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Positive linear programs (LPs) model many graph and operations research
problems. One can solve for a (1+¢)-approximation for positive LPs, for
any selected €, in polylogarithmic depth and near-linear work via varia-
tions of the multiplicative weight update (MWU) method. Despite extensive
theoretical work on these algorithms through the decades, their empirical
performance is not well understood.

In this work, we implement and test an efficient parallel algorithm for
solving positive LP relaxations, and apply it to graph problems such as
densest subgraph, bipartite matching, vertex cover and dominating set. We
accelerate the algorithm via a new step size search heuristic. Our imple-
mentation uses sparse linear algebra optimization techniques such as fusion
of vector operations and use of sparse format. Furthermore, we devise an
implicit representation for graph incidence constraints. We demonstrate
the parallel scalability with the use of threading OpenMP and MPI on the
Stampede2 supercomputer. We compare this implementation with exact
libraries and specialized libraries for the above problems in order to evaluate
MWU’s practical standing for both accuracy and performance among other
methods. Our results show this implementation is faster than general pur-
pose LP solvers (IBM CPLEX, Gurobi) in all of our experiments, and in some
instances, outperforms state-of-the-art specialized parallel graph algorithms.
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1 INTRODUCTION

Designing general graph libraries for massively-parallel machines
is challenging as combinatorial graph algorithms often have limited
concurrency and arithmetic intensity [30]. Many have parallel depth
at least proportional to graph diameter, though in practice these
algorithms contain sufficient concurrency to achieve high-efficiency
on shared-memory machines [17, 33, 40, 41]. Designing efficient
distributed-memory parallelizations is more challenging, though it
has been achieved with use of graph partitioning [43], formulations
via sparse matrix products [12, 13, 42].

Another method for solving graph problems is to reformulate
or relax [46, 48] the graph problem into a linear program (LP). Re-
cent theoretical breakthroughs in both sequential and parallel algo-
rithms for several graph problems [5, 26, 28, 39, 44, 45] indicate that
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carefully designed LP solvers can enable algorithms with tunable
accuracy that have lower cost and depth than their combinatorial
counterparts. Given a matrix A € R™*" vector ¢ € R", and vector
b € R™, an LP is the optimization problem,

max{c,x) s.t. Ax < b, (1)
x€eR”

where (¢, x) = c1x1 +cox2 + ...+ CcpXp, and u < v means u; < v; Vi.
[46, 48].

Typically, to solve a general LP, one employs variants of the sim-
plex or interior point methods. While these algorithms are efficient
in the sequential setting, they often have limited parallelism. LP
solving is P-Complete, which implies that a poly-logarithmic depth
parallel algorithm is believed unlikely to exist [23].

However, many graph problems can be solved via LPs that con-
tain only positive entries, and these class of LPs admit efficient
parallelizable solvers if some approximation is allowed. These ap-
proaches yield a parallel algorithm with depth that is a polynomial
in 1/e and log n (the number of variables), and is independent of
the structure of the constraint matrices P and C. It outputs a result
that is a (1 + €)-approximation, which, for a maximization problem
entails a relative error of (1 — €) in the objective value, and for a
minimization problem, a relative error of (1 + €).

The polynomial scaling with 1/e has been improved in recent
work. Our implementation is based on an accelerated version of a
more recent algorithm with an improved depth of O(e~3) for mixed
problems and O(e~2) for pure covering or pure packing problems.
The only other previously published study [32] of a distributed and
parallel LP solver built using this approach implemented and com-
pared run times of two earlier algorithms: MPCSolver and Young’s
algorithm, with O(e~%) and O(e™*) depth, respectively. Further de-
tails on theoretical developments in approximately solving positive
LPs in parallel are provided in Section 2.

The algorithm we focus on is from Mahoney et. al. [31], which
offers the fastest theoretical performance for pure packing, pure
covering, and mixed packing and covering LPs in a parallel setting.
We describe these problems and their associated graph problems
formally in Section 3. This algorithm we call MWU since it utilizes
the weights vector from the more general MWU method [6]. De-
spite the algorithm’s strong theoretical foundation, little is known
about its empirical performance, especially for solving real-world
graph problems over large datasets. Furthermore, understanding
how this algorithm compares to other LP solvers and specialized
graph libraries is an open question.

In this paper, we create a practical and scalable implementation
of a parallel (1+€)-approximate positive LP solver by adapting the
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MWU algorithm with the current fastest theoretical performance,
and we also provide a comprehensive empirical study comparing
MWU against exact solvers, specialized libraries, and previous re-
lated work. We also test a line search method that finds the largest
step-size permitted without violating theoretical guarantees. This
step-size search reduces in the number of overall MWU iterations
in practice by multiple orders of magnitude. Our results suggest
that MWU can be fast in both theory and practice, with run times
comparable to even specialized libraries but with the added benefit
of, one, being generalizable and, two, more versatile, as it can benefit
from high-performance sparse linear algebra libraries. We believe
this marks MWU as a viable alternative for solving graph problems
approximately on a large dataset. Overall, our paper makes the
following contributions:

e the first shared and distributed-memory implementation of a
general-purpose approximate solver based on Mahoney et. al. [31]
for positive LPs, called MWU

e a step size search method for MWU that empirically reduces the
iteration count by up to three orders of magnitude without adding
significant overhead

e an efficient implementation of MWU using an implicit represen-
tation of common constraint matrices observed in graph LPs as
well as other standard techniques for SLA. We show these opti-
mizations provide good scalability and lead up to 5.2x speedup
relative to MWU implemented with PETSc (a library for parallel
sparse linear algebra).

e the first comparison of an approximate positive LP solver against
general LP solvers as well as specialized parallel graph algorithms.
In particular, MWU finds (1 + €)-relative (¢ = 0.1) solutions up to
3-2800x and 5-1180x faster than CPLEX and Gurobi (which find
exact solutions for implicit ILPs and exact fractional solutions for
relaxed LPs), respectively, for solving several graph problems on
large real-world graphs on the Stampede2 supercomputer using
KNL compute nodes.

2 BACKGROUND ON LINEAR PROGRAM SOLVERS
2.1 Positive LP Solvers

Fast approximate solvers for positive LPs in the sequential settings
have been developed since the early 1990’s [20, 35], and there is
extensive and continued attention to this line of work. We mostly
focus on parallel algorithms and refer the reader to [36, 47] for ex-
tensive pointers. Luby and Nisan provide the first parallel algorithm
for explicit positive LPs which obtain a (1 + €)-approximation in
O(e™*) iterations! for pure packing and covering LPs [29]. Young
clarified and extended this work to solve the more general mixed
packing and covering LPs in parallel in O(e™*) iterations [49]. The
dependence on € has remained unchanged for over 10 years until
the work of Allen-Zhu and Orecchia, who solve pure packing and
pure covering LPs in parallel with O(e73) iterations [3]. They also
obtained better dependence on € in the sequential setting [4] for
pure packing and covering LPs (see also [31]).

I}Ne write O(f(n)) to be proportion to f(n) and a polylogarithmic of f(n), ie.,
O(f(n) « O(f (m) 1og” ™M (£ (n)))
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Recently, Mahoney et. al. [31] utilized ideas of Young [50] on faster
near-linear time sequential solver to develop new parallel algorithms
for positive LPs. For mixed packing and covering LPs, their algorithm
converges in O(log(mp + me) 10g(n/e)/e3) iterations and is also
work-efficient, i.e., work is near linear to the number of nonzeros in
the LP. For pure packing and pure covering LPs, the dependence on
€ is €2 instead. When e is not too small, these algorithms have low
depth in the PRAM model.

