rg
g-

24
kr

on
-2

1

bmatch

or
ku

t
ho

lly
w

rg
g-

24
kr

on
-2

1

dom-set

or
ku

t
ho

lly
w

rg
g-

24
kr

on
-2

1

vcover

or
ku

t
ho

lly
w

rg
g-

24
kr

on
-2

1

dense-sub

matvec vec search
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(b) OMP Breakdown
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A SUPPLEMENTARY MATERIAL

A.1 Further Details on Generalized Matching Experiments
Let𝐺 = (𝑉 , 𝐸) be an undirected, unweighted graph. For generalized

matching, a vertex 𝑣 can be matched 𝑏 (𝑣) times, where lb(𝑣) ≤
𝑏 (𝑣) ≤ ub(𝑣) are lower and upper bounds on the number of unique

vertices matching with 𝑣 . More precisely, the IP formulation is

∃ 𝒙 s.t. lb(𝑣) ≤
∑︁

𝑒∈inc(𝑣)
𝑥𝑒 ≤ ub(𝑣),∀𝑣 ∈ 𝑉 ,

𝑥𝑒 ∈ {0, 1},∀𝑒 ∈ 𝐸.
(18)

Maximum matching is equivalent to generalized matching with

lb(𝑣) = 0 and ub(𝑣) = 1,∀𝑣 ∈ 𝑉 , as well as a (maximization) ob-

jective function of

∑
𝑒
𝑥𝑒 . The LP relaxation is the feasibility mixed

packing and covering LP,

∃ 𝒙 ∈ R𝑚 s.t. 𝑴𝒙 ≥ 𝒍,𝑴𝒙 ≤ 𝒖, 𝒙 ≥ 0,

where 𝑴 is the vertex-edge incidence matrix, and 𝒍, 𝒖 ∈ R𝑛 are the

vector of lower and upper bounds for each vertex.

A.2 Dataset Preprocessing
Now, let us describe how to pre-process theNetflix [10] and KDD [19]

datasets, as detailed in [32]. Both datasets contain users and items

(e.g., movies in Netflix, music tracks in KDD) as vertices, and edges

correspond to a user rating an item. This dataset is represented as a

bipartite graph, where users and items form the two partitions, and

edges go only between vertices in separate partitions. For the num-

ber of matchings with each user, we enforce a lower bound of three

and upper bound of five. For items, no lower bound is set, but an

upper bound of 200 and 2000 is chosen for Netflix and KDD, respec-

tively. Finally, to ensure there is a feasible matching satisfying these

bounds, we exclude users with less than ten ratings from the Netflix

dataset. After this pre-processing step, the two datasets have 473k

and 1.6m vertices, as well as 100m and 252m edges, respectively.

A.3 Gradient Descent with Adaptive Error
Finally, we review the gradient descent algorithm with an adaptive

error of [32]. In short, the algorithm minimizes the convex function

via gradient descent,

Γ(𝒙) =
𝑚𝑃∑︁
𝑖=1

𝑦𝑖 (𝒙) +
𝑚𝐶∑︁
𝑖=1

𝑧𝑖 (𝒙),

where for some 𝜇 > 0,

𝑦𝑖 (𝒙) = exp [𝜇 · (𝑷𝑖𝒙 − 1)]
𝑧𝑖 (𝒙) = exp [𝜇 · (1 − 𝑪𝑖𝒙)] .

The algorithm contains two error values. There is the error bound

𝜖 , where the algorithm seeks to find an 𝒙 that is a (1 + 𝜖)-relative
solution. Then there is the internal error bound 𝜖′, which is used

to specify 𝜇 as well as which coordinates of 𝑥𝑖 to update, and by

how much. The authors of [32] found that they can set 𝜖′ > 𝜖 . For

example, when 𝜖 = 0.05, they can choose 𝜖′ = 1. Then they run

the algorithm until it stagnates, and if 𝒙 is not an (1 + 𝜖)-relative
solution, they decrement 𝜖′ and warm-start the algorithm by setting

the initial 𝒙0 to the solution of the previous, stagnated algorithm.

This strategy is called adaptive error, since it adaptively updates the

internal error bound.
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