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Abstract

We study off-policy evaluation (OPE) for partially observable MDPs (POMDPs)
with general function approximation. Existing methods such as sequential im-
portance sampling estimators suffer from the curse of horizon in POMDPs. To
circumvent this problem, we develop a novel model-free OPE method by introduc-
ing future-dependent value functions that take future proxies as inputs and perform
a similar role to that of classical value functions in fully-observable MDPs. We
derive a new off-policy Bellman equation for future-dependent value functions as
conditional moment equations that use history proxies as instrumental variables.
We further propose a minimax learning method to learn future-dependent value
functions using the new Bellman equation. We obtain the PAC result, which implies
our OPE estimator is close to the true policy value under Bellman completeness, as
long as futures and histories contain sufficient information about latent states. Our
code is available at https://github.com/aiueola/neurips2023-future-dependent-ope.

1 Introduction
Reinforcement learning (RL) has demonstrated success when it is possible to interact with the
environment and collect data in an adaptive manner. However, for domains such as healthcare,
education, robotics, and social sciences, online learning can be risky and unethical [e.g., KHS+15,
KL19, TDHL19, SRRH21]. To address this issue, a variety of offline RL methods have recently been
developed for policy learning and evaluation using historical data in these domains [see LKTF20, for
an overview]. In this paper, we focus on the off-policy evaluation (OPE) problem, which concerns
estimating the value of a new policy (called the evaluation policy) using offline log data that was
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generated under a different policy (called the behavior policy) [TB16, JL16, TDHL19, CQ22]. OPE
is especially useful in the aforementioned high-stakes domains.

We focus on off-policy evaluation (OPE) in partially observable Markov decision processes
(POMDPs). Partial observability is a common phenomenon in practical applications [Cas98,
KLC98, XLSS20], and it poses a serious challenge for sample-efficient learning. Most existing
OPE methods are developed for MDPs and their statistical learning guarantees rely crucially on
the Markov assumption. To extend these methods to POMDPs, one may use the entire history
of observations as a state to satisfy Markovanity. This allows us to apply sequential importance
sampling [SIS, Pre00, JSLZ19, HW21] or its variant [e.g., sequential doubly robust (SDR) meth-
ods RRS98, MvdLRG01, JL16, TB16, FCG18, BMVVDL19] to the transformed data for valid
policy evaluation. An alternative approach is to employ value-based methods by constructing
a history-dependent Q-function that takes the entire history as input. These value functions
can be estimated via fitted-Q evaluation [FQE, EGW05, MS08, LVY19] or minimax methods
[ASM08, CJ19, FLL19, NCDL19, UHJ20, UIJ+21, ZW22]. However, all aforementioned estimators
suffer from the curse of horizon, as their estimation errors grow exponentially with respect to the
(effective) horizon and become prohibitively large in long-horizon settings [LLTZ18, KU20, KU22].

The goal of this paper is to devise practical and efficient OPE methods in large partially observable
environments, while breaking the curse of horizon. As a first step, we restrict our attention to the
evaluation of short memory-based policies that take several recent observations instead of the entire
history as inputs. Short memory-based policies are widely used in practice, since maintaining the
whole previous observation leads to a well-known computational challenge dubbed as the curse
of history [PGT06, GMR22]. For example, in the deep Q-network (DQN) algorithm, four game
frames are stacked together to train the optimal policy in Atari [MKS+13], while Open AI Five uses
a window of length 16 [BBC+19]. Even when considering the evaluation of policies with short-
memory or memory-less characteristics (i.e., policies that depend solely on current observations),
naı̈ve methods such as SIS, SDR, and FQE still suffer from the curse of horizon4.

Our proposal takes a model-free perspective and introduces a new concept called “future-dependent
value functions”. The proposed value function does not involve latent states which are unobservable
in POMDPs. Nor does it relies on the entire data history. It performs the role of standard value
functions by incorporating future observations as proxies for latent states. We demonstrate that these
future-dependent value functions satisfy a new off-policy Bellman equation for POMDPs, which
involves past observations to approximate latent states. To estimate these future-dependent value
functions from offline data using the new Bellman equation, we propose minimax learning methods
that accommodate various function approximation, including deep neural networks, RKHS, and
linear models. Notably, our method extends the classical LSTD [LP03] developed in MDPs to the
POMDP setting when using linear models. To summarize, our contributions are as follows:

• We propose a novel model-free method for OPE that leverages future-dependent value functions.
Our key idea is to utilize future and historical observations as proxies for latent states.

• We derive a new Bellman equation for learning future-dependent value functions. The proposed
estimator can accommodate various types of function approximations.

• We provide PAC guarantees to demonstrate that our method can address the curse of horizon, and
conduct numerical experiments to showcase its superiority over existing methods.

