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An algebraic model for the free loop space

Manuel Rivera

ABSTRACT. We describe an algebraic chain level construction that models the
passage from an arbitrary topological space to its free loop space. The in-
put of the construction is a categorical coalgebra, i.e., a curved coalgebra
satisfying certain properties, and the output is a chain complex. The con-
struction is a modified version of the co-Hochschild complex of a differential
graded (dg) coalgebra. When applied to the chains on an arbitrary simplicial
set X, appropriately interpreted, it yields a chain complex that is naturally
quasi-isomorphic to the singular chains on the free loop space of the geomet-
ric realization of X. We relate this construction to a twisted tensor product
model for the free loop space constructed using the adjoint action of a dg Hopf
algebra model for the based loop space.

1. Introduction

To any space Y one can naturally associate a new space LY defined as the
set of continuous maps from the circle S* to Y equipped with the compact-open
topology. The space LY is called the free loop space of Y and may be equipped
with a natural S'-action given by rotation of loops. In this article, we present an
algebraic chain level model for the passage Y +— LY that does not assume any
hypothesis on the underlying space Y. The construction requires a small amount
of data and, consequently, is potentially useful for calculations and for studying
how the algebraic topology of a geometric space manifests at the level of the free
loop space.

The main idea is inspired by the following picture. Suppose X is a simplicial
set. For the purposes of capturing the intuitive idea, the reader may assume X
arises from a simplicial complex equipped with a total ordering of its vertices. We
consider ordered sequences (oy, - - - ,0p) of simplicies in X such that the last vertex
of o; is the first vertex of 0,11 for ¢ =0, ..., p — 1 and the last vertex of o, is the
first vertex of 0g. These ordered sequences of simplices were called closed necklaces
in [RS18].

We want to think of a closed necklace in X as a family of free loops in | X, the
geometric realization of X, parameterized by a cube of an appropriate dimension.
More precisely, adapting a classical construction of Adams described in [Ada56],
it is possible to decompose a closed necklace (og,---,0,) into a family of free

2020 Mathematics Subject Classification. Primary 18 Mxx.
This research was supported by NSF Grant 210554 and the Karen EDGE Fellowship.

(©2024 American Mathematical Society

23

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.


https://www.ams.org/conm/
https://doi.org/10.1090/conm/802/16071

24 MANUEL RIVERA

loops in |X| parameterized by a particular subdivision of a cube of dimension
loo| + - -+ + |op| — p having the following properties:

(i) the base points of every loop in this family always lie inside the special
simplex oo, and

(ii) the boundary of such family may be described in terms of all “sub-closed
necklaces” of codimension 1.

In [RS18], this idea was used to construct a combinatorial model for L|X]|
given by gluing a set of polyhedra indexed by closed necklaces in X. In the present
paper, we are concerned with an algebraic version of this construction. Namely,
for an arbitrary commutative ring k, we describe a functorial construction that
produces a k-chain complex, directly from the natural algebraic structure of the
normalized k-chains C,(X) suitable interpreted, that computes the k-homology
of L|X|. We highlight four essential observations that are used in this algebraic
construction.

(1) The first observation is that the graded k-module freely generated by closed
necklaces in X may be described algebraically in terms of the cotensor product for a
bicomodule structure of the normalized chains C,(X) over the coalgebra Cy(X) =
k[X(] generated by the set of vertices of X. This bicomodule structure on C,(X)
is determined by projecting a simplex to its first or last vertex. Then for any pair
of simplices 0y and o7 in X, requiring the last vertex of g to be the first vertex of
o1 is equivalent to requiring the tensor oo ® o1 € Cy(X) @k C(X) to lie inside the
sub-k-module

C*(X)DCO(X)C*(X) Q C*(X) Ok C*(X),

where (¢, (x) denotes the cotensor product of Cy(X)-bicomodules.

(2) The second observation is that the boundary of a closed necklace repre-
senting a family (or “chain”) of free loops may be described algebraically in terms
of certain simplicial face maps and the Alexander-Whitney coproduct

A C*(X) — C*(X)DCO(X)C*(X)

The resulting description of the boundary is reminiscent of the differential of the co-
Hochschild complex of a differential graded (dg) coalgebra as studied in [Doi81],
[HPS09], and other articles. However, now we are in the different context of
comonoids in the category of bicomodules over a coalgebra with cotensor product
as monoidal structure.

(3) The third observation is that the relevant structure of C\(X) for our pur-
poses may be packaged as a curved coalgebra satisfying certain properties, which
we call a categorical coalgebra. This notion is inspired by Holstein and Lazarev’s
categorical Koszul duality theory [HL22]. Any categorical coalgebra C gives rise
to a comonoid in the monoidal category of Cy-bicomodules with cotensor product.
Furthermore, any categorical coalgebra gives rise to a dg category through a many
object version of the cobar construction. The main construction of the article is
then a version of the co-Hochschild chain complex for categorical coalgebras that
coincides with the classical co-Hochschild complex when restricted to connected dg
coalgebras. It has a categorical coalgebra as input and a mixed complex, i.e. a
chain complex equipped with an additional degree +1 operator squaring to zero, as
output. The co-Hochschild complex is invariant with respect to a suitable notion
of weak equivalence drawn from Koszul duality theory.
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(4) The fourth observation is that in order to recover a homological model for
the free loop space L|X| for an arbitrary simplicial set X, certain formal local-
ization must be performed at the 1-simplices of X. This step is not necessary if
all the 1-simplices in X already have inverses up to homotopy (e.g., X is a Kan
complex). This localization may be described in purely algebraic terms. In order
to extract the set of elements to be localized, we consider categorical coalgebras
equipped with an additional dg coalgebra enrichment on their associated dg cat-
egory. We call these Bo-categorical coalgebras. We define an extended version of
the co-Hochschild complex that takes a B.,-categorical coalgebra and produces a
chain complex by formally inverting a particular set (extracted by applying the
set-like elements functor to the dg coalgebra enrichment of the associated cobar dg
category) in the co-Hochschild complex of the underlying categorical coalgebra.