Empirical studies of these fast approximate algorithms have been
mainly limited to relatively small problems. Koufogiannakis and
Young adapt a sequential mixed packing and covering LP and show
it outperforms simplex on randomly generated binary matrices with
dimension up to 2222 [25]. Allen-Zhu and Orecchia compare their
O(e™1)-dependent sequential algorithm [2] to the algorithms of
Luby and Nisan [29] and Awerbuch and Khandekar [7] for solving
pure packing LPs with a randomly generated matrix of size 60 X 40.
Jelic et. al. implement a parallel primal-dual method on GPUs to
solve positive LPs, although their constraint matrices are randomly
generated binary matrices with dimensions up to 25000 [22]. The
most closely related work to ours is that of Makari et. al. [32], who
implement a gradient descent algorithm to solve generalized match-
ing on large real-world and synthetic graphs. Their implementation,
based on the algorithm from [7], has a O(1/€”) number of iterations,
and they confine their attention to a single graph problem.

In this paper we focus on only obtaining fractional solutions to the
LP problems. Since all LPs are polynomial time solvable, whereas the
discrete formulation of some of the graph problems we consider are
NP-hard, this allows us to have a more uniform and fair comparison
to prior art (e.g., [32], as well as state-of-the-art software for solving
LPs like Gurobi).

There also exists rounding techniques (which convert a fractional
solution to an integral one) or specialized algorithms to solve or
approximately solve the discrete problems, but these methods are
specific to the problem and have different levels of parallelism,
efficiency, and approximation guarantees. For example, an exact
parallel rounding technique for a maximum matching problem is im-
plemented in [32], but the run time can be three orders of magnitude
longer than solving the LP problem. On the other hand, rounding
techniques for dominating set are compared in [27], but these only
return approximately optimal solutions and the rounding is not par-
allelized. There are also specialized libraries for the aforementioned
graph problems [8, 18] (more details can be found in Section 6). But
again, these implementations are tailored to the problem at hand,
hence it would not be fair to compare the run time against our
general-purpose solver in terms of obtaining an integral solution.

2.2 The MWU Algorithm

We now introduce MWU, the algorithm of Mahoney et. al. [31] for
approximately solving the standard mixed packing and covering
LP in parallel. This section does not contain our modifications for
improving the empirical performance, which are found in Section 4.

First, we start describing how MWU solves the mixed packing
and covering feasibility LP [31, 49]. We will discuss how to modify
this into an optimization problem later in the section. The feasibility
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LP is:

FxeR"st.Px<1,Cx>1,x>0, 2)
where P and C are nonnegative. Vectors 1 and O are the all ones and
zeros vector, respectively. The algorithms we consider seek a (1+¢€)-
relative approximation: that is, a solution x such that Px < (1+¢€)1
and Cx > 1.

MWU (Algorithm 1) ensures that both packing and convering
constraints, Px < 1 and Cx > 1, are approximately satisfied by
approximating max(Px) and min(Cx) with smoothed maximum
and minimum functions,

n

smax, (x) = % log ( Z exp(n - xi)),

i=1
n

sminy, (x) = —% log ( Z exp(—n - xi)),

i=1
where n > 2 is a smoothing parameter. The MWU algorithm and
step size search make use of their gradients,

exp(1 - x) exp(=n - x)
(1, exp(n - x)) (L exp(=n - x))
For more details on these functions, see Chapter 2 of [36].

Vsmaxy (x) = , Vsming (x) =

Algorithm 1 Multi-Update MWU Method for Mixed Packing and
Covering LPs

mpXxn meXn

1: procedure MWU(P € R, ,C€eR, ,E)
2 n < 10log(m)/e where m := mp + mc

% e e Vie D] o lxll = max; x|
4 while constraints not approximately satisfied and C # @ do

5: g «— PTVsmax,,(Px)

6 h« CTVsmin,i(Cx)

7 dihﬁmax{o,l—}%fxi Vi

8: if max(d) = 0 then

9: Return “INFEASIBLE”

10: x—x+d
11: C—{c; : L‘iTx <1} > Keep unsatisfied constraints
12: return x

The algorithm initializes the vector x with small values so that
each starting packing constraint is at most € (Line 3). The smoothing
parameter 7 is set so that both smax; and smin; are within an e
additive error of max and min, respectively. In each MWU iteration,
the algorithm multiplicatively updates x. This is done by defining a
step or update vector, d, where d; is a multiple of x; (Line 7), and
adding d to x (Line 10). Vectors g and h, which are gradients of
the smoothed max packing and min covering constraints, respec-
tively, are also utilized to define d (Lines 5, 6). In particular, d is an
approximate solution to the Lagrangian relaxation,

3d € RY s.t. (wp, Pd) = (PTwp,d) < 1,

(we, Cd) = (CTwe,d) > 1, ®

where wy, = Vsmaxy (Px) and w, = Vsmin; (Cx).

If the positive LP is infeasible, then there exists some MWU it-
erations where d = 0, in which case the algorithm reports the
LP is infeasible (Line 8) [31]. Assuming otherwise, the theoretical
analysis guarantees MWU will return an (1 + €)-relative solution.
Throughout the algorithm, we drop satisfied covering constraints,

as these can unnecessarily slow down progress (Line 11). Finally, the
algorithm returns x when all the covering constraints are satisfied
or when there exists no covering constraints.

We note that Algorithm 1 can also solve pure packing or pure
covering LPs, which are, respectively,

max (1,x) st. Px <1,x > 0,x € R"

min (1, x) s.t. Cx > 1,x > 0,x € R".

For example, to solve a pure packing LP, we embed the objective
function as the added constraint, A—I/IJlTx > 1, where M is the esti-

n
mate of the maximum value, e.g, M = ] max;ip ;>0 1/pji. Then
i=1

we do binary search over M, using Algorithm 1 to determine if the
resulting mixed packing and covering LP is a feasible. Since there
is one covering constraint, then sminy (Cx) = min(Cx). This exact
approximation permits one to scale the step direction (Line 7) by
a factor of 2 in the theoretical analysis, which improves the num-
ber of iterations by a factor of € [31]. Also, noting C = ﬁ]lT and
Vsming, (Cx) = 1, we have h = ﬁ]l (Line 6), so we do not need
to explicitly compute h. Solving a pure covering LP is done via a
similar transformation. Solving a mixed covering and packing opti-
mization problem, likewise, involves embedding the constraint that
corresponds to the direction of optimization.

3  GRAPH PROBLEMS AS POSITIVE LPS

We now consider several graph problems. We first define integer
programming (IP) formulations which exactly model the underlying
graph problem. We then obtain an LP by relaxing the integrality
constraints. For some problems, such as bipartite matching and
densest subgraph, the solution to the LP relaxation matches the IP’s
solution (i.e., the solution is integral), whereas for NP-hard problems
dominating set and vertex cover there is an integrality gap between
the solution to the LP relaxation and IP. See [46, 48] for the role
of LP relaxations in the development of approximation algorithms,
and also [27] for a performance study on rounding an LP relaxation
to an integral solution for dominating set. Our goal is to design a
general-purpose solver, and the design and performance of rounding
schemes are problem dependent (see the end of subsection 2.1 for
further details). Therefore, we do not consider rounding in our
implementation nor performance comparisons.

Let G = (V,E) be an unweighted, undirected graph where V
is the set of vertices and E is the set of edges, with n = |V| and
m = |E|. For simplicity, we assume G has no self-loops. Note that
our formulations can be extended towards weighted graphs as well.
For a vertex v € V, let N(v) be the neighbor vertices of v (v is not
included in N (v)), and inc(v) be the set of edges incident to v.