Note that similar concepts of future-dependent value functions have recently been introduced in
the context of OPE in confounded POMDPs [SUHJ22] and online RL in POMDPs [USL+22].
However, we focus on OPE in non-confounded POMDPs. Further detailed discussions can be found
in Section 1.1.

1.1 Related Literature
OPE in confounded POMDPs. OPE with unmeasured confounders has been actively stud-
ied [ZB16, NKYB20, TSM20, WYW20, KZ20, LFY+21, NJ21, GCZ+22, SZY+22, XZS+22,
LMWY22, CWWY23, BSZ23]. Among them, [TSM20] adopted the POMDP model to formu-
late the OPE problem in the presence of unmeasured confounders. They borrowed ideas from
the causal inference literature on double negative control adjustment [MGT18, MST18, CPS+20,

4Notice that even when restricting to short-memory policies, it is necessary to use the entire history instead
of the short memory as the state to meet the Markov property.
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KMU21, SMNTT20] to derive consistent value estimators in tabular settings. Later, [BKLM21] and
[SUHJ22] extend their proposal by incorporating confounding bridge functions, thereby enabling
general function approximation. (see the difference between these bridge functions and the pro-
posed future-dependent value function in Section B). However, these methods do not apply to our
unconfounded POMDP setting. This is because these methods require the behavior policy to only
depend on the latent state to ensure certain conditional independence assumptions. These assumptions
are violated in our setting, where the behavior policy may depend on the observation – a common
scenario in practical applications. In addition, we show that in the unconfounded setting, it is feasible
to leverage multi-step future observations to relax specific rank conditions in their proposal, which is
found to be difficult in the confounded setting [NJ21]. Refer to Example 1.
Online learning in POMDPs. In the literature, statistically efficient online learning algorithms
with polynomial sample complexity have been proposed in tabular POMDPs [GDB16, ALA16,
JKKL20, LCSJ22], linear quadratic Gaussian setting (LQG) [LAHA21, SSH20], latent POMDPs
[KECM21] and reactive POMDPs/PSRs [KAL16, JKA+17]. All the methods above require certain
model assumptions. To provide a more unified framework, researchers have actively investigated
online learning in POMDPs with general function approximation, as evidenced by a vast body of work
[ZUSL22, LNSJ22, CBM22, ZXZ+22]. As the most relevant work, by leveraging future-dependent
value functions, [USL+22] propose an efficient PAC RL algorithm in the online setting. They require
the existence of future-dependent value functions and a low-rank property of the Bellman loss.
Instead, in our approach, while we similarly require the existence of future-dependent value functions,
we do not require the low-rank property of Bellman loss. Instead, we use the invertibility condition
in Theorem 1, i.e., we have informative history proxies as instrumental variables. As a result, the
strategies to ensure efficient PAC RL in POMDPs are quite different in the offline and online settings.
Learning dynamical systems via spectral learning. There is a rich literature on POMDPs by
representing them as predictive state representations (PSRs) [Jae00, LS01, RGT04, SJR04]. PSRs
are models of dynamical systems that represent the state as a vector of predictions about future
observable events. They are appealing because they can be defined directly from observable data
without inferring hidden variables and are more expressive than Hidden Markov Models (HMMs)
and POMDPs [SJR04]. Several spectral learning algorithms have been proposed for PSRs [BSG11,
HKZ12, BGG13], utilizing conditional mean embeddings or Hilbert space embeddings. These
approaches provide closed-form learning solutions, which simplifies computation compared to
EM-type approaches prone to local optima and non-singularity issues. While these methods have
demonstrated success in real-world applications [BSG11] and have seen subsequent improvements
[KJS15, HDG15, VSH+16, DHB+17], it is still unclear how to incorporate more flexible function
approximations such as neural networks in a model-free end-to-end manner with a valid PAC
guarantee. Our proposed approach not only offers a new model-free method for OPE, but it also
incorporates these model-based spectral learning methods when specialized to dynamical system
learning with linear models (see Section F).

Planning in POMDPs. There is a large amount of literature on planning in POMDPs. Even if the
models are known, exact (or nearly optimal) planning in POMDPs is known to be NP-hard in the
sense that it requires exponential time complexity with respect to the horizon [PT87, BDRS96]. This
computational challenge is often referred to as the curse of history [PGT06]. A natural idea to mitigate
this issue is to restrict our attention to short-memory policies [AYA18, MY20, KY22, GMR22].
Practically, a short-memory policy can achieve good empirical performance, as mentioned earlier.
This motivates us to focus on evaluating short-memory policies in this paper.

2 Preliminaries
In this section, we introduce the model setup, describe the offline data and present some notations.

Model setup. We consider an infinite-horizon discounted POMDP M = hS,A,O, r, �,O,Ti
where S denotes the state space, A denotes the action space, O denotes the observation space,
O : S ! �(O) denotes the emission kernel (i.e., the conditional distribution of the observation given
the state), T : S ⇥A ! �(S) denotes the state transition kernel (i.e., the conditional distribution of
the next state given the current state-action pair), r : S ⇥A ! R denotes the reward function, and
� 2 [0, 1) is the discount factor. All the three functions T, r,O are unknown to the learner.

