
Published in Transactions on Machine Learning Research (11/2023)

Distributed Architecture Search Over Heterogeneous
Distributions

Erum Mushtaq emushtaq@usc.edu
Department of Electrical and Computer Engineering
University of Southern California

Chaoyang He∗ ch@fedml.ai
FedML, Inc

Jie Ding dingj@umn.edu
School of Statistics
University of Minnesota

Salman Avestimehr avestime@usc.edu
Department of Electrical and Computer Engineering
University of Southern California

Reviewed on OpenReview: https: // openreview. net/ forum? id= sY75NqDRk1

Abstract

Federated learning (FL) is an efficient learning framework that assists distributed machine
learning when data cannot be shared with a centralized server. Recent advancements in FL
use predefined architecture-based learning for all clients. However, given that clients’ data
are invisible to the server and data distributions are non-identical across clients, a predefined
architecture discovered in a centralized setting may not be an optimal solution for all the
clients in FL. Motivated by this challenge, we introduce SPIDER, an algorithmic frame-
work that aims to Search PersonalIzed neural architecture for feDERated learning. SPI-
DER is designed based on two unique features: (1) alternately optimizing one architecture-
homogeneous global model in a generic FL manner and architecture-heterogeneous local
models that are connected to the global model by weight-sharing-based regularization,
(2) achieving architecture-heterogeneous local models by a perturbation-based neural ar-
chitecture search method. Experimental results demonstrate superior prediction perfor-
mance compared with other state-of-the-art personalization methods. Code is available at
https://github.com/ErumMushtaq/SPIDER.git .

1 Introduction

Federated Learning (FL) is a promising distributed machine learning framework that facilitates data privacy
and low communication costs. It has been extensively explored in various machine learning domains such
as computer vision, natural language processing, and data mining. Despite many benefits of FL, one major
challenge involved in FL is data heterogeneity, meaning that the data distributions across clients are not
identically or independently distributed (non-I.I.D). The non-I.I.D distributions result in the varying perfor-
mance of a globally learned model across different clients. In addition to data heterogeneity, data invisibility
is another challenge in FL. Since clients’ private data remain invisible to the server, from the server’s per-
spective, it is unclear how to select a pre-defined architecture from a pool of all available candidates (Ding
et al., 2018). In practice, it may require extensive experiments and hyper-parameter tuning over different
architectures, a procedure that can be prohibitively expensive.

∗This work was done while Chaoyang He was a PhD student at USC.

1

https://openreview.net/forum?id=sY75NqDRk1
https://github.com/ErumMushtaq/SPIDER.git


Published in Transactions on Machine Learning Research (11/2023)

The current literature on this subject addresses the data-heterogeneity challenge by exploring the variants
of the standard FedAvg to train a global model, including the FedProx (Li et al., 2018), FedOPT (Reddi
et al., 2021), and FedNova (Wang et al., 2020). In addition to training a global model, frameworks that
focus on training personalized models have also gained a lot of popularity. The PerFedAvg (Fallah et al.,
2020), pFedMe (Dinh et al., 2020), Ditto (Li et al., 2021), and SelfFL (Chen et al., 2022) are some of the
recent works that have shown promising results to obtain improved performance across clients. However, all
these works exploit pre-defined architectures and adapt the optimization algorithm to accommodate data
heterogeneity. Consequently, in addition to their inherent hyper-parameter tuning, these personalization
frameworks often encounter the invisibility of training data challenge (Majeed et al., 2022) that one has to
select a suitable model architecture involving a lot of hyper-parameter tuning.

There is another line of work that has recently emerged that uses neural architecture search (NAS) in feder-
ated learning. In FL, NAS has been explored for a global architecture search (He et al., 2020b; Yuan
et al., 2022), partial model personalization (Hoang & Kingsford, 2021), cluster-based architecture
search (Wang et al., 2022) and resource-aware personalization (Dudziak et al., 2022; Isik et al., 2023).
However, we argue that a global architecture search may not capture the data heterogeneity in FL
with non-I.I.D data. Additionally, partial model personalization method searches some components of
a predefined model, and therefore, needs a search in order to identify an optimal boundary between person-
alized and shared (global) components for each client. This search can become prohibitively expensive if not
conducted in an automated fashion. The cluster-based architecture search methods search the same
architecture per cluster, often requiring clients to share their data distribution information to form clusters,
which may not be feasible for clients such as hospitals due to privacy concerns.

Alternatively, we address the data heterogeneity challenge by facilitating each client to search the entire
architecture space and personalize architecture to each local client’s data distribution in a non-cluster-
based setting. Oftentimes, the search for an optimal architecture is regarded as a hyper-parameter tuning
problem for a given task (or a data distribution) (Kim et al., 2021). Since data is non-I.I.D due to different
data-generative models at different silos, the selection of the optimal hyper-parameters/architectures can be
different across different silos. Therefore, in such a setting, we propose to enable each silo to search for a
personalized architecture and capture its own data distribution.

To search personalized architectures, we introduce SPIDER, an algorithmic framework that aims to Search
PersonalIzed neural architecture for each individual client in feDERated learning. Particularly, we focus
on the cross-silo setting where clients have ample computational resources but data heterogeneity is a main
concern Huang et al. (2022). Under this setting, SPIDER deploys two models, a local and a global model,
on each client. Initially, both models use the DARTS search-space-based Supernet (Liu et al., 2019), an
over-parameterized architecture search space. The global model is shared with the server for the FL updates
and, therefore, stays the same in the architecture design. On the other hand, the local model performs a
personalized neural architecture search and gets updated. The searched local/child models can be heteroge-
neous across silos. To search and optimize the heterogeneous local models while benefiting from the global
model, we exploit SPIDER Trainer which 1) trains the local and global models in an alternate fashion and 2)
regularizes the common connections between the global model’s Supernet and the local model’s child model.
This regularization essentially distills knowledge from the global model to the local model. The proposed
approach not only aids in uncovering different personalized architectures across various silos but also ensures
that the derived local model remains local, with no sharing to the server and other clients.

To evaluate the performance of the proposed algorithm, we consider a cross-silo FL setting and use the
Dirichlet Distribution to create a non-I.I.D data distribution across clients. For evaluation, we report the
test accuracy at each client using the 20% of training data kept as test data for that client. Furthermore,
we compare our work to the state-of-the-art predefined architecture-based personalization FL schemes. We
demonstrate that the architecture personalization yields better results than state-of-the-art personalization
algorithms based solely on the optimization layer, such as Ditto (Li et al., 2021), perFedAvg (Fallah et al.,
2020), local adaptation (Cheng et al., 2021) and KNN-Per (Marfoq et al., 2022). Additionally, we also
compare our work to a cluster-based hypernetwork search method, FedMN (Wang et al., 2022).

To summarize, the key contributions of our work are as follows:

2



Published in Transactions on Machine Learning Research (11/2023)

• Personalized Architecture Search: We propose and formulate a personalized neural architecture search
framework called SPIDER for personalized federated learning (FL). Architecture personalization allows each
silo to capture the complexities of its local data distribution at the level of architecture design and potentially
leads to improved personalization.

• Architecture-Heterogeneous Model Training: SPIDER formulates architecture personalization as a bilevel
optimization. It solves the bilevel optimization objective by incorporating two distinct features: 1) exploiting
an alternate training-based SPIDER Trainer that trains one architecture-homogeneous global model, also
called Supernet, in a generic FL manner and one architecture-heterogeneous local model that is connected
to the global model by weight-sharing-based regularization, 2) searching architecture-heterogeneous local
model by performing neural architecture search locally. The proposed approach facilitates knowledge sharing
from the global model to the local model, enabling effective learning from other silos in the presence of
heterogeneous personalized architecture settings.

• Performance Evaluation: We conducted extensive experiments to demonstrate the benefits of SPIDER
compared to state-of-the-art personalized federated learning approaches, including Ditto (Li et al., 2021),
perFedAvg (Fallah et al., 2020), Local Adaptation (Cheng et al., 2021), KNN-Per (Marfoq et al., 2022),
and FedMN (Wang et al., 2022). We observed significant improvements in average local accuracy com-
pared to the aforementioned approaches on three datasets: CIFAR10, CIFAR100, and CINIC10 using the
ResNet18 model. Among the state-of-the-art methods, KNN-Per obtains the highest accuracy for all three
datasets. SPIDER outperforms this PFL baseline by an accuracy margin of 3.29%, 5.31%, and 1.59% on
CIFAR10, CIFAR100, and CINIC10 datasets, respectively. To assess the gain achieved through architecture
personalization, we measure the accuracy gap between the current client’s model and models attained from
other clients and fine-tuned on the current client’s data. On average, we observed an accuracy drop with
the other clients’ fine-tuned model compared to its own searched architecture. We refer to this accuracy
drop as the “personalization gain” achieved by architecture personalization. Averaged over all clients, we
observed personalization gains of 4.70%, 7.84%, and 4.19% on CIFAR10, CIFAR100, and CINIC10 datasets,
respectively.