The neighbor relations between the vertices of G can be repre-
sented as an adjacency matrix, A € {0, 1}"*", which is symmetric
and has a nonzero for each edge e € E. The incidence relation be-
tween the vertices and the edges can be represented as a vertex-edge
incidence matrix, M, where

M 1
we =,

:u€ee€kE
. . M e {01} )
: otherwise
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(b) dom-set (c) vcover
Fig. 1. Four graph problems run on the same graph. Variables of LP with a

nonzero value are highlighted in red. An example of matching is given in
Figure 1a. The set of edges in the matching are marked with thick red lines.

(a) match (d) dense-sub

In this work, we consider four graph applications: maximum match-
ing, dominating set, vertex cover, and densest subgraph.

Maximum Matching (match). A matching is a subset F C E of
edges such that no vertex is incident to more than one edge in F.
We can write this optimization problem as the IP,

maxee s.t. Z Xe <1VoeV

ecE e€inc(v) (5)
xe € {0,1} Ye € E.

The x, variables indicate whether edge e is in set F. The constraints
are defined over the vertices of the graph such that at most one edge
(xe) in the incident edges of a vertex v (inc(v)) can be selected for
matching set F. When the input graph is a bipartite graph, we call
this problem maximum bipartite matching (bmatch).

Given the vertex-edge incidence matrix M of the graph, we can
write the LP relaxation for maximum matching as the pure packing
LP,

max (1, x) s.t. Mx < 1,x > 0, x € R™. (6)
It is well-known that this LP relaxation has no integrality gap for
bmatch while for general graphs there is an integrality gap of 2/3;
there is an exponential sized exact LP relaxation for general graph
matching but we do not consider it here.
Dominating Set (dom-set). Dominating set is the problem of find-
ing the smallest subset of vertices S C V such that every vertex in
the graph is either in S or is a neighbor of a vertex in S. We can
formulate the dom-set problem as the IP,

min va s.t. xp + Z xy 21, VoeV
veV ueN (v) (7)
xp €{0,1} Vo € V.

The variable x, indicates whether vertex v is in set S or not. The
constraints are defined over the vertices such that either vertex v
itself or one of its neighbors is in the set S. The LP relaxation is a
pure covering LP,

min (1, x) s.t. I+A)x >1,x >0, x € R", (8)

where I is the identity matrix.

Vertex Cover (vcover). In the vertex cover problem the goal is to
find the smallest subset of vertices S C V such that every edge has
one of its endpoints in S (hence S covers all the edges). A simple IP
formulation is

min Z Xp S.t.xy +xp = 1VY(u,0) € E
veV (9)
xp €{0,1} Yo e V.
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Here, the x, variables determines whether a vertex v is in set S. These
variables are defined over the vertices. There is one constraint per
edge. The LP relaxation is a pure covering LP,

min (1,x) s.t. M'x > 1,x > 0,x € R", (10)

where M7 is the transpose of the vertex-edge incidence matrix of
the graph.

Densest Subgraph (dense-sub). Densest subgraph finds a sub-
graph S C G that maximizes the edge to vertex count ratio, i.e.,
|E(S)|/|S|. The LP, as formulated in [14], is

max er st.xe < yu,Xe <Yy Ye=(u,0) €E

ecE
INTES! (11)

veV
Xe,Yp = 0Vo € V,Ve € E.

The variables x, represent the edges and the variables y, represent
the vertices, which are no longer binary. Since this problem is not a
positive LP, we consider its dual [11],

minD s.t. zy e + 29 = 1 Ve = (u,0) € E

Zpe <DV eV
e€inc(v)

Zye = 0 Vo € V, e € inc(v).

(12)

While (12) is still not a positive LP, we can convert it to a mixed pack-
ing and covering LP by fixing D to be a constant and treating (12)
as a feasibility problem instead. We find an approximate minimum
value to (12) via binary search for D and solving the feasibility LP
for each choice.

Unlike previous LPs, the variables z, . represent a vertex-edge
pair instead of vertices or edges, so we require new constraint ma-
trices. Let I be an identity matrix of size m, and let the function
interweave take two equally-sized matrices and put the first and
second matrices’ first columns as the first two columns of the com-
bined matrix, then their second columns as the next pair of columns,
and so on. We call the resulting matrix W the interweaved identity
matrix, where

We.2e, We 2e41 = 1, Ve € E,W € {0,1}X2m (13)

In order to model the vertex-edge pair variables, we can form
a matrix called vertex-edge pairs matrix. Vertex-edge pairs matrix
will have a column for each vertex v and edge (u, v). Specifically, we
can form the vertex-edge pair matrix, O € {0, 1}%%™, from a graph
G as follows:

1 :b=0,e=(u,v)€E
Ouesb =1 :b=1le=(v,u) €E (14)

0 : otherwise

Then the feasibility variant of the dual to densest subgraph is

FzeR¥™Mst.Wz>1,0z<D-1, z> 0. (15)
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4  MWU WITH LINE SEARCH

We propose two methods for finding a step size in StepSize (Line 11).
To motivate these methods, we cast them as 1-D optimization prob-
lems, similar to line search methods for (gradient) descent meth-
ods [34]. However, instead of finding a step size that minimizes the
objective function [34], we take the largest step that ensures a local
invariance condition is satisfied.

Algorithm 2 Multi-Update MWU Method with step size search for
Mixed Packing and Covering LPs

mpXn meXn

1: procedure MWU_STEPSIZE SEARCH(P € R, ,CeRy ,€)

2 Initialize 1, and x; as in Algorithm 1
3 y « Px,z «— Cx

4 while constraints not approximately satisfied and C # @ do

5: g — P"Vsmax, (y) > Packing gradient
6 h« CTVsmin,](z)

7 dihﬁmax{o,l—%}‘xi Vi

8

> Covering gradient

> New step direction
: if max(d) = 0 then

9: Return “INFEASIBLE”

10: d¥) «— Pd, d? — cd

11: a « StepSize(d, y, z,d'¥),d, n) > Step size search
12: if @ < 1then

13: Return “INFEASIBLE”

14: x—x+a-d

15: y—y+a-d¥ z—z+a-d?

16: C«—{c; : clTx<1}

17: return x

We store the packing and covering constraintsy = Pxand z = Cx
as well as d(¥) = Pd and d(¥) = Cd (Line 3 and 10) to minimize the
number of sparse matrix-vector products, or SpMVs. The step direc-
tion d is unchanged (Line 7). While the algorithm drops satisfied
constraints (Line 16), in practice we keep satisfied constraints since
this simplifies the implementation and we did not find it impacts
the convergence on the problems we tested.

The sub-routine StepSize (Line 11) takes the step vector d and
constraint vectors, and returns a step size @ > 0. We call this mod-
ification step size search and design algorithms for it in the next
subsection. When « < 1, we report that finding a solution is infeasi-
ble, because otherwise a step size of @ = 1 is always possible due
to the theoretical analysis of Mahoney et. al. [31]. Therefore, we
call a step size @ = 1 found without step size search the standard
step size. Assuming a > 1, we scale the step direction d by « and
add it to x (Line 14). Afterwards, we update y = Px and z = Cx
without SpMVs (Line 15). Note that @ may be large enough so that
Px=y+a- d® > 1, in which case we terminate MWU.

4.1 Line Search as a Constrained Optimization Problem

In this section, we consider algorithms for finding a step size for
StepSize. When selecting «, we want it to be sufficiently large to
accelerate MWU convergence while ensuring that we recover a
feasible solution to (2).