Our main result, informally stated, is the following.

THEOREM 1.1. For an arbitrary simplicial set X, the extended co-Hochschild
complez of C.(X), a Buo-categorical coalgebra model for the normalized chains on
X, is naturally quasi-isomorphic to C3™(L|X|), the singular chains on the free
loop space.

As our proof will reveal, this result may be understood as a simplification
of a theorem proved by Goodwillie in [Goo85] and independently by Burghelea
and Fedorowicz in [BEF86] saying the following. For any path-connected pointed
topological space (Y, b), the Hochschild chain complex of the Pontryagin dg algebra
CSM8(,Y) of singular chains on the based (Moore) loop space of Y at b is naturally
quasi-isomorphic to Ciing(LY). Our streamlined model is essentially deduced from
this result using (a generalization of) the fact that for any conilpotent dg coalgebra
C we have two resolutions for the dg algebra A = Cobar(C') as an A-bimodule:
1) the classical two-sided bar resolution Bar(A, A, A), and 2) a smaller resolution
(A, C, A) with underlying module A ® C ® A. The first one is used when defining
the Hochschild complex of A, while the second one is used when defining the co-
Hochschild complex of C. We describe an explicit natural quasi-isomorphism of
A-bimodules

Q(A,C, A) = Bar(4, A, A),
see Proposition (5.2

Finally, we establish a relationship between the extended co-Hochschild com-
plex model for the free loop space and Brown’s twisted tensor product model for a
fibration. This involves proving that a natural dg bialgebra structure constructed
on the extended cobar construction of a reduced simplicial set is in fact a dg Hopf
algebra. We then model the holonomy of the free loop space fibration in terms of
the adjoint action of such dg Hopf algebra. This relationship with Brown’s twisted
tensor product may be used to give an algebraic model of the inclusion Y — LY of
points as constant loops in terms of the co-Hochschild complex. We expect this to
be useful in studying and computing the string topology of non-simply connected
manifolds.

2. Preliminaries

Fix a commutative ring with unit k. We assume familiarity with the notions of
differential graded (dg) k-modules, k-algebras, k-coalgebras and k-categories. For
generalities about dg categories and their homotopy theory we refer to [Tab05],
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[Tabl10], and [To€ll]. All (co)algebras in this article will be (co)associative and
(co)unital. All differentials will have degree —1. We denote by Chy the category
of dg k-modules (i.e., k-chain complexes) and Chf0 its full sub-category of non-
negatively graded objects. Denote by dgAlg,, dgCoalg,, and dgCat, the categories
of dg algebras, dg coalgebras, and small dg categories, respectively. A additional
subscript of “> 0” in the notation for these categories will also mean the full sub-
category of non-negatively graded objects. Whenever we write ® we mean ®y,
unless noted otherwise. All signs in this article are determined by the Koszul sign
convention.

For any graded algebra A, we denote by A° the graded algebra with A as
underlying k-module and multiplication defined by p4 ot, wheret: AQ A — AR A
is given by t(a @ b) = (—=1)/Plb® ¢ and pu: A ® A — A is the multiplication of A.
Similarly, for any graded coalgebra C', we denote by C°P the graded coalgebra with
X as underlying k-module and coproduct defined by to A where A: C — C®C is
the coproduct of C.

For any set S we denote by k[S] the k-coalgebra whose underlying k-module
is freely generated by S and whose coproduct A: k[S] — k[S] ® k[S] is determined
by A(s) = s® s for any s € S. The counit e: k[S] — k is detrmined by £(s) = 1k
for any s € S.

2.1. Cotensor product. Let C be a dg k-coalgebra, which is flat as a k-
module. Let M and N be dg right and left C-comodules, respectively, with coaction
maps pp: M - M ®C and py: N — C® N. The cotensor product of M and N
over C'is defined as

(2.1) M[N = ker(py ® idy —idp @pn: M@ N — M ® C ® N).
C

The category of dg C-bicomodules, denoted by C-biComod, becomes a monoidal
category when equipped with the cotensor product (e and unit object C. Suppose
A is a monoid in this category, namely, a dg C-bicomodule equipped with an
associative product AcA — A and unit u : C — A. Let E and F be dg right and
left C-comodules, respectively. Suppose that E and F' are further equipped with
right and left dg A-module structures respectively, namely, we have action maps
pe : EOcA — FE and pp : AU F — F satisfying the usual compatibilities. Define
the tensor product of E and F over A to be the dg k-module

2.2 E(OX)F = cok Oidp —idg Opp: EOAOF FEOF).
(2.2) @ co er(pEcldF 1dECpF Al — c)

2.2. DG categories as monoids. Given any dg category A € dgCat, with
object set Oa define a monoid M(A) in the monoidal category of dg k[Oa]-bicomod-
ules equipped with the cotensor product Uyjo,) as follows. The underlying dg
k-module of M(A) is given by the direct sum

D Al.y).
z,y€O0a
The k[Oa]-bicomodule structure maps
M(A) — k[Oa] @ M(A)

and
M(A) = M(A) @ k[OA]
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are induced by the source and target maps in A, respectively. The monoid structure
M(A) [ M(A) = M(A)
k[Oa]

is induced by the composition of morphisms in A and the unit map k[Oa] — M(A)
is determined by x +— id, € A(x,x)q for all z € Oa.

