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Abstract

We analyze Riemannian Hamiltonian Monte Carlo (RHMC) on a manifold endowed with the metric defined

by the Hessian of a convex barrier function and apply it to sample a polytope defined by m inequalities

in R
n. The advantage of RHMC over Euclidean methods such as the ball walk, hit-and-run and the Dikin

walk is in its ability to take longer steps. However, in all previous work, the mixing rate of RHMC has a

linear dependence on the number of inequalities. We introduce a hybrid of the Lewis weight barrier and

the standard logarithmic barrier and prove that the mixing rate for the corresponding RHMC is bounded by

Õ(m1/3n4/3), improving on the previous best bound of Õ(mn2/3) (based on the log barrier). This continues

the general parallels between optimization and sampling, with the latter typically leading to new tools and

requiring more refined analysis. To prove our main results, we overcomes several challenges relating to the

smoothness of Hamiltonian curves and self-concordance properties of the barrier. In the process, we give

a general framework for the analysis of Markov chains on Riemannian manifolds, derive new smoothness

bounds on Hamiltonian curves, a central topic of comparison geometry, and extend self-concordance theory

to the infinity norm, which gives sharper bounds; these properties all appear to be of independent interest.

Keywords: Riemannian Hamiltonian Monte Carlo, Lewis weights, Markov chains, Calabi estimates, Self-

concordance, Interior point theory, Isoperimetric inequality, Geometric sampling

1. Introduction

Generating nearly uniform random samples from a high-dimensional polytope is a fundamental algorithmic

problem with a rich history and powerful applications, notably including the only known fully polynomial-

time approximation schemes for computing a polytope’s volume. All efficient algorithms known for this

problem work by designing a Markov chain whose stationary distribution is uniform over the polytope and

showing that it mixes in a small number of steps.

In this paper, our main result is that we can construct such a Markov chain with an improved bound

on its mixing time. For a polytope given by m linear inequalities in R
n, we describe chain that mixes in

Õ
(
m1/3n4/3

)
steps, improving on the best previous bound of Õ

(
mn2/3

)
. This allows us to approximate

the volume within relative error ϵ using Õ
(
m1/3n4/3/ϵ2

)
steps, which is a similar improvement over the

best existing bound of Õ
(
mn2/3/ϵ2

)
.
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1.1. Background and Related Work

In their seminal work Dyer et al. (1991), Dyer, Frieze and Kannan gave the first polynomial-time algorithm

for this problem, as well as for the more general problem of sampling from a convex body specified by

a membership oracle. The Markov chain in their algorithm was a grid walk, which takes steps along the

edges of the graph obtained by intersecting the convex body with a discrete grid supported on δZn for some

δ = 1/poly(n). This graph is heavily dependent on the coordinate systemÐits diameter is proportional to

the diameter of the convex body, and its conductance can be arbitrarily small if the convex body is scaled so

that is very long in some directions but short in others. However, they showed that, if one changes to a basis

in which the convex body is appropriately ªwell-rounded,º the grid walk mixes in polynomial time and that

one can use a random sample from the grid to obtain a one from the convex body.

The polynomial for the mixing time in Dyer et al. (1991) was quite large, and a sequence of later papers

improved this by modifying the Markov chains and refining the analysis. Because one often wants to draw

many samples from the body, these papers typically provide two bounds on the number of steps required: a

bound when starting from an arbitrary point and including the cost of any preprocessing; and a bound when

given a warm start, where the preprocessing has already been performed and the starting point is drawn

from a distribution that is not too far from uniform.

In Kannan et al. (1997), Kannan, LovÂasz, and Simonovits showed that a ball walk whose steps are chosen

uniformly from a Euclidean ball around the current point mixes in Õ(n3) steps from a warm start and Õ(n5)
steps from an arbitrary starting point and including preprocessing. Later, LovÂasz and Vempala LovÂasz and

Vempala (2006) studied the ªhit-and-runº walk, which chooses a line in a random direction from the current

point and then picks the next point randomly from the intersection of this line with the body, and they

showed it also mixed in Õ(n3) steps from a warm start but needed only Õ(n4) steps for first sample and

preprocessing. These algorithms work on general convex bodies presented by oracles, but like the grid

walk, they are strongly coordinate dependent, and they thus require strong additional assumptions about

the coordinate system. In particular, analyses of these algorithms typically assume that the body is close

to being isotropic, i.e., that the covariance matrix of a random sample from the body is approximately the

identity, and applying these algorithms to more general bodies requires costly preprocessing.

The dependence on the coordinate system in the aforementioned Markov chains comes from the depen-

dence of the transition probabilities on the extrinsic geometry of the ambient Euclidean space. The impact

of this extends beyond the overhead from the isotropy requirements. The geometry of the ambient space

does not incorporate any information about how close a point is to the boundary, which typically leads to

difficulties making progress with steps near the boundary. For example, if one is running a ball walk with

step radius δ an n-dimensional cube, and the current point is some distance d≪ δ from one of the corners, a

random point from the radius δ ball will lie outside the cube with probabability exponentially close to 1, so

naively trying random points until obtaining one in the cube would take a large number of tries. Moreover,

even if one could sample a random point in the intersection of the ball with the cube, restricting the step to

points inside the cube would distort the stationary distribution, and it would no longer be uniform. Remedy-

ing such difficulties typically involves (depending on the paper) some combination of taking smaller steps,

enlarging the convex body (and failing if the walk ends up at a point outside the original body), and employ-

ing rejection sampling or a Metropolis filter to correct the stationary probabilities, all of which increase the

required number of steps.

For polytopes specified by an explicit collection of linear constraints, one can use the barrier functions

employed by interior point methods to design random walks whose steps depend only on the intrinsic geom-

etry of the polytope and are independent of the basis chosen for the ambient space. The idea behind these

random walks is to use the Hessian of the barrier function to define a local norm/Riemannian metric on the

interior of the polytope and specify the steps in terms of the resulting geometry. This mitigates some of
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the problems described above and has led to Markov chains whose mixing times grow with the number of

constraints but depend more mildly on the dimension.

In the first such work, Kannan and Narayanan Kannan and Narayanan (2012) introduced the Dikin walk

and gave a mixing time bound of O(mn) from a warm start for a polytope with m facets in R
n. This walk

is similar to the ball walk, but it chooses its steps from Dikin ellipsoids, which are balls with respect to

the Hessian of the standard logarithmic barrier function on the polytope. In Laddha et al. (2020), Laddha,

Lee, and Vempala studied the analogous walk with respect to any self-concordant barrier and showed that it

mixes in Õ(nν̄) steps, where ν̄ is a parameter they called the barrier parameter. By bounding this parameter

for a different barrier function (a variant of a barrier due to Lee and Sidford Lee and Sidford (2014)), they

obtained an improved mixing rate bound of Õ(n2).

In 2017, Lee and Vempala Lee and Vempala (2017) reduced the mixing rate to Õ
(
mn3/4

)
using a

process they called the geodesic walk. Similar to the Dikin Walk, the steps are constructed using the Hessian

of a barrier function. However, instead of using the Hessian to define a Euclidean ellipsoid, they use it to

define a Riemannian metric, and they then solve a differential equation in each step to follow geodesics on

the resulting manifold. These geodesics tend to avoid the polytope’s boundary, which allows longer steps in

each iteration.

In 2018, Lee and Vempala Lee and Vempala (2018) improved this to Õ
(
mn2/3

)
using Riemannian

Hamiltonian Monte Carlo (RHMC) Girolami and Calderhead (2011), which is the class of processes we will

use in this paper. While there is a large literature on using RHMC and related methods to sample smooth

densities Dalalyan (2017); Durmus et al. (2019); Chewi et al. (2022); Vempala and Wibisono (2019); Li

et al. (2022), there are relatively few provable results about applying it in constrained non-smooth settings

like polytope sampling. Roughly speaking, this improvement over the geodesic walk came from RHMC’s

ability to avoid the use of a Metropolis filter, which the geodesic walk requires in order to obtain the correct

stationary distribution (even when the target distribution is uniform). RHMC chooses its trajectories accord-

ing to a differential equation that, remarkably, yields a reversible random walk with the desired stationary

distribution, thus eliminating the need for a Metropolis filter and allowing greater progress in each step.

While barriers with better parameters have led to improved mixing times for the Dikin walk, obtaining

similar improvements for the geodesic walk or RHMC have remained elusive, and improving upon the

Õ(mn2/3) bound attained by RHMC using the standard log barrier has been a major open problem for the

past 5+ years.

The core issue that prevents the authors of Lee and Vempala (2017) and Lee and Vempala (2018) from

using other barriers in place of the log barrier is that the geodesic walk and RHMC use their barrier functions

in a fundamentally different way from how they are used in the Dikin walk. The Dikin walk, like the interior

point methods for which self-concordant barriers were originally defined, uses the Hessian of the barrier

function at each point to specify an ellipsoid centered at the point and contained in the polytope and chooses

its next iterate from this ellipsoid.

The geodesic walk and RHMC, however, use the barrier function to define the local geometry of a

manifold, and they take a step by simulating the trajectory of a particle according to a corresponding second-

order differential equation. The solution depends on the geometry at every point of the trajectory, rather than

just at the point where the particle was at the beginning of the iteration. As such, the steps of the random

walk depend on the geometric structure at all of the points of the trajectory, and analyzing them requires one

to understand how the locally-defined structure at each point relates to those at other nearby points. This

leads to a dependence on higher-order derivatives of the barrier function than the ones that self-concordance

was designed to control. As a result, self-concordance by itself does not seem to be sufficient in this setting,

and analyzing these walks requires the authors of Lee and Vempala (2017) and Lee and Vempala (2018) to

rely on new but ad hoc arguments tied to specific properties of the logarithmic barrier.
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Year Algorithm Steps

1997 Kannan et al. (1997) Ball walk# n3 (+n5)

2003 LovÂasz and Vempala (2006) Hit-and-run# n3 (+n4)

2009 Kannan and Narayanan (2012) Dikin walk mn

2017 Lee and Vempala (2017) Geodesic walk mn3/4

2018 Lee and Vempala (2018) RHMC with log barrier mn2/3

2020 Laddha et al. (2020) Weighted Dikin walk n2

2021 Jia et al. (2021) Ball walk# n2 (+n3)

This paper RHMC with Hybrid barrier m1/3n4/3

Table 1: The complexity of uniformly sampling a polytope from a warm start. All algorithms have a

logarithmic dependence on the warm start parameter and each uses Õ(n) bit of randomness. The entries

marked # are for general convex bodies presented by oracles, while the rest are for polytopes. The additive

terms are pre-processing costs for rounding the polytope.

1.2. Background on Riemannian Hamiltonian Monte Carlo

The motivation for RHMC comes from the Hamiltonian formulation of classical Newtonian mechanics.

Hamiltonian mechanics parameterizes a physical system in terms of a position vector x and a corresponding

momentum vector v (which is also referred to as ªvelocityº in some prior work on sampling polytopes with

RHMC). The physics of the system are encoded in its Hamiltonian H(x, v), which is simply the energy of

the system written as a function of x and v, and its time evolution is determined by Hamilton’s equations:

dx

dt
=
∂H

∂v
(x, v)

dv

dt
= −∂H

∂x
(x, v).

With the appropriate choice of H , these reproduce Newton’s laws of motion, but they also generalize quite

broadly, including to Riemannian manifolds.

In RHMC, one defines a Markov chain by choosing a Hamiltonian that appropriately encodes the target

distribution. At each step, the Markov chain chooses a random momentum vector and then finds the next

point by numerically solving a differential equation to follow the trajectory given by Hamilton’s equations.

One can show that the value of the Hamiltonian and the volume element in the space of pairs (x, v) are

conserved along the trajectory, which can be used to show that the trajectories are preserved by time reversal.

One can then use this to show that, if one uses the Hamiltonian defined below, the marginal distribution of

x will converge to the desired target distribution without requiring a Metropolis filter. (See Girolami and

Calderhead (2011) for the derivation for general RHMC and Lee and Vempala (2018) for the specific class

of Hamiltonians given below.)

More precisely, let the Hamiltonian at a point x ∈ R
n for a vector v ∈ R

n be defined as

H(x, v) = f(x) +
1

2
v⊤g−1(x)v +

1

2
log det g(x)

where g(x) is a positive definite matrix defining a Riemannian metric at each point x as ∥u∥g ≜ ∥u∥g(x) ≜√
u⊤g(x)u, and the target density to be sampled is proportional to e−f restricted to the support of g. One

step of RHMC consists of the following: first pick v from the Gaussian N (x, g(x)−1). Then for time δ

4



SAMPLING POLYTOPES WITH RIEMANNIAN HMC: FASTER MIXING VIA THE LEWIS WEIGHTS BARRIER

follow the Hamiltonian curve jointly on (x, v):

dx

dt
=
∂H

∂v
(x, v) = g−1(x)v

dv

dt
= −∂H

∂x
(x, v) = −∇f(x) + 1

2
tr(g(x)−1Dg(x))− 1

2
Dg(x)

[
dx

dt
,
dx

dt

]
. (1)

The final x at time δ is the sampled point from the Markov Kernel. A natural choice for the metric g turns

out to be the Hessian of a self-concordant barrier function inside the polytope P . The standard logarithmic

barrier, ϕℓ(x) = −∑m
i=1 log(a

⊤
i x − bi), was used in Lee and Vempala (2018) to prove that the resulting

RHMC mixes in mn2/3 steps, where the polytope is defined by the inequalities {ai⊤x ≥ bi}mi=1. Improving

on this bound is our motivating open problem.

1.3. Results

Algorithmic results. Our main algorithmic result in this paper is the construction of a random walk based

on RHMC for sampling and approximating the volume of polytopes using only Õ(m1/3n4/3) steps. Using

a Hamiltonian based on the standard logarithmic barrier yields a mixing rate that depends linearly on m,

the number of inequalities. We improve on this by developing a theoretical framework for designing and

analyzing barriers for RHMC.

Our framework is motivated by the ways in which the requirements of RHMC differ from those of the

Dikin walk. In the case of Dikin walk, we care about how much volume two nearby ellipsoids defined by

our metric have in common, which can be controlled given that the first derivative of the metric is bounded,

a property that self-concordant barriers possess Nesterov and Nemirovskii (1994). Namely, the derivative of

the Hessian of a self-concordant barrier ϕ is controlled by the Hessian itself, which can be seen as a property

of the metric g = ∇2ϕ,

−∥v∥gg ≼ Dg(v) ≼ ∥v∥gg,
where Dg(v) is the directional derivative of g along direction v.

On the other hand, to define the Markov kernel for RHMC, one reparameterizes the open set inside the

polytope by the Hamiltonian trajectories, which map the tangent space of the current point to the manifold.

This means the density of the RHMC Markov kernel depends on the distortion properties of this map, such

as how fast the Hamiltonian curves with different initial conditions converge or diverge. Therefore, showing

that this density is Lipschitz is linked to the geometry imposed by the Hessian of the barrier, and analyzing

the second-order ODE regarding RHMC demands estimates on more than just the first order-derivative of

the metric. As a result, the existing notions of self-concordance are insufficient for bounding the spectral

gap of RHMC.

In this paper, we define a stronger notion, third-order ℓ∞-self-concordance, that is stringent enough

to guarantee the stronger properties required by RHMC, but we show that it still admits a construction

that improves upon the logarithmic barrier. Third-order ℓ∞-self-concordance strengthens standard self-

concordance in two ways: it controls the higher order derivatives of g up to third order; and, instead of the

local ellipsoidal norm ∥.∥g that is conventionally used in self-concordance, we measure the spectral change

of the metric in the local infinity norm ∥.∥x,∞, which we define next.

Definition 1 For arbitrary vector v we define the local norm ∥.∥x,∞ at point x ∈ P as the maximum relative

change of the distance of x to an arbitrary facet of the polytope after taking step v. Formally:

∥v∥x,∞ ≜ ∥S−1
x Av∥∞,

where the polytope is defined by the inequalities Ax ≥ b and Sx is the diagonal matrix whose entries are

the slacks of the linear constraints at point x, i.e. (Sx)ii ≜ a⊤i x− bi.
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An intuitive description of ∥.∥x,∞ is via its unit ball; namely, ∥.∥x,∞ is the unique norm whose unit ball

is the symmetrized polytope P ∩ 2x − P around x, as illustrated in Figure 2 in Appendix A. (2x − P is

the reflection of P around x.) Using this generalized notion, we are not only able to control the change of

density of the RHMC kernel (Section D), but also prove the stability of the Hamiltonian curves (Lemma 16),

which is required for bounding the conductance.

Definition 2 (Third-order ℓ∞-self-concordance) We say that ϕ is c-third-order ℓ∞-self-concordant if its

Hessian g = ∇2ϕ obeys

−c∥v∥x,∞g(x) ≼ Dg(x)[v] ≼ c∥v∥x,∞g(x),
−c∥v∥x,∞∥z∥x,∞g(x) ≼ D2g(x)[v, z] ≼ c∥v∥x,∞∥z∥x,∞g(x),

−c∥v∥x,∞∥z∥x,∞∥u∥x,∞g(x) ≼ D3g(x)[v, z, u] ≼ c∥v∥x,∞∥z∥x,∞∥u∥x,∞g(x), . (2)

Furthermore, we say that ϕ is a (c, ν)-third-order ℓ∞-self-concordant barrier if in addition to the esti-

mates (2) the norm of its gradient in the local norm is bounded as

(Dϕ)⊤g−1Dϕ ≤ ν,

where Dϕ refers to the Euclidean gradient of ϕ.

Here ≼ is the LÈowner ordering between matrices ignoring logarithmic factors. Our second major con-

tribution is to construct a barrier for polytopes that satisfies third-order ℓ∞-self-concordance. Namely, we

construct a hybrid barrier inside the polytope based on the Lewis weight barrier

ϕp(x) ≜ log det
(
A⊤

xW
1−2/p
x Ax

)
, (3)

where Wx is a diagonal matrix whose diagonal entries are the Lewis weights of the rescaled matrix Ax =
Sx

−1A, which we define in Section 1.4.

The hybrid barrier ϕ for a polytope is then defined as a combination of the Lewis weight barrier and the

log barrier. This combination is necessary so that the resulting manifold with metric g = ∇2ϕ satisfies a

suitable isoperimetric inequality.

Definition 3 (Hybrid barrier) We define the hybrid barrier ϕ inside a polytope Ax ≥ b as

ϕ(x) ≜ −
(m
n

) 2
p+2

(
log detA⊤

xW
1−2/p
x Ax +

n

m

∑

i

log(si)

)
, (4)

where si = a⊤i x− bi are the slacks at point x. We denote the normalizing factor of ϕ by α0 ≜ (mn )
2

p+2 .

Our main theorem is a bound on the mixing rate of RHMC with this hybrid barrier.

Theorem 4 (Mixing) Given a polytope P , let π be the distribution with density proportional to e−αϕ(x)

over the open set inside P . Then, RHMC with stationary distribution π on the manifold of the open set

inside P equipped with metric g defined by the Hessian of the hybrid barrier ϕ with p = 4 − (1/ log(m))
has mixing rate bounded by

Õ
(
min{α−1n2/3 + α−1/3n5/9m1/9 + n1/3m1/6, n4/3m1/3}

)
.

In particular, for the uniform distribution over P (i.e. α = 0), the mixing rate is Õ
(
m1/3n4/3

)
.

Specifically, the Markov chain starting at π0 reaches πt with TV-distance at most ϵ to the target after

Õ
(
m1/3n4/3 log(M/ϵ)2 log(M) log log(M/ϵ)2

)
(5)

steps, where M ≜ supx∈P
dπ0(x)
dπ(x) and Õ in Equation (5) hides polylog(m) factors.
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Note that without a warm start, the log(M) dependence in Theorem 4 could be another factor of n to the

mixing time. However, applying the Gaussian Cooling framework Cousins and Vempala (2018) extended

to manifolds Lee and Vempala (2018) lets us sample from e−αϕ for any α without a warm start penalty, and

also allows us to compute the volume of the polytope without a significant overhead. (Recent work Kook

and Vempala (2023) shows how to leverage the Gaussian Cooling method in more general metrics and for

avoiding the warm start penalty for sampling also,)

Corollary 5 (Any start; Volume) For the manifold Gaussian Cooling scheme in Lee and Vempala (2018)

with the hybrid barrier (4) applied to sample from the density e−αϕ(x) inside a given polytope starting from

argminϕ(x), the total number of RHMC steps for any α ≥ 0 is bounded by

Õ
(
m1/3n4/3 log(1/ϵ)2 log log(1/ϵ)2

)
,

Moreover, to compute the integral of e−αϕ in the polytope and in particular the volume of the polytope up

to multiplicative error 1± ϵ′, the total number of RHMC steps is bounded by Õ(m1/3n4/3/ϵ′2).

This improves on the previous best bound of mn2/3 due to Lee and Vempala (2018) based on the

standard logarithmic barrier.

Geometric results. The proof of Theorem 4 requires the development of several technical ingredients. We

summarize a few that are likely to be of independent interest.

The first is a new isoperimetric inequality for this hybrid barrier, which we prove in Section G. (See

Section A.3 for the definition of the isoperimetric constant.)

Theorem 6 [Isoperimetry of the hybrid barrier] Let g be the metric corresponding to the Hessian of the

hybrid barrier, with support given by a polytope defined by m inequalities in R
n. Then for α ≥ 0, the

distribution with density proportional to e−αϕ has isoperimetric constant at least

max{ 1√
n
(
n

m
)

1
p+2 , poly(

1

4/p− 1
)
√
α}.

Moreover, in order to use the abstract framework that we introduce in this work to control the change of

the RHMC Markov kernel, we establish the third-order ℓ∞-self-concordance of the hybrid barrier defined

in Equation (4), which we prove in Section B.

Theorem 7 (Third-order ℓ∞-self-concordance of the hybrid barrier) The hybrid barrier, defined in (4),

is a (c2, α0n)-third-order ℓ∞-self-concordant barrier where c2 = poly( 1
4/p−1). In particular, with our

choice p = 4− (1/ log(m)) in Theorem 4 we have c2 = polylog(m).

These estimates allow us to prove important smoothness properties of certain quantities on the manifold that

we are interested in. As far as we know, this is the first proof of such regularity for higher order derivatives

of the Lewis weight barrier. The main challenge we face to prove the third-order ℓ∞-self-concordance is

estimating higher order derivatives of the Lewis weights in the PSD cone, which we do in Sections B and F.

We remark that our notion of third-order ℓ∞-self-concordance is a strengthening of a well-studied notion

in differential geometry. We show in Lemma 95 that ∥v∥x,∞ ≤ ∥v∥g when g is the metric derived from the

hybrid barrier. This implies the following corollary, which says that we can obtain the same third-order

derivative estimates of g when the norm ∥.∥x,∞ is replaced by ∥.∥g in Theorem 7.

7
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Corollary 8 (Calabi estimates for the hybrid barrier) The metric g of the hybrid barrier (4) satisfies

Calabi estimates up to third order, namely

−c2∥v∥gg ≼ Dg(v) ≼ c2∥v∥gg
−c2∥v∥g∥z∥gg ≼ D2g(v, z) ≼ c2∥v∥g∥z∥gg

−c2∥v∥g∥z∥g∥u∥gg ≼ D3g(v, z, u) ≼ c2∥v∥g∥z∥g∥u∥gg,

where c2 = poly( 1
4/p−1).

These type of estimates on the derivatives of the metric are known as the Calabi estimates in the differential

geometry literature SzÂekelyhidi (2014); Wang et al. (2006). It turns out that the Calabi-type estimates in

Corollary 8 are insufficient to improve the mixing rate, which is why we develop the third-order ℓ∞-self-

concordance for our hybrid barrier to further exploit the randomness of the Hamiltonian curves.

1.4. Technical Overview

Mixing and Conductance. Our general approach to bounding the mixing rate is based on bounding the

conductance LovÂasz and Simonovits (1993). The standard approach to bounding the conductance of geo-

metric walks of this type is to show an isoperimetric inequality for the underlying metric space and then

prove that steps of the random walk behave well with respect to the underlying metric. Formally, we show

two properties for the manifold M obtained by equipping the interior of the polytope P with the metric

g = ∇2ϕ:

• Isoperimetry. The target density e−αϕ(x) has a good isoperimetry constant on M.

• One-Step Coupling. The one-step distributions of the Markov chain given two close-by points x0, x1
on the manifold are close in TV-distance. Namely, for some parameter δ > 0, after excluding a tiny

set Sc ⊆ M, given any two points x0, x1 ∈ S with d(x0, x1) ≤ δ we show

TV (Tx0 , Tx1) ≤ 0.01, (6)

where Tx denotes the Markov kernel starting from x.

Isoperimetry. The log barrier metric gives an isoperimetric coefficient of 1/
√
m, which leads to a factor

ofm in the conductance. In principle, this can be improved to Õ(n) by using a barrier with barrier parameter

ν = Õ(n), as the general bound on the isoperimetry is 1/
√
ν for any strongly self-concordant barrier with

barrier parameter ν Laddha and Vempala (2021). The barrier parameter is an indicator of how well the

ellipsoids of the metric defined by the barrier approximate the symmetrized polytope P ∩ 2x − P around

x. While the universal and entropic barriers have ν = O(n), they are expensive to compute. The LS

barrier Lee and Sidford (2014) has ν = Õ(n) while being efficient to compute. However, as we will see in

more detail, as far as we know, the derivatives of the metric of the LS barrier are not ªsmoothº enough in

most directions, which means we would have to take rather small steps while running RHMC.

We will prove that the hybrid barrier has significantly better isoperimetry (Thm. 6) than the log barrier

while maintaining sufficient smoothness.

Smoothness of Hamiltonian Curves and Comparison Geometry. The starting point of our analysis

is the fact that one can look at the ordinary differential equation of RHMC in Equation (1) as a second-

order ODE on the manifold M of the open set inside the polytope with metric g. We will introduce this

alternative form shortly. Looking at the Markov Kernel Tx0 of RHMC for a fixed point x0, the randomness

to define this kernel comes from the initial velocity v0, which can be viewed as a vector on the tangent

space of x0 on the manifold M distributed as a standard Gaussian with respect to the local metric, namely
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Figure 1: Family of Hamiltonian curves γs(t) all ending in y with starting point varying from x0 = γ0(0)
to x1 = γs′(0), where γs(0) is a geodesic in s.

N (0, g(x)−1) in the Euclidean chart. In order to show the one-step coupling (Lemma 6) for the Markov

kernel of RHMC, we bound the difference between the densities Tx0(y) and Tx1(y) at a given point y on the

manifold. These densities are the pushforwards of the Gaussian density in the tangent space of x0 and x1
respectively, onto the manifold through the Hamiltonian map Hamδ(x0, vx0) for some fixed time δ, which

maps the initial velocity vx0 to the solution of the ODE y = x(δ) at time δ. The key to bound the change of

density is to understand how the Hamiltonian curves vary as we change the initial point from x0 to x1 for a

fixed destination y, given the particular geometry imposed by our hybrid barrier inside a polytope. In fact,

understanding the extremal scenarios of the behavior of geometric quantities on a certain class of manifolds

is the topic of Comparison Geometry Cheeger et al. (1975) Petersen (2006) Ballmann (2000). In particular,

to argue that the Hamiltonian curve changes sufficiently slowly, we need the metric g of the manifold and

its derivatives to be ªstableº. The simplest form of stability of the metric is the so-called self-concordance

property, namely, g is self-concordant if the derivative of g(x) in a unit direction in the tangent space is

controlled by g itself. This type of self-concordance for the first derivative of the metric is already known

for the Lewis weight barrier Lee and Sidford (2019). An important part of our contribution is to build an

abstract framework which shows that self-concordance of the metric up to third-order derivatives is sufficient

for characterizing the stability of Hamiltonian curves (see section D).

It turns out that we need to bound the rate of change of the density only for Hamiltonian curves with

typical values of the initial velocity and can ignore sets with small probability when bounding the conduc-

tance. However, the typical value of ∥v∥g for a Gaussian vector v ∼ N (0, g−1) in the tangent space is still

quite large to improve the mixing time, hence it is ideal to show self-concordance with respect to a better

norm. Taking a closer look into proving self-concordance for the Lewis weight barrier, we need to control

the change of the Lewis weights multiplicatively, which infinitesimally is equivalent to bounding the norm

of the Jacobian of the function that maps the location x ∈ P to the logarithm of its Lewis weights. Our

key observation here is that when p < 4, we can bound the

∥∥∥.
∥∥∥
(x,∞)→∞

norm of this Jacobian by con-

stant, which results in a stability argument for the Lewis weights with respect to ∥.∥x,∞. Building upon this

estimate, we show that our hybrid barrier is first-order ℓ∞-self-concordant. This is favorable for us as the

typical value of ∥v∥x,∞ for v ∼ N (0, g(x)−1) is much smaller than ∥v∥g. In fact, we show that the∥.∥x,∞
norm of the tangent vector to the RHMC curve remains small for all small enough positive times with high

probability. Following this idea, to lift the ℓ∞-self-concordance of the barrier to second and third order

9
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derivatives, we need to control the

∥∥∥.
∥∥∥
(x,∞)→∞

norm of operators that arise from higher order derivatives

of Lewis weights, and use them to estimate the derivatives of the Lewis weights barrier by analysis on the

PSD cone. Our framework for obtaining these estimates is summarized in Section B.2 and elaborated upon

in Section F. We use these estimates to derive self-concordance estimates for g.