First, we consider the case of the mixed packing covering LP. One
of the qualities of Mahoney et. al’s algorithm is that the algorithm
reaches a (1 + €)-approximation when the difference in a potential
function f(x) = l(smax,;(Px) — smin, (Cx)) becomes sufficiently
small [31]. Each step that their algorithm takes is non-increasing

on f(x).

We can show that in order for the potential function to be non-
increasing, f(x(tﬂ)) —f(x(t)) =¥(a) - ®(a) < 0 where,

®(a) = smingy (C(x + - d)) — smin, (Cx)
¥ () = smax, (P(x + a - d)) — smax; (Px).

This gives us an equivalent invariant f(a) = ®(a)/¥(a) > 1.
Therefore, if we find a step size a for which this invariant holds, then
for this o we can still say f(x) is non-increasing, and furthermore,
if we can reach a point where Px < (1+ €)1 and Cx > 1 then we
have converged to a feasible solution. Hence, our method is to find
the largest step size a > 0 such that the “bang-for-buck” value is at
least one, or

fla) =0(a)/¥(a) 2 1, (16)
For pure packing and pure covering problems we instead have these
invariants, respectively:

(1,ad)/¥(a) > 1

(L ad)/®(a) < 1 (17

We now show MWU with line search maintains the same theo-
retical properties as MWU with the standard step size [31]. Recall
x € R" and m is the number of rows in the matrices P and C.

THEOREM 4.1. MWU with line search (Algorithm 2) either returns
an (1 + €)-relative approximate solution, i.e., an x > 0 such that
Px < (14€)1 and Cx > 1, or correctly reports the LP is infeasible. The
number of iterations is at most O(e~3), where O hides polylogarthmic
dependence on n, m, and e.

The proof is similar to the one shown in [31], which implic-
itly sets the step size to « = 1. There will be two main differ-
ences in the convergence proof, which we highlight here. First,
the proof of correctness in [31] shows the potential function, de-
fined as smax; (Px) — smin, (Cx), is monotonically decreasing by
taking a first-order approximation of smooth max and min. On the
other hand, our bang-for-buck invariance (16) explicitly ensures this
monotonicity property. Second, the argument in [31] upper bounds
the number of MWU iterations by lower bounding the values in
step direction vector d. Since line search only increases d because
a -d > d, then line search can only decrease the number of MWU
iterations.

While line search can decrease the number of iterations (in fact,
quite significantly in our experiments), finding a step size increases
the work per iteration. In the following lemma, we leverage the
monotonicitiy of f(«) to design efficient line search algorithms.

PROPOSITION 4.2. f is monotonically decreasing for o € Ry.

Proor. We show that as « increases ¥(«)/« is increasing while
®(a)/a is decreasing, hence

fla) = ((a)/a) [ (¥(a)/)

is decreasing. Note that ¥ is convex since smaxy is convex, and
® is concave since sminy is concave. Since ¥ is convex, ¥Y(a) <
¥(0) + ¥’ (a) = a¥’(a). Hence, we can show that ¥(a)/« is
increasing, since

(H(@)/@)' = (¥ () - ¥(@) /) 2 0.
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Analogously, since @ is concave, the inequalities above are reversed,
and so ®(«)/a must be strictly decreasing in a. o

4.2 Implementing Line Search

To approximate the maximum step size a* satisfying (16), we first
perform exponential search to find an integer p where f(2P) > 1
and f(27*!) < 1. By Proposition 4.2, a* € [2P, 2P*1). Next, we run
binary search starting with a lower and upper bound of [ = 2” and
u = 2P*1 and update the lower and upper bounds so that I (resp. u)
is the largest (smallest) value such that f(I) > 1 (f(u) < 1). Once
we find an e-relative step size, or when uT_l < ¢, we return [. We
formalize the aforementioned procedure in Algorithm 3.

When f(a) > 1 and max (C(x +a - d)) > 1 (Line 4), this means
the step size can lead MWU to completion, so we immediately
return a. Moreover, binary search makes use of y = Px, z = Cx,
d¥) = Pd, and d® = Cd, where x is our current solution and d is
the computed MWU update direction, to avoid additional SpMVs.

A similar line search, which is a coordinate binary search, was
proposed in [36, Section 2.8], but there are some important differ-
ences compared to our binary search. First, rather than taking a
step in the full gradient direction d € R", the coordinate binary
search updates sequentially in each of the n indices. Thus, the binary
search can have a critical path of length up to n and is therefore not
parallel. Second, the coordinate binary search replaces the difference
in the smooth min and smooth max from ® and ¥ with their respec-
tive first-order approximations, which incurs approximation errors
in (16) and can lead to more conservative step sizes. By conducting
line search in the full gradient d and using the exact difference for
® and ¥, our proposed binary search improves upon the previous
line search in non-trivial ways and can take more aggressive (i.e.,
larger) step sizes while maintaining feasibility.

Algorithm 3 Finding a step size via binary search

1: procedure BinSearcu({y, d¥)} € R';op, {z,dP} € RIY. €

2 a1

3 while f(a) > 1do > Exponential search. See (16)
4: if min(z+a-d®) > 1 then

5: return o > Return early if constraints are satisfied
6 a—2-«a

7 Ib,ub — a/2,a

8: while ub — [b > (1 - €)lb do > Binary search
9: P — avg(lb,ub)
10: if f(B) > 1 then > See (16)
11: Ibe—p
12: else
13: ub — f
14: a « Ib and return a

We can derive another line search method by using Newton’s
method, which has the update,

a1 = ot = 9(ax) /9’ (k). where g(a) = f(a) - 1.
Because Newton’s method converges when its solution is in the
neighborhood of the optimal solution, we require estimates of ™ to
ensure convergence. We do so via a warm start for Newton’s search,
where we set our initial @y to the previous optimal step size, if
available, or use exponential search. The reason for the former strat-
egy is we observed in our tests that the optimal step size between
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two MWU iteration are relatively close. Finally, we note that once
Newton’s method converges to some solution, it may not strictly
satisfy (16). Thus, we multiplicatively decrease the solution by a
factor of (1 — €)? for some integer p (p is typically small) until (16)
is satisfied.

5 SOFTWARE OPTIMIZATIONS AND PARALLELIZATION

We now describe the details of our implementation and paralleliza-
tion of linear algebra operations within MWU. To efficiently perform
sparse matrix-vector products with matrices introduced in Section 3,
such as the vertex-edge adjacency matrix, we leverage implicit rep-
resentations derived from a standard sparse vertex-vertex adjacency
matrix data structure. We accelerate vector operations with loop
fusion and vectorization.

5.1 Shared-Memory Optimizations

We design implicit SpMVs for matrices that arise in graph-based pos-
itive LPs such as vertex-edge incidence matrices. We adapt previous
fusion techniques for the needs of MWU framework [38].

5.1.1 Choice of Matrix Format. To efficiently traverse the non-zeros
in the adjacency matrix during SpMVs, we use the Compressed
Sparse Blocks (CSB) format [12], which can achieve good cache
locality for both SpMVs of the matrix and its transpose.

CSB divides the matrix into two-dimensional r X k tiles. Each
tile is represented as a list of tuples, where each tuple stores the
non-zeros in column major order in coordinate (COO) format. The
group of tiles that belong to r consecutive rows is called a row-block
while the group of tiles that belong to ¢ consecutive columns is
called a column-block. In our implementation, we store the tiles in
row-major order.

o I N N x

row-
block

[

]
Chlock = I I e |
block k y=Ax y

y=ATx

Fig. 2. CSB representation and its SpMV operation.

Similar to [1], we parallelize y = Ax and y = AT x over the row-
blocks and column-blocks, respectively. Provided the tile size (r X k)
is selected carefully, the block of the input vector (x) processed by
a tile and output vector y corresponding to a row-block (updated
by a single thread) is contained in private L1 or L2 caches. Figure 2
illustrates the parallelization of SpMV using CSB format.