2 Related works

Heterogeneous Architecture for FL Heterogeneous neural architecture has primarily been explored to
personalize models for system/hardware heterogeneity in cross-device FL scenarios. For instance, the work
by Lin et al. (2020) accomplishes the task of heterogeneous model aggregation by forming clusters of clients
assigned a predefined model and allowing for heterogeneous models across clusters. Model aggregation is
based on cluster-wise aggregation followed by a knowledge distillation from the aggregated models into the
global model. Another work, HeteroFL (Diao et al., 2021), aggregates heterogeneous models by assigning
static sub-parts of the global model based on computation budgets and aggregating the common parameters
across different clients. Similarly, in the work (Luo et al., 2021), a limited channel-wise search is performed
to assign sub-models that meet clients’ efficiency budgets, followed by partial weight aggregation at the
server. These random or static partial heterogeneous model aggregation schemes are susceptible to client
drifts, which arise from inconsistencies between local model architectures and the global model architecture.
FedRolex (Alam et al., 2022) is a recent approach that addresses client drifts by allowing the training of sub-
models extracted via a rolling window from a large pre-defined global model. However, it cannot maintain
static heterogeneous local models across silos. Additionally, all these works primarily focus on addressing
system heterogeneity challenges in FL by considering the computing capabilities of training devices. The
sub-models are extracted randomly, statically, or based on a rolling window. In FL, where data visibility
is limited, determining which architecture would be suitable for each client based on their data distribution
is a challenging task that requires exploration. Our proposed method focuses on tailoring architecture to
individual clients’ data distributions by searching for model-heterogeneous architectures across silos. By
prioritizing personalized architecture design, we aim to address the challenge of data distribution variations
and enable more effective model customization in FL settings.

Neural Architecture Search for FL Neural Architecture Search (NAS) has gained momentum in recent
literature for searching a global model in a federated setting. FedNAS (He et al., 2020b) explores the MileNAS

3



Published in Transactions on Machine Learning Research (11/2023)

solver (He et al., 2020d) with the Federated averaging algorithm (McMahan et al., 2017) to search for a global
model. Direct Federated NAS (Garg et al., 2020) investigates the compatibility of DSNAS (Hu et al., 2020)
with Federated learning for searching a global model. Work (Zhu & Jin, 2021) utilizes evolutionary NAS
to design a global model. Work (Singh et al., 2020) explores differential privacy using the DARTs solver
(Liu et al., 2019) to examine the trade-off between accuracy and privacy in a global model. Work (Xu
et al., 2020) start with a pre-trained handcrafted model and continue to prune the model until it meets
the efficiency budget. FedPNAS (Hoang & Kingsford, 2021) divide the model architecture into global and
personal components and search for the personal component for personalization on identical and independent
(IID) vision tasks. However, this approach remains unexplored in the non-I.I.D data distribution settings
of FL. FedPM (Isik et al., 2023) addresses the communication efficiency challenge by learning a stochastic
binary mask of a dense network with fixed weights. FedorAS (Dudziak et al., 2022) addresses the system
heterogeneity challenge in a cross-device setting by searching architectures in cluster/tier-based settings to
meet an efficiency budget. FedMN (Wang et al., 2022) proposes a cluster-based module personalization
approach. Cluster-based approaches often require information exchange regarding data distributions to
form clusters, which may not be feasible due to privacy concerns. This paper aims to search for an entire
personalized neural architecture for each client that remains unknown on the server.

3 Preliminaries, Motivation, and Design Goals

In this section, we introduce the state-of-the-art methods for personalized federated learning, discuss the
motivation for personalizing model architectures, and summarize our design goals.

Personalized Federated Learning A natural formulation of FL is to assume that among c distinct
clients, each client k has its own distribution Pk, draws data samples from Pk, and aims to solve a supervised
learning task (e.g., image classification) by optimizing a global model w with other clients collaboratively.
At a high-level abstraction, the optimization objective is then defined as:

min
w

G (F1(w, A), ..., Fc(w, A)) , (1)

where Fk(w, A) is client k’s local objective function that optimizes the weight parameters w of the global
model A and G is the global model aggregation function that aggregates each client’s local objectives. For
example, for FedAvg (McMahan et al., 2017), G(.) would be weighted aggregation of the local objectives,∑c

k=1 pkFk(w, A), where
∑c

k=1 pk = 1. However, as distributions across individual clients are typically
heterogeneous (i.e., non-I.I.D.), there is a growing line of research that advocates reformulating FL as a
personalization framework, dubbed as personalized FL (PFL). In PFL, the objective is redirected to train a
personalized model vk for device k that performs well on the local data distribution while also learning from
other silos, such as via aggregation function G.

To solve this challenging problem, various PFL methods are proposed, including FedAvg with local adaptation
(Local-FL) (Cheng et al., 2021), MAML-based PFL (MAML-FL) (Fallah et al., 2020; Jiang et al., 2019),
clustered FL (CFL) (Ghosh et al., 2020; Sattler et al., 2021; Wang et al., 2022; Dudziak et al., 2022), (Liang
et al., 2019; Pillutla et al., 2022), federated multitask learning (FMTL) (Smith et al., 2017) and knowledge
distillation (KD) (Lin et al., 2020; He et al., 2020a). Additionally, Neural Architecture Search (NAS) has
gained momentum in recent literature to search for a personalized model in a federated setting. FEDPNAS
(Hoang & Kingsford, 2021), personalized layer-based FL (PL-FL), divides the model architecture into global
and personal components and searches the personal component’s architecture for personalization. Further,
FedMN (Wang et al., 2022) follow clustered FL (CFL) approach to address the data heterogeneity challenge
in FL.

Motivation for Neural Architecture Personalization Distinct from these existing works on PFL,
we propose a new approach to instead personalize the entire model architecture for each client. We are
motivated by one critical potential benefit, that is, the searched architecture for each client is expected to fit
its own distinct distribution, which has the potential to provide a substantial improvement over the existing
PFL baselines that only personalize model weights. In addition, a personalized architecture search allows

4



Published in Transactions on Machine Learning Research (11/2023)

weight sharing-based
Regularization

SPIDER Trainer: 
Architecture-Heterogeneous 

Bi-level Optimization Framework

SPIDER Searcher: 
each client search its own neural architecture 

on the fly progressively

SPIDER Weave (search) a Different Web �QHXUDO�DUFKLWHFWXUH��for Each Client

Phase 1:
Fixing architecture 

for warming up

Phase 2:
Progressive Searching 

Personalized Architecture

Phase 3:
Fixing 

Architecture

replace
on the fly

1

2 3

4

1

2 3

4

1

2 3

4

1

2 3

4

weight sharing-based
Regularization

1

2 3

1

2 3

1

2 3

1

2 3

weight sharing-based
Regularization

1

2 3

4

1

2 3

4

1

2 3

4

1

2 3

4

weight sharing-based
Regularization

1

2 3

1

2 3

1

2 3

1

2 3

… …

Time

replace
on the fly

Client 1

Client K

1

2 3

4

1

2 3

4

1

2 3

4

1

2 3

4

1

2 3

4

1

2 3

4

…
1

2 3

4

1

2 3

4

1

2 3

1

2 3

1

2 3

4

1

2 3

4

1

2 3

4

1

2 3

4

1

2 3

4

1

2 3

4

…
1

2 3

4

1

2 3

4

1

2 3

1

2 3
FL Server

Global model 
(Supernet)

Local model 
(Child)

Figure 1: Illustration of SPIDER framework. SPIDER consists of two components: Trainer (global and local model
parameter optimization) and Searcher (local architecture search). Searcher weaves (searches) a different web (neural
architecture) for each client in three phases: Phase 1 (Local Architecture Pre-training), Phase 2 (Local Architecture
Search), Phase 3 (Local Architecture Training). To illustrate the local architecture search, we represent a simplified
cell with 4 nodes where each node represents a latent feature map and each edge is associated with 3 operations (blue,
orange ad yellow). We provide details about the cells of DARTS architecture search space in Section 4.2 and Appendix
B.2 and show the heterogeneous client architecture cells obtained through the search process in Figure 2.

the clients to even keep their local model architectures private in a sense the server and other clients neither
knows the architecture nor the weights of that architecture.

Design Goals Our goal is to enable a complete model’s personalized neural architecture search for all
clients in FL. In this context, the limitation of existing personalized FL methods is obvious: Local-FL
and MAML-FL need every client to have the same architecture to perform local adaptations; In CFL,
the clustering step requires all clients in one cluster to share a homogeneous model architecture; PL-FL
can only obtain heterogeneous architectures for a small portion of personalized layers, but it does not
provide an architecture-agnostic method to determine the boundary of personalized layers in an automated
mechanism; FMTL is a regularization-based method which cannot perform regularization when architectures
are heterogeneous across clients; KD has an unrealistic assumption that the server has public dataset as the
auxiliary data for knowledge distillation.

To circumvent these limitations, our goal is to design an architecture-personalized FL framework with the
following requirements:

• R1: Allowing heterogeneous architectures for all clients, which can capture data heterogeneity;

• R2: Searching and personalizing the entire architecture space to avoid heuristic hyper-parameter
search traditionally required to determine the personalized layers and globally shared layers;

• R3: Requiring no auxiliary data at the client- or server-side (unlike knowledge distillation-based
PFL approaches);

We now introduce SPIDER which meets the above requirements in a unified framework.

