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Abstract

In this paper, we prove that Distributional Reinforcement Learning (DistRL), which learns the return
distribution, can obtain second-order bounds in both online and offline RL in general settings with
function approximation. Second-order bounds are instance-dependent bounds that scale with the variance
of return, which we prove are tighter than the previously known small-loss bounds of distributional
RL. To the best of our knowledge, our results are the first second-order bounds for low-rank MDPs
and for offline RL. When specializing to contextual bandits (one-step RL problem), we show that a
distributional learning based optimism algorithm achieves a second-order worst-case regret bound, and
a second-order gap dependent bound, simultaneously. We also empirically demonstrate the benefit of
DistRL in contextual bandits on real-world datasets. We highlight that our analysis with DistRL is
relatively simple, follows the general framework of optimism in the face of uncertainty and does not
require weighted regression. Our results suggest that DistRL is a promising framework for obtaining
second-order bounds in general RL settings, thus further reinforcing the benefits of DistRL.

1 Introduction

The aim of reinforcement learning (RL) is to learn a policy that minimizes the expected cumulative cost
along its trajectory. Typically, squared loss is used in standard RL algorithms [Mnih et al., 2015, Haarnoja
et al., 2018] for learning the value function, the expected cost-to-go from a given state. As an alternative to
squared loss, Bellemare et al. [2017] proposed to learn the whole conditional distribution of cost-to-go with
distributional loss functions such as the negative log-likelihood or the pinball loss [Dabney et al., 2018a]. This
paradigm is aptly called Distributional RL (DistRL) and has since been empirically validated in numerous
real-world tasks [Bellemare et al., 2020, Bodnar et al., 2020, Fawzi et al., 2022, Dabney et al., 2018b], as well
as in benchmarks for both online [Yang et al., 2019] and offline RL [Ma et al., 2021]. However, there is a
lack of understanding for why DistRL often attains stronger performance and sample efficiency [Lyle et al.,
2019].

This raises a natural theoretical question: when and why is DistRL better than standard RL? Wang et al.
[2023b] recently proved that DistRL based on maximum likelihood estimation (MLE) results in small-loss

bounds, which are instance-dependent bounds that scale with the minimum possible expected cumulative
cost V

? for the task at hand. If the optimal policy makes few blunders on average, i.e., V
?
⇡ 0, then

small-loss bounds converge at the fast O(1/N) rate, while standard RL bounds converge at a O(1/
p
N) rate

which is worst-case in nature.

In this paper, we refine the analyses of Wang et al. [2023b] and prove that DistRL actually attains tighter
∗Correspondence to https://kaiwenw.github.io/.
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second-order bounds in both online and offline settings. Instead of scaling with V
? as in small-loss bounds,

our second-order bounds scale with the variance of the policy’s cumulative cost. In offline RL, it is the
optimal policy’s variance, whilst in online RL, it is the variance of policies played by the algorithm. In
both cases, our second-order result is strictly tighter than the previously known small-loss bounds (a.k.a.
first-order bounds), i.e., second-order implies first-order bounds. In particular, our second-order bounds
yield fast O(1/N) rates in near-deterministic tasks where V

? may still be far from zero. Our theory applies
at the same generality as Wang et al. [2023b]. Moreover, in contextual bandits (one-step RL), we prove a
novel first and second-order gap-dependent bound that incorporates V ? and variance into the gap definition.
Finally, in contextual bandits, we empirically show that our distributionally optimistic algorithm is efficiently
implementable with neural networks via width computation [Feng et al., 2021] and outperforms the same
optimistic algorithm with squared loss [Foster et al., 2018].

Our contributions are summarized as follows:

1. For online RL, we show that DistRL enjoys second-order bounds in MDPs with low `1-distributional
eluder dimension [Wang et al., 2023b]. These are the first second-order bounds in MDPs with function
approximation, e.g., low-rank MDPs (Section 5).

2. For offline RL, we show that DistRL enjoys second-order bounds with single-policy coverage, the first
of such bounds to our knowledge (Section 6).

3. For contextual bandits, our online algorithm further achieves a novel first/second-order gap-dependent
bound (Section 4.2). Finally, we empirically evaluate our distributional contextual bandit algorithm
and show it outperforms the squared loss baseline (Section 7).

2 Related Works

Theory of DistRL. Rowland et al. [2018, 2023a] showed that DistRL algorithms such as C51 and QR-
DQN converges asymptotically with a tabular representation. This unfortunately does not imply finite-
sample statistical improvements over standard RL, which is our focus. Recently, Rowland et al. [2023b]
showed that quantile temporal-difference (QTD) learning may have smaller bounded variance in each update
step than temporal-difference (TD) learning, which may have unbounded variance. While this finding may
explain improved training stability, it does not affirmatively imply that QTD obtains better finite-sample
regret, which is our focus. For off-policy evaluation (OPE), Wu et al. [2023] showed that fitted likelihood
estimation can learn the true return distribution up to errors in total variation and Wasserstein distance.
We focus on online and offline RL rather than OPE.

Small-loss Bounds from DistRL. The closest work to ours is Wang et al. [2023b] which showed that
MLE-based DistRL can achieve small-loss bounds in online RL and offline RL under distributional Bellman
completeness, building on the earlier contextual bandit results of Foster and Krishnamurthy [2021]. While
Wang et al. [2023b] gave the first small-loss bounds in low-rank MDPs and in offline RL, we prove that
their DistRL algorithms can actually achieve tighter, second-order bounds under identical assumptions.
Our bounds are strictly more general than small-loss (a.k.a. first-order) bounds as shown by the following
theorem.

Theorem 2.1 (Informal). In online and offline RL, a second-order bound implies a first-order bound (with

a worse universal constant). This is formalized in Theorem D.2.

Other second-order bounds. Variance-dependent (a.k.a. second-order bounds) are known in tabular
MDPs [Zanette and Brunskill, 2019, Zhou et al., 2023, Zhang et al., 2023, Talebi and Maillard, 2018], linear
mixture MDPs [Zhao et al., 2023], and linear contextual bandits [Ito et al., 2020, Olkhovskaya et al., 2023].
Many prior works use variance weighted regression but their analysis does not easily extend beyond linear
function approximation. Surprisingly, we show that by simply learning the return distribution with MLE,
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one can obtain general variance-dependent bounds, by leveraging the tool of triangular discrimination that
was first leveraged in Foster and Krishnamurthy [2021]. In other words, DistRL is an attractive alternative
to variance weighted regression for obtaining sharp second-order bounds in RL.

3 Preliminaries

Contextual Bandits (CB). We first consider CBs with context space X , finite action space A of size A

and normalized conditional costs C : X ⇥A! �([0, 1]), where �([0, 1]) is the set of all distributions on [0, 1]
that are absolutely continuous with respect to some dominating measure �, e.g., Lebesgue for continuous
or counting for discrete. We identify such a distribution via its density with respect to �, hence we write
(C(x, a))(y) or C(y | x, a) for the density of C(x, a) at y. The CB proceeds over K episodes as follows: at
episode k 2 [K] = {1, . . . ,K}, the learner observes a context xk 2 X , takes an action ak ⇠ A, and receives
a cost ck ⇠ C(xk, ak). We do not require that contexts are sampled from a fixed distribution; they may be
arbitrarily chosen by an adaptive adversary. The goal is to minimize the regret, defined as

RegCB(K) :=
KX

k=1

C̄(xk, ak)�min
a2A

C̄(xk, a),

where the bar denotes the mean of the distribution, i.e., f̄ =
R
yf(y)d�(y) for any f 2 �([0, 1]). We’ll also

use Var(f) =
R
(y � f̄)2f(y)d�(y) to denote the variance.

Reinforcement Learning (RL). We now consider a Markov Decision Process (MDP) with observation
space X , finite action space A of size A, horizon H, transition kernels Ph : X ⇥A! �(X ), and normalized
cost distributions Ch : X ⇥A! �([0, 1]) at each step h 2 [H]. Given a policy ⇡ : X ! �(A) and an initial
state x1 ⇠ X , the “roll in” process occurs as follows: for each step h = 1, 2, . . . , H, the policy ⇡ samples
an action ah based on the current state xh, incurs a cost ch from the cost distribution, and transitions to
the next state xh+1. The return is the cumulative cost from this random process Z

⇡(x1) :=
P

H

h=1 ch. The
value is the expected return V

⇡(x1) := E[Z⇡(x1)]. We use subscript h to denote cost-to-go from a particular
step: Z⇡

h
(xh) =

P
H

t=h
ct and V

⇡

h
(xh) = E[Z⇡

h
(xh)]. We use Z

?
, V

? to denote these quantities for the optimal,
min-cost policy ⇡

?. We use Z
⇡

h
(xh, ah) to denote the random cost-to-go conditioned on rolling in ⇡ from

xh, ah, and so Q
⇡

h
(xh, ah) := E[Z⇡

h
(xh, ah)]. Without loss of generality, we assume cumulative costs

P
H

h=1 ch

are normalized in [0, 1] almost surely, to avoid artificial scaling in H [Jiang and Agarwal, 2018].

The Online RL problem proceeds over K episodes: at episode k 2 [K], the learner executes a policy
⇡
k : X ! �(A) from an initial state x1,k. We do not require that x1,k are sampled from a fixed distribution;

they may be chosen by an adaptive adversary. The goal is to minimize regret,

RegRL(K) :=
KX

k=1

V
⇡
k

(x1,k)� V
?(x1,k).