5.1.2  Implicit Representations. In each iteration of MWU, we per-
form one SpMV with the constraint matrix and with its transpose.
As seen in Section 3, the constraint matrices of many graph-based
LPs are the vertex-edge incidence matrix of the graph. We notice
that the edge (u, ) encoded in an incidence matrix can be described
over over a vertex and a vertex pair (u, (v, w)) where the pair (v, w)
represents an edge in the adjacency matrix. In addition, in the in-
cidence matrix, the value is 1 if 4 = v or u = w and 0 otherwise.
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Therefore, we can store the nonzero data in an vertex-edge inci-
dence matrix M implicitly as an adjacency matrix in memory. This
reduces the memory cost of the constraint matrix by about half
and therefore also reduce the number of accesses to the memory
subsystem, particularly cache.

Having an implicit representation means that linear algebra op-
erations on these matrices can also be expressed implicitly by for-
mulating the computations on the adjacency matrix, A.

We emulate SpMVs for M and O by storing the edge, row, and
column index for each non-zero in A, which we denote by e, r, and c,
respectively. For example, we can compute y = Mx by accumulating
element x. to y, and y. for each (r,c,e) in A, and likewise for
y = Ox, then evaluating y = y, + y.. To parallelize this SpMV while
avoiding race conditions, we first traverse in row major order while
reading the row indices of A, then in column major order while
reading the column indices.

We compute y = M x by accumulating elements x, and x to
ye for all (r,c,e) in A, and likewise for y = O x. Parallelizing
these SpMVs are straightforward, since we accumulate to any given
element of y two and one times, respectively.

5.1.3  Loop Fusion and Vectorization Opportunities. In each iteration
of the MWU algorithm, we do several vector operations and our
augmentation to step size search adds many vector operations, too.
For some problems, such as vertex-cover or densest subgraph, the
vectors in these operations have size |E|, which means they can be
as costly as a single SpMV.

Since these vector operations loop to apply simple arithmetic to
each element in the vector, combining multiple vector operations in
one pass via loop fusions can accelerate these methods. We identify
two operations for fusion: (1) the gradient calculations using smax
and smin (Lines 5 and 6) and (2) the calculation of the new step
direction (16). In both cases, loop fusion can reduce memory accesses
and facilitate automatic vectorization.

5.2 Distributed Parallelization

Distributed-memory parallelization of vector operations and ex-
plicit sparse matrix vector products in MWU can be done with
standard techniques. Therefore, in this section, we will focus on
describing and analyzing the benefits of the implicit representation
for distributed-memory communication.

We use the same implicit representation described in Section
5.1.2. We leverage a 2D matrix distribution of the adjacency matrix
to perform implicit SpMVs with the incidence matrix. A 2D data
layout is communication-efficient for matrix vector products since
each processor computes on only n/+/p entries and contributes to
n/+/p outputs (for an n X n matrix on a y/p X 4/p processor grid).
They are commonly employed for parallel processing of adjacency
matrices [13].

With a 2D layout of the adjacency matrix, we perform vertex-
edge incidence products with twice the communication cost of an
adjacency matrix product. To do so, we store vector information
corresponding to edges in the same processor layout as the adja-
cency matrix A. This means that for an edge (u,v) in A, the machine
owning the edge would store vector information for indices corre-
sponding to u and to v.

For simplicity, we assume a square processor grid. With this
approach, the product with the vertex-edge incidence matrix, y =
Mx, requires only a reduction of contributions to y along rows and
columns of the processor grid. While for the product y = M7 x, only
a broadcast of entries of x along rows and columns of the processor
grid is needed. In both cases, each processor sends or receives a
subvector of size O(\/n/p).

6 EXPERIMENTAL SETUP
6.1 System Setup

We use Intel Knights Landing (KNL) nodes on the Stampede2 super-
computer as our testbed. Each KNL node has 68 1.4 GHz cores. Each
core has a 32 KB private L1 cache, and 2 neighboring cores share
a 1 MB L2 cache. KNL processors also support AVX2 and AVX-512
vector instructions. Each Stampede2 node has 112 GB of memory
capacity with 96 GB DRAM and 16 GB MCDRAM used in cache
mode.

6.2 Implementations

MWU Implementations.

We implement two different versions of MWU 1: (1) MWU-PETSc,
and (2) MWU-opt. MWU-PETSc relies on an efficient parallel BLAS
library PETSc [9] while MWU-opt is our hand-optimized implemen-
tation using optimizations discussed in Section 5. In our implemen-
tation of Algorithm 1, we do not drop satisfied constraints (i.e., we
skip Line 13). This simplifies the implementation, and we did not
find this affects convergence. We set € = 0.1 and terminated the
algorithm if it exceeds 5000 iterations. To verify correctness, we
compare the solution from MWU with an exact solution, if available.
max_iter=5000. These parameters control the accuracy and maxi-
mum number of iterations of MWU, respectively, which were found
by hand-tuning the algorithm. To verify correctness, we compare
the solution from MWU with an exact solution, if available.

PETSc is a suite of data structures and routines for large-scale dis-
tributed operations, including vector and sparse matrix operations
(which calls (sparse) BLAS under the hood), with a Python interface
(petsc4py) [9]. On Stampede2, we use PETSc with MKL version
19.1.1. We use C++ for our MWU-opt optimized implementation and
OpenMP for parallelism. We compile our code with Intel compiler
version 19.1.1 and enable -O3, and -mAVX512 compiler flags. We
run the MWU-opt implementation by binding threads to physical
cores using numactl —physcpubind. For MWU-PETSc, we find that
creating N processes each with 1 thread gives the best performance.

General LP Solvers. We compare our optimized MWU imple-
mentation to general LP solvers. We use IBM CPLEX [15] and
Gurobi [21], both in multi-threaded settings. If the problem is an
ILP, we do not round the fractional solution.

For CPLEX, we set the run mode to opportunistic to achieve the
fastest (but non-deterministic) run time. For Gurobi, we use the
concurrent optimization setting, which concurrently runs primal
simplex, dual simplex, and the barrier method. We report the fastest
run time out of these three methods. When the barrier method fin-
ishes first, we report its run time before crossover (unless otherwise
noted) for a more fair comparison to MWU, which outputs fractional
solutions. We implement all applications discussed in Section 3 with
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both CPLEX and Gurobi. Finally, we limit the solve time for both
CPLEX and Gurobi to 4 hours. All other parameters were set to
defaults.

Specialized Algorithms. We consider optimized custom imple-
mentations as baselines for the two implicitly integral LP problems:
bipartite matching and densest subgraph. For the former, we use
ms-bfs-graft [8], which employs the serial Karp-Sipser greedy ini-
tialization step [24] followed by a specialized breadth-first searches
to find augmenting paths. For the latter problem, we used the Graph
Based Benchmark Suite’s [18] (GBBS) approximate densest subgraph
algorithm, which implements Charikar’s greedy 2-approximation
algorithm [14]. Both ms-bfs-graft and GBBS are implemented in C++
with OpenMP. We compile ms-bfs-graft using OpenMP and the Intel
compiler (version 19.1.1) with the -O2 flag. We compiled GBBS with
the g++ compiler version 9.1.0.

6.3 Input Graphs

We select a variety of real-world and synthetic undirected graphs
from the SuiteSparse Matrix Collection [16] and list them in Table 1.
Our real-world graphs come from diverse domains, such as a road,
social, and user-product network. We also use two sets of synthetic
graphs, the first set being random geometric graphs (rgg) which have
a planar-like structure, and the second set being Kronecker graphs
(kron) from Graph500 which show a strong community structure.