Lewis weights stability. Lewis weights of Ax can be defined as the solution of the following optimization

problem (for more detail, see Section A.2):

wx ≜ argmaxw∈Rn
≥0

− log det(A⊤
xW

1−2/pAx) + (1− 2/p)1⊤w.

In particular, in Section F we obtain the following infinity norm estimates on higher-order derivatives of the

Lewis weights:

− 1

(4/p− 1)
∥u∥x,∞∥z∥x,∞Wx ≼DWx(z, u) ≼

1

(4/p− 1)
∥u∥x,∞∥z∥x,∞Wx,

− 1

(4/p− 1)5
∥u∥x,∞∥z∥x,∞Wx ≼D2

Wx(z, u) ≼
1

(4/p− 1)5
∥u∥x,∞∥z∥x,∞Wx,

− 1

(4/p− 1)7
∥u∥x,∞∥v∥x,∞∥z∥x,∞Wx ≼D3

Wx(v, z, u) ≼
1

(4/p− 1)7
∥u∥x,∞∥v∥x,∞∥z∥x,∞Wx,

where we use ≼ to show LÈowner ordering up to universal constants. These estimates are indeed used to

drive infinity norm estimates on the derivatives of the Lewis weights barrier (see Section B and F.)

Isoperimetry vs Smoothness. We show stronger stability results for the derivatives of the metric of the

p-Lewis weights barrier with p < 4 based on the ∥.∥x,∞ norm. However, for small p the ellipsoid of the

p-Lewis weights barrier does not approximate the symmetrized polytope as well as larger p; in particular,

a large subset of the ellipsoid lies outside the symmetrized polytope. This necessitates a larger barrier

parameter and implies a smaller isoperimetric constant. To construct a barrier that is smooth enough along

typical directions whose ellipsoids also approximate the symmetrized polytope more accurately, we go back

to an idea of Vaidya from optimization and use a hybrid barrier by ªregularizingº the Lewis weight barrier

for p < 4 with the standard log barrier; we observe that penalizing the p-Lewis weights barrier with the

log barrier improves its barrier parameter, while not affecting the smoothness of the barrier since the log

barrier is already third-order ℓ∞-self-concordant. Therefore, the particular choice of our barrier is essential

to simultaneously guaranteeing third-order ℓ∞-self-concordance and good isoperimetry.

Hamiltonian Curves and Variations. To see the high-level idea of how we show the one-step coupling

of the Markov kernel, let the curve γs parameterized by s ∈ [0, s′] be a length-minimizing geodesic con-

necting x0 = γ0 to x1 = γs′ with distance d(x0, x1); geodesics are generalization of straight lines in the

Euclidean space to arbitrary manifolds (see Section H for more background.) Suppose now that running the

Hamiltonian ODE with initial location x0 ∈ P and initial velocity vx0 up to time δ takes us to a point y on

the manifold. As we start moving toward x1 on the geodesic γs parameterized by s ∈ [0, s′], we consider the

variation of the initial Hamiltonian curve; namely a family of Hamiltonian curves parameterized by s, where

the s-curve starts from point γs, perhaps with a different initial velocity vγs , but ends up to the same desti-

nation y at time δ. The geodesic γs from x0 to x1 and the corresponding Hamiltonian curves are illustrated

in Figure 1. Looking at the the value of the density Tγs(y) at point y after taking one step of the Markov

chain starting from γs, we see that it depends on two major components: (1) the Gaussian density of the

initial velocity vγs which is proportional to exp {−∥vγs∥2g
2 }, and (2) the determinant of the Jacobian or the

differential of the map from the initial velocity vγs to the destination point y, denoted by J
vγs
y . Therefore,

to study how quickly the density Tγs(y) changes from x0 to x1, we need to study the rate of change of the

initial velocities vγs and the Jacobians J
vγs
y ; the latter will depend on the rate of change of the Ricci tensor

on the manifold. This necessitates studying the variations of Hamiltonian curves, which we define next.
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As we mentioned earlier, one can identify the location variable x in the Hamiltonian ODE (1) as a point

on the manifold M with metric g, and the velocity variable v as a vector in the tangent space of x, Tx(M).
Then, the Hamiltonian ODE in Equation (1) can be written as a second-order ODE on the manifold M using

the covariant derivative, illustrated in Lemma 9. For background on Riemannian geometry and covariant

differentiation, we refer the reader to Appendix H.

Lemma 9 The Hamiltonian ODE in Equation 1 can be written using the covariant derivative of the mani-

fold in a simplified form:

∇γ′(t)γ
′(t) = µ(γ(t)). (7)

where ∇ is the covariant derivative and µ(x) is the bias (drift) vector field of the Hamiltonian curve:

µ(x) ≜ g−1Df(x)− 1

2
g(x)−1

tr[g(x)−1Dg(x)], . (8)

In the above notation, tr[g(x)−1Dg(x)] is a vector whose ith entry is tr[g(x)−1Dig(x)]. See Appendix H

for a proof of Lemma 9. The above ODE (7) for Hamiltonian curves is similar to the second order ODE for

geodesics; for the latter the bias vector µ is zero, i.e., the geodesic Equation is given by Do Carmo (2016)

∇γ′(t)γ
′(t) = 0. (9)

In physics, the Hamiltonian ODE in Equation 7 models the motion of a particle on a manifold acting under

a force field devised by µ. Next, we define the notion of a family of Hamiltonian curves and an operator

Φ(t) which plays an important role in the study of variations of Hamiltonian curves.

Definition 10 (Family of Hamiltonian curves) We say
(
γs(t)

)
is a family of Hamiltonian curves ending at

some fixed y whose starting point varies from x0 = γ0(0) to x1 = γs1(0) if for every fixed time 0 ≤ s ≤ s1,

γs(t) is a Hamiltonian curve in t, and γs(0) as a function of s is a geodesic on M from x0 to x1. Unless

specified otherwise, γs(t) refers to a curve in t for a fixed s, and γ′s(t) = ∂tγs(t) refers to its derivative.

Definition 11 (Operators Φ and Mx) At any point x ∈ M, we define the operator Mx as

∀u ∈ Tx(M),Mx(u) ≜ ∇uµ(x),

where ∇ is the covariant derivative on the manifold and µ is the Hamiltonian bias. Given the Hamiltonian

curve γ(t), we define the operator Φ(t) = Φ(γ(t), γ′(t)) on the tangent space Tγ(t)(M) as

Φ(t) ≜ Φ(γ(t)) ≜ R(., γ′(t))γ′(t) +Mγ′(t).

where R is the Riemann tensor.

Similar to Jacobi fields for geodesics (see section H.5), for a given family of Hamiltonian curves (γs(t)),
one can write a second order ODE for the variational vector field J̃(t) = d

dsγs(t) along the Hamiltonian

curve, which depends on operator Φ (see Appendix H.4 for the proof ):

Lemma 12 (ODE for Hamiltonian fields) Given a family of Hamiltonian curves
(
γs(t)

)
, the vector field

J̃(t) ≜ ∂sγs(t)
∣∣∣
s=0

is characterized by the following second order ODE:

J̃ ′′(t) = Φ(t)J̃(t), (10)

where Φ(t) is defined in Definition 11. We refer to J̃ as a Hamiltonian field.

11
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For variation of Hamiltonian curves, the log determinant of the Jacobian of the Hamiltonian map J
vγs
y

can be characterized by a weighted integral of the trace of Φ(t) Therefore, to study the rate of change

of det(J
vγs
y ) as we move from x0 to x1, we need to study the change of tr(Φ(t)) along the variation of

Hamiltonian curves (γs(t)), which in turn depends on the rate of change of the Ricci tensor and the trace

of operator Mx.These ideas are formalized as the (R1, R2, R3)-normality of the Hamiltonian curve in the

definition below.

Definition 13 [Normal Hamiltonian curves] We say a Hamiltonian curve γ(t) is (R1, R2, R3)-normal up

to time δ if for all 0 ≤ t ≤ δ we have the following:

• Bound on the Frobenius norm of Φ (with respect to the metric g): ∥Φ(t)∥F ≤ R1.

• For any parameterized family of curves (γs(t)) such that γ0(t) = γ(t) for all times 0 ≤ t ≤ δ, then

for all such t, the derivative of tr(Φ(t)) with respect to z = d
dsγs(t) satisfies

| d
ds
tr(Φ(t))| = |D(tr(Φ(t)))(z)| ≤ R2(∥z∥g + δ∥∇zγ

′
s(t)∥g).

• For ζ(t) defined as the parallel transport of γ′(0) along γ(t): ∥Φ(t)ζ(t)∥g ≤ R3.

Parallel transport of a vector on the manifold is a generalization of shifting vectors in Euclidean space,

using the covariant derivative of the manifold (see Appendix H for the rigorous definition.)

In order to show the (R1, R2, R3)-normal property for the family of Hamiltonian curves, we need to

define a more fundamental regularity condition for the Hamiltonian curves which states that both ∥.∥g and

∥.∥x,∞ norms remain small for the tangent vector along the Hamiltonian curve.

Definition 14 (Nice Hamiltonian curve) We say a Hamiltonian curve γ(t) is (c, δ)-nice if for 0 ≤ t ≤ δ:

∥γ′(t)∥g ≤ c
√
n,

∥γ′(t)∥γ(t),∞ ≤ c.

Our (c, δ)-niceness framework is a simpler and allows us to work with any third-order ℓ∞-self-concordant

barrier and avoids the technical machinery of auxiliary functions on curves used in Lee and Vempala (2018),

which needs additional parameters and only works for the specialized case of log barrier.

The second major part of our contribution in this paper is that we relate this abstract notion of (R1, R2, R3)-
normality to the notion of third-order ℓ∞-self-concordance. Our framework can potentially be reused on

other manifolds and distributions.

Theorem 15 (From third-order ℓ∞-self-concordance to Hamiltonian normality) Given a Hessian man-

ifold defined by the metric g = ∇2ϕ inside the polytope for a (c2, α0n)-third-order ℓ∞-self-concordant

barrier ϕ, define a Hamiltonian curve γ(t) by the ODE in Equation (7) with target log density f = αϕ. If γ
is (c, δ)-nice, then it is also (R1, R2, R3)-normal with parameters

R1 = c3(c
2 +

√
α0α)

√
n, R2 = c3(c

2 +
√
α0α)n, R3 = c3(c

2(
√
n+ ncδ) + nδcα

√
α0),

where c3 = poly(c2).

Proof The proof follows from combining Lemmas 47, 53, and 61.

In order to show the closeness of one step distributions between x0 and x1, we need the (R1, R2, R3)-
normality for the family of Hamiltonian curves (γs(t)) for all 0 ≤ s ≤ δ as we defined in 13. Therefore,

we need to show that the (c, δ)-niceness property is stable for a third-order ℓ∞-self-concordant barrier. We

show this in Lemma 16, which we prove in a more technical form as Lemma 65.
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Lemma 16 (Stability of norms) In the same setting as Theorem 15, given a family of Hamiltonian curves

γs(t) for which γ0(t) is (c, δ)-nice for

δ ≤ δ′ ≜
1√

c2 + α
√
α0n

1/4
,

then (γs(t)) is a (O(c), δ)-nice family of Hamiltonian curves in the interval s ∈ (0, δ).
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Structure of the appendices. The appendices are organized as follows:

• In Appendix A we discuss the basic tools and notation that we use throughout the paper.

• In Appendix B, we prove that the hybrid barrier is third-order ℓ∞-self-concordant. This section relies

on higher-order derivative estimates. We give an overview of these in Section B.2 and defer their

proofs to Section F.

• In Appendix C, we prove one-step coupling and bound the mixing time by combining the Hamiltonian

smoothness bounds for our hybrid barrier, the isoperimetry of the stationary distribution with respect

to the chosen metric, and the stability of the Hamiltonian curves.

• In Appendix D, we develop our abstract framework on relating the third-order ℓ∞-self-concordance

to control the smoothness of the Hamiltonian fields on the manifold.

• In Appendix E, we prove the stability of the smoothness properties of the Hamiltonian curves as we

start varying the initial location and velocity of the curve.

• In Appendix F, we prove the higher-order derivative bounds for Lewis weights and related objects

that we need for Section B.

• In Appendix G, we prove an isoperimetric inequality on the Riemannian manifold M equipped with

metric g, the Hessian of our hybrid barrier.

Appendix A. Preliminaries

A.1. Notation

We denote the target probability distribution inside the polytope by π(·) ∼ e−αϕ. Recall that for the LP

polytope description Ax ≥ b, we define the rescaling A by the slack variables, namely

Ax = Diag
((
(a⊤i x− bi)

−1
)m
i=1

)
A.

For a vector v in the tangent space of x, we also work with the reparameterization of v defined as

sv,x ≜ Axv,

Sx,v ≜ Diag
(
sx,v
)
. (11)

which is the speed that v approaches the facets of the polytope normalized by the slacks. In our derivations

we treat hadamard product of matrices with higher priority than matrix multiplications, namely AB ⊙ C
means A(B ⊙ C). We refer to the p-Lewis weights vector of Ax by wx and its diagonal matrix version by

Wx ≜ Diag
(
wx

)
.
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Define the log barrier by ϕℓ:

ϕℓ(x) ≜ −
m∑

i=1

log(a⊤i x− bi).

We define the metric g2 as the Hessian of the n/m-rescaled log barrier, g2(x) ≜
n
m∇2ϕℓ(x). It is easy to

check that g2-norm of v is given by the ℓ2 norm of sx,v:

∥v∥2g2 = v⊤g2(x)v = v⊤Ax
⊤Axv = ∥sx,v∥22.

For a given point x inside polytope P , we define the symmetrized polytope P ∩ 2x − P around x as the

following: we reflect P around x and intersect it with the P namely P ∩ 2x− P , as illustrated in Figure 2.

The approximation of the symmetrized body by the ellipsoids corresponding to the Hessian of the barrier

function plays a key role in bounding the isoperimetry constant, as we describe in Section G.

Throughout the proof, we use the notation ≲ to indicate an inequality that is true up to logarithmic

factors. We use D for Euclidean derivative and ∇ and Dt for covariant differentiation with respect to the

metric structure on the manifold. Moreover, we use ≼ to show LÈowner inequalities up to universal constants.

We use ∥.∥ with various subindices to refer to different vector norms, and

∥∥∥.
∥∥∥
∞→∞

and ∥.∥ to refer to the

infinity to infinity operator norm and the usual operator norm of a matrix, respectively. Throughout the

paper, by high probability we mean with probability 1− 1/poly(m).

A.2. John Ellipsoid and Lewis Weights

Proving good isoperimetry for a specific barrier can be reduced to how well the ellipsoids corresponding

to the Hessian of the barrier at each point x inside the polytope approximate the symmetrized polytope

around x. A natural way to approximate a symmetric polytope is via its John Ellipsoid, i.e. the ellipsoid

of maximum volume contained in the polytope. Parametrizing the John ellipsoid as A⊤
xWAx for a positive

diagonal matrixW , i.e., a weighted sum of the outer product of the rows of Ax, the weights are characterized

by the following optimization problem:

max
w∈Rn

≥0

log det(A⊤
xWAx) (12)

s.t. 1⊤w = n.

where W = Diag
(
w
)

is the diagonal matrix corresponding to the vector w. The John ellipsoid approxi-

mates the symmetrized polytope in the sense that (1) it is inside the ellipsoid and (2) scaling it up by
√
n

will make it contains the symmetrized polytope.

On the other hand, in order to prove smoothness of the HMC curves, we need to pick a barrier whose

Hessian does not change too fast as a function of x. Unfortunately the John ellipsoid is not stable. In

particular, the weights W which maximize (12) are not even continuous with respect to x. An alternative

is to use the p-Lewis weights to define the ellipsoid, obtained as the solution to a relaxation of the program

in (12):

wx ≜argmaxw∈Rn
≥0

− log det(A⊤
xW

1−2/pAx) + (1− 2/p)1⊤w, (13)

where W = Diag
(
w
)
. Moreover, the optimal value of the program in (13) is denoted by the Lewis weight

barrier at x as defined next.

Definition 17 (Lewis weight barrier) The Lewis weight barrier can be defined as the solution of the fol-

lowing optimization problem:

ϕp(x) ≜ max
w∈Rn

>0

− log det(A⊤
xW

1−2/pAx) + (1− 2/p)1⊤w, (14)
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Let g1 = ∇2ϕp be the metric defined by the Hessian of the Lewis weight barrier which constitute the

first part of our hybrid barrier ϕ. Hence, the metric with respect to our hybrid barrier can be written as

g = α0(g1 + g2).

g1 ≜ ∇2logdet(A⊤
xW

1−2/p
x Ax),

g2 ≜
n

m
A⊤

xAx.

g ≜ α0(g1 + g2). (15)

Although ϕp is defined as the volume of the ellipsoid when the each aia
⊤
i is reweighted by 1 − 2/p

power of the p-Lewis weights, it is not clear if the Hessian of this barrier can be estimated explicitly by

Lewis weights. It turns out that this is the case, the ellipsoid corresponding to g1 is roughly the same as the

one defined by A⊤
xWxAx (Lemma 31 in Lee and Sidford (2019)).

{v | ∥v∥
x,∞ ≤ 1}

x

𝒫

2x − 𝒫

Figure 2: The unit ball of the local norm ∥.∥x,∞ is the symmetrized polytope around x ∈ P .

Lemma 18 (Restatement of Lemma 31 in Lee and Sidford (2019)) For the Lewis weight barrier ϕp we

can bound the local norm of its Hessian as

m∑

i=1

wi(x)(sx,v)
2
i ≤ v⊤g1(x)v ≤ (1 + p)

m∑

i=1

wi(x)(sx,v)
2
i . (16)

Equivalently

A⊤
xWxAx ≼ g1(x) ≼ (1 + p)A⊤

xWxAx. (17)

Moreover, we have the following formula for g1(x),
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Lemma 19 (Equation (5.5) in Lee and Sidford (2019)) The Lewis weight metric

g1(x) = ∇2 log det
(
AT

xW
1−2/p
x Ax

)
can be written in the following form

g1(x) = A⊤
x (Wx + 2Λx)Ax + 2(1− 2/p)A⊤

xΛxGx
−1

ΛxAx, (18)

where we define

Λx ≜ Wx −P
(2)
x ,

Gx ≜ Wx − (1− 2/p)Λx. (19)

In the above Lemma, Λx, Gx, rx,v, and Rx,v are all functions of the location variable x. A useful fact about

Λx and Gx is that they can be estimated by Wx. It is easy to see that Λ ≼ Wx and 1
pWx ≼ Gx ≼ Wx

(see Lemma 108 for a proof). This enables us to estimate g1(x) by the simpler form A⊤
xWxAx. On the

other hand, it is clear from Equation (18) that in order to estimate the first derivative of g1 in direrction v,

we need to study the derivative DWx(v). In Lemma 21 we illustrate the form of the Jacobian of the Lewis

weights as a function of x, by taking its directional derivative in direction v based on fundamental matrices

Λx, Gx, for any point x inside the polytope. Before that, we start by defining the projection matrix Px with

respect to Ax when reweighted by W
1−2/p
x .

Definition 20 (Projection matrix) we define the projection matrix Px, implicitly depending on x, as

Px ≜ P(W1/2−1/p
x Ax) ≜ W

1/2−1/p
x Ax(A

⊤
xW

1−2/p
x Ax)

−1Ax
⊤
W

1/2−1/p
x ,

where Wx is the p-Lewis weights calculated at x. Moreover, we denote the Hadamard square P
⊙2
x of the

projection matrix by P
(2)
x :

(P(2)
x )ij ≜ (Px

⊙2)ij = (Px)
2
ij .

Next, we state a formula for the derivative of the Lewis weights.

Lemma 21 (Derivative of the Lewis weights) For arbitrary direction v ∈ R
n, the directional derivative

DWx(v) can be calculated as

DWx(v) = −2Diag
(
ΛxG

−1
x Wxsx,v

)
.

Due to the importance and repetition of the vector ΛxG
−1
x Wxsv in our calculations later on, we give it a

separate notation

rx,v ≜ G
−1
x Wxsx,v,

Rx,v ≜ Diag
(
rx,v
)
. (20)

Then, the derivative of Wx can be written as

DWx(v) = −2Diag
(
Λxrx,v

)
.

Furthermore, when v is clear from the context, we denote DWx(v) in short by W
′
x,v.
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α0ϕp
, p < 4

α0(ϕp
+ ϕℓ), p < 4

ϕ
p
, p ∼ log(m)

Figure 3: The Lewis weight barrier with p ≃ log(n), with p < 4, and our hybrid barrier ϕ which is

regularized with the log barrier.

A.3. Markov Chains

For a Markov chain with state space M, stationary distribution Q and next step distribution pu(·) for any

u ∈ M, the conductance of the Markov chain is defined as

Φ0 ≜ inf
S⊆M

∫
S pu(M\ S)dQ(u)

min {Q(S), Q(M\ S)} .

The conductance of an ergodic Markov chain allows us to bound its mixing time, i.e., the rate of convergence

to its stationary distribution, e.g., via the following theorem of LovÂasz and Simonovits. However, we will

need a more refined notion of s-conductance here, to be able to ignore small subsets of small measure in

bounding the conductance.

Definition 22 (s-conductance) Consider a Markov chain with a state space M, a transition distribution

Tx and stationary distribution π. For any s ∈ [0, 1/2), the s-conductance of the Markov chain is defined by

Φs ≜ inf
π(S)∈(s,1−s)

∫
S Tx(Sc)π(x)dx

min(π(S)− s, π(Sc)− s)
.

A lower bound on the s-conductance of a Markov chain leads to an upper bound on its mixing rate.

Lemma 23 LovÂasz and Simonovits (1993) Let πt be the distribution of the points obtained after t steps of a

lazy reversible Markov chain with the stationary distribution π. For 0 < s ≤ 1/2 and Hs = sup{|π0(A)−
π(A)| : A ⊂ M, π(A) ≤ s}, it follows that

dTV (πt, π) ≤ Hs +
Hs

s

(
1− Φ2

s

2

)t

.

In order to bound the conductance or s-conductance of the Markov chain via the one-step closeness

framework as in Vempala (2005), we also require an isoperimetric inequality:
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Definition 24 The isoperimetry of a metric space M with target distribution π is

ψM = inf
δ→0

min
S⊆M

∫
{x| d(S,x)≤δ} π(x)dx− π(S)

δmin {π(S), π(M\ S)}

where d is the distance function in M.

The following theorem (see Kook et al. (2022)) illustrates how one-step coupling with the isoperimetry

leads to a lower bound on the s-conductance. Its proof is similar to that of Lemma 13 in Lee and Vempala

(2018) and can be found in full detail in Appendix J.7.

Theorem 25 For a Riemannian manifold (M, g), let π be the stationary distribution of a reversible Markov

chain on M with a transition distribution Tx. Let M′ ⊂ M be a subset with π(M′) ≥ 1−ρ for some ρ < 1
2 .

We assume the following one-step coupling: if dg(x, x
′) ≤ ∆ ≤ 1 for x ∈ M′, then dTV (Tx, Tx′) ≤ 0.9.

Then for any ρ/(∆ψM) ≤ s < 1
2 and given ψM∆ ≤ 1/2, the s-conductance is bounded below by

Φs = Ω(ψM∆).

Appendix B. ℓ∞-Self-Concordance of the Hybrid Barrier

In this section, we prove Theorem 7, which asserts that the hybrid barrier defined in Equation (4) is a(
poly( 1

4/p−1), α0n
)

-third-order ℓ∞-self-concordant barrier. We begin in Section B.1 by proving stabil-

ity bounds for Lewis weights in the ∥.∥x,∞ norm. These are sufficient to prove the first-order ℓ∞ self-

concordance, but proving second and third-order ℓ∞ self-concordance requires bounds on higher derivatives

of the Lewis weights. As these calculations are somewhat lengthy, we provide a high-level overview of

them in Section B.2 and defer their full proofs to Section F. We then show in Section B.3 how to use these

estimates to prove Theorem 7. As the second and third-order self-concordance proofs are similar, we derive

the second-order bounds in detail in Section B.3 and prove the analogous third-order bounds in Appendix I.

B.1. Stability of Lewis Weights in the ∥.∥x,∞ Norm

The fact that g1(x) is well-approximated by A⊤
xWxAx as stated in Lemma 18 makes it tempting to define

the metric g1 to be exactly equal to A⊤
xWxAx. Note that this results in a manifold which is not Hessian

anymore, i.e. its metric is not the Hessian of a convex function. Indeed, Hessian manifolds have the favorable

property that the second order derivatives of the metric simplifies in the definition of the Ricci tensor as

opposed to general manifolds. We use this property of Hessian manifolds in Section D.

Even though g1 = ∇2ϕp is not exactly equal to A⊤
xWxAx, we still need to estimate A⊤

xDWx(v)Ax

as it appears in the derivative of g1 in direction v. To estimate DWx[v], While estimates of the form

DWx(v) ≤ O(∥v∥g1)Wx with respect to the ellipsoidal norm ∥.∥g1 have been derived before (Lemma 34

in Lee and Sidford (2019)), the techniques in Lee and Sidford (2019) seem insufficient to recover estimates

with respect to the ℓ∞-norm, ∥.∥x,∞. Note that as we mentioned in Section 1.4, it is crucial in our approach

to obtain estimates with respect to ∥.∥x,∞ instead of ellipsoidal norms as for Gaussian random vectors

v ∼ N (0, g−1
1 ) in the tangent space, the typical value of ∥v∥x,∞ is Θ(

√
n) factor smaller than that of ∥v∥g1 .

Unlike ellipsoidal norms, one cannot use LÈowner inequalities to estimate the ∥.∥x,∞ norm since it is not

defined by a quadratic form. A key observation that we make which enables an estimate based on ∥.∥x,∞ is

that one can estimate the

∥∥∥.
∥∥∥
∞→∞

norm of the operator G−1
x Wx. We state this observation in Lemma 26

below. Note that condition p < 4 is vital for this norm bound.
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Lemma 26 (Operator

∥∥∥.
∥∥∥
∞→∞

norm bound on the Jacobian) For p < 4, given y = G
−1
x Wxr for any

vector r ∈ R
m, we have

∥y∥∞ ≤ 1

4/p− 1
∥r∥∞.

Proof Set ∥r∥∞ = ℓ. then

Wxr = Gxy =
2

p
Wxy + (1− 2

p
)P(2)

x y.

Now suppose ∥y∥∞ ≥ 1
4/p−1ℓ, which implies that for the maximizing index i we have

|yi| ≥
1

4/p− 1
ℓ.

But note that

|y⊤P(2)
x i,:| ≤ wi∥y∥∞ = wiyi,

where P
(2)
x i,: is the ith row of P

(2)
x . Hence

y⊤Gxi,: ≥
2

p
wiyi − (1− 2

p
)wiyi = (

4

p
− 1)wiyi > wiℓ.

On the other hand

y⊤Gxi,: = wiri ≤ wiℓ.

The contradiction finishes the proof.

Combining Lemma 26 with Lemma 21 allows us to control ∥rx,v∥x,∞, and therefore to estimateDWx(v)
by Wx and ∥v∥x,∞:

Lemma 27 We have

− 1

4/p− 1
∥v∥x,∞Wx ≼ W

′
x,v ≼

1

4/p− 1
∥v∥x,∞Wx.

Proof Note that W
′
x,v = −2Diag

(
Λxrx,v

)
by Lemma 21. Using Lemma 26, we have ∥rx,v∥∞ ≤

1
4/p−1∥sx,v∥∞. Hence, for every 1 ≤ i ≤ m:

|Λxi,rx,v| ≤ |wirx,vi|+ |P(2)
x i,rx,v| ≲ wi∥rx,v∥∞,

where we used the fact that the sum of the entries of the ith row of P
(2)
x is equal to wi as it is the norm

squared of the ith row of the projection matrix Px, which is equal to the ith diagonal entry of the Px, i.e.

wi. This completes the proof.

Next, in order to estimate the derivative of g1, we need to estimate DΛx(v) and DGx(v) based on Equa-

tion (18), for which we require the derivative of the projection matrix Px, since Gx and Λx are defined

based on Wx and Px. We calculate the derivative of Px in the following Lemma, which we prove in

Appendix J.8.
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Lemma 28 (Derivative of the projection matrix) The derivative of the projection matrix Px = P(W
1/2−1/p
x Ax)

in direction v is given by

DPx(v) = −PxRx,v − Rx,vPx + 2PxRx,vPx, (21)

where Rx,v is defined in Equation (20).

Luckily, we see that the derivative of the projection matrix can be written by itself and the variable Rx,v

that we defined in Equation (20). This observation completes the circle in the calculus between variables

Wx,Px,Gx,Λx,Rx,v, and Sx,v, i.e. the derivative of each one can be written based on others (Note that

D(Sx,v)(z) = −Sx,vSx,z). Moreover, Lemma 28 enables us to use our infinity norm bound in Lemma 27 to

obtain estimates on DGx(v) and DΛx(v). The following Lemma is proved in Section F.

Lemma 29 For the derivatives of Gx and Λx at some point x we have

− 1

4/p− 1
∥z∥x,∞Wx ≼ DGx(z) ≼

1

4/p− 1
∥z∥x,∞Wx,

− 1

4/p− 1
∥z∥x,∞Wx ≼ DΛx(z) ≼

1

4/p− 1
∥z∥x,∞Wx.

When v is clear from the context, we refer to PxRx,vPx by P̃x,v for brevity.