In Offline RL, the learner is directly given i.i.d. samples of transitions drawn from unknown distributions
⌫1, . . . , ⌫H , and the goal is to learn a policy with a lower cost than any other policy whose behavior is
covered by the dataset, similar to prior best-effort guarantees in offline RL [Liu et al., 2020, Xie et al., 2021].
Concretely, the learner receives a dataset D = (D1,D2, . . . ,DH), where each Dh contains N i.i.d. samples
(xh,i, ah,i, ch,i, x

0
h,i

) such that (xh,i, ah,i) ⇠ ⌫h, ch,i ⇠ Ch(xh,i, ah,i), x0
h,i
⇠ Ph(xh,i, ah,i). Unlike the online

setting where initial states can be adversarial, we assume for offline RL that initial states are sampled from
a fixed and known distribution d1.

Distributional RL. The Bellman operator acts on a function f : X ⇥A! [0, 1] as follows: T
⇡

h
f(x, a) =

C̄h(x, a) + Ex0⇠Ph(x,a),a0⇠⇡(x0)[f(x
0
, a

0)]. Analogously, the distributional Bellman operator [Bellemare et al.,
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Algorithm 1 DistUCB (O-DISCO at H = 1)
1: Input: no. episodes K, distribution class F

2: Init D0  ; and F0  F .
3: for episode k = 1, 2, . . . ,K do

4: Observe context xk.
5: Play ak = argmin

a2A minf2Fk�1 f̄(xk, a).
6: Observe cost ck ⇠ C(xk, ak).
7: Dk  Dk�1 [ {(xk, ak, ck)}, Fk  ConfSetCB(Dk).
8: end for

2017] acts on a conditional distribution d : X ⇥A! �([0, 1]) as follows: T
⇡,D

h
d(x, a)

D
= Ch(x, a) ⇤ d(x0

, a
0),

where x
0
⇠ Ph(x, a), a0 ⇠ ⇡(x0) and ⇤ denotes convolution. Another sampling view of the distributional

Bellman operator is that z ⇠ T
⇡,D

h
d(x, a) is equivalent to: c ⇠ Ch(x, a), x0

⇠ Ph(x, a), a0 ⇠ ⇡(x0), y ⇠ d(x0
, a

0)

and z := c + y. Also recall the optimality operator T
?

h
and its distributional variant T

?,D

h
are defined as

follows: T
?

h
f(x, a) = C̄h(x, a) + Ex0⇠Ph(x,a)[mina2A f(x0

, a
0)] and T

?,D

h
d(x, a)

D
= Ch(x, a) + d(x0

, a
0) where

x
0
⇠ Ph(x, a), a0 = argmin

a
d̄(x0

, a).

Triangular Discrimination. For any distributions f, g 2 L
2(�), their triangular discrimination [Topsoe,

2000] is defined as D4(f k g) :=
R (f(y)�g(y))2

f(y)+g(y) d�(y), which is equivalent to the squared Hellinger distance
up to universal constants. Please see Table 2 for an index of notations.

4 Warmup: Second-Order Bounds for CBs

As a warmup, we consider contextual bandits and prove that distributional UCB (DistUCB) attains second-
order regret. The distributional confidence set is the main construct that is optimized over to ensure op-
timism. To construct it, we need a dataset of state, action, costs, D = {xi, ai, ci}i2[N ], a threshold � to
be specified later, as well as a function class F ⇢ X ⇥ A ! �([0, 1]) containing the true conditional cost
distribution C(· | x, a). Then, the confidence set is

ConfSetCB(D) =
n
f 2 F : LCB(f,D) � max

g2F
LCB(g,D)� �

o
,

where LCB(f,D) :=
P

N

i=1 log f(ci | xi, ai) is the log-likelihood of f on D. In words, ConfSetCB(F , D) contains
all functions f 2 F that are �-near-optimal according to the log-likelihood. Then, DistUCB simply selects
the action with the minimum lower confidence bound (LCB) induced by the current confidence set.

Theorem 4.1. Suppose C 2 F (realizability). For any � 2 (0, 1), w.p. at least 1 � �, running DistUCB

with � = log(K|F|/�) enjoys the regret bound,

RegretCB(K)  eO
⇣
vuut

dCB� ·

KX

k=1

Var(C(xk, ak)) + dCB�
⌘
,

where dCB is the `1-eluder dimension [Liu et al., 2022] of {(x, a) 7! D4(f(x, a) k C(x, a)) : f 2 F} at thresh-

old K
�1

. This is a special case of the distributional eluder dimension (Definition 5.2) where D = {�z : z 2
X ⇥A}.

The dominant term scales with
qP

K

k=1 Var(C(xk, ak)) which is sharper than the
p
K bound of RegCB

[Foster et al., 2018], the squared loss variant of DistUCB. For example, in deterministic settings, our
variance-dependent regret scales as eO(dCB), which is tight in K up to log factors. Nonetheless, confidence-
set based strategies like DistUCB and RegCB are not minimax-optimal as the eluder dimension may scale
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linearly in F [Foster et al., 2018, Proposition 1]. It would be interesting to derive second-order regret with
inverse-gap weighting [Foster and Rakhlin, 2020].

Practical considerations. We note that DistUCB is amenable to practical implementation since con-
ditional on xk and a, the LCB can be computed efficiently via binary search [Foster and Rakhlin, 2020] or
disagreement computation [Feng et al., 2021]. We include implementation pseudo-code and empirical results
in Section 7 and the Appendix.

4.1 Proof of Theorem 4.1

Our first step is to bound the difference of means by variances multiplied by the triangular discrimination.

Lemma 4.2. For f, g 2 L
2(�) s.t. D4(f k g)  1

2 ,

��f̄ � ḡ
��  2

q
(Var(f) + Var(g))D4(f k g). (1)

This lemma tightens Eq.(�1) of Wang et al. [2023b] so that variances of f and g appear in the RHS instead
of the means. Note that Eq.(�1) of Wang et al. [2023b] holds unconditionally, while our lemma requires
D4(f k g)  1

2 which is absorbed in the lower order term of the next lemma. This lower order term is a key
reason we need the bounded eluder dimension assumption.

Lemma 4.3. For any f, g 2 L
2(�), we have

��f̄ � ḡ
��  4

q
Var(f)D4(f k g) + 5D4(f k g). (2)

We now bound the regret in a standard way with optimism, i.e., w.h.p. f̄k(xk, ak)  mina C̄(xk, a), which
is ensured by optimizing the confidence set. Let �k(x, a) := D4(fk(x, a) k C(x, a)). Then,

KX

k=1

C̄(xk, ak)�min
a

C̄(xk, a)



KX

k=1

C̄(xk, ak)� f̄k(xk, ak) (optimism)



KX

k=1

4
p

Var(C(xk, ak))�k(xk, ak) + 5�k(xk, ak) (Eq. (2))

4

vuut
KX

k=1

Var(C(xk, ak))�+ 5�, (Cauchy-Schwarz)

where � =
P

K

k=1 �k(xk, ak). Finally, using MLE generalization bound and the fact that fk 2 Fk�1, with
probability at least 1��, we have for all k 2 [K]:

P
k�1
i=1 �k(xi, ai)  log(|F|K/�) [Wang et al., 2023b, Lemma

E.3]. Thus, applying pigeon-hole argument of eluder dimension gives �  4dCB(1/K) log(|F|K/�) log(K)
[Liu et al., 2022, Proposition 21]. This concludes the proof.

4.2 First and Second-Order Gap-Dependent Bounds

While it is known that UCB attains gap-dependent bounds, here we prove first and second-order gap-

dependent bounds which are novel to the best of our knowledge. Recall that the gap at context x and action
a is defined as Gap(x, a) := C̄(x, a)�mina?2A C̄(x, a?). We define our novel first and second-order min-gaps
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as follows:

C
? Gap = min

x2X
min

a2A:Gap(x,a)>0
^mina? C̄(x,a?)>0

Gap(x, a)

mina? C̄(x, a?)
,

VarGap = min
x2X

min
a2A:Gap(x,a)>0
^Var(C(x,a))>0

Gap(x, a)p
Var(C(x, a))

.

The inner min is taken to be 1 if the condition is empty.

Theorem 4.4. Assume the premise of Theorem 4.1. If max(VarGap, C? Gap) � 1p
K

, then

RegretCB(K)  eO
�
dCB� + dCB�min

�
VarGap�1

, C
? Gap�1

 �
.

As usual, we have a Gap�1-type bound that implies O(dCB logK) regret when the gap is large. Our key
innovation lies in the definition of C? Gap and VarGap, which are inversely weighted by the optimal mean
cost or variance of each context. Our weighted min-gaps are always larger than the standard min-gap (since
C̄(x, a),Var(C(x, a))  1) but they can be much larger in small-loss or near-deterministic regimes. We note
that DistUCB’s regret is simultaneously bounded by both Theorem 4.4 and Theorem 4.1 under the same
hyperparameters.

5 Second-Order Bounds for Online DistRL

In this section, we show that the optimistic DistRL algorithm of Wang et al. [2023b] actually enjoys second-
order regret and PAC guarantees, which are strictly tighter than the previously known first-order bounds.
We first recall the MLE-confidence set for DistRL which generalizes ConfSetCB from the warmup. Let F be
a set of conditional distributions, i.e., (f1, . . . , fH) 2 F where fh : X ⇥A ! �([0, 1]), which are candidate
functions to fit Z

? or Z
⇡ (depending on the type of Bellman operator used) with MLE. Given a dataset

of state, action, cost, next state tuples, D = {xh,i, ah,i, ch,i, x
0
h,i

}h2[H],i2[N ], and a distributional Bellman
operator T

D, the MLE-confidence set is defined as

ConfSetRL(D; T D) =

⇢
f 2 F : 8h 2 [H],

LRL(f,D) � max
g2Fh

LRL(g,D)� �

�
,

where LRL(f,D) :=
P

N

i=1 log fh(z
f

h,i
| xh,i, ah,i) and z

f

h,i
⇠ T

D

h
fh+1(xh,i, ah,i). In words, ConfSetRL(D; T D)

contains all functions f 2 F such that for all h 2 [H], f is �-near-optimal w.r.t. the MLE loss for solving
fh ⇡ T

D

h
fh+1. Since this construction happens in a TD fashion, a standard condition called distributional

Bellman Completeness (BC) is needed to guarantee that MLE succeeds for all h 2 [H] [Wu et al., 2023,
Wang et al., 2023b].