4 Methodology: SPIDER

4.1 Overview

The overall framework of SPIDER is illustrated in Figure 1. In this framework, each client maintains two
models: a homogeneous global model for collaborative training with other clients, and a heterogeneous local

5



Published in Transactions on Machine Learning Research (11/2023)

model that initially shares the same super architecture space as the global model. SPIDER is formulated
as an architecture-personalized bi-level optimization problem (Section 4.2). It consists of two main compo-
nents: SPIDER Trainer (Section 4.3) and SPIDER-Searcher (Section 4.4). SPIDER Trainer is an
architecture-personalized training framework that enables the collaborative training of heterogeneous neural
architectures across clients. It utilizes alternate bi-level optimization and weight sharing between personal-
ized architectures and the global model to facilitate federated training. SPIDER-Searcher, on the other
hand, is designed to dynamically adjust the architecture of each client’s local model. It uses a novel neural
architecture search (NAS) method that progressively searches for optimal local subnets by perturbing op-
erations at the accuracy level. This allows for personalized architecture search based on each client’s local
data distribution. Each client’s local model goes through three phases: pre-training to warm up the initial
model, progressive neural architecture search, and final training of the searched architecture-personalized
model. These phases are depicted in Figure 1.

SPIDER can meet the design goals R1-R3 introduced in Section 3 because 1) each client performs inde-
pendent architecture personalization using its own private data (R1), 2) the SPIDER’s search space is not
restricted to a portion of the model (R2), and 3) no auxiliary data is used to assist the search/train process
(R3).

4.2 SPIDER Formulation: Architecture-personalized Bi-level Optimization

SPIDER aims to personalize (weave) a distinct neural architecture (web) for each client. To accomplish this,
SPIDER leverages two models, namely a local model Ak and a global model A, at each client k ∈ {1, 2, ..., c}.
The two-model design has been shown effective in personalized federated learning (Li et al., 2021; Chen
et al., 2022). However, the prior works only target predefined architectures. Our work proposes to facilitate
personalization at the architectural level by neural architecture search (NAS). To achieve this, we use DARTS’
search space (Liu et al., 2019) for both A and Ak. Essentially, DARTS’ search space consists of repetitions of
cell-based microstructures. Each cell can be considered as a directed acyclic graph (DAG) with N nodes and
E edges, where each node represents a latent feature map, and each edge can be associated with multiple
operations O (e.g. "skip connect", "sep conv 3x3"). For instance, in Figure 1, during Phase 1, the cell is
depicted with 4 nodes and 3 operations per edge for the purpose of illustration. At any specific edge i, each
operation j has its corresponding learnable architecture parameter αij ∈ {0, 1}. More specifically, the output
at the edge i is constructed by x =

∑|O|−1
j=0 αijoj(xi), where xi is the input at the edge i, oj(xi) is the output

of function oj(.) (operation index j in the operation candidate search space O) applied to the input xi, αij

is the associated architecture parameter and x is the mixed operation output at the edge i. We introduce
A and Ak to be a collection of all αij and αijk

for ∀i, j, respectively. Initially, all αij are fixed to 1 for all
i ∈ E and j ∈ O in A and Ak. This search space searches an architecture among 414 possible architecture
configurations for each client. We provide details of the DARTS search space in Appendix B.2.

In most PFL works (Li et al., 2021), the global model architecture and the local model architectures are
fixed (pre-defined). However, SPIDER facilitates each client to search for its own local architecture Ak.
To achieve this objective, SPIDER formulates a local objective Fk(vk, Ak) which aims to perform neural
architecture search for Ak by learning its architecture parameters αijk

and optimize its corresponding model
weights vk. Additionally, it also maintains a global objective to update the global model weights. It connects
the local and global objectives with a distance-based regularization between the parameters of the global
model and the local model. More specifically, the SPIDER formulation follows an architecture-personalized
bi-level optimization problem for each client k:

min
vk∈Rdk ⊆Rd,Ak⊆A

hk(vk, Ak; w∗, A) = Fk(vk, Ak) + λ

2 Reg(vk, w∗) (2)

s.t. w∗ ∈ arg min
w∈Rd

G (F1(w, A), ..., FK(w, A)) , (3)

where global model architecture A is parameterized by weight parameters w with size d, and local model
architecture Ak is parameterized by weight parameters vk with parameter size dk for client k. Reg(vk, w∗)
illustrates a distance-based regularization between the global and local model. We present the local objective
in Equation 2 and the global objective in Equation 3. Further, we use a cross-entropy loss function as

6



Published in Transactions on Machine Learning Research (11/2023)

our Fk(.) objective function. As shown in Equation 2, the lower-level optimization optimizes the global
model parameters w∗, and the upper-level optimization optimizes the local architecture Ak and its weight
parameters vk. Here the hyperparameter λ controls the interpolation between local model weight parameters
vk and global model weight parameters w∗ models. Since Ak evolves as learning progresses, it becomes a
subset of the global model A, denoted as Ak ⊆ A, and Rdk ⊆ Rd.

4.3 SPIDER Trainer: Federated Training on Heterogeneous Architectures

SPIDER facilitates each silo to search and train an architecture better suited for its specific data distribution.
However as the local architecture Ak evolves due to our proposed formulation, it becomes a subset of the
global model A, denoted as Ak ⊆ A, and Rdk ⊆ Rd. In such a setting, the challenge of the proposed
local optimization objective is to devise the regularization between the architecture-homogeneous global
model and architecture-heterogeneous local models. To solve this challenge, we propose SPIDER trainer,
an architecture-personalized training framework that can collaboratively train heterogeneous local neural
architectures across clients.

To clearly show how SPIDER handles the optimization difficulty of Equation 2, we first downgrade the
objective to the case that all clients use predefined (fixed) heterogeneous architectures (derived from the
Supernet A). More specially, we reduce the aforementioned optimization framework in Equation 2 and
Equation 3 to the following:

min
vk∈Rdk

hk(vk, Ak; w∗, A) = Fk(vk, Ak) + λ

2 ||vk − w∗
kshare

||2 (4)

s.t. w∗ ∈ arg min
w∈Rd

G (F1(w, A), ..., FK(w, A)) , (5)

where local model’s weights vk are regularized towards the global model w∗
kshare

via l2 norm regularization,
where w∗

kshare
are the weight parameters of the operation set space of A overlapping (sharing) with Ak

for client k. Note that, now, only vk needs to be optimized in Equation 4, while Ak is fixed during the
optimization. We summarize the pseudo-code of the optimization procedure as SPIDER-Trainer in Algorithm
1. At each device k, once we receive the aggregated global model w∗, we calculate w∗

kshare
(Line #12 and

Line #14). Next, we solve the local sub-problem of G(·) approximately, that is Fk(w, A) (Line #17).
Further, each client k solves its local objective given in Equation 4 (Line #18). The updates to w∗ are
computed the same way as is performed in the standard federated setting, such as FedAvg (McMahan et al.,
2017) (Line #6).

(1) Enabling regularization between an arbitrary personalized architecture and the global
model SPIDER-Trainer connects each personalized model with the global model by enabling the regular-
ization between two different architectures: an arbitrary personalized architecture for the local model Ak

and the global model with Supernet A. This is done by weight sharing. w∗
kshare

is used to regularize a
subnet (Ak) model parameters vk towards the global model shared/common parameters w∗

kshare
, as shown

in Equation 4.

(2) Avoiding heterogeneous aggregation SPIDER-Trainer avoids the aggregation of heterogeneous
model architectures at the server side. As such, no sophisticated and unstable aggregation methods are
required (e.g. knowledge distillation (Lin et al., 2020), clustering (Dudziak et al., 2022) etc.), and it is
flexible to use other aggregation methods beyond FedAvg (e.g. Karimireddy et al., 2020; Reddi et al., 2021)
to update the global model.

4.4 SPIDER-Searcher: Personalizing Architecture

Although SPIDER trainer is able to collaboratively train heterogeneous architectures, manual design of the
architecture for each client is impractical or suboptimal. As such, we further add a neural architecture search
(NAS) component, SPIDER-Searcher, in Algorithm 1 (Line #10) to adapt Ak to its local data distribution
in a progressive manner. Furthermore, for the architectural evolution of the local model, please note that αij

takes discrete values. Therefore, most NAS works utilize the continuous relaxation of these discrete variables

7



Published in Transactions on Machine Learning Research (11/2023)

Algorithm 1 SPIDER Trainer
1: Initialization: initialize c number of clients; A is the global model with model weight parameters w; Ak is the

local model with architecture parameters αijk
and model weight parameters vk associated with the k-th client;

r is the total number of rounds; ts is the number of rounds to start the architecture search; τ is the recovery
periods in the units of rounds; Fk(.) is the cross-entropy loss function calculated at the local data of client k.