2.3. Two sided bar construction. Let A be a dg category and, for simplic-
ity, denote by Ag the coalgebra k[Oa]. Let M and N be right and left dg modules
over M(A), respectively, in the monoidal category (Ag-biComod,a,). This means
that M and N are dg Ag-bicomodules equipped dg maps

MOa, M(A) — M and M(A)Ta N — N

defining right and left dg M(A)-actions, respectively. The two-sided bar construction
of M and N over A is the dg Ag-bicomodule

Bara, (M, A, N)
defined as follows. The underlying graded k-module is defined to be

6 (Mte™ 30 w),

where M(A) = M(A)/u(Ag), where u : Ag — M(A) is the unit map.
We will use the classical “bar” notation

mlay| -+ |apln

to denote a generator
mOs™ta;0- - DerlapDn,

where m € M; n € N, and a; € M(A) for i =1, ..., p. The differential

YRS G:% (MADO(S+1M(A))DiADDN) - E:B (ME(S*lﬁ(A))DiEN)

is defined as the sum of linear maps
8|\/|7A)N = dMDidM(A) Oidy 4 idm DDM(A)DidN +idm O idM(A) Ody + 6,

where du, dn, and Dy a) are the differentials of M, N, and M(A), respectively, and
0 is given by the following formula

O(mla1| - |apn)

p—1
=m- al[a2’ e ’ap]n—i- Z:l:m[a1| e |ai -ai+1| e ‘ap]n:tm[all e ’ap,l]ap -m.
i=1
The associativity of the monoid structure of M(A), the compatibilities of the dif-
ferentials with the products and actions, and d3; = d% = D?vt( ) = 0 all together
imply that 8,34’ an = 0. The Ag-bicomodule structure on

& (gl ) )

is given by the left and right Ag-comodule structures of M and N, respectively.
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2.4. The Hochschild complex. For any dg category A, the chain complex
Bara, (M(A), A, M(A))

has a natural dg M(A)-bimodule structure in the category of Ap-bicomodules with
cotensor product [la,. This construction is clearly functorial with respect to mor-
phisms of dg categories. We recall the definition of the Hochschild chain complex.

DEFINITION 2.1. Define a functor
CH,: dgCatZ® — ChZ®

called the Hochschild complex, as follows. For any A € dgCatEo, the underlying dg
k-module of CH,(A) is defined by

Bara, (M(A), A M(A)) Q) M(A),
M(A)@M(A)oP
see Section [2.2] for notation.

The generators of CH,(A) may be written as [a1]---|aplapt+1, where a,11 €
M(A), a; € M(A) with s(a;) = t(a;1) for i = 1---p, and t(ap,1) = s(a,). Using
this notation, the differential

On: CHL(A) = CH,_1(A)

is given by the same formula as the differential for the Hochschild complex of a
dg algebra. One may equip this construction with a mixed complex structure via
Connes’ operator
B : CH.(A) = CH,.1(A).
In this setting, B is given by
p+1

B([a1] - |aplapt1) Ziaz| laptilar] - - -fai—1]idsa;) s

Just as in the classical case of the Hochschlld complex of a dg algebra, one may check
that (P, €H,,(A), Oa, B) is a non-negatively graded mixed complex functorially
associated to any A € dgCatEO.

3. Categorical coalgebras and the cobar construction

In this section we define the notion of categorical coalgebras. This is a version
of a curved coalgebra over a set of “objects” or “points” satisfying certain proper-
ties. Any categorical coalgebra gives rise to a dg category through a many object
version of the cobar construction. These notions have been adapted from [HL22] in
order to be applied to the algebraic topology setting and to work over an arbitrary
commutative ring k. The corresponding notion in [HL22] is that of a “pointed
curved coalgebra”.

3.1. Categorical coalgebras.

DEFINITION 3.1. A categorical k-coalgebra consists of the data C = (C, A, d, h)
such that
(1) C =@;2,C; is a nonnegatively graded k-module.
(2) A:C — C®C is a degree 0 coassociative counital coproduct with counit
e:C—k
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(3) The set
$(C)={xeC:Alx)=2x®x,e(z) =1k}
of “set-like” elements in C' is nonempty and
Co 2 k[8(C)].

(4) d: C — C is a linear map of degree —1 which is a graded coderivation of
A.

(5) The projection map ¢ : C — Cp satisfies e od = 0. In other words,
d: Cy — Cy is the zero map.