Assumption 5.1 (Bellman Completeness). For all ⇡, h 2 [H], fh+1 2 Fh+1 =) T
⇡,D

h
fh+1 2 Fh.

BC is a standard assumption in model-free online and offline RL; without it, TD and fitted-Q can diverge
or converge to bad fixed points [Tsitsiklis and Van Roy, 1996, Munos and Szepesvári, 2008, Kolter, 2011].
As discussed in [Jin et al., 2021a, Wang et al., 2023b], the BC condition can be relaxed to “generalized
completeness”, i.e., there exist function classes Gh such that fh+1 2 Fh+1 =) T

⇡,D

h
fh+1 2 Gh.

Then, the O-DISCO algorithm of Wang et al. [2023b] proceeds by selecting the optimistic f
(k) in the

confidence set Fk at each round and playing the greedy policy ⇡
k w.r.t. f , where the “playing” can be done

with uniform action exploration (UAE). If UAE=True, then for each h, ⇡k is rolled in for h timesteps and

6



Algorithm 2 O-DISCO [Wang et al., 2023b]
1: Input: no. episodes K, distribution class F , UAE flag.
2: Init Dh,0  ; for all h 2 [H] and F0  F .
3: for episode k = 1, 2, . . . ,K do

4: Observe init state x1,k.
5: Set f

(k)
 argmin

f2Fk�1
mina f̄1(x1,k, a).

6: For each h, set ⇡
k

h
(x) = argmin

a
f̄
(k)
h

(x, a).
7: if not UAE then

8: Run ⇡
k from x1,k and get trajectory x1,k, a1,k, c1,k, .., xH,k, aH,k, cH,k. Then, 8h, Dh,k = Dh,k�1[

{(xh,k, ah,k, ch,k, xh+1,k)}.
9: else

10: For each h 2 [H], roll in ⇡
k from x1,k for h steps and take a random action, i.e., xh,k ⇠ d

⇡
k

h
,

ah,k ⇠ Unif(A), ch,k ⇠ Ch(xh,k, ah,k), x
0
h,k
⇠ Ph(xh,k, ah,k). Then, Dh,k = Dh,k�1 [n

(xh,k, ah,k, ch,k, x
0
h,k

)
o

.
11: end if

12: Update Fk  ConfSetRL((Dh,k)h2[H]; T
?,D).

13: end for

14: Output: ⇡̄ = unif(⇡1:K).

takes a uniform action before the transition tuple is added to the dataset. Note that this requires H rollouts
per round but is necessary to capture general MDPs such as low-rank MDPs [Agarwal et al., 2020].

Finally, we adopt the `1-distributional eluder dimension (dim`1DE) defined as follows [Wang et al., 2023b].

Definition 5.2 (`p-distributional eluder dimension). Let S be any set,  be a set of functions of type
S ! R, and D is a set of distributions over S. For any "0 2 R+, the `p-distributional eluder dimension
(dim`p,DE( ,D, "0)) is the length L of the longest sequence d

(1)
, .., d

(L)
⇢ D s.t. 9" � "0, 8t 2 [L], 9f 2  

where |Ed(t)f | > " and also
P

t�1
i=1|Ed(i)f |

p
 "

p.

We work with the same eluder dimensions for RL as in Wang et al. [2023b] which employs the following:

 h = {(x, a) 7! D4(fh(x, a) k T
?,D

h
fh+1(x, a)) : f 2 F},

Dh = {(x, a) 7! d
⇡

h
(x, a) : ⇡ 2 ⇧}.

Then, the Q-type RL dimension is

dRL(") := max
h

dim`1DE( h,Dh, ").

The V-type dimension dRL,V is analogous with V,h =
n
x 7! Ea⇠Unif(A)[D4(fh(x, a) k T

?,D

h
fh+1(x, a))] : f 2 F

o
.

As with dCB (from the CB warmup), the threshold " is taken as 1/K if none is provided. We are now ready
to state our online RL result.

Theorem 5.3 (Second-order bounds for Online RL). Under Assumption 5.1, for any � 2 (0, 1), w.p. at

least 1� �, running O-DISCO with � = log(HK|F|/�) enjoys,

RegRL(K)  eO

0

@H

vuut
KX

k=1

Var(Z⇡k (x1,k)) · dRL� +H
2.5

dRL�

1

A.

If UAE=True, then the learned mixture policy ⇡̄ enjoys the PAC bound: w.p. at least 1� �, K(V ⇡̄
� V

?)
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is at most,

eO
 
H

vuut
A

KX

k=1

Var(Z⇡k (x1,k))dRL,V� +AH
2.5

dRL,V�

!
.

Compared to prior worst-case bounds for GOLF [Jin et al., 2021a] and small-loss bounds for O-DISCO

[Wang et al., 2023b], our new bound has one key improvement: the leading
p
K terms are replaced by the

square root of the sum of return variances
P

k
Var(Z⇡

k

(x1,k)). The function class complexity measure log |F|

can be generalized to bracketing entropy as in Wang et al. [2023b]. As Theorem 2.1 shows, our second-order
bounds are more general than the first-order bounds of Wang et al. [2023b]. For example, in deterministic
MDPs where variance is zero, our second-order bound converges at a fast eO(1/K) rate which is tight up to
logK factors [Wen and Van Roy, 2017]. In contrast, V ? may be non-zero in which case the first-order bound
converges at a slow e⌦(1/

p
K) rate.

It may be surprising that DistRL actually helps for near-deterministic systems. This is because the agent
does not a priori know that the system is deterministic but a DistRL agent can quickly learn and adapt to
this fact, while standard squared loss agents learn to adapt at a slower rate. We highlight that our second-
order bound comes easily from D4 generalization bounds of MLE; we do not need any variance weighted
regression which almost all prior works to obtain second-order bounds and is hard to extend beyond linear
function approximation.

Compared to variance weighted regression, one drawback of our DistRL approach (and other TD-style
DistRL algorithms [Wu et al., 2023]) is the requirement of a stronger, distributional completeness assumption
(Assumption 5.1), as well as a higher statistical complexity of F (it is a class of conditional distributions
rather than functions). Nevertheless, the empirical success of DistRL suggest these stronger conditions are
likely satisfied in practice and the faster second-order rates may indeed offset the increased function class
complexity.

5.1 On low-rank MDPs.

Low-rank MDPs [Agarwal et al., 2020] are the standard model for non-linear representation learning in RL
[Uehara et al., 2021, Zhang et al., 2022, Ren et al., 2023, Chang et al., 2022], and are defined as follow.

Definition 5.4 (Low-Rank MDP). An MDP is has rank d if each step’s transition has a low-rank de-
composition P (x0

| x, a) = �
?

h
(x, a)>µ?

h
(x0) where �

?

h
(x, a), µ?

h
(x0) 2 Rd are unknown features that satisfy

sup
x,a
k�

?

h
(x, a)k2  1 and k

R
gdµ?

h
(s0)k  kgk1

p
d for all g : X ! R.

Our Theorem 5.3 (with UAE) applies to low-rank MDPs the same way as Wang et al. [2023b, Theorem 5.5].
In particular, Wang et al. [2023b] showed three important facts for rank-d MDPs: (i) the V-type eluder is
controlled dRL,V(")  O(d log(d/")), (ii) given a realizable � class, the linear function class F

lin =
Q

h
F

lin
h

defined as

F
lin
h

=
n
f(z | x, a) = �(x, a)>w(z) : � 2 � ,

w : [0, 1]! Rd
, s.t.,max

z

kw(z)k2 
p

d

o

satisfies distributional BC (Assumption 5.1), and (iii) if costs are discrete in a uniform grid of M points, the
bracketing entropy of F lin is eO(dM+log |�|). Combining these facts with Theorem 5.3 implies a second-order
PAC bound for low-rank MDPs:

Corollary 5.5 (Second-Order PAC Bound for Low-Rank MDPs). Suppose the MDP has rank d, assume

�
?
2 � and costs are discrete in a uniform grid of M points, then, w.h.p., O-DISCO with UAE, F = F

lin
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and � = dM + log(|�|/�) outputs a policy ⇡̄ that satisfies,

V
⇡̄
� V

?
 eO

0

@H

s
Var1:K ·Ad�

K
+

AdH
2.5

�

K

1

A,

where Var1:K = 1
K

P
K

k=1 Var(Z
⇡
k

(x1,k)).

To the best of our knowledge, this is the first variance-dependent bound in RL beyond linear function
approximation, which is a significant statistical benefit of DistRL.

5.2 Proof Sketch for Theorem 5.3

The new RL tool we’ll employ is the following change-of-measure lemma for variance.