Note that none of the graphs we selected are bipartite, which is
required in bmatch. To obtain bipartite graphs, we read the input
adjacency matrix as a biadjacency matrix, meaning that the rows
and columns of the matrix correspond to the left and right sets of
vertices, respectively, where edges can only go between between
vertices in different sets.

Table 1. List of real-world and synthetic graphs

[ Graphs (Abv.) I VI ] [E] ]
usroads (usroads) 129,164 330,870
com-Amazon (amazon) 334,863 1,851,744
coPapersCiteseer (papers) 434,102 32,073,440
hollywood-2009 (hollyw) 1,139,905 | 113,891,327
com-Orkut (orkut) 3,072,441 | 234,370,166
kron-X X=217-221 ~X %80
rgg-Y y=217-2% ~YX15

7 EXPERIMENTAL RESULTS

In this section, first, we compare our implementation to state-of-
the-art software including general LP solvers, CPLEX and Gurobi, to
specialized parallel implementations for particular graph problems,
and to the parallel implementation of another multiplicative weights
update algorithm from Makari et. al [32].

Then, we evaluate the effectiveness of our algorithmic improve-
ments and software optimizations. We start by finding how the
incorporation of a step size search reduces the number of MWU
iterations. We then test the performance improvements from our
software optimizations and its scalability by comparing performance
between MWU-PETSc and MWU-opt.
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7.1 Comparison of MWU to Other Algorithms

We now compare the MWU-opt implementation of MWU with New-
ton’s method and all the software implementation optimizations
to other state-of-the-art optimization libraries and custom imple-
mentations (ms-bfs-graft for bmatch and GBBS for dense-sub). All
experiments are run with 64 threads on a single KNL node. Table 2
shows the execution times to find (1 + ¢)-relative solutions for four
positive LPs on various graphs where € = 0.1. A “-” in a cell means
that the input graph was either too large to be processed by the
library, or the run time exceeded 4 hours.

Comparison with Exact LP Solvers.

For all LP solvers, we do not do rounding as post-processing.
Therefore, for the exact solvers, we have integral solutions to graphs
problems that have implicitly integral LPs, and exact fractional
solutions for the relaxed LPs with integrality gaps. For approximate
solvers, we are not guaranteed an integral solution on integral LPs.
Note that CPLEX and Gurobi return exact solutions for the target
LPs, while MWU finds an (1 + €)-relative solution with a target
value of € = 0.1. We find that our MWU-opt implementation is able
to find an € = 0.1 solution in all cases except bmatch problem with
rgg-20. However, even for this case, our error rate is 0.104.

Our results show MWU-opt consistently outperforms CPLEX

and Gurobi libraries. For bmatch, dom-set, vcover, and dense-sub
graph LPs, MWU-opt is up to 2548x (rgg-21), 1482x (rgg-19), 43x
(kron-19), and 2860x (kron-17) faster than CPLEX, respectively. Al-
though Gurobi is generally faster than CPLEX, MWU-opt outper-
forms Gurobi by up to 1070x (rgg-21), 55x (rgg-19), 5x (rgg-21), and
816x (rgg-20) for bmatch, dom-set, vcover, and dense-sub graph LPs,
respectively, before crossover occurs. When comparing the time
when after crossover or one of the simplex methods from Gurobi
terminates (whichever comes first), the relative speedups are 1462x
(rgg-21), 3510x (rgg-19), 10x (usroads), and 878x (rgg-20) for bmatch,
dom-set, vcover, and dense-sub graph LPs, respectively. In addition
to significant speedups, we also observe that MWU is capable of run-
ning much larger problems. For instance, both CPLEX and Gurobi
can only solve kron-21 for dom-set but not for dense-sub, the latter
which contains three times more nonzeros than the former. More-
over, both LP solvers fail to solve any of the problems with the
largest graphs, hollywood and orkut.
Comparison with Custom Implementations. We compare
MWU-opt performance to ms-bfs-graft for bmatch and to GBBS for
dense-sub. The MS-BFS algorithm returns an exact solution. MWU-
opt returns an approximate solution with e = 0.1. The MS-BFS
algorithm [8] initializes with a serial Karp-Singer greedy step and
finds augmenting paths in parallel using specialized BFS. The per-
formance of ms-bfs-graft heavily depends on the graph structure.
In general, we observed the MWU-opt can outperform ms-bfs-graft
for graphs with planar structures by 1.8-22.4x for the rgg graphs
and usroads. On the other hand, for graphs which contain a strong
community-structure or vertices with high degrees, ms-bfs-graft
outperforms MWU. For example, amongst the kron graphs, ms-bfs-
graft can be up to 450x faster than MWU-opt. For these types of
graph instances, bmatch generally spends much less time on the
grafting process than with planar-structured graphs, which we often
find to be the dominating cost of bmatch.
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Table 2. Run time (in seconds) of MWU-opt compared to other optimization libraries and custom applications. Cells with a dash indicate the algorithm took
4+ hours to run or had a memory error, with the exception of vcover with Gurobi on all the kron graphs and hollyw., which had a ConstraintError.

[ bmatch dom-set I veover dense-sub
[ [[ MWU [ CPLEX [ Gurobi | graft || MWU | CPLEX | Gurobi || MWU | CPLEX [ Gurobi |[ MWU | CPLEX | Gurobi | gbbs |

rgg-15 || 0.08 9.15 6.93 0.07 0.38 5.56 3.60 2.38 3.99 7.38 0.16 24.01 12.90 0.04
rgg-16 || 0.09 2123 14.38 0.14 0.34 15.62 10.64 3.37 10.72 6.86 0.22 5457 25.61 0.05
rgg-17 || 024 45.35 31.68 032 0.68 4311 2291 5.65 28.98 15.90 054 141.95 119.43 0.09
rgg-18 || 0.15 11431 76.76 0.71 3.54 561.23 | 49.01 9.85 8243 38.42 0.66 349.34 | 344.72 0.13
rgg-19 || 054 283.79 17081 1.86 2.08 304528 | 111.90 2348 | 114.63 86.94 1.41 1,202.33 | 877.80 0.21
rgg-20 || 043 71666 | 40677 | 444 7.79 - 255.15 4484 | 29240 226.01 2.34 4081.44 | 2017.68 | 032
rgg-21 || 085 218603 | 917.63 11.12 17.25 555.60 87.95 | 659.18 504.65 5.15 - - 0.56
rgg-22 || 281 - - 30.67 46.37 131381 || 183.67 | - - 1321 | - 0.90
rgg-23 || 3.92 80.99 247.68 - 367.86 2240 | - 1.69
rgg-24 || 2100 | - - 22612 || 11502 | - - 856.06 | - 7487 | - 3.18
kron-16 || 3.80 95.61 136.6 0.00 1.38 19.22 2322 453 81.83 1.81 3,169.42 0.11
kron-17_|| 187 200.79 | 33518 | 0.01 1097 | 63381 59.44 5516 | 19490 | - 2.85 8,053.81 0.17
kron-18 || 2.60 46266 | 64227 | 0.01 3.07 214.97 155.06 33.63 | 414.28 1053 | - 0.26
kron-19[[ 4.38 - - 0.01 1024 [ 657.11 379.04 53.06 | 2354.63 12.88 0.43
kron-20_ || 10.36 - 0.02 3251 | 229296 | 10488 8293 | 3,091.02 2430 | - 0.67
kron-21 || 3233 | - - 0.04 58485 | 707273 | 234273 || 21092 | - - 5628 | - - 1.13
usroads || 0.07 20.24 1230 0.04 1.49 1630 885 1.07 1231 522 027 35.25 16.80 0.03
amazon || 071 93.93 12634 | 0.0 2214 | 11510 98.99 213 7238 - 152 750.42 1,040.63 | 0.09
papers || 6.44 3549.09 | 54219 | 033 1014 | 3514 49.15 149.95 | 767.30 | 443.05 3.78 - 394537 | 039
hollyw. || 3913 | - - 0.56 4386 | - - 13050 | - - 2479 - 1.89
orkut_[|29.99 29.12 162.24 33470 201.09 318

For dense-sub, GBBS implements Charikar’s greedy 2-approximation

algorithm for densest subgraph [14], but the relative error is usu-
ally much better in practice (but worse than ¢ = 0.1). Again, we
run MWU-opt with € = 0.1. We observe that GBBS always outper-
forms MWU, achieving a maximum speedup of 63.2x and minimum
speedup of 4x.