B.2. Higher-Order Lewis Weight Estimates

The estimates that we built up so far are enough to show first-order ℓ∞-self-concordance of g1, as we show

in Lemma 34. In this section, we give an overview of how we bound the higher-order derivatives, which we

prove in detail in Section F.

In order to go to higher derivatives, as can be observed in Lemmas 21 and 28, we need to estimate the

derivative of rx,v in the second direction z. In particular, note that D2
P

(2)
x (v) = 2DPx(v)⊙DPx(z)+2Px⊙

D2
Px(v, z), where the second subterm subsumes the derivative of Rx,v in direction z (recall Equation (21).)

Luckily we can estimate the infinity norm of this derivative by the infinity norm of v and z.

Lemma 30 The derivative of rx,v in direction z can be estimated as

∥D(rx,z)(v)∥∞ ≲
1

(4/p− 1)4
∥v∥x,∞∥z∥x,∞.

Now using this estimate, we can derive estimates for the second derivatives of Wx, P
(2)
x , Gx and Λx by

analysis on the PSD cone. We state these in the following lemma, which combines the results of Lemmas 79

and 83.

Lemma 31

− 1

(4/p− 1)5
∥v∥x,∞∥z∥x,∞Wx ≼ D2

Wx(v, z) ≼
1

(4/p− 1)5
∥v∥x,∞∥z∥x,∞Wx,

− 1

(4/p− 1)5
∥v∥x,∞∥z∥x,∞Wx ≼ D2

Gx(v, z) ≼
1

(4/p− 1)5
∥v∥x,∞∥z∥x,∞Wx,

− 1

(4/p− 1)5
∥v∥x,∞∥z∥x,∞Wx ≼ D2

Λx(v, z) ≼
1

(4/p− 1)5
∥v∥x,∞∥z∥x,∞Wx.

In order to go to one higher derivative, we need to control the second derivative of rx,v. For this purpose, we

need to derive the following key operator-

∥∥∥.
∥∥∥
∞→∞

norm estimates, which we prove in Lemmas 84 and 85:
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Lemma 32 For diagonal matrices S1, S2 we have
∥∥∥W−1

x

(
(PxS1Px)⊙ (PxS2Px)

)∥∥∥
∞→∞

≤
∥∥∥S1
∥∥∥
∥∥∥S2
∥∥∥,

∥∥∥W−1
x (Px ⊙ (PxS1PxS2Px))

∥∥∥
∞→∞

≤
∥∥∥S1
∥∥∥
∥∥∥S2
∥∥∥.

Building upon Lemma 32 and the previous estimates, we can then derive estimates on the second order

derivative of rx,v, and then third order derivatives of Wx,Gx,Λx. The following estimates are proved in

Lemmas 88, 89, and 91 in Section F.

Lemma 33

∥D2(rx,v)(u, z)∥∞ ≲
1

(4/p− 1)6
∥v∥x,∞∥u∥x,∞∥z∥x,∞,

and

− 1

(4/p− 1)7
∥u∥x,∞∥v∥x,∞∥z∥x,∞Wx ≼ D3

Wx(v, z, u) ≼
1

(4/p− 1)7
∥u∥x,∞∥v∥x,∞∥z∥x,∞Wx.

− 1

(4/p− 1)7
∥u∥x,∞∥v∥x,∞∥z∥x,∞Wx ≼ D3

Gx(u, v, z) ≼
1

(4/p− 1)7
∥u∥x,∞∥v∥x,∞∥z∥x,∞Wx,

− 1

(4/p− 1)7
∥u∥x,∞∥v∥x,∞∥z∥x,∞Wx ≼ D3

Λx(u, v, z) ≼
1

(4/p− 1)7
∥u∥x,∞∥v∥x,∞∥z∥x,∞Wx.

B.3. Proof of ℓ∞-Self-Concordance of the Hybrid Barrier

In this section, we show how to use the estimates above to prove Theorem 7. To show how the proof goes, in

this section we show the first and second-order ℓ∞-self-concordance of ϕ and refer the reader to Appendix I

for the proof of third-order ℓ∞-self-concordance.

We start by the first-order ℓ∞-self-concordance.

Lemma 34 (First-order ℓ∞-self-concordance) For p < 4 for arbitrary direction v ∈ R
n,

− 1

4/p− 1
∥v∥x,∞g1 ≼ Dg1(v) ≼

1

4/p− 1
∥v∥x,∞g1.

Proof Taking derivative from g1(x) as expanded in Lemma 19 and the fact that D(Ax)(v) = A⊤
x Sx,v:

Dg1(x) = A⊤
x Sx,v(Wx + 2Λx)Ax +A⊤

x (Wx + 2Λx)Sx,vAx +A⊤
x (DWx[v] + 2DΛx[v])Ax

+ 2(1− 2/p)
[
A⊤

x (DΛx[v]G
−1
x Λx +ΛxG

−1
x DGx[v]G

−1
x Λx +ΛxG

−1
x DΛx[v])Ax

]
(22)

Now we bound each of the terms separately. For arbitrary vector q ∈ R
n note that Axq = sx,q. For the first

term we can write

q⊤A⊤
x Sx,v(Wx + 2Λx)Axq = s⊤x,qSx,v(Wx + 2Λx)sx,q

≤
√

(s⊤x,qSx,vWxSx,vsx,q)s⊤x,qWxsx,q

+ 2
√
(s⊤x,qSx,vΛxSx,vsx,q)s⊤x,qΛxsx,q

≤
√

(s⊤x,qSx,vWxSx,vsx,q)s⊤x,qWxsx,q

+ 2
√
(s⊤x,qSx,vWxSx,vsx,q)s⊤x,qWxsx,q

≲ ∥sx,v∥∞q⊤g1(x)q, (23)
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where in the last line we used the estimate 17 and the fact that Wx is diagonal. Applying the same bound

as Equation (23) for the second term A⊤
x (Wx + 2Λx)Sx,vAx in Equation (22), we conclude

A⊤
x Sx,v(Wx + 2Λx)Ax +A⊤

x (Wx + 2Λx)Sx,vAx ≼ (1 + p)∥v∥x,∞g1(x). (24)

For the third term in Equation (23) applying the estimate in Lemmas (27) and (29) implies

A⊤
x (DWx[v] + 2DΛx[v])Ax ≼

1

4/p− 1
A⊤

xWxAx ≼
(1 + p)∥v∥x,∞

4/p− 1
g1(x). (25)

For the forth term in Equation (23) using Cauchy-Schwarz inequality and then the estimate for Λx in

Lemma 29:

q⊤Ax
⊤DΛx[v]G

−1
x ΛxAxq

≤
√
s⊤x,qG

1/2
x

(
G

−1/2
x DΛx[v]G

−1/2
x

)2
G

1/2
x sx,q

√
s⊤x,qG

1/2
x

(
G

−1/2
x ΛxG

−1/2
x

)2
G

1/2
x sx,q. (26)

Now using the fact that DΛx[v] ≼
1

4/p−1∥v∥x,∞Wx and 1
pWx ≼ Gx, we get

G
−1/2
x DΛx[v]G

−1/2
x ≼

p

4/p− 1
W

−1/2
x WxW

−1/2
x ≼

p

4/p− 1
I,

which implies
(
G

−1/2
x DΛx[v]G

−1/2
x

)2
≼ (

p

4/p− 1
)2I. (27)

Similarly, using the fact that Λx ≼ Wx,
(
G

−1/2
x ΛxG

−1/2
x

)2
≼ p2I. (28)

Plugging Equations (27) and (28) into Equation (26), we get

q⊤Ax
⊤DΛx[v]G

−1
x ΛxAxq ≤

p2

4/p− 1
s⊤x,qGxsx,q ≤

p2

4/p− 1
q⊤A⊤

xWxAxq.

Repeating this bound for the other symmetric quadratic form, Ax
⊤
ΛxG

−1
x DΛx[v]Ax, implies

Ax
⊤DΛx[v]G

−1
x ΛxAx +Ax

⊤
ΛxG

−1
x DΛx[v]Ax ≼

p2

4/p− 1
A⊤

xWxAx ≼
(1 + p)p2∥v∥x,∞

4/p− 1
g1(x).

(29)

Finally for the remaining quadratic form in Equation (22) we have

ΛxG
−1
x DGx[v]G

−1
x Λx ≼

1

4/p− 1
∥v∥x,∞ΛxG

−1
x GxG

−1
x Λx

≼
p

4/p− 1
∥v∥x,∞ΛW−1Λ

=
p

4/p− 1
∥v∥x,∞ΛxΛ

−1
x Λx ≼

p

4/p− 1
∥v∥x,∞Wx,

which implies

A⊤
xΛxG

−1
x DGx[v]G

−1
x ΛxAx ≼

(1 + p)p∥v∥x,∞
4/p− 1

A⊤
xWxAx. (30)

Plugging Equations (24), (25), (29), and (30) into Equation (22) and noting the fact that p < 4 is constant

proves the right-hand side in Equation (31). The left-hand side follows similarly.

Next, we move on to show the second-order ℓ∞-self-concordance.
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Lemma 35 (Second-order ℓ∞-self-concordance) For p < 4 for arbitrary direction v ∈ R
n,

− 1

(4/p− 1)5
∥v∥x,∞∥z∥x,∞g1(x) ≼ Dg1(x)[v, z] ≼

1

(4/p− 1)5
∥v∥x,∞∥z∥x,∞g1(x). (31)

Proof Again we consider the formula for g1 in Lemma 19. The first observation is that if the derivative

with respect to v hits the Ax matrix (on either left or right), then we can upper bound this part of the

quadratic form q⊤Dg1(v, z)q by 1
4/p−1∥Sx,vsx,q∥w(x)∥sx,q∥w(x) by just reusing our estimates in the proof

of Lemma 34 for showing first-order ℓ∞-self-concordance. But ∥Sx,vsx,q∥w(x) and ∥sx,q∥w(x) can further be

upper bounded by ∥v∥x,∞∥q∥g1(x) and ∥q∥g1(x), respectively, which results in the upper and lower bounds

in Equation (31). The same argument holds in the derivative with respect to z hits Ax. Hence, we only have

to consider the case when both of the directional derivatives with respect to v and z do not hit any Ax. For

that part of the derivative D2g1(v, z) consists of the following terms:

D2g1(x)[v, z] → A⊤
x (DWx[v, z] + 2DΛx[v, z])Ax

+ 2(1− 2/p)A⊤
x (DΛx[v, z]G

−1
x Λx +ΛxG

−1
x DΛx[v, z])Ax

+ 2(1− 2/p)A⊤
x (DΛx[v]G

−1
x DΛx[z] + DΛx[v]G

−1
x DΛx[z])Ax

+ 2(1− 2/p)A⊤
x (DΛx[v]D(G−1

x )[z]Λx +DΛx[z]D(G−1
x )[v]Λx)Ax

+ 2(1− 2/p)A⊤
x (ΛxD(G−1

x )[z]DΛx[v] +ΛxD(G−1
x )[v]DΛx[z])Ax

+ 2(1− 2/p)A⊤
xΛxD

2(G−1
x )[v, z]ΛxAx.

For the first line above, using Lemma 31,

A⊤
x (DWx[v, z] + 2DΛx[v, z])Ax ≼

1

(4/p− 1)2
∥v∥x,∞∥z∥x,∞A⊤

x (Wx + 2Λx)Ax.

The second line of Equation (36) follows similar to the third term in Equation (22) except that instead of

Lemma 29 we use Lemma 31. Regarding the third line, using the bound in Equation (27),

q⊤A⊤
xDΛx[z]G

−1
x DΛx[v]Axq ≤

√
q⊤A⊤

xDΛx[z]G−1DΛx[z]Axq
√
q⊤A⊤

xDΛx[z]G−1DΛx[z]Axq

≤
√
q⊤A⊤

xG
1/2
(
G−1/2DΛx[z]G

−1/2
x

)2
G1/2Axq

×
√
q⊤A⊤

xG
1/2
(
G−1/2DΛx[v]G

−1/2
x

)2
G1/2Axq

≤ (
p

4/p− 1
)2∥q∥2g1 ,

which implies

A⊤
xDΛx[z]G

−1
x DΛx[v]Ax +A⊤

xDΛx[v]G
−1
x DΛx[z]Ax ≼ (

p

4/p− 1
)2g1.

Before going to the fourth line, we show that the derivatives of G−1
x are controlled by G

−1
x the same way

the derivatives of Gx are controlled by Gx.

Lemma 36 (Control on G
−1
x ) For arbitrary v, z

− 1

4/p− 1
∥v∥x,∞G

−1
x ≼ DG

−1
x [v] ≼

1

4/p− 1
∥v∥x,∞G

−1
x ,

− 1

(4/p− 1)5
∥v∥x,∞∥z∥x,∞G

−1
x ≼ D2

G
−1
x [v, z] ≼

1

(4/p− 1)5
∥v∥x,∞∥z∥x,∞G

−1
x .
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Using Lemma 36, we can bound the forth and fifth lines of Equation (36) as

q⊤AxDΛx[v]D(G−1
x )[z]ΛxAxq ≤

√
q⊤AxΛ

1/2
x

(
Λ

−1/2
x DΛx[v]Λ

−1/2
x

)2
Λ

1/2
x Axq

×
√
q⊤A⊤

xΛ
1/2
x

(
Λ

1/2
x DG

−1
x [z]Λ

1/2
x

)2
Λ

1/2
x Axq

≤ (1 + p)(
p

4/p− 1
)2q⊤g1(x)q,

which implies

A⊤
x (DΛx[v]D(G−1

x )[z]Λx +DΛx[z]D(G−1
x )[v]Λx)Ax ≼ (

p

4/p− 1
)2g1(x).

For the last line in Equation (36) we again use Lemma 36 to obtain

A⊤
xΛxD

2(G−1
x )[v, z]ΛxAx ≼

1

(4/p− 1)2
∥v∥x,∞∥z∥x,∞A⊤

xΛxG
−1
x ΛxAx

≼
p

(4/p− 1)2
A⊤

xΛxΛ
−1
x ΛxAx

≼ (1 + p)
p

(4/p− 1)2
g1.

This completes the proof for the right-hand side of Equation (31). The left-hand side follows similarly.

Finally, a straightforward calculation shows that the log barrier is also third-order ℓ∞-self-concordant.

Lemma 37 (Third-order ℓ∞-self-concordance of the log barrier) The log barrier ϕℓ(x) = −∑m
i=1 log(a

T
i x−

bi) is third-order ℓ∞-self-concordant.

Proof [Proof of Lemma 37] To establish the third-order ℓ∞-self-concordance of ϕℓ, we need to show that

the corresponding metrix g2 = ∇2ϕℓ(x) = A⊤
xAx obeys the following inequalities:

−∥v∥x,∞g2 ≼ Dg2(v) ≼ ∥v∥x,∞g2,
−∥v∥x,∞∥z∥x,∞g2 ≼ Dg2(v, z) ≼ ∥v∥x,∞∥z∥x,∞g2,

−∥v∥x,∞∥z∥x,∞∥u∥x,∞g2 ≼ D3g2(v, z, u) ≼ ∥v∥x,∞∥z∥x,∞∥u∥x,∞g2.
Its directional derivative is given by

Dg2(v) = −2A⊤
x Sx,vAx,

which can be bounded as

−∥sx,v∥∞A⊤
xAx ≼ A⊤

x Sx,vAx ≼ ∥sx,v∥∞A⊤
xAx.

Similarly, the second and third directional derivatives of g2 are given by

D2g2(v, z) = 6A⊤
x Sx,vSx,zAx,

D2g2(v, z, u) = −24A⊤
x Sx,vSx,zSx,uAx,

which can be bounded as

−∥sx,v∥∞∥sx,z∥∞A⊤
xAx ≼ A⊤

x Sx,vSx,zAx ≼ ∥sx,v∥∞∥sx,z∥∞A⊤
xAx,

−∥sx,v∥∞∥sx,z∥∞∥sx,u∥∞A⊤
xAx ≼ A⊤

x Sx,vSx,zSx,uAx ≼ ∥sx,v∥∞∥sx,z∥∞∥sx,u∥∞A⊤
xAx.

This completes the proof as for arbitrary vector v ∈ R
n, ∥v∥x,∞ = ∥sx,v∥∞.

The following lemma bounds the self-concordance parameter of the hybrid barrier.
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Lemma 38 (Self-concordance parameter of ϕ) For our hybrid barrier ϕ, the self-concordance parameter

is defined as

ν = sup
x∈P

Dϕ(x)⊤(D2ϕ(x))−1Dϕ(x),

as is bounded by α0n.

Proof Note that for the Lewis weights and log barrier parts of the barrier ϕ = α0ϕp + α0
n
mϕℓ we can

bound the self-concordance parameter separately as (different from the barrier parameter which is defined

in Section G])

√
Dϕ(x)⊤(D2ϕ(x))−1Dϕ(x) ≤ α0

√
Dϕp(x)⊤(D2ϕ(x))−1Dϕp(x) + α0

n

m

√
Dϕℓ(x)⊤(D2ϕ(x))−1Dϕℓ(x)

≤ √
α0

√
Dϕp(x)⊤(D2ϕp(x))−1Dϕp(x) +

√
α0

n

m

√
Dϕℓ(x)⊤(D2ϕℓ(x))−1Dϕℓ(x).

Now for the log barrier part, we have

Dϕℓ(x)
⊤(D2ϕℓ(x))

−1Dϕℓ(x) = 1⊤Ax(Ax⊤Ax)
−1A⊤

x 1 ≤ m, (32)

and for the Lewis weight barrier part, from Lemmas 117 and 18:

Dϕp(x)
⊤(D2ϕp(x))

−1Dϕp(x) ≤ w⊤
x Ax(A

⊤
xWxAx)

−1A⊤
xwx ≤ ∥wx∥22 = n. (33)

Combining Equations (32) and (33) completes the proof.

Our main technical theorems about the hybrid barrier follow from the lemmas above.

Proof [Proof of Theorem 7] The third-order ℓ∞-self-concordance follows from Lemmas 34, 35, 102, and 37.

The α0n self-concordance parameter follows from Lemma 38.

Appendix C. Bounding Conductance and Mixing Time

The goal of this section is to illustrate how we combine different pieces together to prove Theorem 4. To

this end, we first prove a general purpose mixing time on a manifold in Theorem 40.

We start by defining the concept of ªNice sets,º which links the initial velocity vx0 to the (R1, R2, R3)
normality.

Definition 39 (Nice set) Given x0 ∈ M, we say a set Qx0 ⊆ Tx0(M) is (R1, R2, R3, δ, c)-nice if for

vx0 ∼ N (0, g(x0)
−1), we have

1. P(vx0 /∈ Qx0) ≤ 0.001.

2. For every x1 with d(x1, x0) ≤ δ, the Hamiltonian family of curves between x0 and x1 ending at

Hamδ(x0, vx0), denoted by (γs(t)), is (R1, R2, R3)-normal. Furthermore, ∥γ′s(t)∥ ≤ 2c
√
n and

∥∇ d
ds

γs(t)
γ′s(t)∥ ≤ 10

δ for all 0 ≤ s ≤ d(x1, x0) and 0 ≤ t ≤ δ.

We can now state this section’s main theorem, which we prove at the end of the section.
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Theorem 40 Suppose we want to sample from some distribution π on the manifold M, starting from

distribution π0 withM = supx∈M
dπ0(x)
dπ(x) . Suppose there exists a set S ⊆ M with π(S) ≥ 1−O((ϵδψ)/M),

such that for every x0 ∈ S there exists an (R1, R2, R3, δ, c)-nice set Qx0 ⊆ Tx0(M). Moreover, let ψ be

the isoperimetric constant of the pair (M, g). Then, for any δ satisfying δ2R1 ≤ 1, δ2R3 ≤ 1, δ3R2 ≤ 1,

the mixing time to reach a distribution within TV distance ϵ of π is bounded by

O(log(M + 1/ϵ)(ψδ)−2(log(c) + log(m))2).

The technical core of this section is Lemma 46, which establishes the closeness of the one-step distri-

butions of the Markov chain. This will allow us to prove Theorem 40. We will then use Theorem 40 and

the bound on the isoperimetry of the target measure from Theorem 6 to prove our main mixing time result,

Theorem 4.

To prove Lemma 46, we start with some definitions. The overall plan is that we approximate the density

of a Hamiltonian step as written in Equation (34) as in Equation (35) and bound its change going from x0
to x1 for most of the vectors vx0 within a nice set in the tangent space of x0.

Definition 41 Consider a family of Hamiltonian curves γs(t) for time interval s, t ∈ [0, δ] all ending at y,

where γ(0) = x, and γ′(0) = vx. Define the local push-forward density of vx ∼ N (0, g−1) onto y by

P vx(y) = det(Jvx
y )

√
|g(y)|√
(2π)n

e−∥vx∥2g/2, (34)

where Jvx
y is the inverse Jacobian of the Hamiltonian after time δ, sending vx to y, which we denote by

Hamδ. we consider the Jacobian as an operator between the tangent spaces. The push forward density at

y with respect to the manifold measure is given by

P (y) =
∑

vx: Hamδ(x,vx)=y

P vx(y).

Note that dg(y) refers to the manifold measure. Define the approximate local push-forward density of vx as

P̃ vx(y) = exp
(
−
∫ δ

t=0

t(δ − t)

2
tr(Φ(t))dt

)√
|g(y)|/

√
(2π)ne−∥vx∥2g/2. (35)

Lemma 42 (Lemma 22 in Lee and Vempala (2018)) For an R1-normal Hamiltonian curve, for 0 ≤ δ2 ≤
1
R1

we have

| log(P̃ vx(y))− log(P vx(y))| ≤ (δ2R1)
2

10
. (36)

Lemma 43 (Lemma 32 in Lee and Vempala (2018)) In the setting of Lemma 44, for an (R1, R3) normal

γ0, denoting d
dsγs(0) by z, we have

1

2
δ
d

ds
∥γ′s(0)∥2 ≤ |⟨vx, z⟩|+ 3δ2R3∥z∥.

Lemma 44 (Change of the pushforward density) Consider the family of smooth Hamiltonian curves γs(t)
up to time δ from x0 to x1 pointing towards y, namely γ0(0) = x0, γ0(δ) = y, and γ′s(0) = vx regarding a

point x = γs(0) along the geodesic between x0 to x1 whose tangent to the geodesic is z ≜ d
dsγs(0). Then,

given that γs(t) is (R1, R2, R3) normal and ∥∇ d
ds

γs(t)
γ′s(t)∥ ≤ 10/δ for 0 ≤ s, t ≤ δ, under δ2 ≤ 1

R1
we

have

δ
d

ds
log(P̃ vx(y)) ≤ |⟨vx, z⟩|+ 2δ3R2 + 3δ2R3.
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Proof Simply differentiating Equation (35):

δ
∣∣ d
ds

log(P̃ vx(y))| =
∣∣− δ

d

ds

( ∫ δ

t=0

t(δ − t)

δ
tr(Φ(t))dt

)
− 1

2
δ
d

ds
∥vx∥2g

∣∣

≤ δ

∫ δ

t=0

t(δ − t)

δ
| d
ds
tr(Φ(t))

∣∣dt+ |⟨vx, z⟩|+ 3δ2R3∥z∥.

where we used Lemma 43 with vx = γ′s(0). Furthermore, using the R2 normality property and noting our

assumption ∥z∥ = ∥ d
dsγs(0)∥ = 1, we have,

∣∣ d
ds
tr(Φ(t))

∣∣ ≤ R2(∥
d

ds
γs(t)∥+ δ∥∇ d

ds
γs(t)

γ′s(t)∥) ≤ 11R2,

where the last inequality follows from our assumption (which will be imposed by the definition of Nice sets

in Lemma 45). Therefore,

LHS ≤ |⟨vx, z⟩|+
11

6
δ3R2 + 3δ2R3.

Lemma 45 (Change in probability of events under approximate density) Let Qx0 ⊆ Tx0(M) be a

(R1, R2, R3, δ, c) nice set in the tangent space of x0 with δ2R1 ≤ 1. Let x be an arbitrary point in the

geodesic between x0 and x1. For vector vx in the tangent space of x with Hamδ(x, vx) = y we can

consider the family of hamiltonian curves γs(t) between x0 = γ0(0) and x1 = γδ(0) with γs(δ) = y for all

0 ≤ s ≤ δ.Now let pn be the finite measure obtained by restricting the normal distribution in the tangent

space of x to vectors vx for which the corresponding vx0 = γ′0(0) ∈ Qx0 . For a point y ∈ M, let P̃n
x (y) be

the approximate pushforward density of pn onto M, defined as

P̃n(y) = P̃n
x (y) =

( ∑

vx: Hamδ(x,vx)=y, vx0∈Qx0

P̃ vx(y)
)
dg(y), (37)

where P̃ vx
x (y) is defined in (35). We define P̃n(.) to be the corresponding finite measure. Now given a fixed

event Y ⊂ M with probability Pn(Y ) ≥ 0.001, we have

δ
∣∣∣
d

ds
log(P̃n(Y ))

∣∣∣ ≤ 2c1 + 3δ3R2 + 2δ2R3, (38)

and for all Y :

δ
∣∣∣
d

ds
log(P̃n(Y ))

∣∣∣ ≤ c1
√
n+ 2δ3R2 + 3δ2R3, (39)

where c1 is a polylogarithmic factor in m and c. Note that P̃n
x depends on x = γs(0), and we are fixing

the set Qx0 in the tangent space of x0.

Proof Let P̃n
1 be the density of further restricting P̃n to vx’s for which ⟨vx, z⟩ ≤ c1 for a factor c1 that we

pick polylogarithmically large in m, where recall z ≜ d
dsγs(0), and P̃n

2 be such that P̃n(y) = P̃n
1 (y) +

P̃n
2 (y). Note that

∣∣∣
d
ds P̃

n(Y )

P̃n(Y )

∣∣∣ =
( d

ds P̃
n
1 (Y )

P̃n
1 (Y )

)( P̃n
1 (Y )

P̃n(Y )

)
+
( d

ds P̃
n
2 (Y )

P̃n
2 (Y )

)( P̃n
2 (Y )

P̃n(Y )

)

= LHS1

( P̃n
1 (Y )

P̃n(Y )

)
+ LHS2

( P̃n
2 (Y )

P̃n(Y )

)
. (40)
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But note that for the first term

LHS1 ≤
∫

Y

∑

vx: Hamδ(x,vx)=y, vx0∈Qx0 , ⟨vx,z⟩≲1

∣∣∣
( d

ds P̃
vx(y)

P̃ vx(y)

)( P̃ vx(y)

P̃n
1 (y)

)( P̃n
1 (y)

P̃n
1 (Y )

)∣∣∣dg(y)

≤
∫

Y

( P̃n
1 (y)

P̃n
1 (Y )

)(∣∣∣⟨vx, z⟩
∣∣∣+ δ3R2 + δ2R3

)
δ−1dg(y)

≤ (c1 + 2δ3R2 + 3δ2R3)/δ.

To see why the second line holds, note that the Hamiltonian curve from x to y is (R1, R2, R3) normal from

our assumption for time t ∈ (0, δ). The second line follows from Lemma 44 and the fact that
P̃ vx (y)

P̃n
1 (y)

≤ 1.

The third line follows simply by the choice ⟨vx, z⟩ ≤ c1.

Similarly for the second term

LHS2 ≤
(
|⟨vx, z⟩|+ 2δ3R2 + 3δ2R3

)
/δ ≤

(
2c
√
n+ 2δ3R2 + 3δ2R3

)
/δ,

where in the last inequality we are using the fact that |⟨vx, z⟩| ≤ 2c
√
n. This is because P̃n

x is defined in

Equation (37) as a sum on only vx0’s that are in Qx0 , which means γs(t) is a nice family of Hamiltonian

curves. Hence, from the definition of Nice sets, we have ∥vx∥ = ∥γ′s(0)∥ ≤ 2c
√
n. Therefore, a simple

Cauchy Schwarz implies |⟨vx, z⟩| ≤ ∥vx∥g∥z∥g ≤ 2c
√
n.. Now first note that combining these and putting

back in (40) implies

δ
∣∣∣
d

ds
log(P̃n(Y ))

∣∣∣ ≤
( P̃n

1 (Y )

P̃n(Y )

)(
c1 + 2δ3R2 + 3δ2R3

)
+
( P̃n

2 (Y )

P̃n(Y )

)(
2c
√
n+ 2δ3R2 + 3δ2R3

)
. (41)

This immediately implies Equation (39) as P̃n(Y ) = P̃n
1 (Y ) + P̃n

2 (Y ). To show case (38), first we use the

fact that the densities regarding P̃n and Pn are within factor two of one another from Equation (36) and the

assumption δ2R1 ≤ 1, and combine it with the assumption P̃n(Y ) ≥ 0.001 to get:

0.001 ≤ Pn(Y ) ≤ 2P̃n(Y ), (42)

P̃n
2 (Y ) ≤ 2Pn

2 (Y ). (43)

Second, note that we can bound ⟨vx, z⟩ as

|⟨vx, z⟩| = |⟨γ′s(0), z⟩| ≤ |⟨γ′0(0), z⟩|+
∫ s

r=0
|⟨∇ d

dr
γr(0)

γ′r(0), z⟩|

≤ |⟨vx0 , z⟩|+
∫ s

r=0
∥∇ d

dr
γr(0)

γ′r(0)∥∥z∥ ≤ |⟨γ′0(0), z⟩|+ 10, (44)

where in the last inequality we used the property of the nice sets to bound ∥∇ d
dr

γr(0)
γ′r(0)∥. Note that the

variable ⟨vx0 , z⟩ is Gaussian with variance ∥z∥2g = 1. Therefore, using Gaussian tail bound (see 1), we

can pick c ≥ 20 large enough such that |⟨vx, z⟩| ≤ c1 happens with probability at least 1/(800c
√
n), and

c1 = O(log(m) + log(c)). Combining this with Equation (44) implies Pn
2 (Y ) ≤ 1/(800c

√
n) from the

definition of Pn
2 . Combining this with Equation (43), we get

P̃n
2 (Y ) ≤ 2/(800c

√
n). (45)

Finally combining Equations (42) and (45) reveals P̃n
2 (Y )/P̃n(Y ) ≤ 1/(2c

√
n), and plugging this into

Equation (41) completes the proof of Equation (38).
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Using the bounds on smoothness, we will show that one-step distributions of RHMC from two nearby

points will have large overlap (and hence TV distance less than 1).