Lemma 5.6 (Change of Variance). For any f : X ⇥A! �([0, 1]), ⇡ and x1, we have

E⇡,x1 [Var(fh(xh, ah))]  2eVar(Z⇡(x1))+

12H2E⇡,x1

hP
t�h

D4(ft(xt, at) k T
⇡,D

t
ft+1(xt, at))

i
. (3)

For each episode k, by optimism of f̄
(k)
1 , performance difference lemma and the fact T

⇡
k

h
f̄
(k)
h+1(xh, ah) =

T ⇡k

h
f
(k)
h+1(xh, ah), we have

V
⇡
k

(x1,k)� V
?(x1,k)  V

⇡
k

(x1,k)�min
a

f̄1(x1,k, a)

=
HX

h=1

E
⇡k,x1,k

h
T ⇡k

h
f
(k)
h+1(xh, ah)� f̄

(k)
h

(xh, ah)
i
.

Let �h,k(x, a) := D4(f (k)
h

(x, a) k T ?,D

h
f
(k)
h+1(x, a)).

HX

h=1

E
⇡k,x1,k

h
T ⇡k

h
f
(k)
h+1(xh, ah)� f̄

(k)
h

(xh, ah)
i



HX

h=1

4
q

E
⇡k,x1,k

[Var(f (k)
h

(xh, ah))] · E⇡k,x1,k
[�h,k(xh, ah)]

+ 5E
⇡k,x1,k

[�h,k(xh, ah)] (Eq. (2))



HX

h=1

4
q

(2eVar(Z⇡(x1,k)) + 12H2�k) · E⇡k,x1,k
[�h,k(xh, ah)]

+ 5E
⇡k,x1,k

[�h,k(xh, ah)] (Eq. (3))

4
p

(2eVar(Z⇡(x1,k)) + 12H2�k) ·H�k + 5H�k, (Cauchy-Schwarz)

where �k :=
P

H

h=1 E⇡k,x1,k
[�h,k(xh, ah)]. Finally, we can sum over all episodes and use the fact thatP

k
�k  Hd logK w.p. 1 � �, where d is the appropriate distributional eluder dimension depending on

UAE. This last step is true due to MLE’s generalization bound and standard eluder-type arguments from
Wang et al. [2023b].

6 Second-Order Bounds for Offline DistRL

We now turn to offline RL and prove that pessimism in the face of uncertainty with MLE-confidence sets
enjoys second-order PAC bounds under single-policy coverage. The algorithm we study is P-DISCO [Wang
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Algorithm 3 P-DISCO [Wang et al., 2023b]
1: Input: datasets D1, . . . ,DH , distribution class F , policy class ⇧.
2: 8⇡ 2 ⇧, set F⇡  ConfSetRL((Dh)h2[H]; T

⇡,D).
3: 8⇡ 2 ⇧, set f

⇡
 argmax

f2F⇡
Ex1⇠d1 [f̄1(x1,⇡)].

4: Output: b⇡ = argmin
⇡2⇧ Ex1⇠d1 [f̄

⇡

1 (x1,⇡)].

et al., 2023b], which adapts the pessimism-over-confidence-set approach from BCP [Xie et al., 2021] with
the DistRL confidence set. As shown in Algorithm 3, P-DISCO returns the best policy with respect to its
pessimistic value estimate, induced by the distributional confidence set constructed with the given data.

Following recent advancements in offline RL [Xie et al., 2021, Uehara and Sun, 2022, Jin et al., 2021b],
we prove best-effort guarantees that aim to compete with any covered comparator policy e⇡ and that only
requires weak single-policy coverage. In particular, we do not suffer the strong all-policy coverage condition
used in [Chen and Jiang, 2019]. Recall the single-policy concentrability w.r.t. the comparator policy e⇡ is
defined as C

e⇡ := maxh kdde⇡h/d⌫hk1. We now state our main result for offline RL.

Theorem 6.1 (Second-order bounds for Offline RL). Under Assumption 5.1, for any � 2 (0, 1), w.p. at

least 1 � �, running P-DISCO with � = log(H|⇧||F|/�) learns a policy b⇡ that enjoys the following bound:

for any comparator e⇡ 2 ⇧ (not necessarily the optimal ⇡
?
), we have

V
b⇡
� V

e⇡
 O

 
H

r
Var(Ze⇡)Ce⇡�

N
+

H
2.5

C
e⇡
�

N

!
.

Here, the leading term scales with the variance of the comparator policy’s returns Var(Ze⇡). Since the variance
is bounded by the first moment, this bound immediately improves the small-loss PAC bound of Wang et al.
[2023b]. In near-deterministic settings, our second-order bound guarantees a fast 1/N rate and is tight up
to log factors, which is not necessarily the case for small-loss bounds. In particular, our result shows that
DistRL is even more robust to poor coverage than as shown in Wang et al. [2023b]; that is, P-DISCO can
strongly compete with a comparator policy e⇡ if one of the following is true: (i) ⌫ has good coverage over e⇡,
so the

p
1/N term has a small constant; or (ii) ⌫ has bad (but finite) coverage and e⇡ has small variance,

in which case we can still obtain a fast 1/N rate (with constant scaling with coverage). To the best of our
knowledge, this is the first second-order bound for offline RL.

Variance of Z(⇡k) vs. Z(⇡?). In online RL, Theorem 5.3 and Corollary 5.5 has the average variance of
the played policies Z(⇡k), while in offline RL, Theorem 6.1 has the variance of the optimal policy Z(⇡?) (if
comparing with optimal policy). From a technical perspective, this dichotomy arises from the fact that in
offline RL, single-policy concentrability allows us to change measure to ⇡

?, while in online RL, we cannot
perform the switch and instead rely on eluder-type arguments. The variances of Z(⇡k) and Z(⇡?) are in
general incomparable. Nonetheless, both statements are sharper than the small-loss bound as shown by
Theorem D.2. Both are also tight in deterministic settings.

Computational Efficiency. Both O-DISCO and P-DISCO optimize over the confidence set to ensure
optimism and pessimism, respectively, but this step is known to be computationally hard even in tabular
MDPs [Dann et al., 2018]. This is also an issue for other version space algorithms: OLIVE [Jiang et al., 2017],
GOLF [Jin et al., 2021a], and BCP [Xie et al., 2021]. However, the confidence set is needed for the purpose
of deep exploration and can be replaced by myopic strategies such as "-greedy that are computationally
cheap [Dann et al., 2022]. Finally, in the sequel, we show that in the case of CBs (H = 1), O-DISCO can
be efficiently implemented with neural nets via disagreement computation [Feng et al., 2021].
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7 Contextual Bandit Experiments

We empirically validate our stronger theory in the contextual bandit setting where our algorithm DistUCB

can be efficiently implemented. We demonstrate that learning the cost distribution (as in DistUCB) con-
sistently improves performance of the baseline algorithm RegCB [Foster et al., 2018] which uses the squared
loss instead of log-likelihood. It’s worth noting that cost distribution learning has been shown to be effective
in inverse-gap weighted (IGW) algorithms [Wang et al., 2023b]; however, our focus here is on optimistic al-
gorithms such as DistUCB and RegCB. We now describe our efficient implementation with neural networks
as function approximators via computing width with the log-likelihood loss.

Efficient Implementation by Computing Width. We group incoming contexts into batches Bk ⇢ X

to use GPU parallelism for neural networks. Let Dk�1 denote the history so far. Then, recall that DistUCB

aims to compute optimistic actions ak = argmin
a
minf2Fk�1 f̄(xk, a) for each context xk 2 Bk, where Fk�1

is the subset of �-optimal functions w.r.t. the log-likelihood on the history LCB(f,Dk�1), where � is a
hyperparameter. We consider inducing optimism by subtracting the width of Fk�1, defined as

wk(x, a) = max
f,f 02F

�
f̄(x, a)� f̄

0(x, a)
 

s.t. f, f 0
2 Fk�1.

Then, given the MLE gk = argmax
g2F LCB(g,Dk�1) we can set fk := (ḡk � wk) which satisfies optimism,

i.e., fk(xk, a)  C̄(xk, a), for all a. Thus, the goal now is to compute wk(xk, a) for each xk 2 Bk and a 2 A.

We modify the width computation strategy of Feng et al. [2021] to deal with the log-likelihood loss. In
particular, given the current MLE gk parameterized by a neural net, we create a copy g

0 and train g
0 for a

few steps of gradient ascent on the disagreement objective (gk is fixed):
X

a2A

X

xk2Bk

�(ḡ0(xk, a)� ḡk(xk, a))
2
/|Bk|

�

X

(x,a)2Dk�1

(ḡ0(x, a)� ḡk(x, a))
2
/|Dk�1|

�

X

a2A

X

xk2Bk

�1(ḡ
0(xk, a)� ḡk(xk, a))/|Bk|

where, the last term of the maximization objective is to avoid a zero gradient when gk = g
0. Due to memory

constraints, we approximate the second term with a subset of the history. Then, we denote bwk(x, a) =

|ḡk(x, a) � ḡ
0(x, a)| and set the bonus to be the normalized width �2 ·

bwk(s,a)
maxa2A,x2Bk

bwk(x,a)
. �,�1,�2 are

hyperparameters.

We note that an alternative poly-time algorithm is to binary search for a Lagrange multiplier as in RegCB
[Foster et al., 2018], which we also tried. However, the binary search approach requires an optimization
oracle at every binary search depth, for every action, whereas disagreement computation only needs one
optimization oracle per batch of contexts. Binary searching is thus much more computationally costly and
we did not observe any improvement in performance to justify the increased computation. Hence, we use
disagreement-based width computation for inducing optimism for all DistUCB and RegCB experiments.