Comparison with Previous Work. We compare MWU (Algo-
rithm 2) and an implementation of a gradient descent algorithm
with adaptive error [32], which uses a less theoretically efficient
multiplicative weights update algorithm but is the only other dis-
tributed study of multiplicative weights update methods on graph
problems. Their paper compared their algorithm, called MPCSolver,
against their implementation of Young’s parallel algorithm for feasi-
bility generalized matching, which is a mixed packing and covering
LP, for an (1 + ¢)-relative solution (¢ = 0.05) and found that the
implementation of MPCSolver outperformed Young’s algorithm. We
provide a detailed description of the problem, datasets, and gradient
descent algorithm in Appendix A.1.

We run the same experiment as them with MWU-opt, using the
same datasets as well: the Netflix and KDD datasets [10, 19]. Because
both algorithms solve the same LP with a multiplicative weight up-
date approach, there are only minor differences in vector operations
between the two algorithms. Consequently, for this section, we
compare iteration counts rather than time between the two algo-
rithms. The two proposed algorithms are compared in Figure 3. For
MWU, we consider both the standard step size and the Newton’s
method for step size search. The gradient descent data is manually
extracted from [32] using WebPlotDigiter [37]. The plot shows both
MWU with Newton’s method and gradient descent with adaptive
error find a (1 + €)-relative solution in less than 2000 iterations,
whereas MWU with standard step size converges much more slowly.
Moreover, MWU with Newton’s method incurs 10X and 41X fewer
iterations than gradient descent for Netflix and KDD, respectively.

These results highlight the effectiveness of using a step size strat-
egy, such as Newton’s method, over the standard step size. Fur-
thermore, MWU with Newton’s method converges more rapidly

than gradient descent with an adaptive error. However, since both
methods use heuristics to accelerate the method, testing additional
positive LPs and datasets would be needed for a comprehensive un-
derstanding of the trade-offs between MWU and gradient descent.
The heuristic that MPCSolver uses prematurely stops the algorithm
once it detects that the per-iteration decrease in constraint violation
falls below a threshold.

Netflix (€ =0.05) KDD (g = 0.05)

—— MPCSolver
-==- MWU (Newton's)
MWU (Standard)

T
400
Iteration

Max violation

.
/

0.05 A

X R

T T
500 1000

Iteration

T T
200 600

oA

Fig. 3. Max violation, defined as max{0, max(Px) — 1,1 — min(Cx)} for
MPCSolver, which is a gradient descent algorithm with adaptive error [32],
and MWU (Algorithm 2) with standard step size and Newton’s method.

7.2 Parallel Scalability of MWU

We now analyze the strong scaling behavior of MWU-PETSc and
MWU-opt. Figure 4 displays the speedup with respect to single-
threaded execution of the MWU-opt implementation.

When executing on a single node, all LP problem types are run
along a range of thread counts from single threaded to 68 threads,
which is the maximum number of hardware threads on one ma-
chine. Here, MWU-opt is able to achieve speedup over 16x with
68 threads in 90% of experiments and over 32x in 50% of experi-
ments. Overall, the MWU-opt implementation achieves speedups of
13-55x on 68 threads compared to its single threaded run times. The
largest differences between MWU-opt and MWU-PETSc are observed
on graph applications where we use specialized matrices such as
veover, bmatch, and dense-sub problems. High parallel efficiency in
MWU-opt is achieved due to load balancing and high locality in
matrix-vector multiplications of transposed specialized matrices and
vector operations. On the other hand, we see that the MWU-opt can
only achieve 2-3x speedup compared to MWU-PETSc for dominating

, Vol. 1, No. 1, Article . Publication date: February 2024.



10 « Juet. al

set LP (dom-set) application. Note that, for dom-set, MWU-opt can
only make use of format selection and memory access minimization
optimizations for SpMV operations.

For multi-node results, we execute MWU-opt and MWU-PETSc
with 64 MPI processes per node and 1 thread per process (this was
the most performant configuration for MWU-PETSc on a single
machine). We only run experiments where the total number of
processes is square, as that is a requirement for our implicit repre-
sentation. We run all algorithms with Newton’s optimization for
step size search and limit Newton’s methods to 5000 iterations. On
distributed memory, except for vertex cover on rgg-24, MWU-opt
runs faster than MWU-PETSc at scale. For the distributed problem,
we also observe almost linear scaling for all graphs except rgg-24
in MWU-opt. A matrix-vector product on the incidence matrix of
banded matrices, like rgg-24, reduces communication on a 1D data
distribution pattern, so a 1D parallelization (e.g., row-wise distribu-
tion of the matrix) is more efficient than a 2D distribution, which is
the layout we use.

For MWU-PETSc, we observe good scaling on dom-set, which
we expect as the LP for this problem does not use implicit rep-
resentation and is a 1D problem. We observe poor scaling in all
other problems on all graphs except rgg-24. For rgg-24, MWU-PETSc
achieves good performance due to its internal representation [9],
which, we believe communicates only the vector entries needed
by each processor based on the sparsity pattern of rows assigned
to it. However, MWU-PETSc performs extremely poorly on dense-
sub when we use multiple processors and does not complete in
under 2 hours. In conclusion, for general graphs, the implicit 2D
representation scales well compared to a explicit 1D representation.

7.3 Improvements from Step Size Strategy

We first evaluate the effectiveness of step size search (Section 4).
We run MWU-PETSc using 64 MPI proccesses, each with 1 thread
and list the results for rgg-18 in Table 3. We choose this graph since
we have exact solutions for all five graph problems, and the run
time with standard step size is not too large. The speedups for other
graphs are within an order of magnitude of the ones listed here.

Table 3. Convergence of MWU to find (1 + €)-relative (€ = 0.1) solution on
rgg-18 with standard step strategy (Std), binary search (Bin), and Newton’s
method (Nwt). For the latter two step strategies, we use the previous step
size as the initial step size.

Avg # step

# MWU iters .o Time (sec)
size iters
Std [ Bin [ Nwt [ Bin [ Nwt | Std | Bin | Nwt
match 25477 | 13 13 8.31 | 4.86 79.3 | 0.87 | 0.94
bmatch 28210 | 15 13 8.00 | 5.07 261 1.08 | 1.05
dom-set 18837 | 96 166 5.78 | 2.58 413 | 1.30 | 1.58
veover 30531 | 76 110 593 | 2.68 106 1.99 | 2.19
dense-sub 20021 | 21 18 8.00 | 4.79 170 0.60 | 0.47

The results verify that a step size search strategy significantly
reduces the number of MWU iterations compared to the standard
step size prescribed in theoretical algorithms. Since an MWU itera-
tion tends to be more expensive than a search step iteration (due
to the SpMV), these results suggest that finding accurate step sizes,
at the expense of a higher search cost, reduces the overall run time.
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The performance difference between binary search or Newton’s
method is relatively small. While Newton’s method on average re-
quires fewer step size search iterations than binary search, it has
more MWU iterations than binary search for the two pure cover-
ing problems, dom-set and vcover. The additional MWU iterations
observed when using Newton’s method may be attributed to the
(1 — €) multiplicative decrease (where € = 0.1) applied to step sizes
violating the bang-for-buck inequality (16).