2: Server executes:
3: for each round t = 0, 1, 2, ..., r − 1 do
4: for each client k in parallel do
5: wt+1

k ← ClientLocalSearch(k, wt, t)
6: wt+1 ←

∑K

k=1
Nk
N

wt+1
k

7:
8: function ClientLocalSearch(k, wt, t): // Run on client k
9: Set wt as wt

k

10: Search Local model: At+1
k = SPIDER-Searcher(At

k, ts, τ, t)
11: wt+1

kshare
= [] // empty set

12: for each αij in At+1
k do

13: if αij is nonzero then
14: wt+1

kshare
= Append(wt+1

kshare
; wt

ij) // Append only those weight parameters of wt which have an overlap-
ping operation set space (edge i and operation j) between A and Ak architectures

15: for each epoch in p do
16: for minibatch in training data do
17: Update Global model: wt+1

k = wt
k − ηw∇wF tr

k (wt
k,A)

18: Update Local Model: vt+1
k = vt

k − ηv

(
∇vF tr

k (vt
k,At+1

k ) + λ(vt
k −wt+1

kshare
)
)

19: return wt+1
k to server

to ensure differentiability of the αij parameters (Liu et al., 2019; He et al., 2020d). However, SPIDER employs
the Pertubation-based SPIDER-Searcher to learn αij in a way that only requires evaluation-based search
rather than training-based search (optimizing αij). As shown by (Wang et al., 2021), the evaluation-based
search can avoid suboptimal architecture often caused by differentiable NAS. We now present the details of
the SPIDER-Searcher.

Progressive Neural Architecture Search SPIDER-Searcher dynamically changes the architecture of
Ak during the federated training process. This is feasible because the weight sharing-based regularization
can handle an arbitrary personalized architecture (introduced in Section 4.3). Due to this characteristic,
SPIDER-Searcher can search Ak in a progressive manner (shown in Figure 1): Phase 1: At the beginning,
Ak is same as the Supernet A in architecture design. The intention of SPIDER-Searcher in this phase is to
warm up the training of the initial Ak on the client’s distribution, therefore, the architecture Ak does not
change for some initial federated rounds; Phase 2: After warming up the Ak, SPIDER-Searcher performs
edge-by-edge search gradually. In each edge search, only the operation with the highest impact on the
accuracy is kept. It also uses a few rounds of training as a recovery time before proceeding to the next
round of edge search. This process continues until all edges finish searching; Phase 3: After all edges finish
searching, SPIDER-Searcher does not change the client’s architecture Ak. This serves as a final training of
the searched architecture-personalized model. This three-phase procedure is summarized as Algorithm 2.
Now, we proceed to elaborate on how we calculate the impact of an operation on the Supernet.

Operation-level perturbation-based selection In Phase 2, we specify selecting the operation with
the highest impact using operation-level perturbation. More specially, instead of optimizing the mixed
operation architecture parameters α using another bi-level optimization as DARTS (also known as gradient-
based architecture search) (Liu et al., 2019) to pick optimal operation according to the magnitude of α
parameters (magnitude-based selection), we assign a constant value to α and use the impact of an operation
on the local validation accuracy (perturbation) as a criterion to search on the edge. We use this simplified
method as it is much more efficient given that it only requires evaluation-based search rather than training-
based search (optimizing αij). Further, this method avoids suboptimal architecture (Wang et al., 2021) lead
by magnitude-based selection in differentiable NAS.

8



Published in Transactions on Machine Learning Research (11/2023)

Algorithm 2 SPIDER-Searcher
1: Search Space: Ak is the local model with architecture parameters αijk

associated with the k-th client; E is the
superset of all edges {1, ..., E}; Es is the remaining subset of edges that have not been searched yet; and each edge
e has multiple operations {1, ..., o}; ts is the number of rounds to start the architecture search; τ is the recovery
periods in the units of rounds; t is the current round number

2: function ProgressiveNAS(At
k, ts, τ , t)

3: if t ≥ ts and (t is multiple of τ) and |Es| > 0 then
4: i = RANDOM (Es) // random selection
5: // searching without training
6: for all operation j on edge i do
7: evaluate validation accuracy of Ak when operation αij is set to zero (removed)(ACC\αij

)
8: for the selected edge i, select operation j for which (ACC\αij

) is highest
9: update architecture At+1

k : set αij = 1 and αil = 0 ∀l (where j ̸= l), remove i from Es

10: else
11: return At

k directly
12: return updated At+1

k after selection

5 Experiments

This section presents the experimental results of the proposed method. All our experiments are based
on non-IID data distribution among clients. To generate this non-IID data distribution across clients, we
employed the widely used latent Dirichlet Distribution (LDA) (He et al., 2020c; Yurochkin et al., 2019).

5.1 Experimental Setup

Tasks and Datasets We perform an image classification task on three well-known datasets, CIFAR10,
CIFAR100 and CINIC10. CIFAR10 dataset (Krizhevsky et al., 2009) consists of 60000 32x32 color images
in 10 classes, with 6000 images per class, and CIFAR100 dataset (Krizhevsky et al., 2009) consists of 60,000
images in 100 classes, with 600 images per class. CIFAR100 has more classes and comparatively fewer data
per class, therefore, it is considered more challenging than CIFAR10. In addition, CINIC10 consists of
270,000 32x32 color images in 10 classes, with 90,000 images per train, test, and validation subset. CINIC10
dataset (Darlow et al., 2018) is a larger dataset and includes images from ImageNet as well. We generate
non-IID data across 8 clients by exploiting LDA distribution with parameter (α = 0.2) for the training data
of CIFAR10, CIFAR100, and CINIC10 datasets. Since we need validation data for SPIDER-Searcher, we
split the total training data samples present at each client into training (60%), validation (20%), and testing
sets (20%). We use this 60/20/20% train/valid/test split during Phase 1 and 2 of the SPIDER Training.
Once each client has selected the architecture, they combine the validation data with training data in Phase 3
and use it for training. The test set remains the same throughout the training. For all other personalization
schemes used for comparison, we split the data samples of each client with 80 % training and 20 % test
for a fair comparison. We provide the LDA data distribution class-split, Hyper-Parameter Search Set, and
Architecture Search Space details in Appendix A.

Implementation and Deployment We implement the proposed method for distributed computing with
nine nodes, each equipped with an NVIDIA RTX 2080Ti GPU card. We set this as a cross-silo FL setting with
one node representing the server and eight nodes representing the clients. These client nodes can represent
real-world organizations such as hospitals and clinics that aim to collaboratively search for personalized
architectures for local benefits such as higher accuracy in a privacy-preserving FL manner. Primarily, we
focus on the cross-silo setting where clients have ample computational resources and data heterogeneity is a
main concern (Huang et al., 2022). However, we provide an analysis of the computational cost of SPIDER
in the Appendix E.

9



Published in Transactions on Machine Learning Research (11/2023)

5.2 Results

Here, we report the comparison of our proposed method SPIDER with the other state-of-the-art personalized
methods; Ditto, perFedAvg, local adaptation, KNN-Per and FedMN. Since these schemes use a pre-defined
architecture, we use the Resnet18 model because of its comparable model size. Since we are exploiting
DARTS-based search space, we also use a DARTS model (Liu et al., 2019) searched on CIFAR10 dataset
as our base model for l2 regularization-based personalization method Ditto. Furthermore, we also provide a
comparison with Centralized NAS and Global NAS (FedNAS) in Appendix D.

Table 1: Average (local) test Accuracy and fairness (standard deviation across clients) comparison of SPIDER with
the representative state-of-the-art personalization techniques on CIFAR10, CIFAR100, and CINIC10 Datasets

CIFAR10 CIFAR100 CINIC10
Method Average Parameter Standard Average Parameter Standard Average Parameter Standard

Accuracy Size Deviation Accuracy Size Deviation Accuracy Size Deviation
Local Adaptation - ResNet18 90.39±0.17 11M 1.9 60.92±0.96 11M 2.9 80.96±0.96 11M 5.5
Ditto - ResNet18 88.91±0.43 11M 2.7 61.06±0.23 11M 2.4 80.42±0.73 11M 5.5
perFedAvg - ResNet18 90.94±0.43 11M 1.6 54.56±0.23 11M 4.7 79.9±0.28 11M 5.4
Ditto - DARTS 89.82±0.21 3.3M 1.9 60.18±0.27 3.3M 2.3 83.61±0.28 3.3M 6.4
KNN-Per ResNet18 91.26±0.91 11M 1.6 67.05±0.41 11M 2.5 85.66±0.39 11M 5.8
FedMN ResNet18 88.48±0.25 11M 2.1 61.92±0.44 11M 3.4 81.41±0.61 11M 6.7
SPIDER 94.55±0.12 2.4M 1.5 72.36±0.07 2.3M 2.4 87.25±0.65 2.1M 3.5

5.2.1 Average Test Accuracy and Fairness (Standard Deviation across Clients)

As shown in Table 1, our proposed method, SPIDER, successfully achieves the objective R1 by person-
alizing architectures for each client, surpassing representative state-of-the-art personalization methods such
as Ditto, local adaptation, perFedAvg, FedMN, and KNN-Per on three image classification datasets: CI-
FAR10, CIFAR100, and CINIC10. Among these methods, KNN-Per obtains the second-highest accuracy
for all three datasets. However, SPIDER outperforms KNN-Per by a margin of 3.29%, 5.31%, and 1.59%
on CIFAR10, CIFAR100, and CINIC10, respectively. Moreover, the performance gain of SPIDER over the
hypernetwork-based architecture search method, FedMN, is quite substantial, reaching 6.10%, 11.31%, and
5.52% on CIFAR10, CIFAR100, and CINIC10, respectively. We attribute this improvement to SPIDER’s
ability to adapt to unseen data more effectively by tailoring the entire architecture for each individual client
based on their specific data distribution.