Lemma 46 (One-step coupling for RHMC) Consider two points x0 and x1 and suppose Qx0 is a

(R1, R2, R3, δ, c)-nice set in the tangent space of x0. Now given step size δ such that δ2 ≤ 1
R1
, δ3R2 ≤

1, δ2R3 ≤ 1 and close by point x1 such that d(x0, x1) ≤ δ̃ for δ̃ = (0.1δ)/(2c1 + 5), where d is the

distance on the manifold and c1 = O(log(m) + log 9c)) is used in Lemma 45, then the total variation

distance between Px0 and Px1 is upper bounded by 0.5.

Proof Similar to (37), we define

Pn
x (y) =

( ∑

vx: Hamδ(x,vx)=y, vx0∈Qx0

P vx(y)
)
dg(y).

First, note that for any event Z ⊆ M, from the definition of Nice sets

|Pn
x0
(Z)− Px0(Z)| ≤ P(vx /∈ Qx0) ≤ 0.001. (46)

Suppose Y ⊆ M be a set for which

Px0(Y )− Px1(Y ) > 0.5. (47)

This means Px0(Y ) ≥ 0.5, and moreover from (46)

Pn
x0
(Y )− Pn

x1
(Y ) ≥ Px0(Y )− Px1(Y )− P(vx0 /∈ Qx0) ≥ 0.499, (48)

which also implies

Pn
x0
(Y ) ≥ 0.499. (49)

But now using the assumptions on R2 and R3 and plugging Equation (49) into Equation (38) in Lemma 45

we can state

δ̃
∣∣∣
d

ds
log(P̃n

x (Y ))
∣∣∣ ≤ δ̃(2c1 + 5)/δ ≤ 0.1,

which by integrating from s = 0 to s = δ̃ implies at time s = δ̃ we have

log(P̃n
γ0(0)

(Y ))− log(P̃n
γδ̃(0)

(Y )) ≤ 0.5,

or in other words

P̃n
x0
(Y )/P̃n

x1
(Y ) ≤ 1.11. (50)

Now again applying the boundedness of the ratio between P̃n and Pn from Equation (36) and assumption

δ2R1 ≤ 1, we obtain

P̃n
x1
(Y )/Pn

x1
(Y ), Pn

x0
(Y )/P̃n

x0
(Y ) ≤ 1.11, (51)

which combined with Equation (50) means

Pn
x0
(Y )/Pn

x1
(Y ) < 1.4.
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This implies

Pn
x1
(Y )− Pn

x0
(Y ) < 0.4.

This further implies from (46):

Px0(Y )− Px1(Y ) ≤ Pn
x0
(Y )− Pn

x1
(Y ) + 0.001 ≤ 0.401,

which contradicts Equation (47). This completes the proof.

Theorem 40 now follows easily from Lemma 46, Lemma 23, and Theorem 25.

Proof [Proof of Theorem 40] With the given choice of δ, Lemma 46 implies that, for every x0 ∈ S and

every x1 within distance d(x0, x1) ≤ O(δ/c1) for c1 = O(log(m) + log(c)):

TV (Tx0 , Tx1) ≤ 0.01.

Using Theorem 25, for ρ = P(Sc) = O((ϵδψ)/M) we get a lower bound on the s-conductance for s =
O(ϵ/M):

Φ2
s ≥ Ω(c21(ψδ)

2).

Now using Lemma 23 with the same choice of s,

dTV (πt, π) ≤ Hs +
Hs

s

(
1− Φ2

s

2

)t

≤ ϵ,

where we used the fact that Hs ≤Ms = O(ϵ) (recall the definition of M ) and the fact that we pick t of the

order log(M + 1/ϵ)(ψδ)2c21 as Hs/s ≤M . The proof is complete.

Finally, Combining Theorems 40 and 15 and Lemma 16, we prove the main Theorem 4.

Proof [Proof of Theorem 4] Given a fixed parameter c > 1, Lemma 72 implies that there exists a high

probability set S = Sc ⊆ M, with

π(S) ≥ 1− poly(m)e−Θ(c2), (52)

(Recall π is the distribution supported on the polytope with density e−αϕ) such that every x0 ∈ S has a

corresponding set Qx0 ∈ Tp(M) such that

• The initial velocity vx ∈ Tp(M) which is distributed according to N (0, g(x)−1) is in Qx with prob-

ability at least 0.999,

• For every vx ∈ Qx, the Hamiltonian curve with initial velocity vx is (c, 1)-nice.

Now given that we pick parameter δ so that it satisfies the condition in Lemma 16, i.e.,:

δ ≤ δ′ =
1

c̃c2c3
√
c2 + α

√
α0n

1/4
,

and given c > 20, then we conclude that for any family of Hamiltonian curves γs(t) for which γ′0(0) = vx,

γs is (O(c), δ)-nice for every s ∈ (0, δ).
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Furthermore, Corollary 66 also guarantees ∥∇ d
ds

γs(t)
γ′s(t)∥ ≤ 10

δ for all 0 ≤ s, t ≤ δ. Combining

these with Theorem 15 and since our hybrid barrier is α0n-third-order-ℓ∞-self-concordant according to

Theorem 7, we conclude that Qx0 is a (δ,R1, R2, R3)-nice set with parameters:

R1 = c4(c
2 + α

√
α0)

√
n,

R2 = c4(c
2 + α

√
α0 +

c√
nδ

)n,

R3 = c4(c
2(
√
n+ cnδ) + nδcα

√
α0,

where c4 = O(c3) and c3 is the factor in Theorem 15 and recall α0 =
(
m
n

) 2
p+2 . As we see shortly, we

pick p = 4 − λ for λ = O(1/ log(m)), in which case c3 and c4 become polylogarithmic in m. Now for

the same parameter c we considered above, we wish to satisfy the conditions in Theorem 40 on δ, namely

δ2R1(c) ≤ 1, δ2R3(c) ≤ 1, δ3R2(c) ≤ 1 (We have used this notation to emphasize that R1, R2, R3 are

functions of c).
Hence, the conditions on δ translate into

δ = O(
1

c
1/2
4 n1/4c

),

δ = O(
1

c
1/2
4 n1/3c

),

δ = O(
1

c
1/2
4 n1/3

),

δ = O(
1

c
1/2
4 n1/3c1/3(α

√
α0)1/3

),

δ = O(
1

(c4 + c3c2c̃)1/2α1/2α0
1/4n1/4

).

Note that a sufficient condition on δ which satisfies all of the above constraints is (note that c > 1)

δ =
1

c5c
min{ 1

n1/3
,

1

n1/3(α
√
α0)1/3

,
1

α1/2α0
1/4n1/4

}, (53)

For a factor c5 = O(c
1/2
4 + c2c3).

Now to satisfy the condition P (S) ≥ 1−O((ϵδψ)/M) in Theorem 40, noting Equation (52), we set

c =
√

log
(
poly(m)M/(ϵψ)

)
= Θ

(√
log(Mm/ϵ)

)
.

On the other hand, from Theorem 6, we see that for the choice of p = 4−λ converging to 4 from below

(λ is a parameter smaller than one), the square of the isoperimetry constant is

ψ2 = Θ(max{m− 2/p
2/p+1n

− 1
2/p+1 , poly( 1

4/p−1)α}). Indeed, by picking λ = O(1/ log(m)) for small enough

constant, we can make sure

ψ2 = Θ(max{m−1/3n−2/3, c6α})
for c6 = poly( 1

4/p−1). On the other hand, note that by this choice of λ, we get 1
4/p−1 = O(log(m)), hence

the factors c2, c3, c4, c5, and c6 become polylogarithmic in m. Now plugging this ψ and δ from (53) into

Theorem 40 and noting the choice of c we get the following mixing bound:

min{α−1, n2/3m1/3}max{n2/3, n2/3(α√α0)
2/3, n1/2α

√
α0} log(M + 1/ϵ) log(Mm/ϵ)polylog(m) log(c)

=min{α−1, n2/3m1/3}max{n2/3, n2/3(α√α0)
2/3, n1/2α

√
α0} log(M + 1/ϵ) log(M/ϵ) log log(M/ϵ)2polylog(m).
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But note that if α
√
α0n

1/2 ≥ n2/3 or n2/3(α
√
α0)

2/3 ≥ n2/3, then α−1 ≤ n2/3m1/3. Hence, the mixing

time boils down to

min{α−1(n2/3 + n2/3(α
√
α0)

2/3 + α
√
α0n

1/2), n4/3m1/3} log(M) log(M/ϵ) log log(M/ϵ)2polylog(m),

≤min{α−1n2/3 + α−1/3n5/9m1/9 +m1/6n1/3, n4/3m1/3} log(M/ϵ)2 log log(M/ϵ)2polylog(m).

Appendix D. Geometry and Stability of Self-concordant Hessian Manifolds

In this section, we prove the smoothness of the operator Φ(t), namely we show that a nice Hamiltonian

curve is (R1, R2, R3) normal. Importantly, we do not explicitly work with the expansion of the metric g
and its derivatives using our hybrid barrier. Instead we exploit the strong-self concordance property that we

show in Theorem 7 to prove the desired smoothness bounds, hence our framework potentially can be applied

more broadly. Interestingly, in order to bound the trace of certain operators that arise from bounding the

smoothness of the Hamiltonian curves on manifold, it turns out that writing them as the average of random

low rank tensors will enable us to apply our strong self-concordance estimates more efficiently and provide

sufficient bounds to improve the mixing time. In this section, for sake of clarity of the presentation of the

proofs, we use ≲ to indicate an inequality by ignoring the polylogarithmic factors in m.

D.1. Bounding R1

Lemma 47 Given a α0n-third-order-ℓ∞-self-concordant barrier ϕ, assuming γ(t) is (δ, c)-nice, then for

the parameter R1 regarding the Frobenius norm bound of operator Φ(t), we have

R1 ≤ c3(c
2 + α

√
α0)

√
n,

where c3 = poly( 1
4/p−1).

Proof Directly follows from Lemmas 52 and 48.

Throughout the proof of Lemmas 52 and 48 we assume γ(t) is (δ, c)-nice and avoid repeating this condition.

For fixed time t, we refer to γ(t) and γ′(t) by x and v respectively. Furthermore, when referring to Riemann

and Ricci tensor, or operators Φ or Mx, we mean these operators on the tangent space on point x. First,

recall the definition of the Frobenius norm:

∥Φ(t)∥2F = Ev1,v2∼N (0,g−1)E⟨v1,Φ(t)v2⟩2.

To bound R1, i.e. the Frobenius norm of Φ(t), note that

Φ(t) = R(., v)v +Mx(.),

where R is the Riemann tensor and Mx is obtained from the bias vector µ. For brevity, sometimes we refer

to Mx by M . In particular, for vector ℓ we have

R(ℓ, v)v = g−1Dg(v)g−1Dg(v)ℓ

+ g−1Dg(ℓ)g−1Dg(v)v, (54)

M(ℓ) = ∇ℓ(∇(αϕ)) +
1

2
∇ℓ(g

−1
tr(g−1Dg)),

where tr(g−1Dg) is a vector with its ith entry equal to tr(g−1Dig). We start from the Riemann tensor. The

proof of this bound follows directly from the second-order ℓ∞-self-concordance of g.
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Lemma 48 (Frobenius norm of random Riemann tensor) Assuming ∥v∥x,∞ ≤ c, ∥v∥g ≤ c
√
n, we

have

∥R(., v)v∥F ≤ c2
√
n.

Proof For the first term of R(., v)v as written in (54):

Ev1,v2∼N (0,g−1)(v
⊤
1 Dg(v)g

−1Dg(v)v2)
2 = Ev1,v2v

⊤
1 Dg(v)g

−1Dg(v)v2v
T
2 Dg(v)g

−1Dg(v)v1

= Ev1,v2v
⊤
1 Dg(v)g

−1Dg(v)g−1Dg(v)g−1Dg(v)v1

≤ ∥sv∥4∞Ev⊤1 gv1 = ∥sv∥4∞n ≤ c4n.

For the second term of the Riemann tensor:

Ev1,v2∼N (0,g−1)(v
⊤
1 Dg(v2)g

−1Dg(v)v)2 = Ev1,v2v
⊤Dg(v)g−1Dg(v2)v1v

⊤
1 Dg(v2)g

−1Dg(v)v

= Ev2v
⊤Dg(v)g−1Dg(v2)g

−1Dg(v2)g
−1Dg(v)v

≤ Ev2∥v∥2x,∞∥v2∥2x,∞v⊤gv
≲ ∥v∥2x,∞v⊤gv ≤ c4n.

where we used Lemma 115 to bound Ev2∥v2∥2x,∞. Lemma 48 states c2
√
n as an upper bound on the

Frobenius norm of R(ℓ, v)v given that the curve is nice.

Next, we prove a lemma regarding the expansion of the operator Mx, applying the covariant derivative.

Lemma 49 (Subterms for operator Mx) We have the following expansion for the subterms of operator

Mx:

⟨∇v1(∇(αϕ)), v2⟩ = v⊤2 Dg(∇(αϕ))v1 + v⊤2 D
2(αϕ)v1,

⟨∇v1(g
−1tr(g−1Dg)), v2⟩ = v⊤2 Dg(ξ)v1 + v⊤2 D(gξ)v1, (55)

where

ξ ≜ g−1
tr(g−1Dg).

Moreover,

v⊤2 D(gξ)v1 = −tr(g−1Dg(v1)g
−1Dg(v2)) + tr(g−1D2g(v1.v2)). (56)

Proof By differentiating the first term:

⟨∇v1(∇(αϕ)), v2⟩ = ⟨−g−1Dg(v1)g
−1D(αϕ) + g−1D2(αϕ)[v1] + g−1Dg(∇(αϕ))v1, v2⟩.

But noting that ∇(αϕ) = g−1D(αϕ), the first and third terms are the same and we get the result. For the

second term:

⟨∇v1(g
−1
tr(g−1Dg)), v2⟩ = v⊤2 Dg(ξ)v1 + v⊤2 D(gξ)v1. (57)

Finally, for the second argument of the Lemma

v⊤2 D(gξ)v1 = v⊤2 D(gξ)(v1)

= −v⊤2 tr(g−1Dg(v1)g
−1Dg) + v⊤2 tr(g

−1D2g(v1, .))

= −tr(g−1Dg(v1)g
−1Dg(v2)) + tr(g−1D2g(v1, v2)).

Before we proceed, we state some useful bounds for ξ and its derivative that we use later in the proof.
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Lemma 50 (Bound on ∥ξ∥) We have

∥ξ∥g ≤ √
n.

Proof We have

∥ξ∥2g = tr(g−1Dg)
⊤
g−1

tr(g−1Dg)

= Ev,v′∼N (0,g−1)v
⊤Dg(v)g−1Dg(v′)v′

≤ Ev∼N (0,g−1)v
⊤Dg(v)g−1Dg(v)v

≲ Ev∥v∥2x,∞v⊤gv ≲ n, (58)

where the first inequality above is due to Cauchy-Schwarz, the second one we used the first-order ℓ∞-self-

concordance to pull out ∥v∥x,∞, and the third one is due to Lemma 115.

Next, we show the following bound on the derivative of ξ, i.e. ∥D(ξ)(z)∥2g:

Lemma 51 For the derivative of ξ in direction z we have

∥D(ξ)(z)∥2g ≲ n∥z∥2g.

Proof Note that

∥D(ξ)(z)∥2g = tr(g−1Dg)
⊤
g−1Dg(z)g−1Dg(z)g−1

tr(g−1Dg) LHS1

+ tr(g−1Dg(z)g−1Dg)⊤g−1tr(g−1Dg(z)g−1Dg) LHS2

+ tr(g−1D2g(z, .))
⊤
g−1

tr(g−1D2g(z, .)). LHS3

For the first term above,

tr(g−1Dg)
⊤
g−1Dg(z)g−1Dg(z)g−1tr(g−1Dg) ≤ tr(g−1Dg)

⊤
g−1/2(g−1/2Dg(z)g−1/2)2g−1/2

tr(g−1Dg)

≤ ∥z∥2gtr(g−1Dg)
⊤
g−1

tr(g−1Dg).

following the argument in (58):

LHS1 ≤ ∥sx,z∥2∞n = ∥z∥2x,∞n.

For the second term, we write the second g−1 within the tracec as an expectation Ev′∼N (0,I)v
′v′⊤, i.e.

tr(g−1Dg(z)g−1Dg) = tr(Dgg−1Dg(z)g−1)

= Ev′tr(Dgg
−1Dg(z)v′v′⊤)

= Ev′Dg(v
′)g−1Dg(z)v′.

Therefore, using independent normal vectors v, v′ ∼ N (0, g−1), we can rewrite the second term as

LHS2 = Ev,v′v
⊤Dg(z)g−1Dg(v)g−1Dg(v′)g−1Dg(z)v′

= Ev,v′z
⊤Dg(v)g−1Dg(v)g−1Dg(v′)g−1Dg(v′)z

≤ Evz
⊤Dg(v)g−1Dg(v)g−1Dg(v)g−1Dg(v)z

≲ Ev∥z∥2g∥v∥4x,∞ ≲ ∥z∥2g.
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where the first inequality follows from Cauchy-Schwarz and the second one follows from first-order self-

concordance, and the third one from Lemma 115. For the third term similarly

LHS3 = Ev,v′∼N (0,g−1)v
⊤Dg(z, v)g−1Dg(z, v′)v′

= Ev,v′z
⊤Dg(v, v)g−1Dg(v′, v′)z

≤ Evz
⊤Dg(v, v)g−1Dg(v, v)z

≲ Ev∥z∥2g∥v∥4x,∞ ≲ ∥z∥2g.

Combining all three bounds similar to our argument for ∇(αϕ) we conclude

∥D(ξ)(z)∥g ≲ ∥z∥x,∞
√
n ≤ ∥z∥g

√
n. (59)

Next, using Lemma 50 we bound the Frobenius norm of the M part in the following lemma, again only

using second-order ℓ∞-self-concordance of g to bound each of the four terms.

Lemma 52 (Frobenius norm of operator M ) We have

∥Mx∥F ≲ α
√
α0n.

Proof To bound the Frobenius norm of the first part of the first term of operator M stated in Lemma 49:

Ev1,v2∼N (0,g−1)(v
⊤
1 Dg(∇(αϕ))v2)

2 = Ev1,v2v
⊤
1 Dg(∇(αϕ))v2v

⊤
2 Dg(∇(αϕ))v1

= α2
Ev1v

⊤
1 Dg(∇ϕ)g−1Dg(∇ϕ)v1

= α2
Ev1∇ϕ⊤Dg(v1)g−1Dg(v1)∇ϕ

≲ α2
Ev1∥v1∥2x,∞∥∇ϕ∥2g ≲ nα2α0,

where in the second line we are switching v1 and ∇ϕ as v⊤1 Dg(∇ϕ) into ∇ϕ⊤Dg(v1), which is true due to

the symmetry of the derivatives of the metric on Hessian manifolds, i.e. ∂kgij = ∂igjk = ∂jgik. In the last

inequality, we used the fact that ϕ is has α0n as its self-concordance parameter. For the second part of first

term of M , note that D2ϕ = g, so the Frobenius norm is at most n automatically. Next, for the first part of

the second term of M , again based on Lemma 49

Ev1,v2∼N (0,g−1)(v
⊤
1 Dg(ξ)v2)

2 = Ev⊤2 Dg(ξ)v1v
⊤
1 Dg(ξ)v2

= Eξ⊤Dg(v2)g−1Dg(v2)ξ

≤ E∥sx,v2∥2∞ξ⊤gξ ≤ n,

where in the last line we used Lemma 50. For the second part of the second term of M , from Lemma 49:

Ev1,v2(v
⊤
1 D(gζ)v2)

2 ≲ Etr
2(g−1Dg(v1)g

−1Dg(v2)) + Etr
2(g−1D2g(v1.v2))

for the first part

Etr
2(g−1Dg(v1)g

−1Dg(v2)) = Ev1,v2,v(Ev∼N (0,g−1)v
⊤Dg(v1)g−1Dg(v2)v)

2

≤ Ev1,v2,v(v
⊤Dg(v1)g−1Dg(v2)v)

2

= Ev1,v2,vv
⊤Dg(v1)g−1Dg(v)v2v

⊤
2 Dg(v)g

−1Dg(v1)v

= Ev1,vv
⊤Dg(v1)g−1Dg(v)g−1Dg(v)g−1Dg(v1)v

≲ Ev,v1∥sx,v∥2∞∥sx,v1∥2∞∥v∥2g ≲ n.
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For the second part:

Ev1,v2tr
2(g−1D2g(v1, v2)) ≤ Ev1,v2,v(v

⊤D2g(v1, v2)v)
2

= Ev1,v2,v(v
⊤D2g(v1, v)v2)

2

= Ev1,v2,vv
⊤D2g(v1, v)v2v2

⊤D2g(v1, v)v

= Ev1,vv
TD2g(v1, v)g

−1D2g(v1, v)v

≲ Ev1,v∥sx,v1∥2∞∥sx,v∥2∞∥v∥2g ≲ n.

D.2. Bounding R2

Here we state the bound on R2.

Lemma 53 Given a (c2, α0n)-third-order-ℓ∞-self-concordant ϕ, for point x = γs(t) on a (c, δ)-nice

Hamiltonian curve ending at γ0(δ) with v = vs(t) = γ′s(t), namely that ∥γ′s(t)∥γs(t),∞ ≤ c and ∥γ′s(t)∥g ≤
c
√
n along the curve up to time t = δ, suppose we wish to bound the change of the trace of the operator

Φ(t) in parameter in direction z = d
dsγs(t). Then the curve is R2-normal with

R2 = nc3(c
2 +

√
α0α+

c√
nδ

),

according to Definition 13, where c3 = poly(c2). In particular,

| d
ds
tr(Φ(t))| ≲ R2

(
∥ d
ds
γs(t)∥g + δ∥∇ d

ds
γs(t)

γ′s(t)∥
)
.

Proof Directly from Lemmas 54 and 60.

In the following, we show Lemmas 54 and 60. Again we assume that γs is (c, δ)−nice in all of the

sections without repeating, and refer to γs(t) by x. In sections D.2.1 and D.2.2, we bound the change in the

Mx part and the Ricci part of Φ, respectively.

D.2.1. BOUNDING THE CHANGE IN Mx

Given a distribution e−αϕ(x) that we want to sample from, we study the properties of the derivatives of the

corresponding operator M which is defined as

Mx(v1, v2) = ⟨∇v1µ(x), v2⟩, (60)

where

µ(x) = ∇(αϕ)(x) +
1

2
g−1tr(g−1Dg) = g−1D(αϕ) +

1

2
g−1tr(g−1Dg),

Recall from Lemma 49:

LHS = ⟨∇v1(∇(αϕ)) +
1

2
∇v1(g

−1tr(g−1Dg)), v2⟩ = ⟨A1(v1), v2⟩+ ⟨A2(v1), v2⟩. (61)

where we defined matricesA1(v1) andA2(v1). Here we introduce the main lemma of this section which

bounds the derivative of the trace of M :
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Lemma 54 (Bound on the change of operator M ) For the operator M defined in (60) and for any direc-

tion z, we have

|D(trMx)(z)| ≲ (1 +
√
α0α)n∥z∥g.

Proof To prove Lemma 54, we bound the derivative of tr(A1) and tr(A2) in direction z separately in

Lemmas 55 and 57. As a result, the proof of Lemma 54 directly follows from Lemmas 55 and 57.

We start from tr(A1) in the following Lemma.

Lemma 55 (Trace of A1) Regarding the operator A1(v1) = ∇v1(∇(αϕ)), we have

D(tr(A1))(z) ≲ α
√
nα0∥z∥g.

Proof Note that from Lemma 49:

D(tr(A1))(z) = ⟨D(∇(αϕ))[v1] +
1

2
g−1Dg(∇(αϕ))v1, v2⟩

= v⊤2 Dg(∇(αϕ))v1 + v⊤2 D
2ϕv1. (62)

For the second part, note that D2(αϕ) = αg. Hence

D(tr(g−1D2ϕ))(z) = 0.

So we only need to handle the derivative of the first part. First, note that the g-norm of the gradient ∇ϕ
is bounded.

Lemma 56 For the gradient of the potential ϕ we have

∥D(αϕ)∥g−1 ≤ α
√
nα0.

Proof Directly from the fact that ϕ is a
√
α0n-third-order self-concordant barrier.

Now we got back to bound the first term in (62), which we can expand as

D(tr(g−1Dg(∇(αϕ))))[z] = tr(g−1D2g(z,∇(αϕ))) + tr(g−1Dg(D(∇(αϕ))[z])) (63)

− tr(g−1Dg(z)g−1Dg(∇(αϕ))). (64)

For the first term in (64), according to Lemma 56:

tr(g−1D2g(z,∇(αϕ)))

= Ev′∼N (0,g−1)v
′⊤D2g(z,∇(αϕ))v′

= Ev′∼N (0,g−1)v
′⊤D2g(z, v′)∇(αϕ)

≤ Ev′∼N (0,g−1)∥sx,z∥∞∥sx,v′∥∞
√
v′⊤gv′

√
∇(αϕ)⊤g∇(αϕ)

≲ α
√
α0

√
n
√
n∥sx,z∥∞

≤ α
√
α0n∥z∥g, (65)
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where we used Lemma 115 to bound Ev′∥sv′∥∞
√
v′⊤gv′ and used Lemma 95. For the second term in (64),

we follow a similar reasoning:

tr(g−1Dg(D(∇(αϕ))(z))) = Ev′∼N (0,g−1)v
′⊤Dg(D(∇(αϕ))(z))v′

= Ev′∼N (0,g−1)v
′⊤Dg(v′)D(∇(αϕ))(z)

≲ Ev′∥v′∥x,∞
√
v′⊤gv′

√
D(∇(αϕ))(z)⊤gD(∇(αϕ))(z). (66)

Therefore, bounding tr(g−1Dg(D(∇(αϕ))(z))) boils down to bounding ∥D(∇(αϕ))(z)∥g. Now using the

fact that ∇2ϕ = g, we can write
√

D(∇(αϕ))(z)⊤gD(∇(αϕ))(z) = α
√
(−(Dϕ)⊤g−1Dg(z)g−1 + z⊤)g(−g−1Dg(z)g−1Dϕ+ z)

≤ α
√
(Dϕ)⊤g−1Dg(z)g−1Dg(z)g−1Dϕ+ α

√
z⊤gz

≲ α
√
α0n∥z∥x,∞ + α∥z∥g. (67)

Plugging Equation (67) back into Equation (66) and using the fact that ∥z∥x,∞ ≤ ∥z∥g implies the following

bound on the second term in Equation (64):

tr(g−1Dg(D(∇(αϕ))(z))) ≤ n
√
α0α∥z∥g. (68)

For the third term in (64), we reduce it to the first group of terms. Note that

tr(g−1Dg(z)g−1Dg(∇(αϕ))) = Ev′∼N (0,g−1)v
′⊤Dg(z)g−1Dg(v′)∇(αϕ)

= Ev′

√
v′⊤Dg(z)g−1Dg(z)v′

√
∇(αϕ)⊤Dg(v′)g−1Dg(v′)∇(αϕ)

≲ Ev′∥v′∥x,∞∥z∥x,∞∥v′∥g
√
∇(αϕ)⊤g−1∇(αϕ)

≲ α
√
α0n∥z∥g, (69)

which is the same upper bound obtained in Equation (65) and (68). Note that we used Lemma 115 to bound

Ev′∥v′∥x,∞∥v′∥g. Hence, combining Equations (65), (68), and (69) we conclude

D(tr(A1))(z) ≲ α
√
nα0∥z∥g.

Next, we focus on the second term in (61) and bound the derivative of the trace of the operatorA2(v1) =
∇v1(g

−1
tr(g−1Dg)).

Lemma 57 (Trace of A2) For operator A2(v1) = ∇v1(g
−1
tr(g−1Dg)) as defined in Equation (61) we

have

|D(tr(A2))(z)| ≤ n∥z∥g.
Proof Recall the definition of ξ:

ξ = g−1
tr(g−1Dg).

From Lemma 49, we have

⟨∇v1(g
−1tr(g−1Dg)), v2⟩ = v⊤2 Dg(ξ)v1 + v⊤2 D(gξ)v1, (70)

We bound the derivatives of the two terms in Equation (70) separately in Lemmas 58 and 59. Hence, the

proof of Lemma 57 directly follows from these Lemmas.

We start from bounding the derivative of the first term in Equation (70), i.e. we wish to bound |D(tr(g−1Dg(ξ)))(z)|.
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Lemma 58 Regarding the first quadratic form in Equation (70), we can bound its trace as

|D(tr(g−1Dg(ξ)))(z)| ≲ n∥z∥g.