For simplicity, we consider the evaluation of memory-less policies ⇡ : O ! �(A) that solely
depend on the current observation O in the main text. The extension to policies with short-memory is
discussed in Section C.
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Figure 1: Case with MH = 1,MF = 2. An action
A is generated depending on O. The extension to
memory-based policy is discussed in Section C.

Next, given a memory-less evaluation policy
⇡e, we define the parameter of interest, i.e., the
policy value. Following a policy ⇡e, the data
generating process can be described as follows.
First, S0 is generated according to some ini-
tial distribution ⌫S 2 �(S). Next, the agent
observes O0 ⇠ O(· | S0), executes the ini-
tial action A0 ⇠ ⇡e(· | O0), receives a reward
r(S0, A0), the environment transits to the next
state S1 ⇠ T(· | S0, A0), and this process re-
peats. Our objective is to estimate

J(⇡e) := E⇡e [
P1

t=0 �
tRt] ,

where the expectation E⇡e is taken by assuming the data trajectory follows the evaluation policy ⇡e.

Offline data. We convert the trajectory data generated by a behavior policy ⇡b : O ! �(A), into a
set of history-observation-action-reward-future transition tuples (denoted by Dtra) and a set of initial
observations (denoted by Dini). The first data subset enables us to learn the reward, emission and
transition kernels whereas the second data subset allows us to learn the initial observation distribution.

Specifically, the dataset Dtra consists of N data tuples {(H(i), O(i), A(i), R(i), F 0(i))}N
i=1. We use

(H,O,A,R, F 0) to denote a generic history-observation-action-reward-future tuple where H denotes
the MH -step historical observations obtained prior to the observation O and F 0 denotes the MF -step
future observations after (O,A) for some integers MH ,MF � 1. Specifically, at a given time step t
in the data trajectory, we use (O,A,R) to denote (Ot, At, Rt), and set

H = (Ot�MH :t�1, At�MH :t�1) and F 0 = (Ot+1:t+MF
, At+1:t+MF�1).

We additionally set F = (Ot:t+MF�1, At:t+MF�2). Note we use the prime symbol ’ to represent the
next time step. See Figure 1 for details when we set t = 0.

Throughout this paper, we use uppercase letters such as (H,S,O,A,R, S0, F 0) to denote random
variables in the offline data, and lowercase letters such as (h, s, o, a, r, s0, f 0) to denote their real-
izations, unless stated otherwise. To simplify the presentation, we assume the stationarity of the
environment, i.e., the marginal distributions of (H,S, F ) and (H 0, S0, F 0) are identical.

The dataset Dini consists of N 0 data tuples {O(i)
0:MF�1, A

(i)
0:MF�2}N

0

i=1 which is generated as follows:
S0 ⇠ ⌫S , O0 ⇠ O(· | S0), A0 ⇠ ⇡b(· | O0), S1 ⇠ T(· | S0, A0), · · · , until we observe O(i)

MF�1 and
A(i)

MF�1. We denote its distribution over F = OMF ⇥AMF�1 by ⌫F (·).
Remark 1 (Standard MDPs). Consider the setting where S = O and MH = 0,MF = 1. In that
case, we set H to S instead of histories. Then, Dtra = {O(i), A(i), R(i), O0(i)}. We often assume ⌫O
(⌫F in our setting) is known. This yields the standard OPE setting in MDPs [CJ19, UHJ20].

Notation. We streamline the notation as follows. We define a state value function under ⇡e:
V ⇡

e

(s) := E⇡e [
P1

k=0 �
kRk | S0 = s] for any s 2 S. Let d⇡

e

t
(·) be the marginal distribution of

St under the policy ⇡e. Then, we define the discounted occupancy distribution d⇡e(·) := (1 �
�)
P1

t=0 �
td⇡

e

t
(·). We denote the domain of F,H by F = (O ⇥A)MF�1 ⇥O,H = (O ⇥A)MH ,

respectively. The notations E,ED (without any subscripts) represent the population or sample average
over the offline data D = Dtra [ Dini, respectively. We denote the distribution of offline data
by P⇡b(·). We define the marginal density ratio w⇡e(S) := d⇡e(S)/P⇡b(S). Given a matrix C,
we denote its Moore-Penrose inverse by C+ and its smallest singular value by �min(C). For a
given integer m > 0, let Im denote an m ⇥ m identity matrix. Let ⌦ denote outer product and
[T ] = {0, · · · , T} for any integer T > 0.

3 Identification via Future-dependent Value Functions
In this section, we present our proposal to identify policy values under partial observability by
introducing future-dependent value functions. We remark that the target policy’s value is identifiable
from the observed data via SIS or SDR. Nonetheless, as commented earlier in Section 1, these
methods suffer from the curse of horizon. Here, we propose an alternative identification approach that
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can possibly circumvent the curse of horizon. It serves as a building block to motivate the proposed
estimation methods in Section 4.