In the context of personalization, the standard deviation (std) of the local test accuracy across different silos
is also an important metric, as it reflects the fairness of the method across silos. In Table 1, we observe that
SPIDER achieves similar or lower standard deviation compared to other baselines while providing higher
average test accuracy. This demonstrates the effectiveness of SPIDER in achieving both improved average
accuracy and lower disparity across silos.

5.2.2 Architecture Heterogeneity and Personalization Gain

SPIDER helps each client search for its own architecture tailored for its own specific data distribution. Due
to data heterogeneity across clients, we observe architectures to be heterogeneous across clients as shown in
Figure 2. Essentially, we visualize the reduction cells searched for CIFAR100 in Figure 2. It can be seen
from Figure 2 that the searched cells are edge-wise and operation-wise heterogeneous from client to client.
Hence, we achieve the objective R2, the search and training of heterogeneous architectures across clients.
The objective R3, no dependence on auxiliary data, is obtained by the algorithmic framework of SPIDER
as it does not rely on any auxiliary data. A byproduct of using DARTS search space is that the searched
local model size obtained with SPIDER is quite smaller.

To further investigate whether the architecture searched by one client is best suited for its own data dis-
tribution, we perform experiments where the final architecture of one client is applied to another client’s
data, and the architecture is fine-tuned on that data. We denote the local accuracy obtained on client i’s
data using architecture j as pij . We calculate the personalization gain or drop (if negative) of other clients’

10



Published in Transactions on Machine Learning Research (11/2023)

c_{k-2}

0

sep_conv_3x3
1skip_connect

2

sep_conv_3x3

3skip_connect

c_{k-1}

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

c_{k}
sep_conv_3x3

Silo 0

Silo 2

Silo 3
Silo 4

Silo 5

Silo 6 Silo 7

c_{k-2}
0

sep_conv_3x3

2

skip_connect

c_{k-1}
skip_connect

1
sep_conv_3x3

skip_connect
c_{k}sep_conv_3x3

3skip_connect
skip_connect

c_{k-2} 0
skip_connect

1
skip_connect

2sep_conv_3x3

3
sep_conv_3x3

c_{k-1}

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

skip_connect

c_{k}

c_{k-2}

0sep_conv_3x3

1
skip_connect

3sep_conv_3x3

c_{k-1}
sep_conv_3x3

skip_connect
skip_connect

2skip_connect

c_{k}skip_connect

c_{k-2}

0sep_conv_3x3

1
sep_conv_3x3

3skip_connect

c_{k-1}
sep_conv_3x3

sep_conv_3x3
skip_connect

2skip_connect

c_{k}sep_conv_3x3

c_{k-2} 0skip_connect

1sep_conv_3x3

2
sep_conv_3x3

3

sep_conv_3x3

c_{k-1}

sep_conv_3x3

skip_connect

sep_conv_3x3

skip_connect

c_{k}

c_{k-2}
0

skip_connect

1

skip_connect

2
sep_conv_3x3

c_{k-1}

sep_conv_3x3

skip_connect 3
sep_conv_3x3

skip_connect

c_{k}

skip_connect

c_{k-2}

0

sep_conv_3x3
1skip_connect 3

sep_conv_3x3

c_{k-1}
sep_conv_3x3

2

sep_conv_3x3

sep_conv_3x3 c_{k}
skip_connect skip_connect

Silo 1

Figure 2: Searched Architectures (Reduction Cells) for CIFAR100 Dataset: Each normal cell k takes the outputs of
previous cells, cell k−2 and cell k−1, as its input. Each cell contains seven nodes: two input nodes, one output node,
and four intermediate nodes inside the cell. The output node concatenates all intermediate nodes’ output depth-wise.
It can be observed that the searched cells are edge-wise and operation-wise heterogeneous from client to client.

architectures on client i’s data using the following formula:

gi =
∑c−1

j=0,i ̸=j(pii − pij)
c − 1 (6)

This calculation is performed across all silos. The quantity gi represents the personalization gain of architec-
ture i compared to other clients’ architectures on its own dataset. We further calculate the personalization
gain of the SPIDER scheme as the mean of all gi, i.e.,

∑c−1
i=0

gi

c , where c is the total number of clients. We
fine-tune the architecture learned through SPIDER on other clients’ data for 30 epochs and report the best
accuracy achieved. The values of pij and gi for all i and j are reported in Figure 3. As shown in Figures 3a,
3b, and 3c, we observe that for all three datasets, the P matrix is diagonally dominant, indicating that for
the majority of clients, their searched architectures outperform the other architectures. Similarly, the per-
sonalization gain gi of each client i is positive, as shown in Figures 3d, 3e, and 3f. Averaged over all clients,
the average personalization gains on CIFAR10, CIFAR100, and CINIC10 datasets are 4.70%, 7.84%, and
4.19%, respectively. This highlights the importance of architecture personalization, which can be potentially
more effective than weight personalization alone, as demonstrated by our empirical results.

6 Conclusion

We proposed SPIDER, an algorithmic framework that aims to search personalized neural architectures
for each client in Federated Learning. SPIDER uses progressive NAS to search personalized local archi-
tectures and weight-sharing-based global regularization to exchange information between the architecture-
homogeneous global and architecture-heterogeneous local models. Our experimental results demonstrate
promising prediction performance compared with other state-of-the-art personalization methods.

11



Published in Transactions on Machine Learning Research (11/2023)

0 1 2 3 4 5 6 7
j

0
1

2
3

4
5

6
7

i

92 83 85 85 85 84 86 83

92 96 91 89 89 90 91 90

93 92 95 92 92 93 92 92

91 90 91 94 90 90 91 90

89 87 88 88 93 89 89 89

90 88 90 89 89 92 89 89

90 87 90 90 90 89 95 88

91 89 91 90 90 91 90 95
84

86

88

90

92

94

(a) CIFAR10: local accuracy pij ∀i, j

0 1 2 3 4 5 6 7
j

0
1

2
3

4
5

6
7

i

70 61 60 63 61 62 61 60

70 77 70 70 70 70 70 70

66 66 74 65 65 65 64 65

68 66 67 73 65 68 67 67

64 63 63 64 72 65 66 66

62 62 61 61 62 72 62 61

67 69 69 69 67 68 76 69

62 60 63 63 63 60 62 68
62

64

66

68

70

72

74

76

(b) CIFAR100: local accuracy pij ∀i, j

0 1 2 3 4 5 6 7
j

0
1

2
3

4
5

6
7

i

90 86 85 85 87 88 86 86

82 88 82 80 83 81 83 82

79 80 83 78 80 80 80 79

94 95 94 96 95 95 94 94

86 85 84 84 88 86 86 86

78 79 79 77 79 84 79 79

83 84 83 82 83 84 88 83

82 83 81 79 82 83 81 87
77.5

80.0

82.5

85.0

87.5

90.0

92.5

95.0

(c) CINIC10: local accuracy pij ∀i, j

0 1 2 3 4 5 6 7 gi

j

0
1

2
3

4
5

6
7

i

0 9.2 7.2 6.9 7 8.1 6 8.5 7.6

3.3 0 4.8 6.4 6.3 6.2 4.8 5.6 5.3

2.6 3.1 0 3.2 3.2 2.3 3.5 3.3 3

3.6 4.2 3.4 0 3.9 4.3 3.8 4 3.9

4.3 6.5 5.2 5.7 0 4.4 4.2 4.7 5

2.6 4.2 2.6 3.3 3.4 0 3.4 3.3 3.2

5 7.8 4.2 4.9 4.9 5 0 6.4 5.5

3.4 5.7 3.5 4.1 4.6 3.7 4.1 0 4.1
0

2

4

6

8

(d) CIFAR10: (pii − pji) ∀j and gi

0 1 2 3 4 5 6 7 gi

j

0
1

2
3

4
5

6
7

i

0 8.6 9.7 6.5 9 7.9 9 9.5 8.6

7 0 6.6 6.6 6.4 7.2 6.9 6.7 6.8

8 7.9 0 9.5 9.4 9 10 9.4 9

5.2 7 6.5 0 7.9 5.4 6.1 6.1 6.3

8.5 9 9.5 8.2 0 6.8 6.5 6.2 7.8

9.5 9.4 10 11 9.4 0 9.8 11 10

9.1 7 6.9 7.4 8.7 7.5 0 7.3 7.7

6.4 8.1 5.4 5.7 5.8 8.1 6.1 0 6.5
0

2

4

6

8

10

(e) CIFAR100: (pii − pji) ∀j and gi

0 1 2 3 4 5 6 7 gi

j

0
1

2
3

4
5

6
7

i

0 3.3 4.3 5.1 3.2 2.2 4.1 4 3.7

5.9 0 5.8 7.6 4.7 6.8 4.1 5.7 5.8

4.5 3.1 0 5.5 3 3.5 3.6 3.9 3.9

1.5 0.85 2.1 0 1.1 1.4 1.7 2 1.5

2.9 3.2 4 4 0 2 2.8 2.9 3.1

6.3 4.7 5.1 6.7 4.7 0 5.5 5.5 5.5

5 4.1 4.5 5.6 4.6 4.2 0 4.6 4.6

4.8 4.1 6.2 8.1 5.1 4 5.8 0 5.4
0

1

2

3

4

5

6

7

8

(f) CINIC10: (pii − pji) and gi

Figure 3: Figures 3a, 3b and 3c represent local accuracy values pij , obtained by finetuning client j’s architecture
on client i’s data on CIFAR10, CIFAR100 and CINIC10 datasets, respectively. Figures 3d, 3e and 3f represent
the accuracy gain (pii − pij) ∀j and the resultant personalization gain values (gi) for client i obtained on CIFAR10,
CIFAR100 and CINIC10 datasets, respectively.