7.4 Effect of Software Optimizations

We now analyze the acceleration of an MWU iteration with our soft-
ware optimizations. To do so, we will compare the execution times
of MWU-PETSc and MWU-opt implementations with 68 threads.
Later, we will also compare the execution times of MWU-PETSc and
MWU-opt implementations for problems with implicit matrix vector
multiplication.

7.4.1  Performance Breakdown. First, we consider where the cycles
are spent in our MWU-PETSc implementation. Figure 5a shows
the fraction of time spent in matrix-vector products (matvec), step
size search (search), and other vector operations (vec). The gradients
(Line 5, 6) and new direction (Line 7) are included in the vec category
while all other vector operations done during step size search are
included in the search category.

We observe that both applications and input graphs affect the
distribution of execution cycles among these three components. For
example, while match, bmatch and dom-set problems spend most
of their time during matvec, vcover and dense-sub problems spend
more than 50% of their execution time for vec and search operations.
matvec takes on average 75%, 78%, and 82% of the execution time
for match, bmatch, and dom-set problems, respectively. In contrast,
for vcover and dense-sub, matvec takes only 45% and 38% of the
execution time on average. Due to this variable behavior, it is crucial
to optimize both matrix-vector multiplications and vector operations
for MWU.

7.4.2  Shared-Memory Performance Optimizations. Figure 5c shows
the speedup obtained by our optimized implementation relative
to the PETSc-based implementation when executing on a single
node. In this section, we report geometric mean speedups when
referring to average speedup across graphs. For dom-set, the speedup
is obtained from using a favorable format (CSB) and minimizing
memory accesses. Our optimizations accelerate matvec operations
by 1.8x on average. Although vec and search operations also get
speedups, their contribution to overall performance is smaller. On
the other hand, for match, bmatch, and vcover problems, we can
observe the benefit of specialized vertex-incidence matrix vector
multiplications. In these cases, matvec operations are 3.28x, 5.06x,
and 3.49x faster on average, respectively. For dense-sub problem,
we also see benefits of vertex-edge pair matrix and interweaved-
identity matrix specializations. matvec operations are 4.64x faster
on average.

Moreover, vcover and dense-sub problems spend a large amount of
time for vec and search operations. We see that, in these cases, MWU-
opt implementation can obtain significant speedups for both vec
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Fig. 4. Scalability of MWU-opt and MWU-PETSc (see subfigure (j) for the legend). Axes are in log, scale. All values are normalized to single-threaded execution
of MWU-opt. We omit the results for MWU-PETSc, if the execution time is slower than single-threaded execution of MWU-opt.

(6.85x%, and 4.08x on average, respectively) and search (8.92x and 5.79x
on average, respectively) thanks to fusing and SIMD optimizations.

7.4.3  Distributed-Memory Optimizations. We record run time im-
provements in the context of multi-node exeuction MWU-opt over
MWTU-PETSc in Table 4. In parenthesis is the ratio of matvec product
time to matvec communication time for MWU-opt. All experiments
are run with 64 OMP threads per MPI process. We observe that for 4
nodes, the use of implicit matrix-vector products accelerates matvec
operations in MWU-opt by 1.4-3x compared to MWU-PETSc for all
graphs except rgg-24, for which it is slower by 9x. As previously
discussed in Section 7.2, MWU-PETSc uses a 1D communication
layout, which is more efficient on banded matrices like rgg-24 than
our 2D communication layout.

Table 4. Speed-up in run time of our implicit implementation of the product
of the edge-incidence matrix and a vector. The ratio of computation to
communication time in MWU-opt is parenthesized.

H [ hollyw orkut rgg-24
Znodes | 14(057)  3(L.1)  0.11(0.09  3(0.83)

16 nodes | 120 (0.39) 46 (0.19)  0.04 (0.02) 97 (0.18)
64nodes | 186(0.3) 259 (0.12)  0.09 (0.01) 516 (0.19)

kron-21 H

8 CONCLUSION

Our work demonstrates that approximate positive LP solvers are an
efficient and scalable approach for solving a wide range of graph
problems. We show that with carefully chosen modifications and
implementation of the MWU algorithm from Mahoney et. al. [31]
- namely, a step size search strategy and specialized linear algebra
operations that leverage shared and distributed-memory resources
- the algorithm exceeds the performance of general purpose LP
solvers for finding a (1 + €)-relative solution. Our implementation

also matches the performance of hand-tuned parallel graph libraries
for some graphs.
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A SUPPLEMENTARY MATERIAL

A.1  Further Details on Generalized Matching Experiments
Let G = (V, E) be an undirected, unweighted graph. For generalized
matching, a vertex v can be matched b(v) times, where 1b(v) <

b(v) < ub(v) are lower and upper bounds on the number of unique
vertices matching with v. More precisely, the IP formulation is

dxst Ib(v) < Z Xe < ub(v),Yv €V,
e€inc(v) (18)
xe € {0,1},Ve € E.

Maximum matching is equivalent to generalized matching with
Ib(v) = 0 and ub(v) = 1,VYov € V, as well as a (maximization) ob-
jective function of )} xe. The LP relaxation is the feasibility mixed

e
packing and covering LP,
IxeR"st Mx > Mx <u x>0,

where M is the vertex-edge incidence matrix, and I, u € R” are the
vector of lower and upper bounds for each vertex.

A.2  Dataset Preprocessing

Now, let us describe how to pre-process the Netflix [10] and KDD [19]
datasets, as detailed in [32]. Both datasets contain users and items
(e.g., movies in Netflix, music tracks in KDD) as vertices, and edges
correspond to a user rating an item. This dataset is represented as a
bipartite graph, where users and items form the two partitions, and
edges go only between vertices in separate partitions. For the num-
ber of matchings with each user, we enforce a lower bound of three
and upper bound of five. For items, no lower bound is set, but an

, Vol. 1, No. 1, Article . Publication date: February 2024.

upper bound of 200 and 2000 is chosen for Netflix and KDD, respec-
tively. Finally, to ensure there is a feasible matching satisfying these
bounds, we exclude users with less than ten ratings from the Netflix
dataset. After this pre-processing step, the two datasets have 473k
and 1.6m vertices, as well as 100m and 252m edges, respectively.

A.3  Gradient Descent with Adaptive Error

Finally, we review the gradient descent algorithm with an adaptive
error of [32]. In short, the algorithm minimizes the convex function
via gradient descent,

mp mc
T(x) = > yix) + ) zi(x),
i=1 i=1
where for some y > 0,
yi(x) =exp [p- (Pix = 1)]
zi(x) = exp [p- (1-Cix)].
The algorithm contains two error values. There is the error bound
€, where the algorithm seeks to find an x that is a (1 + €)-relative
solution. Then there is the internal error bound €’, which is used
to specify p as well as which coordinates of x; to update, and by
how much. The authors of [32] found that they can set ¢ > e. For
example, when € = 0.05, they can choose ¢/ = 1. Then they run
the algorithm until it stagnates, and if x is not an (1 + €)-relative

solution, they decrement ¢’ and warm-start the algorithm by setting

the initial x( to the solution of the previous, stagnated algorithm.
This strategy is called adaptive error, since it adaptively updates the

internal error bound.
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