Proof

According to Lemma 51, by substituting w with Dξ(z) in Lemma 112, we get

|tr(g−1Dg(Dξ(z)))| ≤ √
n∥Dξ(z)∥g ≲ ∥z∥gn. (71)

Moreover, according to Lemma 113 and Lemma 50:

|tr(g−1Dg(ξ, z))| ≤ √
n∥ξ∥g∥z∥g ≤ n∥z∥g. (72)

Further, using Lemma 112 combined with Lemma 50:

|tr(g−1Dg(z)g−1Dg(ξ))| ≤ √
n∥z∥g∥ξ∥g ≤ n∥z∥g. (73)

Finally, combining Equations (71), (72), and (73),

|D(tr(g−1Dg(ξ)))(z)| ≲ |tr(g−1Dg(Dξ(z)))|+ |tr(g−1Dg(ξ, z))|+ |tr(g−1Dg(z)g−1Dg(ξ))|
≲ n∥z∥g,

completes the bound for the trace of the first part Dg(ξ) of the operator in Equation (70) and the proof of

Lemma 58 is complete.

Finally, we move on to bound the derivative of the trace of the second operator in Equation (70), namely

D(tr(g−1D(gξ)))(z).

Lemma 59 We can bound the derivative of the trace of the second operator in Equation (70) as

|D(tr(g−1D(gξ)))(z)| ≲ n∥z∥g.

Proof Recall from Lemma 49:

v⊤2 D(gξ)v1 = −tr(g−1Dg(v1)g
−1Dg(v2)) + tr(g−1D2g(v1.v2)) (74)

= −v⊤1 B1v2 + v⊤1 B2v2. (75)

Now we wish to calculate the derivative of the trace of this operator, namely

D(tr(g−1D(gξ)))(z). (76)

We separate the case when the derivative hits the outer g−1 in (76). First, we calculate the derivative with

respect to the outer g−1 regarding the term tr(g−1B1):

|tr(D(g−1)(z)B1)| = |tr(g−1Dg(z)g−1B1)|. (77)

Note that

v⊤1 B1v2 = tr(g−1Dg(v1)g
−1Dg(v2)).

Note that this 2-form is symmetric and PSD since

tr(g−1Dg(v1)g
−1Dg(v1)) = tr((g−1/2Dg(v1)g

−1/2)2) ≥ 0.
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Moreover, note that

g−1Dg(z)g−1 ≤ ∥z∥x,∞g−1.

Hence, Equation (77) can further be upper bounded as

∥z∥x,∞tr(g−1B1) = ∥z∥x,∞Ev′∼N (0,g−1)tr(g
−1Dg(v′)g−1Dg(v′)).

But we have already bounded the operator norm of tr(g−1Dg(v′)g−1Dg(v′)) in Lemma 111 by Õ(∥sx,v′∥2∞),
which implies its trace can be at most nÕ(∥sx,v′∥2). Taking expectation, we have

Ev′∼N (0,g−1)tr(g
−1Dg(v′)g−1Dg(v′)) ≲ n.

Hence, we conclude

|tr(D(g−1)(z)B1)| ≲ n∥sx,z∥∞. (78)

On the other hand, note that for the second term in Equation (75), there is a symmetry between the inner and

outer g−1:

tr(g−1B2) = tr(g−1D2g[g−1]).

Hence, it is sufficient to bound when taking derivative with respect z hit one of them, for example the inner

g−1.

Therefore, we move on to taking derivative with respect to the D(gξ) part of tr(g−1D(gξ)). For this, we

can again use the trick of writing g−1 as Ev∼N (0,g−1)vv
⊤:

tr(g−1D(gξ)) = Evv
⊤D(gξ)v.

But from Equation (75), we have

tr(g−1D(gξ)) = −tr(g−1Dg(v)g−1Dg(v)) + tr(g−1D2g(v, v)).

Now taking derivative with respect to z:

|D(tr(g−1D(gξ)))(z)| ≤ |EvD(tr(g−1Dg(v)g−1Dg(v)))(z)|+ |EvD(tr(g−1Dg(v, v)))(z)| (79)

= LHS1 + LHS2. (80)

But for the first term in (80), we can write:

LHS1 ≤ 2Ev|tr(g−1Dg(z)g−1Dg(v)g−1Dg(v))|+ 2Ev|tr(g−1D2g(v, z)g−1Dg(v))|
≲ Ev∥z∥x,∞tr((g−1/2Dg(v)g−1/2)2) + Ev∥g−1/2Dg(v, z)g−1/2∥1∥g−1/2Dg(v)g−1/2∥op
≲ Ev∥v∥2x,∞∥z∥x,∞n
≤ Ev∥v∥2x,∞∥z∥gn
≲ ∥z∥gn. (81)

For the second term in (80):

LSH2 ≤ |tr(g−1Dg(z)g−1Dg(v, v))|+ |tr(g−1Dg(v, v, z))|
≤ ∥g−1/2Dg(z)g−1/2∥∥g−1/2Dg(v, v)g−1/2∥1 + ∥sv∥2∞∥sz∥∞tr(g−1g)

≲ n∥z∥x,∞∥v∥2x,∞
≤ Evn∥z∥g∥v∥2x,∞
≲ n∥z∥g. (82)
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where we used the third order self-concordance property of g with respect to the infinity norm, as shown in

section I, and also Lemma 95. Combining Equations (78), (81), and (82) completes the proof of Lemma 59.

D.2.2. BOUNDING THE CHANGE IN THE RICCI TENSOR

First, we state the main result of this section, which is a bound on the change of the Ricci tensor.

Lemma 60 (Bound on the change of Ricci tensor) Given the assumptions of Lemma 53, we have

∣∣ d
ds

Ricci(vs(t), vs(t))
∣∣ ≲ nc2,

where vs(t) = γ′s(t). Note that we drop the indices s, t from vs(t) for brevity.

Proof According to Lemma 101 Ricci has two terms. We start analyzing the first term:

A1 := −1
4tr(g

−1Dg(v1)g
−1Dg(v2)) term Taking derivative of this subterm of Ricci tensor in direction

z:

DA1(z) = −1

4
tr(g−1Dg(v, z)g−1Dg(v)) +

1

4
tr(g−1Dg(v)g−1Dg(z)g−1Dg(v)).

Now we use Lemmas 35 and 34 to bound these terms:

tr(g−1/2Dg(v, z)g−1/2g−1/2Dg(v)g−1/2) ≤ ∥g−1/2Dg(v, z)g−1/2∥F ∥g−1/2Dg(v)g−1/2∥F
≲ ∥v∥2x,∞∥z∥x,∞∥g−1/2gg−1/2∥2F
≤ n∥v∥2x,∞∥z∥x,∞
≤ n∥v∥2x,∞∥z∥g ≤ nc2∥z∥g.

Similarly

tr(g−1/2Dg(z)g−1/2g−1/2Dg(v)g−1/2g−1/2Dg(v)g−1/2)

≤ ∥g−1/2Dg(v)g−1/2∥∥g−1/2Dg(z)g−1/2∥F ∥g−1/2Dg(v)g−1/2∥F
≲ n∥v∥2x,∞∥z∥g ≤ nc2∥z∥g.

Terms in the derivative of A1 that involves the derivative of v Note that v = vs(t) is a function of s so

we can take its derivative in direction z = d
dsγs(t). Differentiating v with respect to z,

tr(g−1Dg(Dv(z))g−1Dg(v)) = Ev′∼N (0,g−1)v
′⊤Dg(Dv(z))g−1Dg(v)v′

= Ev′∼N (0,g−1)Ev′∼N (0,g−1)Dv(z)
⊤⊤Dg(v′)g−1Dg(v′)v

≤ Ev′

√
Dv(z)⊤Dg(v′)g−1Dg(v′)Dv(z)

√
v⊤Dg(v′)g−1Dg(v′)v

≲ Ev′∥v′∥2x,∞∥Dv(z)∥g∥v∥g
≲ (∥v∥x,∞∥z∥g + ∥∇zv∥g)c

√
n

≤ c2
√
n∥z∥g + δ

c
√
n

δ
∥∇zv∥g.

where we used Lemma 107 to bound ∥Dv(z)∥g by ∥z∥g and ∥∇zv∥g, and also the fact that E∥v′∥x,∞ =
O(
√

log(m)) from Lemma 115.
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Second part of the Ricci Tensor. We should take derivative of v⊤Dg(g−1
tr(g−1Dg))v in direction z,

which is the second term in the Ricci tensor according to Lemma 101. As a warm up, we first bound the

value of this term before taking derivative:

Taking derivative in direction z. First, we differentiate the inner g−1 term in v⊤Dg(v)g−1
tr(g−1Dg):

D(v⊤Dg(v)g−1
tr(g−1Dg))(z) → v⊤Dg(v)g−1

tr(g−1Dg(z)g−1Dg)

= Ev′v
⊤Dg(v)g−1

tr(v′⊤Dgg−1Dg(z)v′)

= Ev′v
⊤Dg(v)g−1Dg(v′)g−1Dg(v′)z

≲ Ev′∥v′∥2x,∞∥v∥x,∞∥v∥g∥z∥g ≲ c2
√
n∥z∥g.

For the remaining derivatives we can substitute the inner g−1 by Ev′∼N (0,g−1)v
′v′⊤. Specifically, for the

ones which do not involve derivative with respect to v:

Ev′ |D(v⊤Dg(v)g−1Dg(v′)v′)(z)| ≤ Ev′ |v⊤Dg(v)g−1Dg(v′, z)v′|+ Ev′ |v⊤Dg(v)g−1Dg(z)g−1Dg(v′)v′|
≲ Ev′∥v∥x,∞∥v∥g∥v′∥g∥z∥x,∞
≤ c2n∥z∥g.

Finally we have to check when z hits v. Again for Gaussian variable v′ ∼ N (0, g−1).

D(v⊤Dg(v)g−1
tr(g−1Dg))(z) → Dv(z)⊤Dg(v)g−1

tr(g−1Dg)

= Ev′Dv(z)
⊤Dg(v)g−1Dg(v′)v′

≤ Ev′

√
Dv(z)⊤Dg(v)g−1Dg(v)Dv(z)

√
v′⊤Dg(v′)g−1Dg(v′)v′

≲ Ev′∥Dv(z)∥g∥sv∥∞∥sv′∥∞∥v′∥g

≲ c
√
n(∥v∥x,∞∥z∥g + ∥∇zv∥g) ≤ c2

√
n∥z∥g + δ

c
√
n

δ
∥∇zv∥g,

where we used Lemma 107 to bound ∥Dv(z)∥g in terms of ∥z∥g and ∥∇zv∥g.

D.3. Bounding R3

Here we bound the parameter R3 which is defined as the maximum possible value of the norm of Φ(t)ζ(t),
where ζ(t) is the parallel transport of the initial velocity. The idea is to bound the infinity norm of ζ(t)
along the Hamiltonian curve, then show a more efficient bound compared to the naive operator norm of

Φ(t) which works with both of the norms ∥sζ(t)∥∞ and ∥ζ(t)∥g.

Recall the definition of the parameter R3:

∥Φ(t)ζ(t)∥g ≤ R3

where ζ(t) is the parallel transport of γ′(0) along the Hamiltonian curve γ(t).

Lemma 61 (Bound on R3) For a α0n-third-order-self-concordant barrier and given that the curve γ(t) is

(c, δ)-nice, we have

R3 = c3(c
2(
√
n+ cnδ) + nδcα

√
α0),

up to time δ, where c3 = poly(c2).
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Proof From the definition of niceness, we have a c upper bound on the infinity norm ∥sγ′∥∞. Using that,

we can apply Lemma 64 to obtain

∥sζ∥∞ ≤ δc
√
n.

Finally combining this with Lemmas 62 and 63:

∥Φ(t)ζ∥g ≤ c2∥ζ∥g + ∥ζ∥∞(c2 + α
√
α0)

√
n ≤ c2n1/2 + c

√
nδ(c2 + α

√
α0)

√
n = c2(

√
n+ cnδ) + nδcα

√
α0.

Here we show a norm bound for Φ(t) which we used to bound R3. To this end, we show bounds on the

Riemann tensor R(, v)v and operator M separately in Lemmas 62 and 63.

Lemma 62 (Operator norm of random Riemann tensor) Assuming ∥sv∥∞ ≤ c, ∥v∥g ≤ c
√
n, we have

∥R(ℓ, v)v∥g ≤ c2∥ℓ∥g + c2
√
n∥sℓ∥∞ ≤ c2

√
n∥ℓ∥g.

Proof Similar to Lemma 48, using the form of Riemann expansion in Equation (54):

∥R(ℓ, v)v∥g ≤ (ℓ⊤Dg(v)g−1Dg(v)g−1Dg(v)g−1Dg(v)ℓ)1/2

+ (v⊤Dg(v)g−1Dg(ℓ)g−1Dg(ℓ)g−1Dg(v)v)1/2

≤ ∥v∥2x,∞(ℓ⊤gℓ)1/2 + ∥v∥x,∞∥ℓ∥x,∞∥v∥g
≤ c2∥ℓ∥g + c2

√
n∥ℓ∥x,∞.

Next, we state a similar mix norm bound for operator M .

Lemma 63 (Operator norm of M ) we have

∥M(x)ℓ∥g ≤ ∥ℓ∥g + (1 + α
√
α0)

√
n∥sℓ∥∞.

Proof Recall from Lemma (49):

⟨M(x)v1, v2⟩ = ⟨∇v1(∇ϕ) +
1

2
∇v1(g

−1
tr(g−1Dg)), v2⟩.

Starting from the first part of the term ⟨∇v1(∇ϕ), v2⟩:

∥g−1Dg(∇ϕ)ℓ∥g = tr
1/2(ℓ⊤Dg(∇ϕ)g−1Dg(∇ϕ)ℓ)

= tr
1/2((∇ϕ)⊤Dg(ℓ)g−1Dg(ℓ)∇ϕ)

≤ ∥sℓ∥∞∥∇ϕ∥g ≤ α
√
nα0∥sℓ∥∞.

Note that for the second part, D2ϕ = g, hence the corresponding operator is the identity and has operator

norm one.

Next, we move on to the second term of M in (55). For the first part of it from Equation (70), we have:

∥g−1Dg(ξ)ℓ∥g =
√
ℓ⊤Dg(ξ)g−1Dg(ξ)ℓ

=
√
ξ⊤Dg(ℓ)g−1Dg(ℓ)ξ

≤ ∥sℓ∥∞
√
ξ⊤gξ = ∥sℓ∥∞

√
n.
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where we used Lemma 51. For the second part, note that from Equation (56):

v⊤2 D(gξ)v1 = tr(g−1Dg(v1)g
−1Dg(v2)) + tr(g−1Dg(v1, v2)). (83)

Starting from the first part, now we rewrite this term in a better way as

tr(g−1Dg(v1)g
−1Dg(v2)) = Evtr(vv

⊤Dg(v1)g−1Dg(v2)) = Evv
⊤Dg(v1)g−1Dg(v2)v = Evv

⊤
1 Dg(v)g

−1Dg(v)v2.

Now due to Lemma 111 the norm of the corresponding operator is one:

E∥g−1Dg(v)g−1Dg(v)ℓ∥g ≤ Ev∥v∥2x,∞∥ℓ∥g ≲ ∥ℓ∥g. (84)

For the second part in (83), we write it as

tr(g−1Dg(v1, v2)) = Evtr(vv
⊤Dg(v1, v2)) = Evv1Dg(v, v)v2.

Hence, the operator norm is bounded as

Ev∥g−1Dg(v, v)ℓ∥g ≤ E∥v∥2x,∞∥ℓ∥g ≲ ∥ℓ∥g.

Next, we show a bound on the derivative of the infinity norm of the parallel transported vector ζ given

that we know the infinity norm of γ′ is constant (randomness + stability).

Lemma 64 (Infinity-norm of parallel transport) Given δ ≤ 1
c and a (c, δ)-nice Hamiltonian curve γ, we

have for t ≤ δ:

∥sζ(t)∥∞ ≤ δc
√
n,

where ζ is the parallel transport of γ′(0) along the curve.

Proof As ζ is the parallel transport vector, from opening up the covariant derivative being zero:

d

dt
(Aζ) = Aζ ′ − (Aζ)⊙ (Aγ′)

= −1

2
Ag−1Dg(γ′)ζ − (Aζ)⊙ (Aγ′),

which implies using Lemma 95:

∥ d
dt
(Aζ)∥∞ ≲ ∥Ag−1Dg(γ′)ζ∥∞ + ∥sγ′∥∞∥sζ∥∞

≲ ∥g−1Dg(γ′)ζ∥g + ∥sγ′∥∞∥sζ∥∞
≲ c∥ζ∥g + c∥sζ∥∞ ≤ c

√
n+ c∥sζ∥∞,

where we used ∥sγ′∥∞ ≲ c from the definition of niceness and the fact that parallel transport preserves

the norm of ζ and ∥ζ(0)∥g = ∥γ′(0)∥g ≤ √
n. This ODE implies to avoid blow up we should pick δ ≲ 1

c .

Under this condition, we further get

∥sζ∥∞ ≲ δc
√
n,

which completes the proof.

In the next section, we show the stability of the infinity norm and the metric norm of γ′ along the curve,

ct(s) where ct(s) = γs(t) is defined for a fixed time t.
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Appendix E. Regularity and Stability of Hamiltonian curves

In this section, we show that the niceness property holds for Hamiltonian curves with high probability, and

its stability gives rise to a family of nice Hamiltonian curves.

E.1. Stability of the Niceness Property

Here, we show that niceness property of Hamiltonian curves is stable in Lemma 65. This Lemma combined

with Lemma 72 shows that with high probability, all of the curves in the Hamiltonian family are nice. This

result can then be used by Theorem 15 (proved in Section D) and the fact that we constructed a suitable

barrier in Section F to show the existence of nice sets, which we then use in Theorem 40 along with the

isoperimetry result to prove the mixing time bound.

Lemma 65 (Restatement of Lemma 16) In the same setting as Theorem 15 for a (c2, α0n)-third-order

ℓ∞-self-concordant barrier, suppose we are given a family of Hamiltonian curves γs(t) with s, t ∈ (0, δ)
with

δ2 ≤ 1

c̃c2c3(c2 + α
√
α0)

√
n
,

where c3 is the factor defined in the argument of Lemma 47 (will be polylog(m) in our setting) and c̃ is a

universal constant. Now given that γ0 is (c, δ)-nice for c > 20, then γs(t) is also (O(c), δ)-nice for all

0 ≤ s ≤ δ. In particular, given that for all 0 ≤ t ≤ δ, ∥sγ0(t),γ′
0(t)

∥∞ ≤ c and ∥γ′0(t)∥g ≤ √
n, then for all

0 ≤ t ≤ δ and 0 ≤ s ≤ δ,

∥γ′s(t)∥γs(t),∞ ≤ 12c,

∥γ′s(t)∥g ≤ 2c
√
n.

Proof Suppose we denote the time until which we run the Hamiltonian curve by δ, i.e. 0 ≤ t ≤ δ.

Suppose the argument is not true, and consider the set S to be the times 0 ≤ s ≤ δ for which f(s) =
sup0≤t≤δ∥sγ′(t,s)∥∞ < 12c. Since f(s) is continuous, the set S is open. Hence, if we consider the infimum

s0 of times s for which f(s) ≥ 1, then the infimum is attained, i.e. f(s0) = 12c, while f(s) < 12c for every

time s < s0. Exactly the same way we can define the function f2(s) = sup0≤t≤δ ∥γ′s(t)∥g and the first time

s1 (if it exists) for which f2(s1) = 2c
√
n while f2(s) < 2c

√
n for s < s1.

First assume the case where s0 ≤ s1. Now again from the continuity of f and the fact that [0, δ] is a compact

set, its supremum is attained in some time t0. This means

∥sγ′
s(t0)

∥∞ < 12c, (85)

∥γ′s(t0)∥g < 2c
√
n, (86)

for all s < s0, while ∥sγ′
s0

(t0)∥∞ = 12c. But now using this infinity norm bound for times s ≤ s0 (for the

fixed time t0), we can obtain a Frobenius norm bound for Φ(γs(t0), γ
′
s(t0)) from Lemma 47 as

∥Φ(γs(t0), γ′s(t0))∥F ≤ R1 = R1(12c) = O(c3((12c)
2 + α

√
α0)

√
n),

Let ϱ(s) be the curve γs(t0) in parameter s. Now we pick the constant c̃ small enough to satisfy the condition

δ2R1 ≤ 1, so can apply Lemma 23 in Lee and Vempala (2018), which implies

∥∇ϱ′(s)γ
′
s(t0)∥g ≤ 10/δ,
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for every s < s0, where we are using the fact that ∥ϱ′(s)∥g = 1. But note that for s < s0 we can write

∥ d
ds

(Aγ′)∥∞ ≤ ∥A∇ϱ′γ
′ −Ag−1Dg(c′)γ′∥∞ + ∥sγ,ϱ′∥∞∥sγ,γ′∥∞

≤ ∥∇ϱ′γ
′∥g + ∥g−1Dg(ϱ′)γ′∥g + ∥sγ,ϱ′∥∞∥sγ,γ′∥∞

= ∥∇ϱ′γ
′∥g + ∥g−1Dg(γ′)ϱ′∥g + ∥sγ,ϱ′∥∞∥sγ,γ′∥∞

≤ ∥∇ϱ′γ
′∥g + c2∥γ′∥γ,∞∥ϱ′∥g + ∥ϱ′∥g∥γ′∥γ,∞ (87)

≤ 10

δ
+ c2c+ c =

10

δ
+ (c2 + 1)c,

where the first line follows from opening the definition of covariant derivative and in line (87) we have used

the first-order ℓ∞-self-concordance of g. Finally, this ODE implies that ∥γ′s(t0)∥γs(t0),∞ ≤ s(10δ + (c2 +
1)c) < 12c for all times s < s0 (with the choice of c̃ constant large enough), which from continuity holds

also for time s0. But this contradicts |sγ′
s0

(t0)∥∞ = 12c, which completes the proof for the case s0 ≤ s1.

Next, we consider the latter case s1 < s0. Similar to the above argument, until time s ≤ s1 we have

the Frobenius bound on Φ(t) from Lemma 47, and again as we have δ2R1 ≤ 1, from Lemma 23 in Lee and

Vempala (2018),

∥∇ϱ′(s)γ
′(t0)∥ ≤ 10/δ,

for s ≤ s1. Now we write an ODE to control the norm of ∥γ′s1(t0)∥g where t0 is defined in the same way as

the previous case, and get a contradiction:

d

ds
∥γ′∥2g = 2⟨∇ d

ds
γ(t0,s)

γ′, γ′⟩ ≤ 2∥γ′∥∥∇ d
ds

γ(t0,s)
γ′∥ ≤ 20

δ
∥γ′∥g,

which implies

d

ds
∥γ′∥g ≤ 20

δ
.

Therefore, at time s = δ the change in ∥γ′∥g from its initial value is less than 20 < c
√
n, which means the

value of ∥γ′∥g should have remained less than 2c
√
n. The contradiction completes the proof for the second

case.

Corollary 66 In the same setting as Lemma 16, we have for all 0 ≤ s, t ≤ δ,

∥∇ d
ds

γs(t)
γ′s(t)∥ ≤ 10

δ
.

Proof Since from Lemma 16 we have R1 normality for all s, t ≤ δ with δ2R1 ≤ 1, then from Lemma 23

in Lee and Vempala (2018) we have the desired result.

Next, we show a helper lemma regarding the derivative of γ′s(t) in direction d
dsγs(t):

Lemma 67 On a (c, δ)-nice Hamiltonian curve with δ ≤ 1
n1/4c

, We have:

∥ d
ds
γ′(t)(s)∥ ≤ 1/δ.

49



GATMIRY KELNER VEMPALA

Proof Note that from Lemma 16 we have ∥sγ′
s(t0)

∥∞ ≤ c. Hence, from Lemma 47, we can apply Lemma

23 in Lee and Vempala (2018) to obtain

∥∇ d
ds

γγ
′(t)∥g ≲

1

δ
. (88)

But now from Lemma 107, setting v = γ′(t, s) and z = d
dsγ(t, s):

∥ d
ds
γ′(t, s)∥g ≤ ∥γ′∥∞∥ d

ds
γ∥g + ∥∇ d

ds
γγ

′(t)∥g.

From Lemma 16, we have ∥γ′∥∞ ≤ c and note that from our assumption on the s parameterization,

∥ d
dsγ∥g = 1, which combined with Equation (88) finishes the proof.

E.2. Niceness of Hamiltonian Curves with High Probability

The goal of this section is to prove Lemma 72. This lemma shows the niceness of the Hamiltonian curve at

parameter s = 0, which then implies the niceness of all the curves in the family by Lemma 16. To prove

Lemma 72, first we show a bound on the g-norm along the Hamiltonian curve given a bound at time zero.

Recall the ODE related to RHMC for curve γ is

D2
tγ(t) = µ(γ),

where Dt refers to covariant differentiation along the curve γ(t). Opening it up implies

γ′′(t) +
1

2
g−1Dg(γ′)γ′ = µ.

First, we show a non-random bound on the norm ∥γ′∥g given a bound at time zero.

Lemma 68 (Boundedness of ∥.∥g along the Hamiltonian curve) Suppose at time zero, ∥γ′(0)∥g ≤ c
√
n.

Then for all times t ≤ 2, we have

∥γ′(t)∥g ≤ c+ t(1 + α
√
α0)

√
n.

Proof Note that

∥g−1Dg(γ′(t))γ′(t)∥g ≤ ∥γ′(t)∥γ(t),∞∥γ′(t)∥g,

hence, taking covariant derivative

d

dt
∥γ′(t)∥2g = 2⟨∇γ′(t)γ

′(t), γ′(t)⟩
≤ 2∥γ′(t)∥∥µ(γ(t))∥ ≤ 2(1 + α

√
α0)

√
n∥γ′(t)∥,

where we used Lemma 104 to bound ∥µ∥. This implies

d

dt
∥γ′(t)∥ ≤ (1 + α

√
α0)

√
n.

Solving this ODE,

∥γ′(t)∥ ≤ (c+ t(1 + α
√
α0))

√
n. (89)
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Lemma 69 (Stability bound on ∥.∥x,∞ along the curve) In the same setting as Theorem 15 for a (c2, α0n)-
third-order ℓ∞-self-concordant barrier, for a Hamiltonian curve with ∥γ′(0)∥g ≤ c

√
n, suppose for a fixed

time t1 ≤ 1 we know ∥sγ′(t1)∥∞ ≤ c for c ≥ 1. Then for all times t ∈ (t1 − 1
10c2c(1+α

√
α0)

√
n
, t1 +

1
10c2c(1+α

√
α0)

√
n
) we have

∥γ′(t)∥γ(t),∞ ≤ 2c.

Proof Consider the Hamiltonian ODE below:

γ′′(t) +
1

2
g−1Dg(γ′(t))γ′(t) = µ(γ(t)).

which implies

d

dt
(Aγγ

′) = −1

2
Aγg

−1Dg(γ′)γ′ +Aγµ− (Sγ,γ′)⊙2.

Hence, using Lemma 95

∥ d
dt
(Aγγ

′)∥∞ ≤ ∥g−1Dg(γ′)γ′∥g + ∥sγ,γ′∥2∞ + ∥Aγµ∥∞
≤ c2∥γ′∥γ,∞∥γ′∥g + ∥γ′∥2γ,∞ + ∥µ∥g,

where we used the c2-first-order ℓ∞-self-concordance of the barrier and the fact that ∥Aγµ∥∞ = ∥µ∥γ,∞ ≤
∥µ∥g from Lemma 95. But using Lemma 68, having upper bound c

√
n on the g-norm of γ′ at time zero

implies a bound 2c
√
n on the tangent norm of the curve until t ≤ 2, and in particular for all t ∈ (t1 −

1
10c2c(1+α

√
α0

√
n)
, t1 +

1
10c2c(1+α

√
α0

√
n)
). Combining this with Lemma 104:

∥ d
dt
(Aγγ

′)∥∞ ≤ 2c2c
√
n∥γ′∥γ,∞ + ∥γ′∥2γ,∞ + (1 + α

√
α0)

√
n.

This ODE implies that if at time t1 the infinity norm bound ∥γ′(t1)∥γ,∞ ≤ c for c ≥ 1, then for times within

t1 ± 1
10c2c(1+α

√
α0)

√
n

we have an 2c bound on the infinity norm, which completes the proof.

Lemma 70 (Stability bound on ∥.∥g along the curve) For a Hamiltonian curve with ∥γ′(0)∥g ≤ √
n,

suppose for a fixed time t1 we know ∥γ′(t1)∥g ≤ c. Then for all times t ∈ (t1 − 1
(1+α

√
α0)

√
n
, t1 +

1
(1+α

√
α0)

√
n
) we have

∥γ′(t)∥g ≤ 2c.

Proof This follows directly from Lemma 68.

Now combining Lemmas 69 and 70, we uniformly control the norms ∥.∥g and ∥.∥∞ along the Hamilto-

nian curve.