(6) h:C — kis a linear map of degree —2 satisfying hod = 0 and

(3.1) dod= (h®id)o (A — A%)

where A% =to A for t(zx ® y) = (—1)I*IWly @ . The right-hand side of
the above equation is being considered as a map C — k® C = C. The
map h is called the curvature of C. Equation [3.Ilmay be rewritten as

d*(x) = h(a)a" + 2'h(z").
(@)

Any categorical coalgebra C' has a natural Cy-bicomodule structure with coac-
tion maps

p:C2 00 2 0ye 0
and

o C 2 0@ C L8 0w 0.
Furthermore, the coassociativity of A : C — C ® C implies that A : C - C® C
factors as C' = CO¢,C = C ® C; so C may be regarded as a comonoid in the

category of graded Cy-bicomodules with monoidal structure given by the cotensor
product O¢,.

REMARK 3.2. Note that it is possible for a categorical coalgebra to have nonzero
cuvature and for d : C — C to square zero.

DEFINITION 3.3. A morphism of categorical coalgebras C = (C,A,d,h) and
C'= (C',A',d',h) consists of a pair (fo, f1) where
(1) fo:(C,A)— (C',A") is a morphism of graded k-coalgebras,
(2) f1:C— C{ is a C}-bicomodule map of degree —1 such that the compo-
sition f; = € o f1, where €’ is the counit of C’, satisfies

(32) food=d"o fo+ (f1® fo) o (A —AP)
and
(3.3) Wofo=h+fiod+(fi®fi)oA.
The composition of two morphisms of categorical coalgebras is defined by
(3.4) (90,91) © (fo, f1) = (g0 © fo, 91 © fo + go © f1).

Denote by cCoalg, the category of categorical coalgebras.
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3.2. The cobar functor. Working over a field and with unbounded com-
plexes, Holstein, and Lazarev define in [HL22] a functor from pointed curved coal-
gebras to dg categories extending the classical cobar functor from conilpotent dg
coalgebras to augmented dg algebras. The same construction can be defined for
categorical coalgebras over an arbitrary ring. We now describe this construction in
our setting.

DEFINITION 3.4. Define a functor
Q: cCoalgy, — dgCatEO,

called the cobar functor, as follows. Given any C = (C,d,A,h) € cCoalg,, the
objects of ©(C) are the elements of the set S(C) of set-like elements in C'.

For any = € §(C) denote by i, : k = Cy = k[$(C)] the map determined by
iz(1x) = x. The map i, gives rise to a Cy-bicomodule structure on k through the
maps

k>~ kek =2% 0 gk
and _ .
kK~ kok 9% 100,
We denote this Cy-bicomodule by k, and its generator by id,.

Write C = C'®Cy. Denote by s~ 1C the graded k-module obtained by applying

the shifting C' by —1. We have the following three degree —1 maps:
(1) d: s7'C — s71C
(2) A: s71C - s71C® s 1C, and
— — 1 H
(3) h:s710 ST 25 Ce 0y 229 ke ¢y = O,

For any two z,y € 8(C) define a nonnegatively graded k-module by
Q0)(z,y) = P k.O(s7C) Pk,
i=o  Co Co

where (s~'C)™ denotes the i-fold cotensor product of Cy-bicomodules and
(8_16)D0 = Co.
We will use the notation

{ea] -+ lep}
to denote a generator
id, Os te;0---Os e, 0id, € (0) (2, y).

We say the monomial {ci|---|c,} has length p. In particular, note

QC)(z,7) = k, ® k,Os1C 0k,

The differential

Dyy : QC)(z,y)k — O, y)k—1

is defined by extending
h+d+A: k057 1C0k, — k,0C, Tk, @ k,Os~'COk, @ k,0(s~1C)M?0k,

as a “derivation” to monomials of arbitrary length. It follows directly from (2l), (),
and () in Definition B.1] that D, , o D, , = 0. The composition in £(C) is given
by concatenation of monomials. For every z € §(C), 1x € k, = k,0C,0Ok, C
Q(C)(z,x)o is the identity morphism.
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Given a morphism (fo, f1) : C — C’ between categorical coalgebras, define a
morphism

Q(fo, f1): QC) = Q(C)

of dg categories as follows. Since fy : C' — C is a map of coalgebras, fq restricts
to a map of sets 8(C) — 8(C"), which defines the functor €(fy, f1) on objects. For
any two z,y € $(C) define

Q(fo, f1)ay: UC)(@,y) = QC)(fo(@), foly))
by extending the map

(3.5) kas’laﬂky — ka(I)Ds’lﬁDkfo(y) &) kfg(z)DC(/JDkfo(y)

(36) {C} — {fo(c)} + idfo(m) |:|f1 (C)Didfo(y)

“multiplicatively” to monomials {c1|---|c,} of arbitrary length. Note that
K 1, () DCo 0K £, (4)

is a nontrivial k-module if and only if fy(x) = fo(y), in which case it is isomorphic
to k. Hence, idy, () Of1(c)0idy,(,) may be identified with a scalar. It follows
directly from (3.2) and @B.3) that Q(fo, f1)z,y is a chain map for each z,y € O¢
and from (3.4)) that compositions are compatible.