Future Works: While the SPIDER framework exploits NAS as a tool to personalize the client architec-
tures and architecture weight parameters in Federated Learning, there are several limitations worth further
investigation. Future studies could 1) extend SPIDER to cross-device FL by making it compute-efficient, 2)
examine hardware heterogeneity with the data heterogeneity challenge of FL in the context of architecture
personalization, and 3) investigate other modality tasks such as text-modeling.

Acknowledgements

This material is based upon work supported by ONR grant N00014-23-1-2191, ARO grant W911NF-22-1-
0165, NSF grant DMS-2134148, and gifts from Intel, Qualcomm, and Konica Minolta.

References
Samiul Alam, Luyang Liu, Ming Yan, and Mi Zhang. Fedrolex: Model-heterogeneous federated learning with

rolling sub-model extraction. Conference on Neural Information Processing Systems (NeurIPS), 2022.

Huili Chen, Jie Ding, Eric W Tramel, Shuang Wu, Anit Kumar Sahu, Salman Avestimehr, and Tao Zhang.
Self-aware personalized federated learning. Advances in Neural Information Processing Systems, 35:20675–
20688, 2022.

G Cheng, K Chadha, and J Duchi. Fine-tuning in federated learning: A simple but tough-to-beat baseline.
arXiv preprint arXiv:2108.07313, 2021.

12



Published in Transactions on Machine Learning Research (11/2023)

Luke N Darlow, Elliot J Crowley, Antreas Antoniou, and Amos J Storkey. Cinic-10 is not imagenet or
cifar-10. arXiv preprint arXiv:1810.03505, 2018.

Enmao Diao, Jie Ding, and Vahid Tarokh. Heterofl: Computation and communication efficient federated
learning for heterogeneous clients. International Conference on Learning Representations (ICLR), 2021.

Jie Ding, Vahid Tarokh, and Yuhong Yang. Model selection techniques: An overview. IEEE Signal Processing
Magazine, 35(6):16–34, 2018.

Canh T Dinh, Nguyen H Tran, and Tuan Dung Nguyen. Personalized federated learning with moreau
envelopes. Conference on Neural Information Processing Systems (NeurIPS), 2020.

Lukasz Dudziak, Stefanos Laskaridis, and Javier Fernandez-Marques. Fedoras: Federated architecture search
under system heterogeneity. NeurIPS workshop on Federated Learning: Recent Advances and New Chal-
lenges, 2022.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning: A meta-learning
approach. 34th Conference on Neural Information Processing Systems (NeurIPS), 2020.

Anubhav Garg, Amit Kumar Saha, and Debo Dutta. Direct federated neural architecture search. arXiv
preprint arXiv:2010.06223, 2020.

Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An efficient framework for
clustered federated learning. 34th Conference on Neural Information Processing Systems (NeurIPS),
abs/2006.04088, 2020.

Chaoyang He, Murali Annavaram, and Salman Avestimehr. Group knowledge transfer: Federated learning
of large cnns at the edge. 34th Conference on Neural Information Processing Systems (NeurIPS), 2020a.

Chaoyang He, Murali Annavaram, and Salman Avestimehr. Towards non-iid and invisible data with fednas:
federated deep learning via neural architecture search. CVPR 2020 Workshop on Neural Architecture
Search and Beyond for Representation Learning, 2020b.

Chaoyang He, Songze Li, Jinhyun So, Xiao Zeng, Mi Zhang, Hongyi Wang, Xiaoyang Wang, Praneeth
Vepakomma, Abhishek Singh, Hang Qiu, et al. Fedml: A research library and benchmark for federated
machine learning. NeurIPS Federated Learning workshop, 2020c.

Chaoyang He, Haishan Ye, Li Shen, and Tong Zhang. Milenas: Efficient neural architecture search via
mixed-level reformulation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11993–12002, 2020d.

Minh Hoang and Carl Kingsford. Personalized neural architecture search for federated learning. In 1st
NeurIPS Workshop on New Frontiers in Federated Learning (NFFL 2021), 2021.

Shoukang Hu, Sirui Xie, Hehui Zheng, Chunxiao Liu, Jianping Shi, Xunying Liu, and Dahua Lin. Dsnas: Di-
rect neural architecture search without parameter retraining. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 12084–12092, 2020.

Chao Huang, Jianwei Huang, and Xin Liu. Cross-silo federated learning: Challenges and opportunities.
arXiv preprint arXiv:2206.12949, 2022.

Berivan Isik, Francesco Pase, Deniz Gunduz, Tsachy Weissman, and Michele Zorzi. Sparse random networks
for communication-efficient federated learning. International Conference on Learning Representations
(ICLR), 2023.

Yihan Jiang, Jakub Konecný, Keith Rush, and Sreeram Kannan. Improving federated learning personaliza-
tion via model agnostic meta learning. ArXiv, abs/1909.12488, 2019.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Sebastian U. Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In ICML,
2020.

13



Published in Transactions on Machine Learning Research (11/2023)

Youngkee Kim, Won Joon Yun, Youn Kyu Lee, Soyi Jung, and Joongheon Kim. Trends in neural architec-
ture search: Towards the acceleration of search. In 2021 International Conference on Information and
Communication Technology Convergence (ICTC), pp. 421–424. IEEE, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Federated
optimization in heterogeneous networks. Proceedings of the 3rd MLSys Conference (MLSys), 2018.

Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated learning
through personalization. In International Conference on Machine Learning, pp. 6357–6368. PMLR, 2021.

Paul Pu Liang, Terrance Liu, Liu Ziyin, Ruslan Salakhutdinov, and Louis-Philippe Morency. Think locally,
act globally: Federated learning with local and global representations. NeurIPS Workshop on Federated
Learning, 2019.

Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. Ensemble distillation for robust model fusion
in federated learning. 34th Conference on Neural Information Processing Systems (NeurIPS), 2020.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. International
Conference on Learning Representations (ICLR), 2019.

Mi Luo, Fei Chen, Zhenguo Li, and Jiashi Feng. Architecture personalization in resource-constrained feder-
ated learning. 1st NeurIPS Workshop on New Frontiers in Federated Learning (NFFL), 2021.

Abdul Majeed, Xiaohan Zhang, and Seong Oun Hwang. Applications and challenges of federated learning
paradigm in the big data era with special emphasis on covid-19. Big Data and Cognitive Computing, 6
(4):127, 2022.

Othmane Marfoq, Giovanni Neglia, Richard Vidal, and Laetitia Kameni. Personalized federated learning
through local memorization. In International Conference on Machine Learning, pp. 15070–15092. PMLR,
2022.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence and
statistics, pp. 1273–1282. PMLR, 2017.

Krishna Pillutla, Kshitiz Malik, Abdel-Rahman Mohamed, Mike Rabbat, Maziar Sanjabi, and Lin Xiao.
Federated learning with partial model personalization. In International Conference on Machine Learning,
pp. 17716–17758. PMLR, 2022.

Sashank J. Reddi, Zachary B. Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konecný, San-
jiv Kumar, and H. Brendan McMahan. Adaptive federated optimization. International Conference on
Learning Representations (ICLR), 2021.

Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. Clustered federated learning: Model-agnostic
distributed multitask optimization under privacy constraints. IEEE Transactions on Neural Networks and
Learning Systems, 32:3710–3722, 2021.

Ishika Singh, Haoyi Zhou, Kunlin Yang, Meng Ding, Bill Lin, and Pengtao Xie. Differentially-private
federated neural architecture search. arXiv preprint arXiv:2006.10559, 2020.

Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S. Talwalkar. Federated multi-task learning.
In NIPS, 2017.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective inconsistency
problem in heterogeneous federated optimization. 34th Conference on Neural Information Processing
Systems (NeurIPS), 2020.

14



Published in Transactions on Machine Learning Research (11/2023)

Ruochen Wang, Minhao Cheng, Xiangning Chen, Xiaocheng Tang, and Cho-Jui Hsieh. Rethinking archi-
tecture selection in differentiable nas. International Conference on Learning Representations (ICLR),
2021.