In fully observable MDPs, estimating a policy’s value is straightforward using the value function-
based method J(⇡e) = Es⇠⌫S

[V ⇡
e

(s)]. However, in partial observable environments where the
latent state is inaccessible, the state value function V ⇡

e

(s) is unidentifiable. To address this challenge,
we propose the use of future-dependent value functions that are defined based on observed variables
and serve a similar purpose to state value functions in MDPs.
Definition 1 (Future-dependent value functions). Future-dependent value functions gV 2 [F ! R]
are defined such that the following holds almost surely,

E[gV (F ) | S] = V ⇡
e

(S).

Recall that the expectation is taken with respect to the offline data generated by ⇡b.

Crucially, the future-dependent value functions mentioned above may not always exist, and they
need not be unique. Existence is a vital assumption in our framework, although we don’t insist
on uniqueness. We will return to the topics of existence and uniqueness after demonstrating their
relevance in offline policy evaluation.

Hereafter, we explain the usefulness of future-dependent value functions. Future-dependent value
functions are defined as embeddings of value functions on latent states onto multi-step futures. Notice
that J(⇡e) = Es⇠⌫S

[V ⇡
e

(s)] = Ef⇠⌫F
[gV (f)]. These future-dependent value functions are useful

in the context of OPE as they enable us to accurately estimate the final policy value. However, the
future-dependent value function itself cannot be identified since its definition relies on unobserved
states. To overcome this challenge, we introduce a learnable counterpart called the learnable future-
dependent value function. This learnable version is defined based on observed quantities and thus can
be identified.
Definition 2 (Learnable future-dependent value functions). Define µ(O,A) := ⇡e(A | O)/⇡b(A |
O). Learnable future-dependent value functions bV 2 [F ! R] are defined such that the following
holds almost surely,

0 = E [µ(O,A){R+ �bV (F
0)}� bV (F ) | H] . (1)

Recall that the expectation is taken with respect to the offline data generated by ⇡b. We denote the set
of solutions by BV .

To motivate this definition, we recall that the off-policy Bellman equation in MDPs [DNP+14] can
be expressed as follows:

V ⇡
e

(S) = E

h
µ(O,A)(R+ �V ⇡

e

(S0)) | S
i
. (2)

Then, by the definition of future-dependent value functions and certain conditional independence
relations (F 0 ? (O,A) | S0), we obtain that

0 = E [µ(O,A) {R+ �gV (F
0)}� gV (F ) | S] . (3)

Since H ? (O,A, F 0) | S, taking another conditional expectation given H on both sides yields that
0 = E [µ(O,A) {R+ �gV (F

0)}� gV (F ) | H] . (4)
Therefore, (4) can be seen as an off-policy Bellman equation for future-dependent value functions,
analogous to the Bellman equation (2) in MDPs. Based on the above discussion, we present the
following lemma.
Lemma 1. Future-dependent value functions are learnable future-dependent value functions.
Remark 2 (Non-stationary case). When the offline data is non-stationary, i.e, the pdfs of (H,S) and
(H 0, S0) are different, we need to additionally require E[gV (F 0) | S0] = V ⇡

e

(S0) in the definition.
Remark 3 (Comparisons with related works). Similar concepts have been recently proposed in the
context of confounded POMDPs [see e.g., SUHJ22, BK21]. However, our proposal significantly dif-
fers from theirs. First, their confounded setting does not cover our unconfounded setting because their
behavior policies ⇡b is not allowed to depend on current observations as mentioned in Section 1.1.
Secondly, their proposal heir proposal overlooks the significant aspect of incorporating multi-step
future observations, which plays a pivotal role in facilitating the existence of future-dependent value
functions, as will be discussed in Example 1. For a detailed discussion, refer to Section B.
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Algorithm 1 Minimax OPE on POMDPs

Require: Dataset D, function classes Q ⇢ [F ! R],⌅ ⇢ [H ! R], hyperparameter � � 0
1: b̂V = argmin

q2Q max⇠2⌅ EDtra [{µ(A,O){R+ �q(F 0)}� q(F )}⇠(H)� �⇠2(H)].