CB Tasks. We now compare DistUCB and RegCB on the three real-world CB tasks: King County Hous-
ing [Vanschoren et al., 2013], Prudential Life Insurance [Montoya et al., 2015], and CIFAR-100 [Krizhevsky,
2009]. The Housing and Prudential tasks are derived from risk prediction tasks, where a fixed max cost is
incurred for over-predicting risk and a low cost is incurred for under-predicting risk [Farsang et al., 2022].
The CIFAR-100 task is derived from the image classification task, where 0 cost is given for the correct label,
0.5 cost is given for an almost correct label (i.e., correct superclass), and 1 cost is given otherwise (for wrong
superclass). All tasks were rolled out for 5000 steps in batches of 32 examples.
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Algorithm: RegCB DistUCB (Ours)

King County Housing [Vanschoren et al., 2013]

All episodes .708 (.051) .683 (.057)
Last 100 ep. .676 (.038) .640 (.037)

Prudential Life Insurance [Montoya et al., 2015]

All episodes .287 (.058) .248 (.061)
Last 100 ep. .278 (.055) .236 (.054)

CIFAR-100 [Krizhevsky, 2009]

All episodes .890 (.053) .862 (.058)
Last 100 ep. .854 (.053) .823 (.060)

Table 1: Average cost over all episodes and last 100 episodes (lower is better). We report ‘mean (sem)’ over
3 seeds.

Figure 1: Cost curves for the Housing task (lower is better).

Function Approximators. We use neural networks for squared loss regression in RegCB and maximum
likelihood estimation in DistUCB. For the King County Housing dataset and the Prudential Life Insurance
dataset, we used 2 hidden-layer MLPs, while for CIFAR-100, we used ResNet-18 [He et al., 2016]. This is
the same setup as in Wang et al. [2023b, Appendix K].

Results. Table 7 shows that cost distribution learning in DistUCB consistently improves the costs and
regret compared to the baseline squared loss method RegCB. Also, Fig. 1 shows that DistUCB converges to
a smaller cost much faster than RegCB. This reinforces that our stronger theory for MLE-based distribution
learning indeed translates to more effective algorithms than standard squared loss regression. We note that
in the Housing and Prudential tasks, our costs are actually lower and better than the previously reported
numbers by IGW algorithms [Wang et al., 2023b]. However, it is worth noting that optimistic algorithms
based on width computation is still more computationally costly than IGW algorithms, and a carefully tuned
IGW can likely perform just as well in practice.

8 Conclusion

We proved that MLE-based DistRL attains second-order bounds in both online and offline RL, significantly
sharpening the previous results of Wang et al. [2023b] and further showing the finite-sample statistical
benefits of DistRL. In the CB case, we also proved a novel first and second-order gap-dependent bound
and implemented the algorithm, showing it outperforms the previous squared loss method. An interesting
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direction is to show whether DistRL can obtain even higher-order bounds than second-order.
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Appendices

A Notations

Table 2: List of Notations

S,A, A State and action spaces, and A = |A|.
�(S) The set of distributions supported by set S.
d̄ The expectation of any real-valued distribution d, i.e., d̄ =

R
yd(y)d�(y).

Var(d) The variance of any real-valued distribution d, i.e., Var(d) =
R
(y � d̄)2d(y)d�(y).

[N ] {1, 2, . . . , N} for any N 2 N.
Z

⇡

h
(x, a) Distribution of

P
H

t=h
ct given xh = x, ah = a rolling in from ⇡.

Q
⇡

h
(x, a), V ⇡

h
(x) Q

⇡

h
(x, a) = Z̄

⇡

h
(x, a) and V

⇡

h
= Ea⇠⇡(x)[Q

⇡

h
(x, a)].

Z
?

h
, Q

?

h
, V

?

h
Z

⇡

h
, Q

⇡

h
, V

⇡

h
with ⇡ = ⇡

?, the optimal policy.
T

⇡

h
, T

?

h
The Bellman operators that act on functions.

T
⇡,D

h
, T

?,D

h
The distributional Bellman operators that act on conditional distributions.

V
⇡
, Z

⇡
, V

?
, Z

?
V

⇡ = V
⇡

1 (x1), Z⇡ = Z
⇡

1 (x1). V
?
, Z

? are defined similarly with ⇡
?.

d
⇡

h
(x, a) The probability of ⇡ visiting (x, a) at time h.

C
e⇡ Coverage coefficient maxh

��dde⇡
h/d⌫h

��
1.

D4(f k g) Triangular discrimination between f, g.
H(f k g) Hellinger distance between f, g.

A.1 Statistical Distances

Let f, g be distributions over Y. Then,

D4(f k g) =
X

y

(f(y)� g(y))2

f(y) + g(y)
,

H
2(f k g) =

1

2

X

y

⇣p
f(y)�

p
g(y)

⌘2
.

Lemma A.1. For any distributions f, g, we have 2H2(f k g)  D4(f k g)  4H2(f k g).

Proof. Recall that D4(f k g) =
R
y

✓
f(y)�g(y)
p

f(y)+g(y)

◆2

. Apply 1p
f(y)+

p
g(y)


1p
f(y)+g(y)



p
2p

f(y)+
p

g(y)
.
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B Proofs for CB Lemmas

Lemma 4.2. For f, g 2 L
2(�) s.t. D4(f k g)  1

2 ,

��f̄ � ḡ
��  2

q
(Var(f) + Var(g))D4(f k g). (1)

Proof. For any constant c and random variable X, recall that E(X � c)2 = Var(X) + (EX � c)2. Thus,

f̄ � ḡ =
X

z

(z � c)(f(z)� g(z))



sX

z

(z � c)2(f(z) + g(z)) ·

s
X

z

(f(z)� g(z))2

f(z) + g(z)
(Cauchy-Schwartz)

=
q
Var(f) + Var(g) + (f̄ � c)2 + (ḡ � c)2 ·

q
D4(f k g).

To minimize the bound, set c = f̄+ḡ

2 to get,

��f̄ � ḡ
�� 

q
Var(f) + Var(g) + (f̄ � ḡ)2/2 ·

q
D4(f k g)



q
(Var(f) + Var(g))D4(f k g) +

��f̄ � ḡ
��
q

D4(f k g)/2.

Rearranging and using the fact that D4(f k g) < 2,

��f̄ � ḡ
��  1

1�
p
D4(f k g)/2

q
(Var(f) + Var(g))D4(f k g).

Finally, use the facts that 1
1�"
 2 for " 2 [0, 1

2 ] and
p
D4(f k g)/2  1

2 by the premise.

Lemma B.1. For any f, g 2 �([0, 1]), we have

|Var(f)�Var(g)|  4
q
(Var(f) +D4(f k g))D4(f k g) (4)

Proof. Recall that Var(f) = 1
2Ez,z0⇠f⌦f [(z � z

0)2]. So if f 0 is the distribution of 1
2 (z � z

0)2 where z, z
0
⇠ f ,

then Var(f) = f̄
0. Since (z � z

0)2 2 [0, 1], we can use Eq.(�2) of [Wang et al., 2023b] to get
��f̄ � ḡ

�� q
(4f̄ +D4(f k g))D4(f k g). Thus, |Var f �Var g| 

p
(4Varf +D4(f 0 k g0))D4(f 0 k g0).

Now it suffices to bound D4(f 0
k g

0) by 4D4(f k g), which we do by data processing inequality and
tensorization of Hellinger. In particular, the tensorization of H

2 is given by H
2(f ⌦ f k g ⌦ g) = 2 �

2(1 � H
2(f k g)/2)2 [Polyanskiy and Wu, 2023, Eqn. 7.26] and using 1 � (1 � x/2)2  x implies that

H
2(f ⌦ f k g ⌦ g)  2H2(f k g). Thus,

D4(f 0
k g

0)  D4(f ⌦ f k g ⌦ g) (data processing ineq.)
 4H2(f ⌦ f k g ⌦ g) (D4  4H2)
 8H2(f k g) (tensorization of H2)
 4D4(f k g). (2H2

 D4)

Lemma 4.3. For any f, g 2 L
2(�), we have

��f̄ � ḡ
��  4

q
Var(f)D4(f k g) + 5D4(f k g). (2)
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Proof. If D4(f k g) > 1
2 , then we trivially have

��f̄ � ḡ
��  1  2D4(f k g) since f̄ , ḡ 2 [0, 1]. Thus, we can

assume D4(f k g)  1
2 . Starting from Eq. (1), we can bound the sum of two variances as follows,

Var(f) + Var(g) = 2Var(f) + Var(g)�Var(f)

 2Var(f) + 4
q
(Var(f) +D4(f k g))D4(f k g) (Eq. (4))

 2Var(f) + 4
q
Var(f)D4(f k g) + 4D4(f k g)

 4Var(f) + 6D4(f k g). (AM-GM)

Hence, we have

��f̄ � ḡ
��  2

q
(Var(f) + Var(g))D4(f k g)

 2
q
(4Var(f) + 6D4(f k g))D4(f k g) (above inequality)

 4
q
Var(f)D4(f k g) + 5D4(f k g).

This finishes the proof.

C Proof for Gap-dependent Bounds for CB

Define dCB(") = dim`1E({(x, a) 7! D4(f(x, a) k C(x, a)) : f 2 F}, ") is the `1-eluder dimension at threshold
" [Liu et al., 2022].

Theorem 4.4. Assume the premise of Theorem 4.1. If max(VarGap, C? Gap) � 1p
K

, then

RegretCB(K)  eO
�
dCB� + dCB�min

�
VarGap�1

, C
? Gap�1

 �
.

Proof of Theorem 4.4. Define �k(x, a) := D4(fk(x, a) k C(x, a)) and � =
P

k
�k(xk, ak), the same notation

as in Section 4.1. We partition episodes into burn-in and stable episodes, where stable episodes are those
that satisfy: �k(xk, ak)  Var(C(xk, ak)). Let E denote the set of stable episodes and ¬E are the burn-in
episodes.