Tianchun Wang, Wei Cheng, Dongsheng Luo, Wenchao Yu, Jingchao Ni, Liang Tong, Haifeng Chen, and
Xiang Zhang. Personalized federated learning via heterogeneous modular networks. In 2022 IEEE Inter-
national Conference on Data Mining (ICDM), pp. 1197–1202. IEEE, 2022.

Mengwei Xu, Yuxin Zhao, Kaigui Bian, Gang Huang, Qiaozhu Mei, and Xuanzhe Liu. Federated neural
architecture search. arXiv preprint arXiv:2002.06352, 2020.

Jinliang Yuan, Mengwei Xu, Yuxin Zhao, Kaigui Bian, Gang Huang, Xuanzhe Liu, and Shangguang Wang.
Resource-aware federated neural architecture search over heterogeneous mobile devices. IEEE Transactions
on Big Data, 2022.

Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia Hoang, and Yasaman
Khazaeni. Bayesian nonparametric federated learning of neural networks. In International Conference on
Machine Learning, pp. 7252–7261. PMLR, 2019.

Hangyu Zhu and Yaochu Jin. Real-time federated evolutionary neural architecture search. IEEE Transactions
on Evolutionary Computation, 2021.

15



Published in Transactions on Machine Learning Research (11/2023)

A Appendix

A Data Heterogeneity

A.1 Data Heterogeneity

Figure 4 and 5 represents data distribution across 8 clients for CIFAR10 and CIFAR100 datasets, respec-
tively. Sub-figure 4a and 5a represent the label distribution across clients, where a darker color indicates
more images of that class/label. It can be seen from these sub-figures that the data distribution is hetero-
geneous label-wise, e.g, Client with ID 0 has class 0 and 9 in excess, whereas, Client with ID 7 has more
samples of class 3 and 7 for the CIFAR10 dataset. We observe a similar trend of heterogeneity for CIFAR100
as well, where we have 100 class labels distributed across 8 clients via LDA distribution with α parameter
= 0.2. Furthermore, the sub-figures 4b and 5b represent the total number of data samples preset at each
client. These figures illustrate that the number of samples is also varying across silos. However, the variation
in the total number of samples by silo is more prominent for the CIFAR10 dataset.

0 1 2 3 4 5 6 7
Client number

0
1

2
3

4
5

6
7

8
9

label distribution

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(a) Label distribution per client

0 1 2 3 4 5 6 7
Client number

0

1000

2000

3000

4000

5000

6000

7000

8000

lo
ca

l t
ra

in
in

g 
da

ta
se

t s
ize

Min = 3951, Max = 8526

(b) Image distribution per client

Figure 4: CIFAR10: LDA distribution (α=0.2) across 8 clients (Seed 9). We can see that the data distribution is
heterogeneous in both label and image distribution across clients.

0 1 2 3 4 5 6 7
Client number

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84
88
92
96

label distribution

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(a) Label distribution per client

0 1 2 3 4 5 6 7
Client number

0

1000

2000

3000

4000

5000

6000

7000

lo
ca

l t
ra

in
in

g 
da

ta
se

t s
ize

Min = 5425, Max = 6694

(b) Image distribution per client

Figure 5: CIFAR100: LDA distribution across 8 clients (Seed 9). We can see that the data distribution is heteroge-
neous in both label and image distribution across clients.

1



Published in Transactions on Machine Learning Research (11/2023)

B Hyper-Parameter and Architecture Search Space

B.1 Hyper-parameter Search

For empirical results of CIFAR10, CIFAR100, and CINIC10, we use a batch size of 32 for all our experiments.
We use LDA distribution with a 0.2 α parameter value. We conduct experiments with two seeds for all
methods and report the average values in Table 1. For SPIDER, we use the first 30 rounds as warmup
rounds, for SPIDER-Searcher, we use a recovery period of 20. Furthermore, we use a learning rate in the
search range of {0.01, 0.03} for SPIDER. For SPIDER, we used λ search from the set of {0.01, 0.1, 1}. For the
other personalized schemes such as Ditto, perFedAvg, KNN-Per, FedMN, and local adaptation with Resnet18,
we searched learning rate over the set {0.1, 0.3, 0.01, 0.03, 0.001, 0.003}. The reason for having a larger set of
learning rates for these methods is that we found 0.001 and 0.003 work better for some of these methods. For
Ditto, we used λ from the set {0.01, 0.1, 0.5, 1, 2}. For PerFedAvg, we used the local lr as a factor of {1, 3, 5}
of the global lr. We used 1000 rounds of communication for the reported results and observed that they were
sufficient to achieve convergence as shown in Figure 6. For FedMN, we used 500 rounds of communication
as pretraining. After pretraining, the next 500 for federated local training. We report the best average local
test accuracy during the federated local training phase in Table 1. For KNN-Per, we evaluate the global
model on the λ hyper-parameter selected from the set {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} and report
the best average local test accuracy in Table 1. We used stochastic gradient descent (SGD) optimizer for all
the methods.

(a) Average Validation Accuracy compar-
ison on CIFAR10 Dataset

(b) Average Validation Accuracy compar-
ison on CIFAR100 Dataset

(c) Average Validation Accuracy com-
parison on CINIC10 Dataset

(d) Average Local Training Loss on CI-
FAR10 Dataset

(e) Average Local Training Loss on CI-
FAR100 Dataset

(f) Average Local Training Loss on
CINIC10 Dataset

Figure 6: Figure 6a, 6b, 6c represent the average validation accuracy comparison between SPIDER and PerFedAvg,
Ditto, and Local Adaptation on CIFAR10, CIFAR100, and CINIC10 datasets, respectively. SPIDER outperforms the
representative baselines on all three datasets. Figures 6d, 6e and 6f illustrate the change in Average local training
loss of the local models as SPIDER Search progresses through three phases (Phase 1 (Local Architecture Pre-training),
Phase 2 (Local Architecture Search), Phase 3 (Local Architecture Training)) on CIFAR10, CIFAR100, and CINIC10
Datasets, respectively

2



Published in Transactions on Machine Learning Research (11/2023)

B.2 Architecture Search Space

As mentioned in Section 4.2, we have used DARTS (s2) search space (Wang et al., 2021) in our proposed
work. During the search, we are using a total of 8 cells as shown by Figure 7. Each type of cell consists
of 14 edges; each edge connects two intermediate representations (node) by a mixture of two operations
frequently used in various modern CNNs, sep convolution 3x3 and skip connection, hence the name ’s2
DARTS search space’ (Wang et al., 2021). In this search space, there are two types of cells: normal and
reduction cells. Hence, our supernet A consists of search space of normal cells and reduction cells, each
with 14 edges and 2 operations at each edge. As the search progresses via progressive NAS, some operations
and edges are removed based on the perturbation criterion as explained in Algorithm 2. It is important to
note that the same cells follow the same construction; therefore, if one operation is selected for one normal
cell at a particular edge, the same operation will be selected for the same edge at all normal cells. More
specifically, we have 14 learnable edges and 2 operations at each edge in a cell, there are a total of 214

possible configurations. Since we have two types of cells, a normal cell, and a reduction cell, there are a
total of (214)2 possible architecture designs. The other DARTS search spaces, s3 and s4 (Wang et al., 2021)
have a larger search space, e.g., a larger operation candidate set, and therefore, require more computational
resources.

C Gradient-based NAS as SPIDER-Searcher

SPIDER is formulated as a bilevel optimization problem as shown in Equation 2 and 3, where the lower-
level optimization optimizes the global model parameters w∗, and the upper-level optimization optimizes
the local architecture Ak and its weight parameters vk for a client k. For the proposed lower-level optimiza-
tion of SPIDER, we exploit the perturbation-based neural architecture search method as it simplifies the
architecture search process by selecting architectures based on the evaluation criterion only. This searcher
picks optimal operations based on the impact of its absence (a.k.a perturbation) on the local validation
accuracy as explained in detail in Algorithm 2. On the other hand, differentiable NAS is another widely
known method of architecture selection which is often formulated in itself as a bilevel optimization problem
with architecture parameters α as an upper-level variable and w as lower-level variables. As an ablation
study, we replace perturbation-based NAS Searcher with MileNAS Searcher (He et al., 2020d) which is a
gradient-based NAS Searcher. We use its first-order approximation which essentially applies softmax op-
eration to the architecture parameters α for each edge and updates them by the stochastic gradient step
At+1

k = At
k − ηα (∇αF tr(vk, At

k) + λα∇αFval(vk, At
k)) at each iteration of local epochs. F tr and F val are

calculated at the training and validation data, respectively. For simplicity, Ak here represents a collection of
all architecture parameters in the local model of client k, and ηα is the learning rate of architecture param-
eters. We select ηα to be 0.01 and the regularization parameter λα as 1. We apply MileNAS solver for the
first 400 communication rounds and find the local architectures based on the magnitude of the architecture
parameters α at each edge, and then train them for the next 600 rounds by following SPIDER formulation
given in Equation 4 and 5. As shown in Table 2, the performance gap between the two methods is negligible
for the CIFAR100 dataset. However, perturbation-based NAS is a simpler method as it does not require a
gradient step for the architecture search/update at each step, and therefore, takes less amount of time in
comparison to gradient-based NAS.