REMARK 3.5. When k is a field, a categorical k-coalgebra is a pointed curved
k-coalgebra C (as defined in [HL22]) that is non-negatively graded and whose
coradical is exactly the degree zero summand Cy C C (which is assumed to be
non-trivial). In this case, the splitting map (which is part of the structure in the
definition of a pointed curved coalgebra) is precisely the projection map C — Cj.
In particular, by the definition of a pointed curved coalgebra, Cj is generated by the
set-like (sometimes called “group-like”) elements of C. Our notion of categorical
coalgebra allows for the definition of a cobar functor landing in differential non-
negatively graded categories even when working over an arbitrary ring.

DEFINITION 3.6. A B..-categorical coalgebra is a categorical coalgebra C equip-
ped with degree 0 coassociative coproducts

Ve : QC)(z,y) = QC)(z,y) @ Q(C)(z,y)

for all z,y € 8(C') making ©(C) into a category enriched over (dgCoaIgEO7 ®), the
monoidal category of differential nonnegatively graded coassociative counital k-
coalgebras. B.o-categorical coalgebras form a category when equipped with maps
of categorical coalgebras that preserve the additional structure. We denote this
category by Boo-cCoalgy. This notion has also been considered in [MRZ23].

3.3. The extended cobar functor. We define a new version of the cobar
construction by formally inverting set-like elements in the dg coalgebra of mor-
phisms of the cobar construction of a B.,-categorical coalgebra, generalizing a con-
struction of [HT10]. This will give rise to a functorial construction that recovers
the dg category of paths of the geometric realization of a simplicial set X when
applied to a B -categorical coalgebra of chains on X, as it will be discussed in
Section [l

Let

Z: Boo-cCoalgy, — Cat
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be the functor defined as follows. For any C' € Bo,-cCoalg,, the set of objects of
Z(C) is 8(C). For any two objects x and y

2(C)(x,y) = {f € UO)N=,y)[Vay(f) = f® [ and ez (f) = 1}

In other words, Z(C)(z,y) = 8(Q(C)(z,y), Vz,y). Since the composition in Q(C)
is compatible with the dg coalgebra structures on the morphisms and identity mor-
phisms are set-like, it follows that Z(C) becomes a category with composition in-
duced by that of ©(C). The functoriality of the construction follows since €2 is a
functor and taking set-like elements in a coalgebra is functorial.

DEFINITION 3.7. Define a functor
Q: Boo-cCoalgy, — dgCatEO7
called the extended cobar functor, by letting
Q(0) = 2(O)2(0)7],

namely, by formally (strictly) inverting the set of 0-cycles determined by the mor-
phisms of Z(C') inside (C).

REMARK 3.8. In practice, we will consider the above construction when the
natural map

k[2(C)] = Q(C)
is a cofibration of cofibrant and locally k-flat dg categories, where k[Z(C)] denotes
the dg category obtained by linearizing the morphisms of Z(C) and defining each

differential to be trivial.
In this case, the strict localization

Q(C) = Q(O)[z(C)™Y

is a homotopical localization. In other words, under these hypotheses, an Q-quasi-
equivalence f : C' — C’ between categorical coalgebras induces a quasi-equivalence
ﬁ(f) fl(C) — Q(C’) of dg categories. This follows since we may interpret the
extended cobar functor as a pushout of dg categories

Q(C) =) || KR(O)RE) ).
k[$(C)]

This pushout is a homotopy pushout in Tabuada’s model structure on dgCat,

when k[Z(C)] — ©(C) is a cofibration of dg categories, since both k[Z(C)] and

k[Z(O)][2(C)71] are locally k-flat dg categories and consequently left proper ob-
jects, see [Hol14].

4. Chains on a simplicial set and the dg category of paths
The first goal of this section is to describe a version of the normalized simplicial
chains as a functor
C: sSet — Boo-cCoalgy,.

Then we show that, for any simplicial set X, the extended cobar construction
applied to the By,-categorical coalgebra of chains C,(X) yields a model for the dg
category of paths on the topological space |X]|.
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_4.1. Chains as a categorical coalgebra. For any simplicial set X', denote by
(C(X),0) the dg k-module of normalized simplicial chains. Recall the Alexander—
Whitney coproduct, given on any simplex o € X,, by

A(e)=>» o(0,...,1) ®0c(i,...,n),
i=0
induces a coassociative coproduct
A:C(X) = Cu(X)®Cu(X)

of degree 0. In the above formula, o(0,...,i) and o(i,...,n) denote the first i-th
and last (n —4)-th faces of o, respectively. This construction gives rise to a functor
C2 :sSet — dgCoaIgE0
given by
CA(X) = (C.(X),0,A)
For any two simplicial sets X and Y, the natural Eilenberg-Zilber shuffle map
EZxy :Cu(X)®@Cu(Y) - C(X xXY)

is a map of dg coalgebras and consequently makes C'2 into a lax monoidal functor,
as explained in [EMG66] 17.6].

The projection map € : C.(X) — Co(X) does not satisfy € o d = 0. However,
as suggested in [HL22], the differential 9 may be modified to obtain a categorical
coalgebra as follows.

DEFINITION 4.1. For any X € sSet define a categorical coalgebra C2(X) €
cCoalgy as follows. The underlying graded k-module of CA(X) is exactly C,(X),
which is given by C,(X) = k[X,]/D(X,), where D(X,,) C k[X,,] is the sub k-
module generated by degenerate n-simplices.