Step 1: burn-in episodes have O(�) regret.

X

k2E1\EC
2

C̄(xk, ak)�min
a

C̄(xk, a) 
X

k2E1\EC
2

C̄(xk, ak)� f̄k(xk, ak) (optimism)



X

k2E1\EC
2

4
p

Var(C(xk, ak))�k(xk, ak) + 5�k(xk, ak) (Eq. (2))



X

k2E1\EC
2

4�k(xk, ak) + 5�k(xk, ak) (¬E)



KX

k=1

9�k(xk, ak) = 9�.

This implies that
P

k 62E C̄(xk, ak)�mina C̄(xk, a)  9�.
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Step 2: stable episodes have gap-dependent regret. We now argue those episodes in E have large
gap. For each k, optimism implies that f̄k(xk, ak)  mina C̄(xk, a) = C̄(xk, ak)�Gap(xk, ak). This implies
that Gap(xk, ak)  C̄(xk, ak) � f̄k(xk, ak). By E , we have 4

p
Var(C(xk, ak))�k(xk, ak) + 5�k(xk, ak) 

9
p
Var(C(xk, ak))�k(xk, ak), and hence the previous display implies

C̄(xk, ak)� f̄k(xk, ak)  9
p
Var(C(xk, ak))�k(xk, ak).

If this is zero, then the regret for the episode is zero. If this is non-zero, we have Gap(xk, ak) > 0 and
Var(C(xk, ak)) > 0, which implies that

9
p

�k(xk, ak) �
Gap(xk, ak)p
Var(C(xk, ak))

� VarGap .

Now we will invoke the standard peeling technique (Lemma C.2) on 9
p

�k(xk, ak). For any ⇣ > 0, we have

KX

k=1

I [�k(xk, ak) � ⇣]  4dCB(⇣)� log(K)⇣�1
, (5)

because I [�k(xk, ak) � ⇣]  ⇣
�1

�k(xk, ak) and the summation of �k(xk, ak) is bounded by the eluder dimen-
sion with log factors [Wang et al., 2023b, Theorem 5.3]. This indeed satisfies the assumption of Lemma C.2
with C = 4dCB(VarGap2)� log(K). Thus, we can bound the stable episode regret as follows:

X

k2E1\E2

C̄(xk, ak)�min
a

C̄(xk, a)



X

k2E1\E2

9
p
Var(C(xk, ak))�k(xk, ak) (same steps as before and E)



X

k2E1\E2

9
p
�k(xk, ak) (C(xk, ak) 2 [0, 1])

 18 · 16dCB(VarGap2)� log(K)VarGap�1
. (9

p
�k(xk, ak)  18 and Lemma C.2)

In the last inequality, note that we invoke Lemma C.2 directly on
p
�k. Thus, we have shown the VarGap-

dependent regret:

RegretCB(K)  11 · 4dCB(K
�1)� log(K) + 288

dCB(VarGap2)� log(K)

VarGap
.

Following the same steps, and using Lemma C.1, we can prove the same result for C
? Gap. Therefore, we

have shown that

RegretCB(K)  eO
✓
dCB +min

⇢
dCB(VarGap2)

VarGap
,
dCB(C? Gap2)

C? Gap

�◆
.

Finally, notice that if VarGap � 1p
K

, dCB(VarGap2)  dCB(1/K) = dCB by monotonicity of the eluder
dimension. If VarGap <

1p
K

then 1/VarGap �
p
K anyways, and so this small-gap regime results in a

O(
p
K) bound; in this case, we already have a better second-order bound in Theorem 4.1. This finishes the

proof for Theorem 4.4.

Lemma C.1. For each episode k, we have

C̄(xk, ak)�min
a

C̄(xk, a)  3
q

min
a

C̄(xk, a) · �k(xk, ak) + 6�k(xk, ak).
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Proof. By optimism and Wang et al. [2023b, Equation �2], we have

C̄(xk, ak)�min
a

C̄(xk, a)  C̄(xk, ak)� f̄k(xk, ak)  2
q

C̄(xk, ak)�k(xk, ak) + �k(xk, ak).

Using AM-GM, this can be further bounded by 1
2 C̄(xk, ak)+3�k(xk, ak). Rearranging, this implies C̄(xk, ak) 

2mina C̄(xk, a) + 6�k(xk, ak). Therefore, plugging this back into above,

C̄(xk, ak)�min
a

C̄(xk, a)  2
q
(2min

a

C̄(xk, a) + 6�k(xk, ak))�k(xk, ak) + �k(xk, ak)

 3
q
min
a

C̄k(xk, a) · �k(xk, ak) + 6�k(xk, ak).

Lemma C.2 (Peeling Lemma). Suppose g1, g2, . . . , gK : Z ! [0, 1] and z1, z2, . . . , zK 2 Z satisfy gk(zk) �
Gap for all k. Moreover, suppose there exists C > 0 such that for any ⇣ � Gap, we have

P
k
I [gk(zk) � ⇣] 

C⇣
�2

. Then,
KX

k=1

gk(zk)  4C Gap�1
.

Proof. Divide [Gap, 1] into N = dlog(1/Gap)e intervals, where the i 2 [N ]-th interval is [2i�1 Gap, 2i Gap).
Then, we bound the sum via a standard peeling argument: note that gk(zk)I

⇥
gk(zk) 2 [2i�1 Gap, 2i Gap)

⇤


2i Gap I
⇥
gk(zk) � 2i�1 Gap

⇤
. Therefore,

X

k

gk(zk) =
X

k

NX

i=1

gk(zk)I
⇥
gk(zk) 2 [2i�1 Gap, 2i Gap)

⇤



X

k

NX

i=1

2i Gap I
⇥
gk(zk) � 2i�1 Gap

⇤



NX

i=1

2i Gap ·C2�2i+2 Gap�2 (premise)

= 4C Gap�1
NX

i=1

2�i
 4C Gap�1

.

D RL Lemmas

Lemma D.1 (Performance Difference). For any f : (X ⇥A! R)H , policy ⇡ and x1, we have

V
⇡(x1)� f1(x1,⇡(x1)) =

HX

h=1

E⇡,x1 [(T
⇡

h
fh+1 � fh)(xh, ah)].

Proof. See Wang et al. [2023b, Lemma H.2].

Theorem D.2 (Second-order implies Small-loss). For online RL, suppose we have a second-order bound:

P
K

k=1 V
⇡
k

(x1,k)�V ?(x1,k) 
q
c
P

K

k=1 Var(Z
⇡k(x1,k))+c, for some c 2 R+. Then, we also have a small-loss

(first-order) bound:
P

K

k=1 V
⇡
k

(x1,k)� V
?(x1,k) 

q
2c
P

K

k=1 V
?(x1,k) + 3c.

21



For offline RL, suppose we have a second-order bound w.r.t. comparator policy ⇡comp: V
b⇡
� V

⇡comp q
c0 Var(Z(⇡comp))

N
+ c

0

N
. Then, we also have a small-loss (first-order) bound: V

b⇡
� V

⇡comp 

q
c0V ⇡comp

N
+ c

0

N
.

Proof. The offline RL claim follows from Var(Z(⇡comp))  V
⇡comp because returns are bounded between

[0, 1] and variance is bounded by second moment, which is bounded by first moment. So, we will focus on
the online RL claim for the remainder of the proof.

KX

k=1

V
⇡
k

(x1,k)� V
?(x1,k) 

vuut
c

KX

k=1

Var(Z⇡k(x1,k)) + c (premise)



vuut
c

KX

k=1

V ⇡k(x1,k) + c (6)


1

2
c+

1

2

KX

k=1

V
⇡
k

(x1,k) + c, (AM-GM)

which implies
KX

k=1

V
⇡
k

(x1,k)  2
KX

k=1

V
?(x1,k) + 3c.

Plugging this back into Eq. (6) gives

KX

k=1

V
⇡
k

(x1,k)� V
?(x1,k) 

vuut2c
KX

k=1

V ?(x1,k) + 3c2 + c,

which finishes the proof.

D.1 Variance Change of Measure

Lemma 5.6 (Change of Variance). For any f : X ⇥A! �([0, 1]), ⇡ and x1, we have

E⇡,x1 [Var(fh(xh, ah))]  2eVar(Z⇡(x1))+

12H2E⇡,x1

hP
t�h

D4(ft(xt, at) k T
⇡,D

t
ft+1(xt, at))

i
. (3)

Proof. Apply law of total variance to the variance term of Theorem D.3, i.e.,

Var(Z⇡

1 (x1)) = E⇡,x1 [Var(fh(xh, ah) | xh, ah, x1) | x1] + Var⇡,x1(E[fh(xh, ah) | xh, ah, x1] | x1)

� E⇡,x1 [Var(fh(xh, ah) | xh, ah, x1) | x1].

Theorem D.3. Fix any f : X ⇥ A ! �([0, 1]) and any policy ⇡. Define �h(x, a) := D4(fh(x, a) k

T
⇡,D

h
fh+1(x, a)) and �h(xh, ah) :=

P
H

t=h
E⇡,xh,ah [�t(xt, at)]. Then, for all h 2 [H], xh, ah, we have

Var(fh(xh, ah))  2eVar(Z⇡

h
(xh, ah)) + 12H(H � h+ 1)�h(xh, ah). (7)

Therefore, for any x1,

E⇡,x1 [Var(fh(xh, ah))]  2eVar(Z⇡

1 (x1)) + 12H2E⇡,x1 [�h(xh, ah)]. (8)
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Proof. The main technical lemma is Lemma D.4, which is proven with induction. Given this lemma, use the
fact that (1 +H

�1)H  e to get

Var(fh(xh, ah)) 
HX

t=h

e
�
E⇡,xh,ah

⇥
2Varct,xt+1(ct + V

⇡

t+1(xt+1) | xt, at) + 12H�t(xt, at)
⇤�
.