2: return ĴVM = EDini [b̂V (f)]

Finally, we present a theorem to identify the policy value.
Theorem 1 (Identification). Suppose (1a) the existence of learnable future-dependent value functions
(need not be unique); (1b) the invertiblity condition, i.e., any g : S ! R that satisfies E[g(S) | H] = 0
must also satisfy g(S) = 0 ( i.e., g(s) = 0 for almost every s that belongs to the support of S), (1c)
the overlap condition w⇡e(S) := d⇡e(S)/P⇡b(S) < 1, µ(O,A) < 1. Then, for any bV 2 BV ,

J(⇡e) = Ef⇠⌫F
[bV (f)]. (5)

We assume three key conditions: the observability condition (i.e., BV 6= ;), the invertibility condition,
and the overlap condition. We call Condition (1a) the observability condition since it is reduced to the
well-known concept of observability in the LQG control theory, as we will see in Section D. While
Condition (1a) itself is concerned with learnable future-dependent value functions, it is implied by
the existence of unlearnable future-dependent value functions according to Lemma 1 which can be
verified using Picard’s theorem in functional analysis [CFR07]. In general, the observability condition
requires the future proxy F to contain sufficient information about S and is likely to hold when
F consists of enough future observations. We will see more interpretable conditions in the tabular
POMDPs (Example 1) and POMDPs with Hilbert space embeddings (HSE-POMDPs) where the
underlying dynamical systems have linear conditional mean embeddings (Example 5 in Section D).

The invertibility condition is imposed to ensure that a learnable future-dependent value function
bV satisfies (3) (note that right hand side of Eq. 3 is a function of Z, S instead of H). Again, we
will present more interpretable conditions in the tabular and linear settings below and in Section D.
Roughly speaking, it requires H to retain sufficient information about S. In that sense, the history
proxy serves as an instrumental variable (IV), which is widely used in economics [Hor11, New13] 5.

Finally, the overlap condition is a standard assumption in OPE [UIJ+21].
Example 1 (Tabular Setting). In the tabular case, abstract assumptions in Theorem 1 are reduced
to certain rank assumptions. We first define Sb = {s 2 S : P⇡b(s) > 0}. We define a matrix
Pr⇡b(F | Sb) 2 R

|F|⇥|S| whose (i, j)-th element is Pr⇡b(F = xi | S = x0
j
) where xi is the ith

element in F , and x0
j

is the jth element in Sb. We similarly define another matrix Pr⇡b(Sb,H) whose
(i, j)-th element is Pr⇡b(S = x0

i
, H = x

00

j
) where x

00

j
denotes the jth element in H.

Lemma 2 (Sufficient conditions for observability and invertibility ). (a) When rank(Pr⇡b(F | Sb)) =
|Sb|, future-dependent value functions exist. Then, from Lemma 1, learnable future-dependent value
functions exist. (b) The invertiblity is satisfied when rank(Pr⇡b(Sb,H)) = |Sb|.

The first two conditions require that the cardinalities of F and H must be greater than or equal to
Sb, respectively. The proof of Lemma 2 is straightforward, as integral equations reduce to matrix
algebra in the tabular setting. We note that similar conditions have been assumed in the literature
on HMMs and POMDPs [SBS+10, BSG11, BGG13]. In particular, Pr⇡b(O | Sb) = |Sb| has been
imposed in previous works [NJ21, SUHJ22] in the context of confounded POMDPs. Nonetheless,
our condition Pr⇡b(F | Sb) = |Sb| is strictly weaker when F includes multi-step future observations,
demonstrating the advantage of incorporating multi-step future observations compared to utilizing
only the current observation. A more detailed discussion can be found in Appendix D.1.

4 Estimation with General Function Approximation
In this section, we demonstrate how to estimate the value of a policy based on the results presented in
Section 3. We begin by outlining the proposed approach for estimating bV (·). The key observation is

5The observation that history can serve as an instrumental variable in POMDPs is mentioned in [HDG15,
VSH+16]. However, these works aim to learn the system dynamics instead of policy evaluation or learning.
Hence, concepts like future-dependent value functions do not appear in these works.
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that it satisfies E[L(bV , ⇠)] = 0 for any ⇠ : H ! R where L(q, ⇠) is defined as
L(q, ⇠) := {µ(A,O){R+ �q(F 0)}� q(F )}⇠(H)

for q : F ! R and ⇠ : H ! R. Given some constrained function classes Q ⇢ [F ! R] and
⌅ ⇢ [H ! R] and a hyperparameter � � 0, the estimator is computed according to Line 1 of
Algorithm 1. When the realizability BV \Q 6= ; holds and ⌅ is unconstrained, we can easily show
that the population-level minimizers argmin

q2Q max⇠2⌅ E[L(q, ⇠)� 0.5�⇠2(H)] are all learnable
future-dependent value functions. This is later formalized in Theorem 2.

We can use any function classes such as neural networks, RKHS, and random forests to parameterize
Q and ⌅. Here, the function class ⌅ plays a critical role in measuring how q deviates from the ground
truth bV . The hyperparameter � is introduced to obtain a fast convergence rate. We call it a stabilizer
instead of a regularizer since � does not need to shrink to zero as n approaches infinity. Note that
regularizers are needed when we penalize the norms of q and ⇠, i.e.,

b̂V = argmin
q2Q

max
⇠2⌅

ED[L(q, ⇠)� 0.5�⇠2(H)] + 0.5↵0kqk2Q � 0.5↵k⇠k2⌅,

for certain function norms k · kQ and k · k⌅ and hyperparameters ↵0,↵ > 0.