Table 2: Average (local) test Accuracy comparison of Perturbation-based NAS with gradient-based NAS in SPIDER
on CIFAR100 dataset.

Method Average Accuracy
Perturbation-based NAS (Wang et al., 2021) 72.36
MiLeNAS (He et al., 2020d) 72.40

3



Published in Transactions on Machine Learning Research (11/2023)

Figure 7: Supernet A search space. Note that since we have 8 cell based search space, N = 2 for our construction.

D Federated Neural Architecture Search versus SPIDER

In this section, we compare the proposed Personalized Neural Architecture search method SPIDER with its
two base cases, centralized learning where λ = 0 and architecture personalization base case where λ → ∞
which essentially refers to the setting where local model weights are identical to the global model weights.
We also compare SPIDER with the federated neural architecture search method, which searches a global
architecture in a federated manner and then trains it via FedAvg. This investigation can help us appreciate
the benefits of architecture personalization and federated learning in a cross-silo setting.

D.1 Federated Neural Architecture Search

We analyze NAS performance to search for a global architecture in a federated setting as proposed by
previous works (He et al., 2020b). To keep the algorithmic comparison fair, we have used the NAS setting
as same as SPIDER. Essentially, only one Supernet (DARTS) is maintained at each silo. Each silo trains
the Supernet following the FedAvg algorithm for 30 rounds of warmup. Next, the neural architecture search
is performed following perturbation-based NAS at the server using the server’s test/validation data. After
NAS, the architecture is obtained and trained in a federated manner by the FedAvg algorithm. This can be
considered a slight variation of FedNAS (He et al., 2020b) where we replace MiLeNAS He et al. (2020d) with
a state-of-the-art NAS method, Perturbation-based NAS (Wang et al., 2021) to keep the comparison fair.
Figure 8 represents the average validation accuracy across each silo. We obtained a total of 68.03% average
local test accuracy with global NAS. Although this accuracy is still higher than various PFL baselines, it
is lower than SPIDER (72.36%). This shows that a global architecture search may not capture the data
heterogeneity in FL with non-I.I.D data.

Figure 8: Average Validation Accuracy comparison of SPIDER with the Federated NAS on CIFAR100 dataset. For
SPIDER, we show the results of two different values of λ hyper-parameter. First setup of SPIDER is Centralized
NAS where λ = 0. The second setting of SPIDER is λ = 0.01, which outperforms the centralized NAS, a special case
of SPIDER (λ = 0) as well as Federated NAS.

D.2 SPIDER: Personalized Federated Neural Architecture Search

We can observe from Figure 8 that SPIDER with λ = 0.01 hyper-parameter setting outperforms the Feder-
ated NAS. However, it is important to explore two base cases of SPIDER. The first setting is where λ = 0
and therefore, has no learning between the local and global models. It is where each silo performs a local

4



Published in Transactions on Machine Learning Research (11/2023)

neural architecture search. Each silo uses only one model, Supernet, and deploys the perturbation-based
NAS Searcher locally without any collaboration from the other silos. The Local Supernet has the same
hyper-parameters of warmup (30 local epochs) and recovery period of 20 local epochs after every pruning
step, followed by local training with a total of 1000 epochs. We obtained 72.36% average local test accuracy
with SPIDER, and 69.31% average local test accuracy with Centralized NAS on CIFAR100 dataset. This
highlights the significance of the proposed regularization. This also shows that tailoring architectures to
the silo’s data distributions even for centralized training can be very powerful. However, collaboration with
other silos as is performed by SPIDER, can enhance the prediction performance of personalized architectures
at individual silos.

E Computational Cost Analysis of Training

We propose SPIDER as a cross-silo framework where clients have ample computational resources and data
heterogeneity is a main concern (Huang et al., 2022). As shown in Table 3, we achieve substantial per-
formance improvement in terms of average local accuracy over the state-of-the-art personalization methods.
For research purposes, it is essential to compare the computational cost and wall clock time of the proposed
method with the other representative personalized federated learning (PFL) methods. Therefore, we report
peak memory costs and total wall clock time for all methods. Note that we obtain the peak memory cost val-
ues for the maximum number of compute required for the model training, which includes forward/backward
pass size, and parameter size of all the models, global and local model, for a batch size of 32 on the NVIDIA
RTX 2080Ti GPU card.

We observe the peak compute cost per silo to be 4.18GB, 2.14GB, 1.45GB, 1.45GB, 2.90GB, 1.45GB, and
1.98GB for SPIDER, FedNAS, Local adaptation, KNN-Per, Ditto, perFedAvg, and FedMN, respectively.
Though SPIDER requires relatively higher peak memory for maintaining two models, a global supernet and
a local model, at each silo, it outperforms the state-of-the-art personalization methods substantially. For
example, SPIDER yields a 6.18% performance gain relative to the second-best method, KNN-Per, on the
CIFAR100 dataset which can be a significant gain for organizations that require high accuracy without the
constraint of small computing cost.

Further, we report the end-to-end time of each method for a total of 1,000 rounds on the CIFAR100 dataset.
For implementation, we used 8 GPU NVIDIA RTX 2080Ti GPU cards where each GPU represents a physical
node with an NVIDIA RTX 2080Ti GPU card on the fedml platform implementation for FL (He et al., 2020c).
Please note that to report FedMN and KNN-Per method results, we used their GitHub code directly where
they perform federated learning on one GPU in a sequential manner. Therefore, the time comparisons of
these two methods might not be fair. Overall, for wall-clock time comparisons, we observe that there are
two factors contributing to the wall-clock overhead.

Overhead of Neural Architecture Search (NAS): One notable observation is that methods that use
a predefined architecture tend to have significantly lower wall clock times. However, this comes at the cost
of lower prediction performance. It is important to note that these low wall clock times may not hold true in
practical scenarios, especially when dealing with the data-invisibility challenge in Federated Learning (FL).

The data invisibility challenge in FL refers to the distributed learning setup where clients’ private data
remain invisible to the server. As a result, from the server’s perspective, it becomes unclear how to select a
pre-defined architecture from a pool of all available candidates. For instance, in our work, we have reported
results for the Ditto method using two predefined architectures, resnet18 and DARTS. Considering both
architectural experiments, the wall clock time has doubled to 8 hours and is even higher if we include the
hyper-parameter search time for both architectures, yet the performance remains significantly lower ( 12%
lower than SPIDER).

Given the data heterogeneity and data invisibility challenges of FL, manually searching for a neural archi-
tecture that works optimally for all clients can become prohibitively expensive. This challenge has been one
of the motivations for developing SPIDER as a personalized neural architecture search framework.

5



Published in Transactions on Machine Learning Research (11/2023)

Table 3: Accuracy versus Computational Cost Tradeoff on CIFAR100 dataset for SPIDER versus the other represen-
tative personalized federated learning techniques such as Local Adaptation, Ditto, KNN-Per, perFedAvg, FedMN.

Method Accuracy Peak Memory Cost Wall Clock Time
SPIDER 72.36% 4.18GB 15 hour
FedNAS 68.03% 2.14GB 7 hour
Local Adaptation - ResNet18 60.92% 1.45GB 2 hour
KNN-Per - ResNet18 67.05% 1.45GB 10 hour
Ditto - ResNet18 61.06% 2.90GB 4 hour
perFedAvg - ResNet18 54.56% 1.45GB 5 hour
FedMN - ResNet18 61.92% 1.98GB 16 hour

Overhead of Bilevel Optimization: Another factor contributing to overhead is the Bilevel Optimization
where the lower-level optimization optimizes the global model parameters and the upper-level optimization
optimizes the local architecture and its weights parameters. For example, we observe the wall clock time
of SPIDER to be almost double the wall clock time of FedNAS (NAS-based method that does not deploy
bilevel optimization for personalization). However, SPIDER demonstrates approximately a 5% increase in
prediction performance. Likewise, we observe the wall clock of Ditto to be double the wall clock time of
Local Adaptation.

It is important to highlight that our main focus has been to address the data-heterogeneity challenge,
especially in cross-silo FL settings where silos can have higher computational resources and non-IID data
distributions are the main challenge. We show via extensive empirical experiments that the proposed method
yields higher predictive performance with lower standard deviation (a proxy metric for fairness) across silos
as compared to other state-of-the-art methods at the cost of higher computational power.

6


	Introduction
	Related works
	Preliminaries, Motivation, and Design Goals
	Methodology: SPIDER
	Overview
	SPIDER Formulation: Architecture-personalized Bi-level Optimization
	SPIDER Trainer: Federated Training on Heterogeneous Architectures
	SPIDER-Searcher: Personalizing Architecture

	Experiments
	Experimental Setup
	Results
	Average Test Accuracy and Fairness (Standard Deviation across Clients)
	Architecture Heterogeneity and Personalization Gain


	Conclusion
	Appendix
	Data Heterogeneity
	Data Heterogeneity


	Hyper-Parameter and Architecture Search Space
	Hyper-parameter Search
	Architecture Search Space

	Gradient-based NAS as SPIDER-Searcher
	Federated Neural Architecture Search versus SPIDER
	Federated Neural Architecture Search
	SPIDER: Personalized Federated Neural Architecture Search

	Computational Cost Analysis of Training