Recall that Var(Z⇡

h
(xh, ah)) =

P
H

t=h
E⇡,xh,ah

⇥
Varct,xt+1(ct + V

⇡

t+1(xt+1) | xt, at)
⇤
, by the law of total vari-

ance. Also for any t � h, we have E⇡,xh,ah�t(xt, at)  �h(xh, ah). Thus,

Var(fh(xh, ah))  2eVar(Z⇡

h
(xh, ah)) + 12H(H � h+ 1)�h(xh, ah),

which proves the claim.

Lemma D.4. For all h 2 [H], xh, ah, we have

Var(fh(xh, ah)) 
HX

t=h

(1 +H
�1)t�h+1

�
E⇡,xh,ah

⇥
2Varct,xt+1(ct + V

⇡

t+1(xt+1) | xt, at) + 12H�t(xt, at)
⇤�
. (9)

Proof. First observe that

Var(fh(xh, ah))  (1 +H
�1)Var(T ⇡,D

h
fh+1(xh, ah)) + 12H�h(xh, ah), (10)

because by Eq. (4) and AM-GM, we have

Var(fh(xh, ah))�Var(T ⇡,D

h
fh+1(xh, ah))  4

q
(Var(T ⇡,D

h
fh+1(xh, ah)) + �h(xh, ah))�h(xh, ah)

 4
q
Var(T ⇡,D

h
fh+1(xh, ah))�h(xh, ah) + 4�h(xh, ah)

 H
�1 Var(T ⇡,D

h
fh+1(xh, ah)) + 8H�h(xh, ah) + 4�h(xh, ah).

We now proceed to show Eq. (9) by induction. The base case h = H is true since Var(T ⇡,D

H
fH+1(xH , aH)) =

Var(CH(xH , aH)) = Var(cH + V
⇡

H+1(xH+1) | xH , aH).

We now prove the induction step: suppose the Eq. (9) is true for h+ 1; we want to show the h case is true.
By the law of total conditional variance, we have that Var(T ⇡,D

h
fh+1(xh, ah)) is equal to:

E[Var(ch + fh+1(xh+1,⇡(xh+1)) | xh+1, ch, xh, ah) | xh, ah] + Var(E[ch + fh+1(xh+1,⇡(xh+1)) | xh+1, ch, xh, ah] | xh, ah)

= E[Var(fh+1(xh+1,⇡(xh+1)) | xh+1) | xh, ah] + Varch,xh+1⇠Ch,Ph(xh,ah)

�
ch + f̄h+1(xh+1,⇡(xh+1))

�
.

The first term is controlled by the induction hypothesis. The second term is handled by Lemma D.5.
Therefore,

Var(T ⇡,D

h
fh+1(xh, ah))

 E⇡,xh,ah

HX

t=h+1

(1 +H
�1)t�h

�
2E⇡,xh+1,ah+1

⇥
Varct,xt+1

�
ct + V

⇡

t+1(xt+1) | xt, at

�
+ 12H�t(xt, at)

⇤�

+ 2Varch,xh+1⇠Ch,Ph(xh,ah)

�
ch + V

⇡

h+1(xh+1)
�
+ 4HE⇡,xh,ah�h+1(xh+1, ah+1).
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Thus, by Eq. (10), we have

Var(fh(xh, ah))

 E⇡,xh,ah

HX

t=h+1

(1 +H
�1)t�h+1

�
2E⇡,xh+1,ah+1

⇥
Varct,xt+1

�
ct + V

⇡

t+1(xt+1) | xt, at

�
+ 12H�t(xt, at)

⇤�

+ (1 +H
�1)
�
2Varch,xh+1⇠Ch,Ph(xh,ah)

�
ch + V

⇡

h+1(xh+1)
�
+ 4HE⇡,xh,ah�h+1(xh+1, ah+1)

�
+ 12H�h(xh, ah)



HX

t=h+1

(1 +H
�1)t�h+1

�
2E⇡,xh,ah

⇥
Varct,xt+1

�
ct + V

⇡

t+1(xt+1) | xt, at

�
+ 12H�t(xt, at)

⇤�

+ (1 +H
�1)
�
2Varch,xh+1⇠Ch,Ph(xh,ah)

�
ch + V

⇡

h+1(xh+1)
�
+ 12H�h(xh, ah)

�

=
HX

t=h

(1 +H
�1)t�h+1

�
2E⇡,xh,ah

⇥
Varct,xt+1

�
ct + V

⇡

t+1(xt+1) | xt, at

�
+ 12H�t(xt, at)

⇤�
,

which finishes the induction.

Lemma D.5.

Varch,xh+1⇠Ch,Ph(xh,ah)

�
ch + f̄h+1(xh+1,⇡(xh+1))

�

 2Varch,xh+1⇠Ch,Ph(xh,ah)

�
ch + V

⇡

h+1(xh+1)
�
+ 4(H � h)E⇡,xh,ah�h+1(xh+1, ah+1).

Proof. Recall that Var(X + Y )  2Var(X) + 2Var(Y ) and hence,

Varch,xh+1⇠Ch,Ph(xh,ah)

�
ch + f̄h+1(xh+1,⇡(xh+1))

�

 2Varch,xh+1⇠Ch,Ph(xh,ah)

�
ch + V

⇡

h+1(xh+1)
�
+ 2Varxh+1⇠Ph(xh,ah)

�
f̄h+1(xh+1,⇡(xh+1))� V

⇡

h+1(xh+1)
�

For the second term, we first bound the envelope of f̄h+1(xh+1,⇡(xh+1))� V
⇡

h+1(xh+1) as follows:

��f̄h+1(xh+1,⇡(xh+1))� V
⇡

h+1(xh+1)
�� 

HX

t=h+1

E⇡,xh+1

⇥��f̄t(xt, at)� T
⇡

t
f̄t+1(xt, at)

��⇤ (PDL)



HX

t=h+1

E⇡,xh+1

hp
2�t(xt, at)

i
(Eq.(�1) of Wang et al. [2023b])

This enables us to bound the variance,

Varxh+1⇠Ph(xh,ah)

�
f̄h+1(xh+1,⇡(xh+1))� V

⇡

h+1(xh+1)
�

 Exh+1⇠Ph(xh,ah)

h�
f̄h+1(xh+1,⇡(xh+1))� V

⇡

h+1(xh+1)
�2i

 Exh+1⇠Ph(xh,ah)

2

4
 

HX

t=h+1

E⇡,xh+1

hp
2�t(xt, at)

i!2
3

5

 (H � h)Exh+1⇠Ph(xh,ah)

"
HX

t=h+1

⇣
E⇡,xh+1

hp
2�t(xt, at)

i⌘2
#

 (H � h)Exh+1⇠Ph(xh,ah)

"
HX

t=h+1

E⇡,xh+1 [2�t(xt, at)]

#
,

as desired.
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E Proofs for Online RL

Theorem 5.3 (Second-order bounds for Online RL). Under Assumption 5.1, for any � 2 (0, 1), w.p. at

least 1� �, running O-DISCO with � = log(HK|F|/�) enjoys,

RegRL(K)  eO

0

@H

vuut
KX

k=1

Var(Z⇡k (x1,k)) · dRL� +H
2.5

dRL�

1

A.

If UAE=True, then the learned mixture policy ⇡̄ enjoys the PAC bound: w.p. at least 1� �, K(V ⇡̄
� V

?)
is at most,

eO
 
H

vuut
A

KX

k=1

Var(Z⇡k (x1,k))dRL,V� +AH
2.5

dRL,V�

!
.

Proof of Theorem 5.3. As noted by [Wang et al., 2023b, Proof of Theorem 5.5], the confidence set construc-
tion guarantees two facts w.p. 1� �: for all k 2 [K],

(i) Optimism: mina f̄
(k)
1 (x1,k, a)  V

?(x1,k) (since Z
⇡(x1,k) 2 Fk); and

(ii) Small-generalization error: for all h, we have

If UAE=False.
P

i<k
E⇡i [�h,k(sh, ah)]  c�;

If UAE=True.
P

i<k
E⇡i

⇥
Ea0⇠unif(A)[�h,k(sh, ah)]

⇤
 c�,

for some universal constant c.

Let �h,k(x, a) := D4(f (k)
h

(x, a) k T ?,D

h
f
(k)
h+1(x, a)) and�k :=

P
H

h=1 E⇡k,x1,k
[�h,k(xh, ah)]. We now decompose

the regret into two parts.
X

k

V
⇡
k

(x1,k)� V
?(x1,k)



X

k

V
⇡
k

(x1,k)�min
a

f̄
(k)
1 ((x1,k), a) (Optimism)

=
X

k

HX

h=1

E⇡k,x1,k

h
T

⇡
k

h
f̄
(k)
h+1(xh, ah)� f̄

(k)
h

(xh, ah)
i

(PDL)

=
X

k

HX

h=1

E⇡k,x1,k

h
T ⇡k

h
f
(k)
h+1(xh, ah)� f̄

(k)
h

(xh, ah)
i



X

h,k

4
q
E⇡k,x1,k

[Var(f (k)
h

(xh, ah))] · E⇡k,x1,k
[�h,k(xh, ah)] + 5E⇡k,x1,k

[�h,k(xh, ah)] (Eq. (2))



X

h,k

4
q�

Var(Z⇡k(x1,k)) + 12H2�k

�
· E⇡k,x1,k

[�h,k(xh, ah)] + 5E⇡k,x1,k
[�h,k(xh, ah)] (Eq. (3))



X

k

4
q�

2eVar(Z⇡k(x1,k)) + 12H2�k

�
·H�k + 5�k (Cauchy-Schwarz)



X

k

4
q
2eVar(Z⇡k(x1,k))H�k + (4

p
12 + 5)H1.5�k

 4

s
2e
X

k

Var(Z⇡k(x1,k))H
X

k

�k + (4
p
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X

k

�k.