In the remainder of this section, we present three concrete examples using linear models, RKHSs
and neural networks. Let k · kQ and k · k⌅ denote L2-norms when we use linear models and RKHS
norms when using RKHSs.
Example 2 (Linear models). Suppose Q,⌅ are linear, i.e., G = {✓>�F (·) | ✓ 2 R

dF },⌅ =
{✓>�H(·) | ✓ 2 R

dH} with features �F : F ! R
dF ,�H : H ! R

dH . Then,

b̂V (·) = �>
F (·)

�
M>

2 {↵IdH
+ �M3}�1M2 + ↵0IdF

 �1
M>

2 {↵IdH
+ �M3}�1M1,

M1 = ED[µ(O,A)R�H(H)], M2 = ED[�H(H){�>
F (F )� �µ(O,A)�>

F (F
0)}],M3 = ED[�H(H)�>

H(H)].

When ↵0 = 0,↵ = 0,� = 0, the value estimators boil down to

b̂V (·) = �>
F (·)M+

2 M1, ĴVM = Ef⇠⌫F
[�>

F (f)]M
+
2 M1.

The above estimators are closely related to the LSTD estimators in MDPs [LP03]. Specifically, the
off-policy LSTD estimator for state-value functions [DNP+14, UHJ20] is given by

Es⇠⌫S
[�>

S (s)]ED[�S(S){�>
S (S)� �µ(S,A)�>

S (S
0)}]+ED[µ(S,A)R�S(S)]. (6)

Our new proposed estimator ĴVM is
Ef⇠⌫F

[�>
F (f)]ED[�H(H){�>

F (F )� �µ(O,A)�>
F (F

0)}]+ED[µ(O,A)R�H(H)],

which is very similar to (6). The critical difference lies in that we use futures (including current
observations) and histories as proxies to infer the latent state S under partial observability.
Example 3 (RKHSs). Let Q,⌅ be RKHSs with kernels kF (·, ·) : F⇥F ! R, kH(·, ·) : H⇥H ! R.
Then,

b̂V (·) = kF (·)>
�
{K0

F}>{↵In +KH}�1K0
F + ↵0In

 �1 {K0
F}>K

1/2
H {↵In +KH}�1K1/2

H Y

where Y 2 R
n, k(·) 2 R

n,KH 2 R
n⇥n,KF 2 R

n⇥n such that

{KH}(i,j) = kH(H(i), H(j)), {KF}(i,j) = kF (F
(i), F (j)), {Y}i = µ(O(i), A(i))R(i),

{K0
F}(i,j) = kF (F

(i), F (j))� �kF (F
0(i), F (j)), {kF (·)}i = kF (·, F (i)).

Example 4 (Neural Networks). We set Q to a class of neural networks and recommend to set ⌅ to
a linear or RKHS class so that the minimax optimization is reduced to single-stage optimization.
The resulting optimization problem can be solved by off-the-shelf stochastic gradient descent (SGD)
methods. Specifically, when we set ⌅ to a linear model, b̂V is reduced to

b̂V = argmin
q2Q

Z(q)>{↵I + �ED[�H(H)�>
H(H)]}�1Z(q),

Z(q) := ED[µ(A,O){R+ �q(F 0)}� q(F )}�H(H)].

When we set ⌅ to be an RKHS, b̂V is reduced to

b̂V = argmin
q2Q

{Z 0(q)}>K1/2
H {↵In + �KH}�1K1/2

H Z(q),

{Z 0(q)}i := µ(A(i), O(i)){R(i) + �q(F 0(i))}� q(F (i)).
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Remark 4 (Comparison with minimax methods for MDPs). Our proposed methods are closely
related to the minimax learning approach (a.k.a. Bellman residual minimization) for RL [ASM08].
More specifically, in MDPs where the evaluation policy is memory-less, [UIJ+21, TFL+20] proposed
minimax learning methods based on the following equations,

E[h(S){µ(S,A){�V ⇡
e

(S0) +R}� V ⇡
e

(S)}] = 0, 8h : S ! R.

These methods are no longer applicable in POMDPs since we are unable to directly observe the
latent state. Although substituting the latent state with the entire history can still provide statistical
guarantees, it is susceptible to the curse of horizon.
Remark 5 (Modeling of system dynamics). Our minimax estimators can be extended to learning
system dynamics. In particular, for tabular POMDPs, these results are closely related to the literature
on spectral learning in HMMs and POMDPs [SBS+10, BSG11, BGG13]. Refer to Section F,G.
Remark 6 (Finite horizon setting). The extension to the finite horizon setting is discussed in Section E

5 Finite Sample Results
We study the finite sample convergence rate of the proposed estimators in this section. To simplify
the technical analysis, we impose three assumptions. First, we assume the function classes are
bounded, i.e., kQk1  CQ, k⌅k1  C⌅ for some CQ, C⌅ > 0. Second, we assume that the offline
data are i.i.d.6 Third, we assume Q,⌅ are finite hypothesis classes. Meanwhile, our results can be
extended to infinite hypothesis classes using the global/local Rademacher complexity theory; see e.g.,
[UIJ+21]. To simplify the presentation, following standard convention in OPE, we suppose the initial
distribution is known, i.e., |Dini| = 1.