Let e : k[X;] — k be the linear map sending degenerate 1-simplices to 0 € k
and non-degenerate 1-simplices to 1 € k. The map e induces a linear map ¢ :
C1(X) — k. Define a new differential

9:C(X) = C_1(X)
by
0=0—-(ildee—e®id) o A.

The map 0 is a coderivation of A and the projection map € : Cy(X) — Co(X)
now satisfies € o @ = 0. Finally, define h : Co(X) — k by

h=(®e)oA+€00.

A routine check yields that

defines an object in cCoalgy. Furthermore, this construction gives rise to a functor

CA : sSet — cCoalgy,.

The following result establishes a connection between the cobar functor from
categorical coalgebras to dg categories and the dg nerve functor originally defined
in [Lurl?].
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THEOREM 4.2. The composition of functors
QoC2: sSet — dgCaty
is naturally isomorphic to the (1-categorical) left adjoint of the dg nerve functor
Ngg: dgCaty — sSet.

PRrROOF. This result was proved in [HL22, Section 4]. The one object case was
proved in [RZ18]. O

The dg nerve and its left adjoint also fit into a Quillen adjunction as we now
record. Denote the left adjoint of Ng, by

A: sSet — dgCat.

THEOREM 4.3. The adjunction
A sSet = dgCaty: Ngq4

is a Quillen adjunction of model categories when sSet is equipped with Joyal’s model
structure and dgCaty, with Tabuada’s model structure. In particular, A = Qo C?
sends categorical equivalences of simplicial sets to quasi-equivalences of dg cate-
gories.

PrOOF. This is [Lurl7 Proposition 1.3.1.20]. The second statement follows
since all simiplicial sets are cofibrant in Joyal’s model structure. ]

REMARK 4.4. In general, the functor A does not send weak homotopy equiva-
lences of simplicial sets to quasi-equivalences of dg categories. However, if f: X —
X' is a weak homotopy equivalence and X and X' are “group-like”, namely, their
homotopy categories are groupoids, then A(f) is a quasi-equivalence of dg cate-
gories.

4.2. Chains as a B.-categorical coalgebra. We now describe a natural
lift of C2 to the category Bo,-cCoalgy. For simplicity we will denote this lift by

C,: sSet — Boo-cCoalgy,.

To define this lift we use the factorization of A, constructed in [RZ18] Sec-
tion 6], through the category of small categories enriched over cubical sets (with
connections). More precisely, in [RZ18] we constructed a functor

¢n, : sSet — Catp,

from simplicial sets to the category of small categories enriched over the monoidal
category of cubical sets (with connections) with Day convolution product. Then
we showed that A is naturally isomorphic to the composition

O.

I
sSet Catp, e dgCaty,

where Qp_ is the functor obtained by applying the monoidal functor Q. of normal-
ized cubical chains at the level of morphisms.

The chain complex of normalized cubical chains Q.(K) on a cubical set K,
with or without the extra data of connections, has a natural coproduct structure

Vi Qu(K) = Qu(K) @ Qu(K)
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making Q.(K) into a dg coalgebra. It is completely determined by its action on
the standard 0-cube and 1-cube given by the formulas

V[0] = [0]  [0]
and
V:[0,1] = [0]®[0,1] + [0,1] @ [1],
respectively.

Hence, the natural isomorphism A = Qg o €, together with this cubical
coproduct provides a natural lift of A: sSet — dgCaty, to the category of small
categories enriched over the monoidal category of dg k-coalgebras. Using the iden-
tification A &£ Qo @A, we may interpret this additional structure as a functor

C: sSet — Bo,-cCoalgy,
lifting
CN’*A: sSet — cCoalg,.
In particular, if X is a simplicial set with one vertex (i.e., a reduced simplicial
set) then this construction provides the dg algebra Q(C2(X)) with a natural dg
bialgebra structure.

In the one vertex case, a version of this construction has been studied in detail

in [Bau80], [Bau81] and, more recently, in [MMR21]. In the many vertex case,

this version of the chains functor has been also discussed in [MRZ23|. We refer
the reader to these references for more details.

4.3. The extended cobar construction as a model for the path cate-
gory. For any topological space Y denote by PY the topologically enriched cate-
gory whose objects are the points of Y and morphisms PY (z,y) are given by the
space (with compact-open topology) of pairs (r,) where 7 is a non-negative real
number (which we call the “parameter”) and 7: [0,7] = Y a continuous path with
v(0) = z and «(r) = y. Composition is given by concatenation of paths and adding
the corresponding parameters. Identities are constant paths with parameter r» = 0.
We call PY the path category of Y.

Denote by C3"8(PY) the dg k-category obtained by applying the normalized
singular chains functor (equipped with the Elienberg—Zilber lax structure) on the
morphisms of the topologically enriched category PY . This gives rise to a functorial
construction

Top — dgCaty
Y s CS8(PY)

that sends weak homotopy equivalences of spaces to quasi-equivalence of dg cate-
gories.

- THEOREM 4.5. For any simplicial set X, the dg categories Q(C.(X)) and
CI"8(P|X]) are naturally quasi-equivalent.