25



The final step is to bound
P

k
�k, which is the same as in [Wang et al., 2023b]. In particular, if UAE=False,

then
P

k
�k  cH dim`1,DE(1/K)� log(K). If UAE=True, then

P
k
�k  cAH dim`1,DE(1/K)� log(K).

This concludes the proof.

E.1 Bounding Q-type distributional Eluder in Linear MDPs

Recall the Linear MDP definition [Jin et al., 2020].

Definition E.1 (Linear and Low-Rank MDP). A transition model Ph : X ⇥A! �(X ) has rank d if there
exist features �

?

h
: X ⇥A! Rd

, µ
?

h
: X ! Rd such that Ph(x0

| x, a) = �
?

h
(x, a)>µ?

h
(x0) for all x, a, x0. Also,

assume maxx,a k�?

h
(x, a)k2  1 and k

R
gdµ?

h
k2  kgk1

p
d for all functions g : X ! R. The MDP is called

low-rank if Ph is low-rank for all h 2 [H]. The MDP is called linear if {�?

h
}h2[H] is known.

Consider the following linear function class:

F
lin
h

=

⇢
f(z | x, a) =

⌦
�
?(x, a), w(z)

↵
s.t. w : [0, 1]! Rd

,max
z

kw(z)k2  ↵

p

d and max
x,a,z

⌦
�
?(x, a), w(z)

↵
 ↵

�
,

(11)

Wang et al. [2023b] showed two nice facts about F
lin. First, it satisfies Bellman Completeness (Assump-

tion 5.1). Moreover, under the assumption that costs are discretized into a uniform grid of M points, this
class’s bracketing entropy is eO(dM). Note that discretization is necessary to bound the statistical complexity
of F lin and is also common in practice, e.g., C51 [Bellemare et al., 2017] and Rainbow [Hessel et al., 2018]
both set M = 51, which works well in Atari; also the optimal policy’s performance in the discretized MDP
can also be bounded by the discretization error [Wang et al., 2023a].

We now show a new fact about F
lin. If we further assume that per-step cost and cost-to-go distributions

have minimum mass ⌘min > 0 on each element of its support, then we can bound the appropriate Q-type
distributional eluder dimension for linear MDPs as eO(d⌘�1

min log(1/")). This is formalized in the following
assumption.

Assumption E.2. For all f 2 F
lin and h 2 [H], if fh(z | x, a) = T

?,D

h
fh+1(z | x, a), then fh(z | x, a) +

T
?,D

h
fh+1(z | x, a) � ⌘min.

If cost-to-go and per-step cost distributions have a minimum mass, then this assumption is satisfied.

Theorem E.3. Suppose the MDP is a linear MDP and Assumption E.2. Fix any h 2 [H] and define

 h =
n
(x, a) 7! D4(fh(x, a) k T

?,D

h
fh+1(x, a)) : f 2 F

lin
h

o
,

Dh = {(x, a) 7! d
⇡

h
(x, a) : ⇡ 2 ⇧}.

Then, dim`1DE( h,Dh, ")  O(d⌘�1
min log(dM/(⌘min"))).

Proof. Fix any h. Suppose (d(k), f (k))k2[T ] is any sequence such that for all k 2 [T ], d(k) 2 Dh, f (k)
2  h

and (d(k), f (k)) is (", `1)-independent of its predecessors. By definition, the largest possible T is the eluder
dimension of interest, so we now proceed to bound T .

For any k, since f (k)
2  h, there exists w(k)

, v
(k) : [0, 1]! Rd satisfying normalization constraints of Eq. (11)

such that f
(k)(x, a) = D4(z 7! �

?

h
(x, a)>w(k)(z) k z 7! �

?

h
(x, a)>v(k)(z)). Note that v

(k) exists by Bellman
completeness of F lin

h
.
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Now we simplify the D4 term with the assumption: for any k,

Ed(k)D4(f (k)
h

(x, a) k T ?,D

h
f
(k)
h+1(x, a)) = Ed(k)

X

z

(f (k)
h

(z | x, a)� T
?,D

h
f
(k)
h+1(z | x, a))2

f
(k)
h

(z | x, a) + T
?,D

h
f
(k)
h+1(z | x, a)

 ⌘
�1
minEd(k)

X

z

(�?

h
(x, a)>(w(k)(z)� v

(k)(z)))2 (Assumption E.2)

 ⌘
�1
minEd(k)k�

?

h
(x, a)k2

⌃�1
k

·

X

z

kw
(k)(z)� v

(k)(z)k2⌃k
, (CS)

where ⌃k :=
P

i<k
Ed(i) [�?

h
(xh, ah)�?

h
(xh, ah)>] + �I and � > 0 will be set soon. For the second factor,

X

z

kw
(k)(z)� v

(k)(z)k2⌃k
=
X

z

X

i<k

Ed(i)

⇣
�
?

h
(x, a)>(w(k)(z)� v

(k)(z))
⌘2

+M�d



X

i<k

Ed(i)

 
X
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����?

h
(x, a)>(w(k)(z)� v

(k)(z))
���
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+M�d



X
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Ed(i)D4(f (k)
h

(x, a) k T ?,D

h
f
(k)
h+1(x, a)) +M�d (D2

TV
 D4)

 "+M�d ((", `1)-independent sequence)
= 2". (set � = "/(dM))

Thus, we have shown that

T" <

X

k

Ed(k)D4(f (k)
h

(x, a) k T ?,D

h
f
(k)
h+1(x, a)) ((", `1)-independent sequence)
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�1
min

X

k

Ed(k)k�
?

h
(x, a)k2

⌃�1
k

· 2"

 2⌘�1
min" · d log(1 + TM/"

2),

where we used elliptical potential in the last step [Uehara et al., 2021, Lemma 19 & 20], which is applicable
since Ed(k)k�

?

h
(x, a)k2

⌃�1
k

= Ed(k)�
?

h
(x, a)>⌃�1

k
�
?

h
(x, a) = Tr(Ed(k) [�?

h
(x, a)�?

h
(x, a)>]⌃�1

k
). Thus, [Uehara

et al., 2021, Lemma 19 & 20] implies that

T < 2⌘�1
mind log(1 + TM/"

2),

which finally implies,
T  12⌘�1

mind log(1 + 2⌘�1
mindM/"

2),

by [Wang et al., 2023b, Lemma G.5].

F Proofs for Offline RL

Theorem 6.1 (Second-order bounds for Offline RL). Under Assumption 5.1, for any � 2 (0, 1), w.p. at

least 1 � �, running P-DISCO with � = log(H|⇧||F|/�) learns a policy b⇡ that enjoys the following bound:

for any comparator e⇡ 2 ⇧ (not necessarily the optimal ⇡
?
), we have

V
b⇡
� V

e⇡
 O

 
H

r
Var(Ze⇡)Ce⇡�

N
+

H
2.5

C
e⇡
�

N

!
.
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Proof of Theorem 6.1. As noted by [Wang et al., 2023b, Proof of Theorem 6.1], the confidence set construc-
tion guarantees two facts w.p. 1� �:

(i) Pessimism: for all ⇡, V ⇡
 f̄

⇡

1 (x1,⇡) (since Z
⇡
2 F⇡); and

(ii) Small-generalization error: for all ⇡ and h, E⌫h [D4(f⇡

h
(x, a) k T

⇡,D

h
f
⇡

h+1(x, a))]  c�N
�1 for some

universal constant c.

Let �
⇡

h
(x, a) := D4(f⇡

h
(x, a) k T ⇡,D

h
f
⇡

h+1(x, a)) and �⇡ :=
P

H

h=1 E⇡[�⇡h(xh, ah)]. We now bound the perfor-
mance difference between b⇡ and e⇡:

V
b⇡
� V

e⇡
 f̄

b⇡
1 (x1, b⇡)� V

e⇡ (Pessimism)

 f̄
e⇡
1 (x1, e⇡)� V

e⇡ (Defn of b⇡)

=
HX
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Ee⇡

h⇣
f̄
e⇡
h
� T

e⇡
h
f̄
e⇡
h+1

⌘
(xh, ah)

i
(PDL Lemma D.1)



HX

h=1

4
q
Ee⇡[Var(fe⇡

h
(xh, ah))] · Ee⇡[�e⇡h(xh, ah)] + 5Ee⇡[�

e⇡
h
(xh, ah)] (Eq. (2))



HX
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4
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(2eVar(Ze⇡) + 12H2�e⇡) · Ee⇡[�e⇡h(xh, ah)] + 5Ee⇡[�
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h
(xh, ah)] (Eq. (3))

 4
q
(2eVar(Ze⇡) + 12H2�e⇡) ·H�e⇡ + 5�e⇡ (Cauchy-Schwarz)

 4
q
2eVar(Ze⇡)H�e⇡ + (4

p
12 + 5)H1.5�e⇡

.

Finally, bound �e⇡ by change of measure and the generalization bound of MLE (fact (ii)):

�e⇡
 C

e⇡
HX

h=1

E⌫h [�
e⇡
h
(xh, ah)]  C
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.

Therefore,

V
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