Accuracy of b̂V . We first demonstrate that b̂V consistently estimates the learnable future-dependent
value bridge functions. To formalize this, we introduce the following Bellman operators.
Definition 3 (Bellman operators). The Bellman residual operator onto the history is defined as

T : [F ! R] 3 q(·) 7! E[µ(O,A){R+ �q(F 0)}� q(F ) | H = ·],

and the Bellman residual error onto the history is defined as E[(T q)2(H)]. Similarly, the Bellman
residual operator onto the latent state, T S is defined as

T S : [F ! R] 3 q(·) 7! E[µ(O,A){R+ �q(F 0)}� q(F ) | S = ·],

and the Bellman residual error onto the latent state is defined as E[{T S(q)}2(S)]. The conditional
expectations equal to zero when h and s lie outside the support of H and S, respectively.

The Bellman residual error onto the history is zero for any learnable future-dependent value function,
i.e., E[(T bV )2(H)] = 0. Thus, this is a suitable measure to assess how well value function-based
estimators approximate the true learnable future-dependent value functions.

Theorem 2 (Finite sample property of b̂V ). Set � > 0. Suppose (2a) BV \ Q 6= 0 (realizability)
and (2b) T Q ⇢ ⌅ (Bellman completeness). With probability 1 � �, we have E[(T b̂V )2(H)]1/2 
c{1/�+ �}max(1, CQ, C⌅)

q
ln(|Q||⌅|c/�)

n
where c is some universal constant.

Note (2a) and (2b) are commonly assumed in the literature on MDPs [CJ19, UIJ+21] as well. In
particular, Bellman completeness means that the function class ⌅ is sufficiently rich to capture the
Bellman update of functions in Q. For instance, these assumptions are naturally met in HSE-
POMDPs. We require � > 0 in the statement of Theorem 2 to obtain a parametric convergence rate.
When � = 0, although we can obtain a rate of Op(n�1/4), it is unclear whether we can achieve
Op(n�1/2).

Accuracy of ĴVM. We derive the finite sample guarantee for ĴVM.

6Without the independence assumption, similar results can be similarly established by imposing certain
mixing conditions; see e.g., [SZLS20, LQM20, KU22].
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Theorem 3 (Finite sample property of ĴVM). Set � > 0. Suppose (2a), (2b), (2c) any element
in q 2 Q that satisfies E[{T S(q)}(S) | H] = 0 also satisfies T S(q)(S) = 0. (2d) the overlap
µ(O,A) < 1 and any element in q 2 Q that satisfies T S(q)(S) = 0 also satisfies T S(q)(S⇧) = 0
where S⇧ ⇠ d⇡e(s). With probability 1� �, we have

|J(⇡e)� ĴVM|  c(1/�+ �)

(1� �)2
max(1, CQ, C⌅)IV1(Q)DrQ[d⇡e , P⇡b ]

r
ln(|Q||⌅|c/�)

n
, (7)

where

IV2
1(Q) := sup

{q2Q;E[{T (q)(H)}2] 6=0}

E[{T S(q)(S)}2]
E[{T (q)(H)}2] , (8)

Dr2Q[d⇡e , P⇡b ] := sup
{q2Q;Es⇠P

⇡b
[{T S(q)(s)}2] 6=0}

Es⇠d⇡e [{T S(q)(s)}2]
Es⇠P

⇡b
[{T S(q)(s)}2] . (9)

On top of (2a) and (2b) that are assumed in Theorem 2, when IV1(Q) < 1,DrQ(d⇡e , P⇡b) < 1,
(2c) and (2d) hold, we have the non-vacuous PAC guarantee. The condition DrQ(d⇡e , P⇡b) < 1 and
(2d) are the overlap conditions, which are adaptive to the function class Q and are weaker than (1c).
These are also used in MDPs [XCJ+21]. Here, DrQ(d⇡e , P⇡b) is a refined version of the density
ratio and satisfies DrQ(d⇡e , P⇡b)  w⇡e(S). The condition IV1(Q) < 1 and (2c) are characteristic
conditions in POMDPs that quantify how much errors are properly translated from on H to on S.
Similar assumptions are frequently imposed in IV literature [DLMS20, CP12].

The upper error bound in (7) does not have explicit exponential dependence on the effective horizon
1/(1� �). In particular, as shown in Section D, for tabular POMDPs and HSE-POMDPs, the terms
DrQ(d⇡e , P⇡b) and (Q) can be reduced to certain condition numbers associated with covariance
matrices spanned by feature vectors; see (15) and (16) in Appendix D. Hence, unlike SIS-based
methods, we are able to break the curse of horizon.