PRrROOF. The natural map
K[Z(C.(X))] = Q(C.(X))

is a cofibration between cofibrant dg categories, since, by Theorem [4.2] it may be
identified with
A(i): Alski X) = A(X),
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where A: sSet — dgCat, is the left adjoint of the dg nerve functor and i: sk; X —
X the inclusion of the 1-skeleton of X into X. By Remark B.8] the (ordinary)
pushout Q(C,(X)) = A(X)[X; '] is actually a homotopy pushout of the maps
A(i): A(sk1 X) — A(X) and A(sk; X) — A(sky X)[X; '], where A(sk; X)[X[ '] is
the dg category obtained by linearizing the free groupoid generated by the quiver
X7 =3 X determined by the first two simplicial face maps. Let

X : sSet — sSet

be a Kan replacement functor so that there is a natural quasi-equivalence of dg
categories

A(ski X)[X; Y] ~ A(K(sky X)).

By Theorem [4.3] A: sSet — dgCat, is a left Quillen functor between Joyal’s
model structure on simplicial sets and Tabuada’s model structure on dg categories,
thus A preserves homotopy pushouts. Hence, we have natural quasi-equivalence of
dg categories

Q(C.(X)) = AX) (XY ~ AKX ] K(ski X))
sk X
Note the map
X = X [] K(skiX)
sk1 X

is a weak homotopy equivalence of simplicial sets and the homotopy category of
X [Tg, x K(sk1 X) is a groupoid. It follows that A(X [ x K(ski1 X)) is naturally

quasi-equivalent to the dg category CE"8(P|X [T, x K(ski X)[) and consequently
to C38(P|X]), as desired. O

5. The co-Hochschild complex of a categorical coalgebra

We define a version of the co-Hochschild complex for categorical coalgebras.
Then we establish a relationship with the Hochschild complex of a dg category. The
co-Hochschild complex in the case of connected dg coalgebras has been sutided in
[HPS09] and [HS21].

5.1. The co-Hochschild complex. We construct a functor
coCH, : cCoalgy, — ChZ°,

called the co-Hochschild complex, as follows. For any categorical coalgebra C, the
underlying graded k-module of coCH.(C) is defined by

C O M(Q(C)) := (COMR(C))) (€ OMR(C)))
CorCZ? Co cgr

Explicitly, this notation is saying that coCH(C) is generated as a graded k-module
by monomials

r=xo0s ey 0---Os oy, = zo{wy | |z, },
where zg € C,2; € Cfori=1,...,p, 1,0z € CCE(I)C, and |zo|+|z1 |+ - F|zp|—p =
k. The differential
0: coCHR(C) = coCH_1(C)
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is defined by

p
O(x) = dexo{x| -+ |wp} + Y Hxo{m| -+ |dowi| -+ |z}
=1

txo{m |- [R(@)| - [op} + Y Fap{af |z - |2}
(z0)

Y twof{a| - |xifaf |- fap} + ) Eag{a| - Japlag).

(i (o)

The signs are determmed, as usual, from the Koszul sign convention. One may also
equip the chain complex coCH,(C) with the further structure of a mixed complex
by defining a degree +1 operator

P: coCH.(C) = coCH,11(C)

o3
R

through the formula

p
P(zo{m|- - |zp}) = D He(wo)mi{wipa| -+ |wplan| - wi 1},
=1

where ¢ : C' — k denotes the counit of C'. A straightforward computation yields
that
(coCH,(C),0,P)

is a non-negatively graded mixed k-complex. This construction is clearly functorial
with respect to maps of categorical coalgebras.

5.2. The extended co-Hochschild complex. Define the extended Hochs-
child complex as the functor

c0€H, : Boo-cCoalg, — ChZ°

given by R
¢ O M)

Co®Cy?

5.3. Relationship with the Hochschild chain complex. Let C be a cat-
egorical coalgebra and M and N right and left dg modules over M(€2(C)), respec-
tively, as in Section 2.3l Define a graded k-module

9(M,C,N) := MOCUON
C() C()
and consider the linear map
da: Q(M,C,N) = Q(M,C,N)
of degree —1 defined by
Og = dyide Oidy + idy OdeOidy + idy Oide Ody + 9/,
where
0’ (mOcOn) = £(m - {'})O"0n £ mOJ/O{ "} - n).

REMARK 5.1. Note that dg may not square to zero, since dc may not square to
zero in a categorical coalgebra. When C'is a connected dg coalgebra then Q(M, C, N)
is indeed a chain complex.
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We will now define a map H of degree +1 and two maps m and « of degree 0
fitting in the diagram

1 Bare, (M, Q(C),N) 4’: (M, C,N).

These maps will satisfy three equations given in Proposition [5.2]
(1) Define
7: Barg, (M, Q(C),N) — Q(M, C,N)
on any generator m[a1| e |ap]n by letting
m(mlay| -+ |ayln) =0if p>1,
and when p = 1, writing a1 = {c1]-- - |¢q}, define
q
a(ml{er] - leg})n =D m-{er|- e }O{e O ciga | -+ [eg} - m
i=1
if ¢ > 0, and
m(m[z]n) = mOxz0n
if g=0and z € §(C) C Cy.
(2) Define
a: Q(M, C,N) — Barg, (M, Q(C),N)
by
a(mOcn) = ml{c}n + Y m{cH{cHn + > m{cH{"H{" Hn + -

Note « is well defined since the induced coproduct A: C — C @ C is of

degree 0 and C' is concentrated on positive degrees.
(3) Define

H : Barg, (M, ©2(C),N) — Barg, (M, Q(C),N)

to be a degree +1 linear map given on a generator m[a1’ e ’ap]n as fol-
lows. Write a; = {c1] - |cm} and let

H(m[{c1]- - |em}az| - |apln) = 0if m < 2,

H(m[{cile2}az| -~ |ap]n) = ml{er}[{c2}|az| - -[as]n
+ Y et {el {eaHaz| - - |ayln
+ Y WA e e e} az| - apln + -+ it m =2,

and, if m > 2, let
H(m[{ci| - |em}|az| - - |ap]n)

=Y m-{ca|---leioM{ei}{eiral - em}|az] - |apln
=1
+Y mA{ar] e HEGH el -+ lem}az| - - apln
=1

# 3 mefeal e AL e el -+ lemaa] -+ fagln + -
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A tedious but straightforward computation verifies the following equations hold.