Lemma 71 (Uniform control on the ∥.∥g and ∥.∥x,∞ along the curve) Suppose we pick x random from

e−αϕ(x) then run a Hamiltonian curve starting from x with initial vector γ′(0) as N (0, g−1). Then, with

probability at least 1− poly(m)ce−Θ(c2), for any time t1 ∈ (0, 1), we have

∥sγ′(t1)∥∞ ≤ c,

∥γ′(t1)∥g ≤ c
√
n.
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Proof From the property of the Hamiltonian curve, we know the joint density of (γ(t), γ′(t)) is e−αϕ(x) ×
N (0, g−1(x))dxdv. Focusing on the probability of the vector field vt = γ′(t), we see that for each i, a⊤γ,ivt
is a Gaussian distributed variable with variance

a⊤γ,ig
−1aγ,i ≤ 1,

for aγ,i the ith row of Aγ(t), where the inequality follows from Lemma 94. Hence, from Gaussian tail

bound 1 and a union bound on top, for a fixed time t we have:

P(∥svt∥∞ ≥ c) ≤ 2me−c2/2,

where note that ∥svt∥∞ is just the maximum of Gaussian random variables and we applied a union bound

over the entries of svt . Moreover, note that ∥vt∥g is a sub-Gaussian random variable with mean O(
√
n) and

sub-Gaussian parameter O(1). Hence

P(∥vt∥g ≥ c
√
n) ≲ e−Θ(c2).

Next, consider a cover C = {ti}c(1+α
√
α0)

√
n

i=1 of equally distant times of the Hamiltonian curve from

t = 0 to t = 1. Apply the above argument for all the times in this cover with a union bound on top.

This implies with probability at least 1 − poly(m)ce−Θ(c2), we have ∥svt∥∞ ≤ c and ∥vt∥g ≤ c
√
n for all

times t ∈ C, where we used the fact that α
√
α0 = poly(m). Now combining this with Lemmas 69 and 70

completes the proof.

Next, we prove a lemma that shows the existence of nice sets, which we use in the proof of Theorem 4.

Lemma 72 (Niceness of Hamiltonian Curves) There is a high probability region S ⊂ M such that

π(S) ≥ 1 − O(poly(m)e−Θ(c2)) (where recall π(.) is the probability distribution of density e−αϕ inside

the polytope) and for every x ∈ S, there is a high probability region Qx in the tangent space of x, namely

P(vx ∈ Qx) ≥ 0.999 such that for all vx ∈ Qx, the Hamiltonian curve starting from x with initial vector vx
is (c, 1)-nice, namely for all 0 ≤ t ≤ 1:

∥γ′(t)∥g ≤ c
√
n,

∥sγ′(t)∥∞ ≤ c.

Proof For every point x ∈ M, define Qx to be the set of vectors in its tangent space such that the resulting

curve is c-nice up to time 1. Define region S to be the the set of points x on M such that pvx(Qx) ≥
1− 0.0005, where pvx denotes the density of N (0, g−1) in the tangent space of x (The constant 1− 0.0005
is motivated by the definition of nice sets). Now if it was the case that P(Sc) ≥ poly(m)ce−Θ(c2), then

under the joint distribution on (x, v), there is a region with probability at least poly(m)ce−Θ(c2) such that

the Hamiltonian curve starting from x with initial vector v is not c-nice. But this contradicts Lemma 71.

Appendix F. Derivation of Higher-order Estimates for Lewis Weights

In this section we prove the estimates stated in Section B.2 for the derivatives of the Lewis weights and the

matrices Px,Gx, and Λx defined in Section A.2. Just for this section, the notation ≲ only hides universal

constants. Namely, we drop factors of p, as it is constant for p < 4, and only collect factors of 1
4/p−1 because

it goes to infinity as p→ 4.

Our estimates build on Lemma 26, which we restate here for convenience:
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Lemma 73 (Operator

∥∥∥.
∥∥∥
∞→∞

norm bound on the Jacobian) For p < 4, given y = G
−1
x Wxr for any

vector r ∈ R
m, we have

∥y∥∞ ≤ 1

4/p− 1
∥r∥∞.

In particular, Lemma 26 allows us to estimate the first derivative of the Lewis weights based on the

∥∥x,∞ norm, as stated in Lemma 21. Next, we make an important observation in Lemma 74 which enables

us to drive estimate the first derivative of Gx and Λx in Lemma 29.

Lemma 74 We have

− 1

4/p− 1
∥v∥x,∞Wx ≼ Px ⊙ P̃x,v ≼

1

4/p− 1
∥v∥x,∞Wx.

Proof For the matrix P̃x,v using Schur product theorem and the fact that

P̃x,v = PxRx,vPx ≼ ∥v∥x,∞PxPx = .∥v∥x,∞Px,

we have

Px ⊙ P̃x,v ≼ ∥rx,v∥∞Px ⊙Px

≼
1

4/p− 1
∥sx,v∥∞P

(2)
x

≼
1

4/p− 1
∥sx,v∥∞Wx,

and similarly

− 1

4/p− 1
∥sx,v∥∞Wx ≼ Px ⊙ P̃x,v.

Now using on Lemma 74, we can prove our estimates for the first derivatives of Gx and Λx.

Lemma 75 For the derivatives of Gx and Λx at some point x we have

− 1

4/p− 1
∥z∥x,∞Wx ≼ DGx(z) ≼

1

4/p− 1
∥z∥x,∞Wx,

− 1

4/p− 1
∥z∥x,∞Wx ≼ DΛx(z) ≼

1

4/p− 1
∥z∥x,∞Wx.

Proof Note that from Lemma 28 we have

DP
(2)
x = 2Px ⊙DPx

= 2Px ⊙ (−PxRx,v − Rx,vPx + 2PxRx,vPx)

= −2P(2)
x Rx,v − 2Rx,vP

(2)
x + 4Px ⊙ P̃x,v.

But we have already estimated Px ⊙ P̃x,v in Lemma 74. It remains to deal with the first two terms. But for

arbitrary vector r ∈ R
m,

r⊤P(2)
x Rx,vr ≤

√
r⊤P(2)

x r

√
(Rx,vr)⊤P

(2)
x Rx,vr

≤
√
r⊤Wxr

√
(Rx,vr)⊤WxRx,vr.
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Now using P
(2)
x ≼ Wx (Lemma 108),

r⊤P(2)
x Rx,vr ≤ ∥r∥w(x)∥Rx,vr∥w(x)

≤ ∥rx,v∥∞∥r∥2w(x)

≤ 1

4/p− 1
∥v∥x,∞∥r∥2w(x),

where the last line follows from the definition of rx,v and Lemma 29. Since r was arbitrary, we get

− 1

4/p− 1
∥v∥x,∞Wx ≼ P

(2)
x Rx,v +Rx,vP

(2)
x ≼

1

4/p− 1
∥v∥x,∞Wx.

This implies

− 1

4/p− 1
∥v∥x,∞Wx ≼ DP

(2)
x ≼

1

4/p− 1
∥v∥x,∞Wx. (90)

Finally noting the fact that Gx and Λx are a linear combination of P
(2)
x and Wx and we have the same

estimates as Equation (90) for Wx in Lemma 27, the proof is complete.

Next, we move on to bound the second order derivatives of Wx. To this end, we first estimate the first

order derivative of rx,v, but before that, first we need to generalize our result in Lemma 26. We start by

making the following observation.

Lemma 76 For arbitrary r ∈ R
m,

∥W−1
x Px ⊙ P̃x,zr∥∞ ≤ 1

4/p− 1
∥r∥∞∥z∥x,∞.

Proof For the ith entry of W−1
x Px ⊙ P̃x,zr we can write

|e⊤i (Px ⊙PxRx,zPx)rx,v| = |(rx,z ⊙Pxi,)
⊤
Px(r ⊙Pxi,)|

≤ ∥rx,z ⊙Pxi,∥2∥r ⊙Pxi,∥2
≤ ∥rx,z∥∞∥r∥∞wi

≤ 1

(4/p− 1)2
∥z∥x,∞∥r∥∞wi.

Now based on Lemma 76, we generalize Lemma 26 below.

Lemma 77 For arbitrary z ∈ R
n,

∥∥∥G−1
x W

′
x,z

∥∥∥
∞→∞

≲
1

(4/p− 1)2
∥z∥x,∞,

∥∥∥G−1
x DGx(z)

∥∥∥
∞→∞

≲
1

(4/p− 1)2
∥z∥x,∞,

∥∥∥G−1
x DΛx(z)

∥∥∥
∞→∞

≲
1

(4/p− 1)2
∥z∥x,∞.
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Proof

From Lemma 76, we know

∥∥∥W−1
x (Px ⊙ (PxRx,zPx))

∥∥∥
∞→∞

≤ 1

4/p− 1
∥z∥x,∞.

Moreover, ∥∥∥W−1
x (Px ⊙ (Rx,zPx))

∥∥∥
∞→∞

≤ ∥sx,z∥∞
∥∥∥W−1

x P
(2)
x

∥∥∥
∞→∞

≤ ∥z∥x,∞,

where the inequality follows as the sum of the rows of the ith row of P
(2)
x is equal to w(x)i. Similarly we

have ∥∥∥W−1
x (Px ⊙ (PxRx,z))

∥∥∥
∞→∞

≤ ∥z∥x,∞.

Therefore, according to the expansion of DP
(2)
x (z) as in Lemma 28, we get

∥∥∥W−1
x (DP

(2)
x (v))

∥∥∥
∞→∞

≲
1

4/p− 1
∥z∥x,∞. (91)

On the other hand, note that

∥∥∥W−1
x W

′
x,z

∥∥∥
∞→∞

≲
1

4/p− 1
∥z∥x,∞, (92)

by Lemma 27, since Wx and W
′
x,z are diagonal. Now since Gx is a linear combination of matrices Wx

and P
(2)
x , by combining Equations (91) and (92):

∥∥∥W−1
x DGx(v)

∥∥∥
∞→∞

≲
1

4/p− 1
∥z∥x,∞. (93)

Now we can write

∥∥∥G−1
x DGx(z)

∥∥∥
∞→∞

=
∥∥∥G−1

x WxW
−1
x DGx(z)

∥∥∥
∞→∞

≤
∥∥∥G−1

x Wx

∥∥∥
∞→∞

∥∥∥W−1
x DGx(z)

∥∥∥
∞→∞

≲
1

(4/p− 1)2
∥z∥x,∞.

The argument for Wx and Λx follows similarly.

Next, we proceed to bound the derivative of rx,v.

Lemma 78 The derivative of rx,v in direction z can be estimated as

∥D(rx,z)(v)∥∞ ≲
1

(4/p− 1)4
∥v∥x,∞∥z∥x,∞.

Proof We can write

D(rx,z)(v) = −G
−1
x DGx(z)G

−1
x Wxsx,v +G

−1
x W

′
x,vsx,v −G

−1
x WxSx,zsx,v. (94)
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Now from Lemmas 77 and 26:

∥∥∥G−1
x DGx(z)G

−1
x Wx

∥∥∥
∞→∞

≤
∥∥∥G−1

x DGx(z)
∥∥∥
∞→∞

∥∥∥G−1
x Wx

∥∥∥
∞→∞

≲
1

(4/p− 1)4
,

∥∥∥G−1
x W

′
x,v

∥∥∥
∞→∞

≲
1

(4/p− 1)2
,

∥∥∥G−1
x Wx

∥∥∥
∞→∞

≲
1

(4/p− 1)2
,

which completes the proof.

Now we built upon Lemma 30 to bound the second derivative of Wx in arbitrary directions v, z.

Lemma 79 We have

− 1

(4/p− 1)5
∥z∥x,∞∥v∥x,∞Wx ≼ DW

′
x,v(z) ≼

1

(4/p− 1)5
∥z∥x,∞∥v∥x,∞Wx.

Proof Note that

DW
′
x,v(z) = −2Diag

(
DΛx(z)rx,v

)
+−2Diag

(
ΛxD(rx,v)(z)

)
.

But for the first term by Lemmas 77 and 26,

∥DΛx(z)rx,v∥∞ ≤ ∥W−1
x GxG

−1
x DΛx(z)rx,z∥∞

≤
∥∥∥W−1

x Gx

∥∥∥
∞→∞

∥∥∥G−1
x DΛx(z)

∥∥∥
∞→∞

∥rx,v∥∞

≲
1

(4/p− 1)5
∥v∥x,∞,

and for the second term, using Lemma 30

∥W−1
x ΛxD(rx,v)(z)∥∞ ≤

∥∥∥W−1
x Λx

∥∥∥
∞→∞

∥D(rx,v)(z)∥∞

≲
1

(4/p− 1)4
∥v∥x,∞∥z∥x,∞,

which completes the proof.

Next, we hope to develop estimates for the second derivative of Gx and Λx as well. In order to do so,

we need to build some additional analytical tools. In this regard, we state two important Lemmas 80 and 81.

Lemma 80 For a symmetric matrix S with −Wx ≼ S ≼ Wx and diagonal matrices S1, S2, we have

−Wx∥S1∥ ≼ S1S + SS1 ≼ Wx∥S1∥,
−Wx∥S1∥∥S2∥ ≼ S1SS2 + S2SS1 ≼ Wx∥S1∥∥S2∥.

Proof Using the inequality q⊤1 Sq2 ≤
√

q⊤1 Wxq1

√
q⊤2 Wxq2 for vectors q1, q2 set as q1 = S1q and q2 = q:

q⊤S1Sq ≤
√

q⊤S1WxS1q
√

q⊤Wxq ≤ ∥S1∥q⊤Wxq.
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and similarly

q⊤S1Sq ≲
1

4/p− 1
∥S1∥q⊤Wxq,

which completes the proof. The second estimate follows in a similar mannner.

The next lemma bounds the terms that are created by differentiating Hadamard combinations of the

projection matrix.

Lemma 81 For diagonal matrices S1, S2, S3(not necessarily positive),

− ∥S1∥∥S2∥P(2)
x ≼ PxS1Px ⊙PxS2Px ≼ ∥S1∥∥S2∥P(2)

x ,

− ∥S1∥∥S2∥∥S3∥P(2)
x ≼ Px(S2PxS3 + S3PxS2)Px ⊙PxS1Px ≼ ∥S1∥∥S2∥∥S3∥P(2)

x .

Proof Consider the Cholesky decomposition of Px:

Px =
n∑

i=1

uiu
⊤
i ,

Then for the first inequality, note that we can write PxS1Px as

PxS1Px =

n∑

i=1

(u⊤i S1ui)uiu
⊤
i . (95)

Hence, for arbitrary vector ℓ:

∣∣∣q⊤(PxS1Px ⊙PxS2Px)q
∣∣∣ ≤

n∑

i=1

|u⊤i S1ui||(ℓ⊙ ui)
⊤(PxS2Px)(q⊙ ui)|

≤
n∑

i=1

∥S1∥|(ℓ⊙ ui)
⊤(PxS2Px)(q⊙ ui)|

≤
∑

i

∥S1∥∥S2∥(q⊙ ui)
⊤
Px(q⊙ ui)

= ∥S1∥∥S2∥q⊤P(2)
x q.

For the second inequality, note that

q⊤(S2PxS3 + S3PxS2)q ≤ 2(S2q)
⊤
Px(S3q) ≤ 2∥S2q∥2∥S3q∥2 ≤ 2∥S2∥∥S3∥∥q∥22,

which implies

−∥S2∥∥S3∥I ≼ S2PxS3 + S3PxS2 ≼ ∥S2∥∥S3∥I.

Therefore

−∥S2∥∥S3∥Px ≼ Px(S2PxS3 + S3PxS2)Px ≼ ∥S2∥∥S3∥Px.
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Now again using Equation (95):
∣∣∣q⊤(Px(S2PxS3 + S3PxS2)Px)⊙ (PxS1Px)q

∣∣∣

≤
n∑

i=1

∣∣u⊤i S1ui
∣∣|(q⊙ ui)

⊤(PxS2PxS3Px +PxS3PxS2Px)(q⊙ ui)|

≤ ∥S1∥S2∥∥S3∥(q⊙ ui)
⊤
Px(q⊙ ui)

= ∥S1∥∥S2∥∥S3∥q⊤P(2)
x q.

Next, we move on to bound the second derivative of the Hadamard square of the projection matrix.

Lemma 82 For arbitrary v, z.

− 1

(4/p− 1)5
∥v∥x,∞∥z∥x,∞Wx ≼ D2

P
(2)
x (v, z) ≼

1

(4/p− 1)5
∥v∥x,∞∥z∥x,∞Wx. (96)

Proof Expanding the derivative of P
(2)
x based on Lemma 28:

D2
P

(2)
x (v, z) = 2Px ⊙D2

Px(v, z) + 2DPx(v)⊙DPx(z). (97)

For the second term, by Lemma 81

DPx(v)⊙DPx(z) = Rx,zP
(2)
x Rx,v +Rx,vP

(2)
x Rx,z +Rx,vRx,zP

(2)
x +P

(2)
x Rx,vRx,z

− 4Rx,z(PxRx,vPx ⊙Px)− 4(PxRx,vPx ⊙Px)Rx,z

− 4Rx,v(PxRx,zPx ⊙Px)− 4(PxRx,zPx ⊙Px)Rx,v

+ 8PxRx,vPx ⊙PxRx,zPx. (98)

For the first line, using Lemma 80, the fact that P
(2)
x ≼ Wx, and Lemma 26:

Rx,zP
(2)
x Rx,v +Rx,vP

(2)
x Rx,z +Rx,vRx,zP

(2)
x +P

(2)
x Rx,vRx,z ≼ ∥rx,v∥∞∥rx,z∥∞Wx

≼
1

(4/p− 1)2
∥v∥x,∞∥z∥x,∞Wx. (99)

For the second line, Note that

PxRx,vPx ≼ ∥rx,v∥∞Px. (100)

Hence, by Schur product theorem

Px ⊙ (PxRx,vPx) ≼
1

4/p− 1
∥v∥x,∞P

(2)
x .

Therefore, by Lemma 80

Rx,z(PxRx,vPx ⊙Px) + (PxRx,vPx ⊙Px)Rx,z ≼
1

(4/p− 1)2
∥v∥x,∞∥z∥x,∞Wx.

The third line is symmetric to the second line. For the forth line, using Lemma 81:

PxRx,vPx ⊙PxRx,zPx ≼
1

(4/p− 1)2
∥v∥x,∞∥z∥x,∞Wx. (101)
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Combining Equations (99), (100), and (101) completes the proof for RHS of Equation (96). The left hand

side follows similarly. Next, we have on to bound the first term in Equation (97):

Px ⊙D2
Px(v, z) = +Px ⊙ (Rx,vRx,zPx +PxRx,vRx,z +Rx,vPxRx,z +Rx,zPxRx,v)

− 2Px ⊙ (4PxRx,vRx,zPx

+PxRx,vPxRx,z +Rx,zPxRx,vPx +PxRx,zPxRx,v +Rx,vPxRx,zPx)

+ 8Px ⊙ (PxRx,vPxRx,zPx +PxRx,zPxRx,vPx)

+ 2Px ⊙PxDRx,v(z)Px. (102)

The first line in Equation (102) is similar to the first line in Equation (98). The second and third lines in

Equation (102) are similar to the second line in Equation (98). For the forth line, note that by Lemma 80

Rx,zPxRx,v +Rx,vPxRx,z ≼ ∥rx,v∥∞∥rx,z∥∞I,

which implies

PxRx,zPxRx,vPx +PxRx,vPxRx,zPx ≼
1

(4/p− 1)2
∥v∥x,∞∥z∥x,∞Px,

and by Schur product theorem

Px ⊙ (PxRx,zPxRx,vPx +PxRx,vPxRx,zPx) ≼
1

(4/p− 1)2
∥v∥x,∞∥z∥x,∞P

(2)
x

≼
1

(4/p− 1)2
∥v∥x,∞∥z∥x,∞Wx.

Finally for the last line in Equation (102). combining Lemma 30 with Schur product theorem

Px ⊙PxDRx,v(z)Px ≼ ∥v∥x,∞
1

(4/p− 1)5
∥z∥x,∞P

(2)
x ,

which completes the proof.

Lemma 83 For matrices Gx and Λx we have

− 1

(4/p− 1)5
∥v∥x,∞∥z∥x,∞Wx ≼ D2

Gx(v, z) ≼
1

(4/p− 1)5
∥v∥x,∞∥z∥x,∞Wx,

− 1

(4/p− 1)5
∥v∥x,∞∥z∥x,∞Wx ≼ D2

Λx(v, z) ≼
1

(4/p− 1)5
∥v∥x,∞∥z∥x,∞Wx.

Proof It directly follows from Lemmas 82 and 79 and the fact that Gx and Λx are linear combinations of

Wx and P
(2)
x .

Next, we move on to bound the third order derivative of Wx. Similar to the second derivative case, we

need to start by estimating the second derivative of rx,v. To control the infinity norms, we need to build

new tools for operators that result from the higher derivatives. We start by two important observations in

Lemmas 84 and 85.

Lemma 84 For diagonal matrices S1, S2,

∥∥∥W−1
x

(
(PxS1Px)⊙ (PxS2Px)

)
sx,v

∥∥∥
∞→∞

≤ ∥S1∥∞∥S2∥∞.
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Proof Observe that the 2-norm of the ith row of the matrix PxS1Px is at most ∥S1∥
√
wi. This is because

∥PxS1Pxei∥2 ≤ ∥S1Pxei∥2 =
√∑

j

S1
2
j,jPx

2
i,j ≤ ∥S1∥

√
wi.

Now for arbitrary vector r,

e⊤i
(
(PxS1Px)⊙ (PxS2Px)

)
r =

(
e⊤i (PxS2Px)⊙ e⊤i (PxS1Px)

)⊤
r

= (e⊤i (PxS2Px))
⊤((PxS1Pxei)⊙ r)

= (S2Pxi,)Px((PxS1Pxei)⊙ r

≤ ∥S2Pxi,∥2∥(PxS1Pxei)⊙ r∥2
≤ ∥S2∥∥r∥∞∥Pxi,∥∥(PxS1Pxei)∥
= ∥S2∥∥r∥∞∥Pxi,∥∥Px(S1Pxi,)∥
≤ ∥S2∥∥r∥∞∥Pxi,∥∥S1Pxi,∥
≤ ∥S2∥∞∥r∥∞∥Pxi,∥∥S1∥∥Pxi,∥
= wi∥S2∥∥S1∥∥r∥∞.

Lemma 85 For diagonal matrices S1, S2

∥W−1
x (Px ⊙ (PxS1PxS2Px))∥∞→∞ ≤ ∥S1∥∥S2∥.

Proof Note that by Cauchy Schwarz

e⊤i (Px ⊙ (PxS1PxS2Px))r ≤ ∥PxS1PxS2Pxei∥2∥Pxi, ⊙ r∥2
≤ ∥S1PxS2Pxei∥2

√
wi∥r∥∞

≤ √
wi∥S1∥∥PxS1Pxei∥2∥r∥∞

≤ √
wi∥S1∥∥S2Pxei∥2∥r∥∞

≤ √
wi∥S1∥∥Pxei∥2∥S2∥∥r∥∞

= wi∥S1∥∥S2∥∥r∥∞.

Building upon Lemmas 83 and 84, we generalize Lemma 77 to handle second order derivatives in

Lemmas 86 and 87.

Lemma 86 For arbitrary u, z,

∥∥∥W−1
x D2(P(2)

x )(z, u)
∥∥∥
∞→∞

≲
1

(4/p− 1)2
∥z∥x,∞∥u∥x,∞.

Proof Based on Equations (98) and (102), we collect the terms that appear in the second derivative of P
(2)
x

(ignoring the constant behind.) To summarize our presentation here, we use the
∑

notation below to include
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all other permutations within u, v, and z for a particular term.

D2(P(2)
x )(z, u) →

∑

u,z

Px ⊙ (PxRx,zPxRx,uPx)

→ (PxRx,zPx)⊙ (PxRx,uPx)

→ Rx,uP
(2)
x Rx,z

→
∑

u,z

Rx,uRx,zP
(2)
x +P

(2)
x Rx,uRx,z

→
∑

u,z

Rx,u(Px ⊙PxRx,zPx) + (Px ⊙PxRx,uPx)Rx,u

→ Px ⊙PxRx,uRx,zPx (103)

To upper bound

∥∥∥W−1
x (Px ⊙ (PxRx,zPxRx,uPx))

∥∥∥
∞→∞

regarding the first line in Equation (103), we

use Lemma 85. For the second line we use Lemma 84. For the third and forth lines we use the fact that∥∥∥W−1
x P

(2)
x

∥∥∥
∞→∞

≤ 1. For the fifth and sixth lines we use Lemma 76, which completes the proof.

Lemma 87 For arbitrary u, z,

∥∥∥W−1
x D2

Gx(z, u)
∥∥∥
∞→∞

≲
1

(4/p− 1)2
∥z∥x,∞∥u∥x,∞,

∥∥∥W−1
x D2

Λx(z, u)
∥∥∥
∞→∞

≲
1

(4/p− 1)2
∥z∥x,∞∥u∥x,∞.

Proof The proof follows from Lemma 86, noting the fact that both G and Λ are linear combinations of W
and P (2).

Finally, building upon Lemma 87 we estimate the second derivative of rx,v.

Lemma 88 For arbitrary v, z, u,

∥D2(rx,v)(z, u)∥ ≲
1

(4/p− 1)6
∥u∥x,∞∥v∥x,∞∥z∥x,∞.

Proof Recall the first derivative of rx,z in direction v is

D(rx,v)(z) = −G
−1
x DGx(z)G

−1
x Wxsx,v +G

−1
x W

′
x,zsx,v −G

−1
x WxSx,zsx,v. (104)

The derivative of the first term with respect to v is

D(G−1
x DGx(z)G

−1
x Wxsx,v)(u) =−G

−1
x DGx(u)G

−1
x DGx(z)G

−1
x Wxsx,v

+G
−1
x D2

Gx(z, u)G
−1
x Wxsx,v

−G
−1
x DGx(z)G

−1
x DGx(u)G

−1
x Wxsx,v

+G
−1
x DGx(z)G

−1
x DWx(u)sx,v

−G
−1
x DGx(z)G

−1
x WxSx,usx,v. (105)
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Now from Lemmas 26 and 77, for the first line in Equation (105)

∥G−1
x DGx(u)G

−1
x DGx(z)G

−1
x Wxsx,v∥∞

≤
∥∥∥G−1

x DGx(u)
∥∥∥
∞→∞

∥∥∥G−1
x DGx(z)

∥∥∥
∞→∞

∥∥∥G−1
x Wx

∥∥∥
∞→∞

∥sx,v∥∞

≲ .
1

(4/p− 1)5
∥v∥x,∞∥u∥x,∞∥z∥x,∞.

For the second line, using Lemma 87,

∥G−1
x DGx(z, u)G

−1
x Wxsx,v∥∞ ≤

∥∥∥W−1
x D2

Gx(z, u)
∥∥∥
∞→∞

∥∥∥G−1
x Wx

∥∥∥
∞→∞

∥sx,v∥∞

≲
1

(4/p− 1)3
∥v∥x,∞∥u∥x,∞∥z∥x,∞.

The third term is similar to the first line. For the forth line by Lemmas 27,77, and 26

∥G−1
x DGx(z)G

−1
x DWx(u)sx,v∥∞ ≤

∥∥∥G−1
x DGx(z)

∥∥∥
∞→∞

∥∥∥G−1
x Wx

∥∥∥
∞→∞

∥∥∥W−1
x W

′
x,u

∥∥∥
∞→∞

∥sx,z∥∞

≤ 1

(4/p− 1)4
∥v∥x,∞∥u∥x,∞∥z∥x,∞.

The fifth term is handled similarly noting the fact that ∥Sx,usx,z∥∞ ≤ ∥sx,u∥∞∥sx,z∥∞. The derivatives of

the two other terms in Equation (104) are handled similarly; the only new term is G−1
x DW

′
x,u(z)sx,v when

taking derivative from the second term in Equation (104), which is handled by Lemma 79,

∥∥∥G−1
x DW

′
x,u(z)

∥∥∥
∞→∞

≤
∥∥∥G−1

x Wx

∥∥∥
∞→∞

∥∥∥W−1
x DW

′
x,u(z)

∥∥∥
∞→∞

≲
1

(4/p− 1)6
.

The proof is complete.

Now based on Lemma 88 we are ready to estimate the third order derivative of the Lewis weights.

Lemma 89 We have

− 1

(4/p− 1)7
∥z∥x,∞∥u∥x,∞∥v∥x,∞Wx ≼ D2(W′

x,v)(z, u) ≼
1

(4/p− 1)7
∥z∥x,∞∥u∥x,∞∥v∥x,∞Wx.

Proof Calculating the derivative of W′
x,v:

D2
W

′
x,v(u, z) = Diag

(
D2(Λxrx,v)(u, z)

)

= Diag
(
D2

Λx(u, z)rx,v
)

+ Diag
(
DΛx(u)D(rx,v)(z)

)
+ Diag

(
DΛx(z)D(rx,v)(u)

)

+ Diag
(
ΛxD

2(rx,v)(z, u)
)
.

For the first line, using Lemma 77

∥W−1
x D2

Λx(u, z)rx,v∥∞ ≤ 1

(4/p− 1)3
∥u∥x,∞∥v∥x,∞∥z∥x,∞.

For the second line, using Lemma 30

∥W−1
x DΛx(u)D(rx,v)(z)∥∞ ≤

∥∥∥G−1
x Wx

∥∥∥
∞→∞

∥∥∥W−1
x DΛx(u)

∥∥∥
∞→∞

∥Drx,v(z)∥∞

≲
1

(4/p− 1)7
∥u∥x,∞∥v∥x,∞∥z∥x,∞.
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Finally for the forth line, we use Lemma 88

∥W−1
x ΛxD

2(rx,v)(z, u)∥∞ ≤
∥∥∥W−1

x Λx

∥∥∥
∞→∞

∥D2(rx,v)(z, u)∥∞

≲
1

(4/p− 1)6
∥u∥x,∞∥v∥x,∞∥z∥x,∞,

where we used the fact that Λx is a linear combination of Wx and P
(2)
x to bound

∥∥∥W−1
x Λx

∥∥∥
∞→∞

. This

completes the proof.