The numbers of future and history proxies included in F and H represents a tradeoff. Specifically, if
F contains enough observations, it is likely that (2a) will hold. Meanwhile, if H contains enough
observations, it is more likely that (2b) will hold. These facts demonstrate the benefits of including a
sufficient number of observations in F and H . However, the statistical complexities ln(|Q||⌅|) will
increase with the number of observations in F and H .

Lastly, it’s worth noting that while our methods effectively address the curse of horizon, they may
incur exponential growth concerning the number of future proxies used. This also applies to history
proxies, which should be longer than the length of short memory policies. Here, we focus on the
explanation of future proxies. For instance, in the tabular case, log |⌦| might scale with |O|MF when
considering ⌦ as the set of all functions on OMF . However, this situation differs significantly from the
curse of horizon, a challenge that naive methods like replacing states with the entire history encounter.
These methods would necessitate the entire history to achieve Markovianity, whereas we only require
a shorter length of future observations to establish the conditions outlined in Theorem 1 (existence),
which can be much shorter. Specific examples are provided throughout the paper, including Example
1, which discusses the tabular setting and demonstrates that we essentially need as many future
proxies as states, as long as there is sufficient statistical dependence between them.

6 Experiment
This section empirically evaluates the performance of the proposed method on a synthetic dataset.7.

We use the CartPole environment provided by OpenAI Gym [BCP+16], which is commonly employed
in other OPE studies [SUHJ22, FCG18]. By default, this non-tabular environment consists of 4-
dimensional states, which are fully observable. Following [SUHJ22], we create partial observability
by adding independent Gaussian noises to each dimension of the state as O(j) = S(j)(1 +N (1 +
0.32)), 1  j  4. To define behavior and evaluation policies, we first train an expert policy using
DDQN [VHGS16] on latent states S. Subsequently, we apply Behavior Cloning (BC) on two datasets,
one containing pairs of latent state and action (S,A) and the other containing pairs of observation
and action (O,A), respectively. Then, we use the base policy obtained by BC on the state-action

7Our code is available at https://github.com/aiueola/neurips2023-future-dependent-ope
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Figure 2: Logarithms of relative biases (left) and MSEs (right) of the proposed and the baseline
estimators for various values of ✏, which specify the evaluation policy. The confidence intervals are
obtained through 100 Monte Carlo simulations.

pairs (S,A) to define an ✏-greedy behavior policy, where we set ✏ = 0.3. 8 Similarly, the evaluation
policy is also an ✏-greedy policy, based on the base policy obtained by BC on the observation-action
pairs (O,A), with different values of ✏ 2 [0.1, 0.3, 0.5, 0.7]. We conduct the experiment with 100
random seeds, and for each simulation, we collect logged data consisting of 1000 trajectories, each
containing 100 steps.

We compare our proposal with Sequential Importance Sampling (SIS) [Pre00] and the naive minimax
OPE [UHJ20], which is designed for fully-observable MDPs and does not account for partial
observability. The naive minimax estimator is defined as if the environment was fully observable,
replacing H and F̄ in Algorithm 1 with the current observation O. In contrast, our proposed method
uses a 3-step history as H and a one-step future as F to address partial observability. Both our
proposed method and the naive approach use two-layer neural networks for the function Q and
RKHSs for ⌅, as detailed in Example 4.

We present the results in Figure 2, which demonstrate the superior accuracy of our proposed estimator
compared to the baselines (SIS and naive minimax estimator) in terms of mean square errors (MSEs).
Additional experimental details and ablation results, including the variations in the length of H , F̄ ,
and the choice of RKHSs, can be found in Appendix H.3.

7 Conclusion
We present a novel approach for OPE of short-memory policies in POMDPs. Our method involves in-
troducing future-dependent value functions and the associated off-policy Bellman equations, followed
by proposing a minimax estimator based on these equations. This is the first model-free method
that allows for general function approximation and mitigates the curse of horizon. Our proposal is
grounded in three interpretable key assumptions: observability, which asserts the presence of (short)
future observations retaining adequate information about latent states, invertibility, which posits
the existence of (short) histories preserving ample information about latent states; and the overlap
between evaluation policies and behavior policies.

We have several avenues for enhancing our proposals. Firstly, automatically determining the
appropriate lengths of futures and histories holds practical significance. Additionally, explor-
ing recent attention mechanisms that extend beyond selecting the most recent history proxies or
the nearest future proxies shows promise. Secondly, while we establish Bellman equations for
POMDPs and use a simple minimax approach akin to [DLMS20], we may benefit from leverag-
ing more refined methods introduced in recent research for solving conditional moment equations
[BKM+23c, BKM+23a, BKM+23b].
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