Finally, building upon all of the tools we developed, we drive estimates for the third derivatives of Λx

and Gx. The key is Lemma 89 combined with the following key Lemma in which we control the third

derivative of P
(2)
x .

Lemma 90 For arbitrary v, u, z,

− 1

(4/p− 1)3
∥u∥∞∥v∥∞∥z∥∞Wx ≼ D3

P
(2)
x (u, v, z) ≼

1

(4/p− 1)3
∥u∥∞∥v∥∞∥z∥∞Wx.

Proof Similar to the proof of Lemma 86 in Equation (103), we collect all possible terms when differentiating

three times from P
(2)
x , ignoring the constants.

D3
P

(2)
x (u, v, z)

= Px ⊙
(∑

PxRx,uRx,zPxRx,vPx +
∑

PxRx,uPxRx,vRx,zPx

+
∑

Rx,uPxRx,vPxRx,z

+
∑

Rx,uRx,vPxRx,zPx +
∑

PxRx,zPxRx,uRx,v

+
∑

Rx,uPxRx,vRx,zPx +
∑

PxRx,uRx,vPxRx,z

+
∑

PxRx,uRx,vRx,z +
∑

Rx,uRx,vRx,zPx

)

+
∑

(PxRx,uPx +Rx,uPx +PxRx,u)⊙PxRx,vRx,zPx

+
∑

(PxRx,uPx +Rx,uPx +PxRx,u)⊙PxRx,vPxRx,zPx

+
∑

(PxRx,uPx +Rx,uPx +PxRx,u)⊙ (Rx,vPxRx,zPx +PxRx,vPxRx,z). (106)

The first four line can be upper bounded by 1
(4/p−1)3

∥v∥x,∞∥u∥x,∞∥z∥x,∞P
(2)
x using Lemma 81, and the

fifth line has the same upper bound from Lemma 80. The rest of the lines are handled similarly by Lemma 81.

The point is, all the terms in Equation (106) are of the form

S1(PxS2Px)⊙ (PxS3Px)S4,

for diagonal matrices S1 and S4, such that

∥S1∥∥S2∥∥S3∥∥S4∥ ≤ ∥rx,v∥∞∥rx,u∥∞∥rx,z∥∞.
Hence, combining Lemmas 80 and 81, we get

−∥rx,u∥∞∥rx,v∥∞∥rx,z∥∞Wx ≼ D3
P

(2)
x (u, v, z) ≼ ∥rx,u∥∞∥rx,v∥∞∥rx,z∥∞Wx,

which completes the proof by the fact that ∥rx,v∥∞ ≤ 1
(4/p−1)∥v∥x,∞ by Lemma 26.

Finally based on Lemmas 90 and 89, the estimates on the third derivatives of Gx and Λx follows.
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Lemma 91 We have

− 1

(4/p− 1)7
∥u∥x,∞∥v∥x,∞∥z∥x,∞Wx ≼ D3

Gx(u, v, z) ≼
1

(4/p− 1)7
∥u∥x,∞∥v∥x,∞∥z∥x,∞Wx,

− 1

(4/p− 1)7
∥u∥x,∞∥v∥x,∞∥z∥x,∞Wx ≼ D3

Λx(u, v, z) ≼
1

(4/p− 1)7
∥u∥x,∞∥v∥x,∞∥z∥x,∞Wx.

Proof The proof follows from the fact that Gx and Λx are a linear combination of Wx and P
(2)
x and third

order estimates on Wx and P
(2)
x in Lemmas 89 and 90, respectively.
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Appendix G. Isoperimetry of the Hybrid Barrier

In this section, we prove the bound on the isoperimetry constant for our hybrid barrier stated in Theorem 6.

We prove this isoperimetry by efficiently bounding the barrier parameter for our Hybrid Barrier. In a high

level, we exploit the fact that while the log barrier and the Lewis weight barrier for p < 4 are both smooth,

the unit ellipsoids of their local norms are complementary to each other in approximating the symmetrized

polytope, in a way that adding them up improves the overall quality of this approximation. In Figure 3 we

have visualized our hybrid barrier and the Lewis weights barrier in approximating the symmetrized polytope.

We start from the definition of barrier parameter borrowed from Laddha and Vempala (2021).

Definition 92 (Barrier parameter) A convex barrier function ϕ for polytope P has symmetric self-concordance

parameter (barrier parameter) ν̄ if at each point x ∈ P inside the polytope the Dikin ellipsoid of ϕ at x,

namely Ex ≜ {v ∈ R
n| v⊤∇2ϕ(x)v ≤ 1} satisfies Ex ⊆ P ∩ 2x− P ⊆

√
ν̄Ex.

As we mentioned in Section 1.3, it is easy to check that the symmetrized polytope P ∩ 2x−P is the set

of points within radius one in the ∥.∥x,∞ norm around x, i.e.

P ∩ 2x− P = {x+ v| ∥v∥x,∞ ≤ 1}.

Therefore, Ex ⊆ P ∩ 2x − P is equivalent to having ∥v∥x,∞ ≤ ∥v∥g for all v. Next, we provide some

intuition on how we show this inequality.

For ax,i the ith row of Ax, note that if we have a bound on the quantity ∥ax,i∥2g−1 = a⊤x,ig
−1ax,i for our

metric g = ∇2ϕ and all i, it enables us to control the infinity norm of sx,v, which is equal to ∥v∥x,∞, via the

following simple Cauchy Schwarz on the ith entry of sx,v:

|sx,vi| = |a⊤x,iv| ≤ ∥v∥g∥ax,i∥g−1 .

Recalling the definition of g = g1 + g2 as the sum of the Lewis Weights metric g1 and the log barrier metric

g2, one might hope to upper bound ∥ax,i∥2g−1 as

a⊤x,ig
−1ax,i ≤ a⊤x,ig

−1
1 ax,i ≤ a⊤x,i(A

⊤
xWxAx)

−1ax,i, (107)

where the last inequality use the fact that g1 can approximated by A⊤
xWxAx as A⊤

xWxAx ≼ g1 ≼
pA⊤

xWxAx, (Lemma 18.) On the other hand, according to the fixed point property of Lewis weights (see

Lemma 116), we have

a⊤x,i(A
⊤
xW

1−2/p
x )Ax)

−1ax,i = wxi
2/p ≤ 1, (108)

Comparing the left-hand side of Equation (108) and the right-hand side in Equation (107), one might hope

to estimate A⊤
xWxAx by A⊤

xW
1−2/p
x Ax up to log factors in order to upper bound a⊤x,ig

−1ax,i. Unfor-

tunately such estimates are possible Lee and Sidford (2019) between A⊤
xWxAx and A⊤

xW
1−2/p
x Ax for

poly-logarithmically large p’s, but here we cannot pick p ≥ 4 as our infinity-norm estimates break. As a

result, if we only consider the Hessian of the Lewis weights barrier g1, the quantity a⊤x,ig1
−1ax,i might be

orders of magnitude larger than its counterpart a⊤x,i(AxW
1−2/p
x )Ax)

−1ax,i in Equation (108).

Nonetheless, we show that adding the log barrier to the Lewis weight barrier and appropriately rescaling

the metric g indeed enables us to bound a⊤x,ig
−1ax,i.

To prove the desired bound on a⊤x,ig
−1ax,i, we start by comparing A⊤

xW
1−2/p
x Ax with the matrix g̃ ≜

A⊤
xWxAx + n

mA⊤
xAx, which is proportional to the Hessian of the hybrid barrier before scaling by α0.

This estimate enables us to analyze the quantity a⊤x,ig
−1ax,i via Equation (108). We state this estimate in

Lemma 93
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Lemma 93 (LÈowner comparison with different weighted matrices) For the PSD matrix g̃ ≜ A⊤
xWxAx+

n
mA⊤

xAx, we have

A⊤
xW

1−2/p
x Ax ≼ (

m

n
)2/pg̃.

Proof First, note that that for having the inequality A⊤
xW

1−2/p
x Ax ≼ β

(
A⊤

xWxAx + n
mA⊤

xAx

)
for a

positive real β, it is enough to guarantee

W
1−2/p
x ≼ β(Wx + I).

which is equivalent to picking β such that for all indices 1 ≤ i ≤ m,

wxi
1−2/p ≤ β(wxi +

n

m
). (109)

The first thing we notice is that if w
1−2/p
xi ≤ β n

m , then the inequality is already satisfied. Hence, without

loss of generality we assume

wxi ≥ (β
n

m
)

1
1−2/p . (110)

in this regime of wi to pick a β which satisfies Equation (109), we need to have

βwxi
2/p ≥ 1.

But using Equation (110), it is sufficient to have

(β
n

m
)

2/p
1−2/pβ ≥ 1,

which is satisfied if we pick β as large as

β = (
m

n
)2/p.

This completes the proof.

Now based on Lemma 93 we upper bound a⊤x,ig
−1ax,i for the hybrid barrier.

Lemma 94 (Taming the hybrid metric) For the metric of our hybrid barrier g = ∇2ϕ, we have for every

i:

a⊤x,ig
−1ax,i ≤ 1.

Proof Note that using Lemma 18, we have

g̃ = A⊤
xWxAx +

n

m
A⊤

xAx ≼ g1 +
n

m
A⊤

xAx =
1

α0
g,

where recall that α0 = (mn )
2

2+p is the normalizing factor of the hybrid barrier (Equation (4).) Hence, using

Lemma 93:

α0a
⊤
i g

−1ai ≤ a⊤i g̃
−1ai ≤ (

m

n
)2/pa⊤i (A

⊤
xW

1−2/p
x A)−1ai ≤ (

m

n
)2/pwxi

2/p. (111)
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On the other hand, by the definition of g̃ and the fact that the leverage scores of any matrix are less than one:

α0a
⊤
i g

−1ai ≤ a⊤i g̃
−1ai ≤ a⊤i (A

⊤
xWxA)

−1ai = wxi
−1wxi

1/2a⊤i (A
⊤
WxAx)

−1aiwxi
1/2 ≤ wi

−1. (112)

Balancing Equations (111) and (112) implies

α0a
⊤
i g

−1ai ≤ (
m

n
)

2/p
1+2/p . (113)

which completes the proof as α0 = (mn )
2/p

1+2/p .

Finally, using the result of Lemma 94 we estimate ∥.∥x,∞ by ∥.∥g.

Lemma 95 (Bounding infinity norm by the ellipsoidal norm) Given an arbitrary vector z ∈ R
n,

∥v∥x,∞ ≤ ∥v∥g, (114)

∥v∥g ≤
√
α0n(p+ 1)∥v∥x,∞. (115)

Proof First, we show Equation (114). For arbitrary 1 ≤ i ≤ m, we have using Lemma 94 and Cauchy

Schwarz:

|a⊤i v| ≤
√
a⊤i g

−1ai
√
v⊤gv ≤ ∥v∥g,

which means

∥v∥x,∞ = ∥sx,v∥∞ ≤ ∥v∥g.

To show Equation (115), note that using Lemma 18, we have

v⊤g1v ≤ p
∑

i

wxisx,v
2
i ≤ p

∑

i

wxi∥sx,v∥2∞ = np∥v∥2x,∞,

and

v⊤g2v =
n

m

∑

i

sx,v
2
i ≤ n∥sx,v∥2∞ = n∥v∥2x,∞.

Noting the definition of g = α0(g1 + g2) in Equation (15), the proof is completes.

Finally using the estimates in Lemma 95 we prove Theorem 6. To this end

Proof [Proof of Theorem 6.] From the estimate ∥v∥g ≤
√
α0n(1 + p)∥v∥x,∞ in Lemma 95 we see that

if we scale the ellipsoid {v| v⊤g(x)v ≤ 1} by
√
pn(mn )

1/p
2/p+1 then it includes the symmetrized polytope

around x, whose unit ball is exactly {v| ∥v∥x,∞ ≤ 1}, i.e.

{v| ∥v∥x,∞ ≤ 1} ⊆ {√pn(m
n
)

1/p
2/p+1 v| v⊤g(x)v ≤ 1}. (116)

On the other hand, from Lemma 95 we have

∥v∥x,∞ ≤ ∥v∥g,
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which implies that the unit ball of the norm, or the Dikin ellipsoid, is contained in the symmetrized polytope

around x, i.e.

{v| v⊤g(x)v ≤ 1} ⊆ {v| ∥v∥x,∞ ≤ 1}. (117)

Combining Equations (116) and (117) implies that the symmetric self-concordance parameter ν̄ defined

in Laddha and Vempala (2021) is at most ν̄ ≤ pn(mn )
2/p

2/p+1 , which in turn implies that the distribution e−αϕ

has isoperimetry with constant at least

1√
ν̄
≥ 1√

pn
(
n

m
)

1/p
2/p+1 , (118)

with respect to metric g as desired.

Furthermore, from the normal c2-self-concordance of ϕ by Theorem 8 (recall c2 = poly( 1
4/p−1)) and the

fact that αϕ is α-relatively strongly convex with respect to ϕ, then Lemma 8 in Gopi et al. (2023) implies an

isoperimetric inequality with constant poly( 1
4/p−1)

√
α for the measure e−αϕdx on the manifold with metric

of the Hessian of ϕ. Combining this with the first isoperimetric constant in Equation (118) completes the

proof.
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Appendix H. Riemannian Geometry

H.1. Basic Manifold Definitions

In this section, we go through some basic definitions in differential geometry that are essential to know in

our proofs. A manifold is defined abstractly as a topological space which locally resembles Rn.

Definition 96 A manifold M is a topological space such that for each point p ∈ M, there exists an open

set U around p such that U is a homeomorphism to an open set of Rn.

Tangent Space. For any point p ∈ M, one can define the notion of tangent space for p, Tp(M), as the

equivalence class of the set of curves γ starting from p (γ(0) = p), where we define two such curves γ0 and

γ1 to be equivalent if for any function f on the manifold:

d

dt
f(γ0(t))

∣∣
t=0

=
d

dt
f(γ1(t))

∣∣
t=0

.

On can define a linear structure on Tp(M), hence it is a vector space. Now given a positive definite quadratic

form g(p) on the vector space Tp(M), one can equip the manifold M with metric g. While the definition

of a general manifold is abstract, putting a metric on it allows us to measure length, areas, volumes, etc.

on the manifold, and do calculus similar to Euclidean space. Next, we define some basic notions regarding

manifolds.

Differential. For a map f : M → N between two manifolds, the differential dfp at some point p ∈ M is

a linear map from Tp(M) to Tf(p)(N ) with the property that for any curve γ(t) on M with γ(0) = p, we

have

df(
d

dt
γ(0)) =

d

dt
f(γ)(0). (119)

. As a special case, for a function f over the manifold, the differential df at some point p ∈ M is a linear

functional over Tp(M), i.e. an element of T ∗
p (M). Writing (119) for curve γi with d

dtγi(0) = ∂xi, testing

property (119), we see

df(∂xi) =
d

dt
f(γi(t))

∣∣∣
t=0

=
∂f

∂xi
(γi(0)).

We can write df =
∑

i
∂f
∂xi
dxi.

Vector field. A vector field V is a smooth choice of a vector V (p) ∈ Tp(M) in the tangent space for all

p ∈ M.

Metric and inner product. A metric is a tensor on the manifold M which is simply a smooth choice of

a symmetric bilinear map over M. Alternatively, the metric or dot product ⟨, ⟩ can be seen as a bilinear

map over the space of vector fields with the tensorization property, i.e. for vector fields V,W,Z and scalar

functions α, β over M:

⟨V +W,Z⟩ = ⟨V,Z⟩+ ⟨W,Z⟩, (120)

⟨αV, βW ⟩ = αβ⟨V,W ⟩. (121)
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H.2. Manifold Derivatives, Geodesics, Parallel Transport

H.2.1. COVARIANT DERIVATIVE

Given two vector fields V and W , the covariant derivative, also called the Levi-Civita connection ∇VW is

a bilinear operator with the following properties:

∇α1V1+α2V2W = α1∇V1W + α2∇V2W,

∇V (W1 +W2) = ∇V (W1) +∇V (W2),

∇V (αW1) = α∇V (W1) + V (α)W1

where V (α) is the action of vector field V on scalar function α. Importantly, the property that differentiates

the covariant derivative from other kinds of derivaties over manifold is that the covariant derivative of the

metric is zero, i.e., ∇V g = 0 for any vector field V . In other words, we have the following intuitive rule:

∇V ⟨W1,W2⟩ = ⟨∇VW1,W2⟩+ ⟨W1,∇VW2⟩.

Moreover, the covariant derivative has the property of being torsion free, meaning that for vector fields

W1,W2:

∇W1W2 −∇W2W1 = [W1,W2],

where [W1,W2] is the Lie bracket of W1,W2 defined as the unique vector field that satisfies

[W1,W2]f =W1(W2(f))−W2(W1(f))

for every smooth function f .

In a local chart with variable x, if one represent V =
∑
V i∂xi, where ∂xi are the basis vector fields,

and W =
∑
W i∂xi, the covariant derivative is given by

∇VW =
∑

i

V i∇iW =
∑

i

V i
∑

j

∇i(W
j∂xj)

=
∑

i

V i
∑

j

∂i(W
j)∂xj) +

∑

i

V i
∑

j

W j∇i∂xj)

=
∑

j

V (W j)∂xj) +
∑

i

∑

j

V iW j
∑

k

Γk
ij∂xk) =

=
∑

k

(
V (W k) +

∑

i

∑

j

V iW jΓk
ij

)
∂xk.

The Christoffel symbols Γk
ij are the representations of the Levi-Cevita derivatives of the basis {∂xi}:

∇∂xj
∂xi =

∑

k

Γk
ij∂xk

and are given by the following formula:

Γk
ij =

1

2

∑

m

gkm(∂jgmi + ∂igmj − ∂mgij).

Above, gij refers to the (i, j) entry of the inverse of the metric. In the following Lemma, we calculate the

Christoffel symbols on a Hessian manifold and g = D2ϕ is the Hessian of a convex function.
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Lemma 97 On a Hessian manifold with metric g we have

Γk
ij =

1

2

∑

m

gkmDgmij .

Proof Since the manifold is Hessian, we have

∂jgmi = ∂igjm = ∂mgij = Dgijm,

where Dgijm is just the notation that we use for Hessian manifolds.

H.2.2. PARALLEL TRANSPORT

The notion of parallel transport of a vector V along a curve γ can be generalized from Euclidean space to a

manifold. On a manifold, parallel transport is a vector field restricted to γ such that ∇γ′(V ) = 0. By this

definition, for two parallel transport vector fields V (t),W (t) we have that their dot product ⟨V (t),W (t)⟩ is

preserved, i.e., d
dt⟨V (t),W (t)⟩ = 0.

H.2.3. GEODESIC

A geodesic is a curve γ on M is a ªlocally shortest pathº, i.e., the tangent to the curve is parallel transported

along the curve: ∇γ̇ γ̇ = 0 (γ̇ denotes the time derivative of the curve γ.) Writing this in a chart, one can see

it is a second order nonlinear ODE which locally has a unique solution given initial location and speed.

d2γk
dt2

(t) = −1

2

∑

i,j

dγi
dt

dγj
dt

Γk
ij , ∀k. (122)

H.2.4. RIEMANN TENSOR

The Riemann tensor is a particular tensor on the manifold which arise from the covariant derivative. Namely,

it is a linear mapping from Tp(M)× Tp(M)× Tp(M) → Tp(M) defined as

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.

The Riemann tensor can be calculated in a chart given the following formula:

Ri
jkl =

∂Γi
lj

∂xk
−
∂Γi

kj

∂xl
+
∑

p

(Γi
kpΓ

p
lj − Γi

lpΓ
p
kj). (123)

In the following Lemma, we calculate the Riemann tensor on a Hessian manifold:

Lemma 98 The Riemann tensor is given by

Ri
jkl = −1

4
gi,ℓDgℓ,k,pg

p,ℓ2Dgℓ2,l,j +
1

4
gi,ℓDgℓ,l,pg

p,ℓ2Dgℓ2,k,j .
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Proof We consider the terms in Equation (123) one by one. For the first term

∂Γi
lj

∂xk
= ∂xk

(
1

2

∑

ℓ2

giℓ2Dgℓ2lj)

=
1

2

∑

ℓ2

∂xk
(giℓ2)Dgℓ2lj +

1

2

∑

ℓ2

giℓ2∂xk
(Dgℓ2lj)

= −1

2

∑

ℓ2

giℓDgℓkpg
pℓ2Dgℓ2lj +

1

2

∑

ℓ2

giℓ2D2gkℓ2lj .

Similarly

∂Γi
kj

∂xl
= −1

2

∑

ℓ2

giℓDgℓlpg
pℓ2Dgℓ2kj +

1

2

∑

ℓ2

giℓ2D2glℓ2kj .

Hence

∂Γi
lj

∂xk
−
∂Γi

kj

∂xl
= −1

2

∑

ℓ2

giℓDgℓkpg
pℓ2Dgℓ2lj +

1

2

∑

ℓ2

giℓDgℓlpg
pℓ2Dgℓ2kj . (124)

For the third and forth terms

∑

p

Γi
kpΓ

p
lj =

1

4

∑

ℓ2

giℓDgℓkpg
pℓ2Dgℓ2lj , (125)

∑

p

Γi
lpΓ

p
kj =

1

4

∑

ℓ2

giℓDgℓlpg
pℓ2Dgℓ2kj . (126)

Combining Equations (124) and (126) and plugging into (123) completes the proof.

H.2.5. RICCI TENSOR

The Ricci tensor is just the trace of the Riemann tensor with respect to the second and third components or

first and forth components, i.e. the trace of the operator R(., X)Y :

Ricci(X,Y ) = tr(R(., X)Y ).

Equivalently, if {ei} is an orthogonal basis in the tangent space, we have

Ricci(X,Y ) =
∑

i

⟨Y,R(X, ei)ei⟩. (127)

Lemma 99 (Form of the Ricci tensor on Hessian manifolds) On a Hessian manifold, the Ricci tensor is

given by

Ricci(v1, v2) = −1

4
tr(g−1Dg(v1)g

−1Dg(v2)) +
1

4
v⊤1 Dg(g

−1
tr(g−1Dg))v2.
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Proof Using the form of Riemann tensor in (123) and the definition of Ricci tensor in (127)

Ricci(∂j , ∂k) =

n∑

i=l=1

(∂Γi
lj

∂xk
−
∂Γi

kj

∂xl
+
∑

p

(Γi
kpΓ

p
lj − Γi

lpΓ
p
kj)
)

=

n∑

i=l=1

−1

4
gi,ℓDgℓ,k,pg

p,ℓ2Dgℓ2,l,j +
1

4
gi,ℓDgℓ,l,pg

p,ℓ2Dgℓ2,k,j

= −1

4
tr(g−1Dgkg

−1Dgj) +
1

4
e⊤j Dg(g

−1
tr(g−1Dg))ek.

Therefore, for arbitrary vector v1 and v2

Ricci(v1, v2) =
∑

j,k

v1jv2k
(
− 1

4
Tr(g−1Dgkg

−1Dgj) +
1

4
Dg(g−1

tr(g−1Dg))
)

= −1

4
tr(g−1Dg(v1)g

−1Dg(v2)) +
1

4
v⊤1 Dg(g

−1
tr(g−1Dg))v2.

H.2.6. EXPONENTIAL MAP

The exponential expp(v) at point p is a map from Tp(M) to M, defined as the point obtained on a geodesic

starting from p with initial speed v, after time 1. We use γt(x) to denote the point after going on a geodesic

starting from x with initial velocity ∇F , after time t.

Lemma 100 (Commuting derivatives) Given a family of curves γs(t) for s ∈ [0, s′] and t ∈ [0, t′], we

have

Ds∂tγs(t) = Dt∂sγs(t).

Proof Let ∂s and ∂t be the standard vector fields in the two dimensional R2 space (t, s). Then, we know

Ds∂tγs(t)−Dt∂sγs(t) = [∂sγs(t), ∂tγs(t)]

= [∂t, ∂s] = 0.

where [., .] is the Lie bracket.

H.3. Hessian manifolds

In this work we are working with a specific class of manifold whose metric is impoesd by the Hessian of our

hybrid barrier. A nice property of Hessian manifolds is that the terms in the Riemann tensor which depends

on the second derivative of the metric cancels out, and we end up just with the first derivative and the metric

itself. Specifically, for a Hessian manifold recall from Lemmas 97, 98, and 101 we have the following
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equations for Cristoffel symbols, the Riemann tensor, and the Ricci tensor:

Γk
ij =

1

2
(g−1Dkg)ij ,

Ri
jkl =

∂Γi
lj

∂xk
−
∂Γi

kj

∂xl
+
∑

p

(Γi
kpΓ

p
lj − Γi

lpΓ
p
kj)

=
∑

ℓ,ℓ2

−1

4
gi,ℓDgℓ,k,pg

p,ℓ2Dgℓ2,l,j +
1

4
gi,ℓDgℓ,l,pg

p,ℓ2Dgℓ2,k,j ,

Ricci(∂k, ∂j) =
∑

ℓ,ℓ2

−1

4
gi,ℓDgℓ,k,pg

p,ℓ2Dgℓ2,i,j +
1

4
gi,ℓDgℓ,i,pg

p,ℓ2Dgℓ2,k,j .

As we mentioned, the change of the determinant of the Jacobian matrices J
vγs
y regarding the Hamiltonian

family (γs(t)) between x0 and x1 is related to the rate of change of the Ricci tensor on the manifold. In

Lemma 101 below, we concretely record the Ricci tensor for a Hessian manifold in the Euclidean chart,

based on the metric g and its derivatives.

Lemma 101 (Form of Ricci tensor on Hessian manifolds) On a Hessian manifold, the Ricci tensor is

given by

Ricci(v1, v2) = −1

4
tr(g−1Dg(v1)g

−1Dg(v2)) +
1

4
v⊤1 Dg(g

−1tr(g−1Dg))v2. (128)

We use the formula of Ricci tensor on manifold in section D.2 and bound its derivative to bound the

rate of change of the pushforward density of RHMC going from x0 to x1 in section D.2.2. Note that we

only need to have a multiplicative control over the change of density of a sampled Gaussian vector on the

destination point on the manifold, as we move from x0 to x1.

H.4. Hamiltonian Curves and Fields on Manifold

Proof [Proof of Lemma 12] We start from the ODE of HMC:

γ′′s (t) = µ(γs(t)).

Taking covariant derivative in direction s:

Dsµ(γs(t)) = Dsγ
′′
s (t) = DsDtγ

′′
s (t)

= ∇∂sγs(t)∇∂tγs(t)γ
′
s(t).

Now we apply the definition of Riemann tensor. Namely for arbitrary vector fields X,Y, Z, we have

∇X∇Y Z −∇Y ∇XZ = R(X,Y )Z +∇[X,Y ]Z.

Setting X = ∂sγs(t) and Y = ∂tγs(t), we first observe that [∂sγs(t), ∂tγs(t)] because they are just the

application of the differential of γ to the standard vectors ∂s and ∂t in R
2. Applying this above

Dsµ(γs(t)) = ∇∂tγs(t)∇∂sγs(t)γ
′
s(t)−R(∂sγs(t), ∂tγs(t))γ

′
s(t). (129)

But note that because ∂tγs(t) and ∂sγs(t) are the image of the differential of γs(t) applied to ∂t and ∂t, we

have

∇∂sγs(t)γ
′
s(t) = ∇∂tγs(t)∂sγs(t) = J ′(t). (130)

Applying Equation (130) to Equation (129):

Dsµ(γs(t)) = J ′′(t)−R(J(t), γ′s(t))γ
′
s(t).

Noting the definition of the operator M completes the proof.
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H.5. Variations of Geodesics and One-Step Closeness of the Markov Kernel

To bound the one-step closeness of the Markov operator for our algorithm, the object of study in this paper

is variations of Hamiltonian curves. However, to give some intuition and provide some more background

about the discussion in Section 1.4, we first overview the variations of geodesics on the manifold; suppose

γs(t) is a variation of geodesics, i.e. γs(t) is a geodesic in t for every fixed s ∈ [0, s′], and γs(0) is also a

geodesic in parameter s from x0 to x1. For brevity, we sometimes refer to the curve γ0(t) by γ(t). To see

how fast the geodesics γs(t) changes as a function of s at time s = 0, for a fixed t we take the derivative of

γs(t) with respect to s at time s = 0; this gives us a vector field J(t) along γ0(t):

J(t) = ∂sγ0(t) = ∂sγs(t)
∣∣∣
s=0

,

This vector field, called a Jacobi field, is a fundamental object in studying the variations of geodesics.

Importantly, one can write a second-order ODE to describe how J(t) evolves along the geodesic given

initial conditions J(0), J ′(0)

D2
t J(t) = R(J(t), γ′(t))γ′(t). (131)

where the second derivative J ′′(t) is the covariant derivative on the manifold with respect to γ′0(t), i.e.,Dt ≜
∇γ′

0(t)
, and R is the Riemann tensor. We will provide some intuition on how the Riemann tensor effects in

the behavior of geodesics presently. The point is we can study the Jacobi field ODE to estimate how fast the

initial velocity is changing along the geodesic from x0 to x1, for this family of Hamiltonian curves with the

same destination y. Now consider a direction e perpendicular to the velocity γ′(t) = γ′0(t) of the geodesic

at time t, i.e., ⟨γ′(t), e⟩g = 0. Looking at the dot product of the vector R(e, γ′(t))γ′(t) on the right hand

side of the Jacobi field ODE in (131) to e itself, the quantity ⟨e,R(e, γ′(t))γ′(t)⟩ is intuitively measuring

how much the Jacobi field is growing or shrinking in direction e, meaning whether the geodesics γs(t)
parameterized by s are converging or diverging in direction e at time s = 0. This quantity is known as the

sectional curvature of the plane spanned by e and γ′(t). Now consider a unit orthonormal parallelepiped at

time t = 0, denoted by a set of orthonormal vectors {ei}ni=1 in the tangent space of γ(0), where e1 = γ′(0),
and look at the evolution of its volume along the geodesic when each ei evolves according to the Jacobi

Equation; in each directions ei, the parallelepiped is either expanding or squeezing, depending on if the

geodesics are converging or diverging in that direction, which in turn depends on the sign of the sectional

curvature ⟨ei, R(ei, γ′(0))γ′(0)⟩. Indeed, one can characterize the rate of change of this parallelepiped

along the geodesic by summing the sectional curvatures for all {ei}ni=2, which gives the Ricci curvature of

the manifold at γ(0) in the direction γ′(0): Ricci(γ′(0), γ′(0)) =
∑n

i=1⟨ei, R(ei, γ′(0))γ′(0)⟩.
On the other hand, the determinant of the Jacobian J

vγs
y of the Hamiltonian map, a quantity of our

interest to bound the change of density from x0 to x1, can be characterized by the ratio of the volume of this

parallelepiped at the beginning and the ending time t. which can be written as a time-weighted integral of

the Ricci curvature along the geodesic.

Fortunately, one can extend these arguments to variations of Hamiltonian curves instead of geodesics.

As a result, instead of the Riemann tensor in the Jacobi fields Equation (131), we end up with a slightly

different operator Φ(t) (defined in 11) which can be decomposed into a ªgeometric part,º the Riemann

tensor, and a ªbias part,º Mx, which comes from the derivative of the Hamiltonian bias µ(x), defined in

Equation (8).
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Appendix I. Third-Order ℓ∞-Self-Concordance for the Lewis Weight Barrier

Here we show the third-order ℓ∞-self-concordance of the hybrid barrier.

Lemma 102 (Third-order ℓ∞-self-concordance for the Lewis weights barrier) For p < 4 for arbitrary

direction v ∈ R
n

− 1

(4/p− 1)7
∥v∥x,∞∥z∥x,∞∥u∥x,∞g1 ≼ D3g1(v, z, u) ≼

1

(4/p− 1)7
∥v∥x,∞∥z∥x,∞∥u∥x,∞g1.

Proof Here we first carry the same argument as in the proof of second-order ℓ∞-self-concordance. Namely,

if the derivative with respect to one of the variables contains Ax then we can similarly reduce the problem to

our estimate for the second-order ℓ∞-self-concordance, in the proof of Lemma 35. Therefore, here we only

bound the terms in which all of the derivative with respect to v, z, and u do not contain Ax. Based on the

formula of g1 in Equation (19):

D3g1[v, z, u] → A⊤
x (D

3
Wx[v, z, u] + 2D3

Λx[v, z, u])Ax

+ 2(1− 2/p)
∑

u,v,z

A⊤
x (DΛx[v, u, z]Gx

−1
Λx +ΛxGx

−1DΛx[v, z, u])Ax

+ 2(1− 2/p)
∑

u,v,z

A⊤
x (DΛx[v, u]DGx

−1[z]Λx +ΛxDGx
−1[z]DΛx[v, u])Ax

+ 2(1− 2/p)
∑

u,v,z

A⊤
x (DΛx[v]DGx

−1[z, u]Λx +ΛxDGx
−1[z, u]DΛx[v])Ax

+ 2(1− 2/p)A⊤
x (ΛxDGx

−1[v, z, u]Λx)Ax. (132)

In the above, the sums mean all possible ways to distribute derivative directions in that particular way; as an

example,
∑

u,v,z

A⊤
xDΛx[v, u]DG

−1
x [z]ΛxAx = A⊤

xDΛx[v, u]DG
−1
x [z]ΛxAx +A⊤

xD

+Λx[v, z]DG
−1
x [u]ΛxAx

+A⊤
xDΛx[u, z]DG

−1
x [v]ΛxAx.

It is clear that we only need to deal with one of these terms per sum. We start from the first line in Equa-

tion (132). Using the estimates in Lemma 33 we can write

A⊤
x (D

3
Wx[v, z, u] + 2D3

Λx)Ax ≼
1

(4/p− 1)3
A⊤

xWxAx.

For the second line, it is enough to bound the quadratic form q⊤A⊤
xDΛx[v, u, z]Gx

−1
ΛxAxq as the other

term is symmetric.

q⊤A⊤
xDΛx[v, u, z]G

−1
x ΛxAxq ≤

√
q⊤A⊤

xG
1/2
x (G

−1/2
x DΛ[v, u, z]G

−1/2
x )2G

1/2
x Axq

√
q⊤A⊤

xΛxG
−1
x ΛxAxq.

(133)

Now similar to the trick that we used in Equation (27),

(G−1/2
x DΛx[v, u, z]G

−1/2
x )2 ≼

1

(4/p− 1)6
∥v∥2x,∞∥u∥2x,∞∥z∥2x,∞(G−1/2

x WxG
−1/2
x )2

≼
1

(4/p− 1)6
∥v∥2x,∞∥u∥2x,∞∥z∥2x,∞p2(W−1/2

x WxW
−1/2
x )2

≤ 1

(4/p− 1)6
∥v∥2x,∞∥u∥2x,∞∥z∥2x,∞p2I. (134)
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Plugging back Equation (134) into Equation (133):

q⊤A⊤
xDΛx[v, u, z]G

−1
x ΛxAxq ≲

1

(4/p− 1)3
∥v∥x,∞∥u∥x,∞∥z∥x,∞p

√
q⊤A⊤

xGxAxq
√
p

√
q⊤A⊤

xΛxΛ
−1
x ΛxAxq

≤ p
√
p

(4/p− 1)3
∥v∥x,∞∥u∥x,∞∥z∥x,∞q⊤g1(x)q.

Therefore

A⊤
xDΛx[v, u, z]G

−1
x ΛxAx +A⊤

xΛxG
−1
x DΛx[v, u, z]Ax ≼

1

(4/p− 1)3
∥v∥x,∞∥u∥x,∞∥z∥x,∞g1.

For the third line, using Lemmas 36 and 31

q⊤DΛx[v, u]DG
−1
x [z]ΛxAxq ≤

√
q⊤A⊤ΛxAxq

×
√
q⊤A⊤

xD
2Λx[v, u]W

−1/2
x

(
W

1/2
x DG

−1
x [z]W

1/2
x

)2
W

−1/2
x D2Λx[v, u]Axq

≤
√
q⊤A⊤ΛxAxq

× p

4/p− 1
∥z∥x,∞

√
q⊤A⊤

xW
1/2
x

(
W

−1/2
x D2Λx[v, u]W

−1/2
x

)2
W

1/2
x Axq

≤
√
q⊤A⊤ΛxAxq

× p

(4/p− 1)3
∥z∥x,∞∥v∥x,∞∥u∥x,∞

√
q⊤A⊤

xWxAxq

≤ p

(4/p− 1)3
∥z∥x,∞∥v∥x,∞∥u∥x,∞q⊤g1(x)q.

The terms in the forth line in Equation (132) can be bounded exactly similar to the third line, except that we

should use Lemmas 36 and ?? instead. To deal with the term on the fifth line Equation (132) we prove the

following estimate on the third order derivative of G−1
x :

Lemma 103 We have

− 1

(4/p− 1)7
∥v∥x,∞∥u∥x,∞∥z∥x,∞G

−1
x ≼ D3

G
−1
x [v, u, z] ≼

1

(4/p− 1)7
∥v∥x,∞∥u∥x,∞∥z∥x,∞G

−1
x .

Proof Note that

D3
G

−1
x [v, u, z] = D2(G−1

x DGx[u]G
−1
x )[v, z]

=
∑

u,v,z

D2
G

−1
x [v, z]DGx[u]G

−1
x

+
∑

u,v,z

DG
−1
x [v]DGx[u]DG

−1
x [z]

+
∑

u,v,z

DG
−1
x [v]DGx[u, z]DG

−1
x

+
∑

u,v,z

G
−1
x DGx[u, v, z]G

−1
x .
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As before, we use the trick of building squares in Equation (27) to bound these terms. The first line is

handled by Lemmas 36 and ??. The second line is handled by Lemmas ?? and 36. The third line is handled

by Lemmas 31 and 36. Finally the forth line is handled by Lemma 33.

Now using Lemma 109 the final line in Equation (132) is upper bounded as

A⊤
xΛxD

3
G

−1
x [u, v, z]ΛxAx ≼

1

(4/p− 1)7
∥u∥x,∞∥v∥x,∞∥z∥x,∞A⊤

xΛxD
3
G

−1
x [u, v, z]ΛxAx

≼
p

(4/p− 1)7
∥u∥x,∞∥v∥x,∞∥z∥x,∞g1(x),

which completes the proof.

Appendix J. Remaining Proofs

J.1. Proof of Lemma 36

Proof Note that from Lemma 29

DG
−1
x (v) = −G

−1
x DGx(v)G

−1
x ≼

1

4/p− 1
G

−1
x

and similarly

− 1

4/p− 1
G

−1
x ≼ DG

−1
x (v).

For the second derivative

D2
G

−1
x (v, u) = −G

−1
x DGx(u, v)G

−1
x +G

−1
x DGx(v)G

−1
x DGx(u)G

−1
x +G

−1
x DGx(u)G

−1
x DGx(v)G

−1
x .

For the first term using Lemma 31

G
−1
x DGx(u, v)G

−1
x ≼

1

(4/p− 1)5
∥u∥x,∞∥v∥x,∞G

−1
x GxG

−1
x =

1

(4/p− 1)5
∥u∥x,∞∥v∥x,∞G

−1
x .

(135)

For the second term using Cauchy Schwarz for the quadratic form q⊤G−1
x DGx(v)G

−1
x DGx(u)G

−1
x q it

is enough to upper bound q⊤G−1
x DGx(v)G

−1
x DGx(v)G

−1
x q and q⊤G−1

x DGx(u)G
−1
x DGx(u)G

−1
x q by

G
−1
x . But by Lemma ??

G
−1
x DGx(v)G

−1
x DGx(v)G

−1
x = G

−1/2
x (G−1/2

x DGx(v)G
−1/2
x )2G−1/2

x

≼
1

(4/p− 1)2
∥v∥2x,∞G

−1
x .

Writing the same bound for G−1
x DGx(u)G

−1
x DGx(u)G

−1
x we conclude

G
−1
x DGx(v)G

−1
x DGx(u)G

−1
x +G

−1
x DGx(u)G

−1
x DGx(v)G

−1
x ≼

1

(4/p− 1)2
∥v∥x,∞∥u∥x,∞G

−1
x .

(136)

Combining Equations (135) and (136) implies

D2
G

−1
x (v, u) ≼

1

(4/p− 1)5
∥v∥x,∞∥u∥x,∞G

−1
x .

The proof of the left side − 1
(4/p−1)5

∥v∥x,∞∥u∥x,∞G
−1
x ≼ D2

G
−1
x (v, u) follows similarly.
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J.2. Norm of the Bias

Lemma 104 We have

∥µ∥g ≤ (1 + α
√
α0)

√
n.

Proof For the first part

∥∇ϕ∥g = ∥Dϕ∥g−1 ≤ α
√
nα0

from Lemma 56. For the second part, writing tr(g−1Dg) as an expectation

tr(g−1Dg) = Ev∼N (0,g−1)Dg(v)v,

we have for independent v, v′ ∼ N (0, g−1):

∥g−1
tr(g−1Dg)∥2g = Ev,v′v

⊤Dg(v)g−1Dg(v′)v′

≤ Evv
⊤Dg(v)g−1Dg(v)v

≤ Ev∥sv∥2∞v⊤gv ≲ n,

where we used Lemma 115. This completes the proof.

J.3. Comparison Between Leverage Scores

Lemma 105 Let

σ̃i = (W1/2
x Axg

−1A⊤
xW

1/2
x )i,i.

Then

σ̃i/wi ≤ (
m

n
)2/pw

2/p
i ,

which implies

σ̃i/wi ≤ (
m

n
)

2/p
1+2/p .

Proof Simply note that g ≥ ( n
m)2/pA⊤

xW
1−2/p
x Ax, which implies

(W1/2
x Ax(A

⊤
xW

1−2/p
x Ax)

−1A⊤
xW

1/2
x )i,i ≤ w

2/p
i

J.4. Norm Comparison Between Covariant and Normal Derivatives

Lemma 106 Given a family of Hamiltonian curves γs for t ∈ (0, δ) where γ0 is (δ, c)−nice andR1 normal,

defining v = vs(t) = γ′s(t), then under the assumption that δ2 ≲ 1/R1 and ∥ d
dsγs(0)

∣∣∣
s=0

∥g = 1 we have

for all t ∈ (0, δ)

∥ d
ds
γ0(t)∥g ≤ 5,

∥∇ d
ds

γ0(t)
v0(t)∥g ≤ 10

δ
,

∥ d
ds
vs(t)

∣∣∣
s=0

∥g ≤ c+
10

δ
.
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Proof Since we have δ2 ≤ 1/R1 along the curve, Lemma 23 in Lee and Vempala (2018) implies for all

t ∈ (0, δ):

∥ d
ds
γs(t)∥g ≤ 5∥ d

ds
γs(0)∥g = 5,

∥∇ d
ds

γs(t)
vs(t)∥g ≤ 10

δ
.

But now from Lemma 107

∥ d
ds
v0(t)∥g ≤ ∥sγ0(t),v∥∞∥ d

ds
γ0(t)∥g + ∥∇ d

ds
γ0(t)

v0(t)∥g,

As always, our parameterization in s is always unit norm, so ∥ d
dsγ0(t)∥g = 1. From niceness of the curve

we have ∥sγ0(t),v∥∞ ≤ c, which completes the proof.

Lemma 107 For a vector field v and arbitrary vector z at point x ∈ M, denoting Dv(z) by v′, we have

∥v′∥g ≤ ∥v∥x,∞∥z∥g + ∥∇z(v)∥g.

Proof We have

∇z(v) = v′ +
1

2
g−1Dg(v)z,

so

∥v′∥g ≤ ∥∇z(v)∥g + ∥g−1Dg(v)z∥g ≤ ∥∇z(v)∥g + ∥sx,v∥∞∥z∥g.
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J.5. Iteration complexity of Gaussian Cooling

Proof [Proof of Corollary 5] First, note that from Lemma 38, ϕ is self-concordant with self-concordant

parameter ν = α0n. The Gaussian cooling schedule introduced by authors in Lee and Vempala (2018) can

be used to relax the requirement of having a warm start for our sampling algorithm, resulting in an efficient

algorithm for computing the volume as well. The idea is that sampling from Gibbs distributions e−αϕ(x)

with smaller variance or larger α is easier, so one can start from sampling in a large temperature α and

gradually decrease it. Lemma 45 of Lee and Vempala (2018) shows that the Gaussian Cooling algorithm

accurately estimates the volume with any self-concordant barrier function. We now proceed to bound the

running time, as this depends on the sampling time in each phase of the GC algorithm.

The Gaussian cooling of Lee and Vempala (2018) evolves in phases where in the ith phase it generates

ki approximate samples from the density proportional to e−ϕ(x)/σ2
i inside the polytope, where

ki = Θ(

√
n

ϵ2
log(

√
n

ϵ
)) if σ2i ≤ ν

n
,

ki = Θ((

√
ν

σ
+ 1)ϵ2 log(

n

ϵ
), O.W.

and the update rule for σi is

σ2i+1 = σ2i (1 +
1√
n
) if σ2i ≤ ν

n
,

σ2i = (1 +min{ σi√
ν
,
1

2
}). O.W.

starting from σ20 = Θ(ϵ2n−3 log−3(n/ϵ)) until σ goes above Θ(νϵ log(
nν
ϵ )). Note that the temperature

parameter is given by α = 1/σ2. Now at each phase i going from temperature σ2i to σ2i+1 we have an

approximate sample from e−ϕ(x)/σ2
i which can be used as a warm start for sampling from e−ϕ(x)/σ2

i+1 ,

specially as ki+1 ≤ ki. Therefore, our main Theorem 4 implies that the mixing time of sampling at each

phase is of order

Õ
(
min{α−1n2/3 + α−1/3n5/9m1/9 + n1/3m1/6, m1/3n4/3}

)

= Õ(α−1n2/3 + α−1/3n5/9m1/9 + n1/3m1/6).

Now in the first case when σ2i ≤ ν
n = α0, we have α ≥ 1

α0
. On the other hand, due to the update rule of σi

in this case, it takes
√
n phase to double σ and in each phase we take ki = Θ̃(

√
n

ϵ2
) samples. Hence, the total

number of RHMC steps to double σ in this case is bounded by

Õ
(
(α−1n2/3 + α−1/3n5/9m1/9 + n1/3m1/6)×

√
n

ϵ2
×√

n
)

= Õ
(
(α0n

2/3 + α
1/3
0 n5/9m1/9 + n1/3m1/6)

n

ϵ2
)

= Õ(
n4/3m1/3

ϵ2
).

In the other case when σ2i ≥ ν
n = α0, we have α ≤ 1

α0
. Then, the total RHMC steps to double σ in this case

can be upper bounded after substituting ν = nα0 as

Õ
(
(α−1n2/3 + α−1/3n5/9m1/9 + n1/3m1/6)× 1

ϵ2
(

√
ν

σ
+ 1)× (

√
ν

σ
+ 1)

)
= Õ(

n4/3m1/3

ϵ2
).

81



GATMIRY KELNER VEMPALA

This means we can calculate the integral of e−αϕ(x) for any α using Õ(n
4/3m1/3

ϵ2
) steps of RHMC up to

1± ϵ. Moreover, if we just want to sample from e−αϕ(x) in the polytope, we do not have to take ki number

of samples at phase i but only need one sample. As a result, the ϵ2 in the complexity is omitted and we end

up with the complexity Õ(n4/3m1/3) for sampling without a warm start.

J.6. Other helper Lemmas

Lemma 108 We have the following relations between P
(2)
x , Λx, and Wx.

2

p
Wx ≼ Gx ≼ Wx,

P
(2)
x ≼ Wx,

Λx ≼ Wx.

Proof For the first inequality, note that the sum of entries of the ith row of the matrix P
(2)
x is equal to Wxi,i.

Hence, the matrix Wx − P
(2)
x is a Laplacian so it is positive semi-definite. The second inequality follows

from the fact that Λx = Wx − P
(2)
x , and that P

(2)
x is PSD. For the third inequality, using the fact that

P
(2)
x ≼ Wx, we can write

2

p
Wx ≼

2

p
Wx + (1− 2

p
)P(2)

x ≼ Wx.

Lemma 109 We have

− 1

(4/p− 1)3
∥v∥x,∞∥u∥x,∞∥z∥x,∞G

−1
x ≼ D3

G
−1
x [v, u, z] ≼

1

(4/p− 1)3
∥v∥x,∞∥u∥x,∞∥z∥x,∞G

−1
x .

Proof Note that

D3
G

−1
x [v, u, z] = D2(G−1

x DGx[u]G
−1
x )[v, z]

=
∑

u,v,z

D2
G

−1
x [v, z]DGx[u]G

−1
x

+
∑

u,v,z

DG
−1
x [v]DGx[u]DG

−1
x [z]

+
∑

u,v,z

DG
−1
x [v]DGx[u, z]DG

−1
x

+
∑

u,v,z

G
−1
x DGx[u, v, z]G

−1
x .

Lemma 110 For any positive integer n, vector v, and matrix g̃ ≼ g we have

g1/2(g−1/2g̃g−1/2)ng1/2 ≼ g.

Proof Directly from the fact that if A ≼ B, then for any matrix C we have C⊤AC ≼ C⊤BC.
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Lemma 111 For operator g−1Dg(v)g−1Dg(v), we have ∥g−1Dg(v)g−1Dg(v)ℓ∥g ≲ ∥sx,v∥2∞∥ℓ∥g.

Proof We have

∥g−1Dg(v)g−1Dg(v)ℓ∥g ≤
√
ℓ⊤Dg(v)g−1Dg(v)g−1Dg(v)g−1Dg(v)ℓ (137)

≤ ∥sx,v∥2∞
√
ℓ⊤gℓ ≲ ∥sx,v∥2∞∥ℓ∥g. (138)

Lemma 112 For vector field w on manifold M, we have

tr(g−1Dg(w)) ≲ ∥w∥g.

Proof We have

tr(g−1Dg(w)) = Ev′∼N (0,g−1)v
′⊤Dg(w)v′

= Ev′∼N (0,g−1)v
′⊤Dg(v′)w

≤ Ev′∥v′∥∞
√
v′⊤gv′

√
w⊤gw

≲
√
n∥w∥g,

where in the last line we used Lemma 115.

Lemma 113 For arbitrary vector field w on M we have

∣∣tr(g−1Dg(z, w))
∣∣ ≤ √

n∥w∥g∥z∥g.

Proof We can write

∣∣tr(g−1Dg(z, w))
∣∣

= Ev′∼N (0,g−1)v
′⊤Dg(z, w)v′

= Ev′∼N (0,g−1)v
′⊤Dg(z, v′)w

≤ Ev′∼N (0,g−1)∥z∥∞∥v′∥∞
√
v′⊤gv′

√
w⊤gw

≤ ∥w∥g
√
n∥z∥∞

≤ ∥w∥g
√
n∥z∥g.

Lemma 114 For vector field w we have

|tr(g−1Dg(z)g−1Dg(w))| ≤ √
n∥z∥g∥w∥g.
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Proof

|tr(g−1Dg(z)g−1Dg(w))| = |Ev′∼N (0,g−1)v
′⊤Dg(z)g−1Dg(w)v′|

= Ev′ |v′⊤Dg(z)g−1Dg(v′)w|

≤ Ev′

√
v′⊤Dg(z)g−1Dg(v′)g−1Dg(v′)g−1Dg(z)v′∥w∥g

= Ev′

√
v′⊤Dg(z)g−1/2(g−1/2Dg(v′)g−1/2)2g−1/2Dg(z)v′∥w∥g.

But note that

g−1/2Dg(v′)g−1/2 ≤ ∥v′∥∞I.

Hence

|tr(g−1Dg(z)g−1Dg(w))| ≤ Ev′

√
v′⊤g1/2(g−1/2Dg(z)g−1/2)2g1/2v′∥w∥g

≤ Ev′∥sz∥∞∥v′∥g∥w∥g
≤ Ev′∥z∥g∥v′∥g∥w∥g
≤ √

n∥z∥g∥w∥g.

where we used Lemma 115 and Lemma 95.

Lemma 115 For normal vector v ∼ N (0, g(x)−1), we have

E∥sx,v∥∞v⊤gv = O(n
√

log(m)),

E∥sx,v∥∞ = O(
√

log(m)),

E∥sx,v∥2∞ = O(log(m)),

E∥sx,v∥4∞ = O(log(m)2).

Proof These follow directly from standard Gaussian moment bounds.

Fact 1 (Gaussian tail bound) For Gaussian random variable X ∼ N (0, σ2), we have the following tail

bound

P(|X| ≥ t) ≤ 2e−t2/2σ2
.

J.7. Proof of Theorem 25

Proof Consider a subset S ⊆ S with 0.5 ≥ π(S) = s′ ≥ s ≥ 2ρ. Then, to show a lower bound for

s-conductance, we need to lower bound

P (S, Sc)/P (S),

where P (., .) =
∫
x∈S Tx(Sc)π(x)dx is the probability that we are in set S and the next step of the Markov

chain we escape S and P is the probability measure corresponding to π. Recall that Tx(.) is the Markov

kernel, specifying the distribution of the next step given we are at point x. Now assume that the conductance

bound does not hold, i.e. there exists such S with

P (S, Sc)/P (S) = O(∆ψM ).
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Note that because the chain is reversible, we have

P (S, Sc) = P (Sc, S),

and because π(S) ≤ 0.5, we have

P (Sc, S)/P (Sc) ≤ P (S, Sc)/P (S) = O(∆ψM ). (139)

Next, define the set S̃ ⊆ S to be the points x from which our chance of escaping S is at least 0.01. Now

if π(S) ≥ ∆ψMπ(S)/2, then given that we are in S, we have at least ∆ψM chance of escaping S which

contradicts (139). This means

π(S̃) ≤ ∆ψM/2.π(S). (140)

On the other hand, note that for point x1 with d(x1, x0) ≤ ∆ for x0 ∈ S − S̃, we have

TV (Px0 , Px1) ≤ 0.9, (141)

which means x1 cannot be in S − S̃, hence it should be in Sc. Therefore, defining the set S+∆ as the set of

points outside S̃ which are ∆ close to a point in S − S̃ −M′c, we have

S+∆ ⊆ Sc ∪M′c. (142)

On the other hand, from isoperimetry (because π(S) ≤ 1
2 ) and the fact that ∆ψM ≤ 1/2 we have

π(S+∆) ≥ ∆ψM(π(S − S̃)− π(M′c)) ≥ ∆ψM(π(S)/2− ρ) ≥ ∆ψM(π(S)/4).

Therefore, from the assumption s ≥ ρ/(8∆ψM):

π(S+∆ −M′c) ≥ ∆ψM(π(S)/4− π(S)/8) ≥ ∆ψMπ(S)/8,

which implies from Equations (141) and (142):

P (S, Sc) ≥ P (S, S+∆ −M′c) = P (S+∆ −M′c, S) ≥ ∆ψM(π(S)/8)× 0.99 ≥ ∆ψMψ(S)/16,

which proves that the conducance is lower bounded by Ω(∆ψM).

J.8. Some Properties of the Lewis Weights

In this section, we recall some properties of Lewis weights which we use in the proof.

Lemma 116 (Fixed point property of Lewis weights) The Lewis weights of the matrix Ax is the unique

vector wx in R
m
≥0 with Wx = Diag

(
wx

)
such that

σ(W1/2−1/p
x Ax) = Wx,

where σ(.) denotes the leverage scores of the matrix.
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Proof Recall the definition of Lewis weights as the optimum of the objective in Equation (14). Taking

derivative with respect to W , we get

−(1− 2/p)σ/w + (1− 2/p)1⊤w = 0,

where recall σ ≜ (W 1/2−1/pAx) is the vector of leverage scores defined as

σ(W 1/2−1/pAx) ≜ diag
(
W 1/2−1/pAx(A

⊤
xW

1−2/pAx)
−1Ax

⊤W 1/2−1/p
)
.

Proof [Proof of Lemma 21] We reuse Lemma 24 in Lee and Sidford (2019) with variable V set as Sx. Then,

noting the fact that DSx[v] = −SxSx,v, we obtain the following formula for the derivative of Wx with

respect to x in direction v:

DWx[v] = −2Diag
(
Wx

(
Wx − (1− 2/p)Λx

)−1
Λxsx,v

)
= −2Diag

(
WxG

−1
x Λxsx,v

)
.

But simple algebra reveals,

2Wx − (1− 2/p)DWx[v] = 2WxG
−1
x Wx,

which further implies

2Wx − (1− 2/p)DWx[v]− 2(1− 2/p)Diag
(
ΛxG

−1
x Wxsx,v

)
= 2Wx.

Therefore

DWx[v] = −2Diag
(
ΛxG

−1
x Wxsx,v

)
.

Proof Proof of Lemma 28 Recall the definition of Px:

Px = W
1/2−1/p
x Ax(A

⊤
xW

1−2/p
x Ax)

−1Ax
⊤
W

1/2−1/p
x .

Using the chain rule

DPx[v] = Diag
(
W

−1/2−1/p
x (−Gx − 2(1/2− 1/p)Λx)rx,v

)
A⊤

xW
1−2/p
x AxW

1/2−1/p
x

+W
1/2−1/p
x A⊤

xW
1−2/p
x AxDiag

(
W

−1/2−1/p
x (−Gx − 2(1/2− 1/p)Λx)rx,v

)

− 2W1/2−1/p
x Ax(A

⊤
xW

1−2/p
x Ax)

−1A⊤
xW

−2/p

Diag
(
(−2Gx − 2(1− 2/p)Λ)rx,v

)
Ax(A

⊤
xW

1−2/p
x Ax)

−1A⊤
xW

1/2−1/p
x .

Noting the fact that −Gx − 2(1/2− 1/p)Λx = Wx finishes the proof.

Lemma 117 (Gradient of the Lewis weights barrier) The gradient of the Lewis weight barrier ϕp is

given by

Dϕp(x) = A⊤
xwx.

Proof Taking directional derivative in direction v, using the chain rule

Dϕp(x)[v] = 2tr
(
(A⊤

xW
1−2/p
x Ax)

−1(A⊤
x Sx,vW

1−2/p
x Ax

)

+D(wx)
⊤∂
(
− logdet(A⊤

xW
1−2/p
x Ax) + (1− 2/p)1Tw

)

∂wx
,

But because wx is the maximizer of
(
− logdet(A⊤

xW
1−2/p
x Ax) + (1− 2/p)1⊤w

)
, the second term is zero

and the proof is complete.
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