PROPOSITION 5.2. The maps 7, a, and H defined above satisfy the equations

(5.1) moducn=0goT,
(5.2) ao0dg =0umeonoa, and
(53) H [¢] 6M7C,N + 8M,C7N ] H = xoTm — idBarco(M,Q(C),N)-

We avoid using the terminology “chain contraction” in the above proposition
precisely because dg might not square to zero. In any case, as our main application
we consider the case M = N = M(Q(C)). In this particular case,

da: AM(Q(C)), C, M(2(C))) = AM(Q(C)), C, M(L(C)))
does square to zero and so (Q(M(2(C)), C, M(2(C))), Oa) defines a dg k-module.
In fact, it follows from the definition of a categorical coalgebra that the two terms
+mOd% (c)On
and
+(m - h{dH)O"0n + mOdO(R{c"} - n)
in 93 (mOcOn) cancel each other.

THEOREM 5.3. For any categorical coalgebra C, there is a natural chain con-
traction of dg k-modules

7 CHL(RAC)) T olIL(C).

e}

If C' is a Boo-categorical coalgebra, then there is a natural chain contraction of dg
k-modules

7 Bare, M@(O). 2O MEC)  ® 8O 7 w0l ().
M(£2(C) @M(2(C))°P

PROOF. Recall
€L (2(C)) = Barc, (M((C)), 2(C), M(R(C))) X M(2(C)).
M(2(C))@M(Q(C))P
Now we observe there is a natural isomorphism of dg k-modules
coCH,(C) = QM(Q(C)), C, M(2(C))) & M((C)).
M(2(C))@M(Q(C))°r

Using the notation of Proposition [5.2] define

T= 0 iy
M(R(C)@M(R(C))7
a=uw ® idM(Q(C))7 and
M(2(C)@M(R(C)°P
H=H (0 id(e(oy) -
M(Q(C)DM(R(0))°

It follows from Proposition [5.2that 7, @ and H define the data of a natural chain
contraction. The proof of the second statement is similar. (Il
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5.4. Invariance of the co-Hochschild complex. Recall a morphism of dg
categories f: A — A’ is a quasi-equivalence if
(1) for any two objects x and y in A, the induced map f,,: A(z,y) —
A'(f(z), f(y)) is a quasi-isomorphism of dg k-modules, and
(2) if the induced map on homotopy categories Ho(f): Ho(A) — Ho(A') is
essentially surjective.

DEFINITION 5.4. A map f: C — C’ between categorical coalgebras is called an
Q-quasi-equivalence if Q(f): Q(C) — Q(C’) is a quasi-equivalence of dg categories.

The co-Hochschild complex is invariant under £2-quasi-equivalences assuming
suitable hypotheses, as shown next.

PROPOSITION 5.5. If f: C — (' is an Q-quasi-equivalence between categorical
coalgebras C' and C' that are flat as k-modules, then

coCH,.(f): coCH,(C) — coCH,(C")
s a quasi-isomorphism of dg k-modules.
PRrROOF. If C and C’ are flat as k-modules then the dg categories £2(C) and
Q(C") are locally k-flat. Hence, the quasi-equivalence
Q(f): Q(C) — Q((C")
induces a quasi-isomorphism between Hochschild complexes
CHL(Q(Sf)): CHL(Q(O)) — CHL(2(C).
By Corollary (.3l we have natural quasi-isomorphisms
CHL((C)) ~ coCH.(C)
and
CH,L(Q(C")) ~ coCH,(C").
It follows that the induced map
coCH,(f): coCH,(C) — coCH,(C")

is a quasi-isomorphism. O

6. The co-Hochschild complex as a model for the free loop space

We establish a relationship between the extended co-Hochschild complex and
the free loop space. For any topological space Y, we denote by LY the free loop
space of Y modeled as the space (with compact-open topology) of pairs (r,~y) where
r is a non-negative real number and v: [0,7] — Y a continous map with v(0) = ~(r).
Denote by C5™8(LY) the dg k-module of normalized singular chains on LY. Let
k be a commutative ring and for any simplicial set X denote by C,.(X) its Boo-
categorical k-coalgebra of chains. Note that the S'-action on L|X| given by rotating
loops gives rise to an operator R : C5"8(L|X|) — Ciij_l%(L\XD which gives the chain
complex C3"8(L|X|) the extra structure of a mixed complex.

- THEOREM 6.1. For any simplicial set X, the dg k-modules @*(C* (X)) and
CI"8(L|X|) are naturally quasi-isomorphic.
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Proor. For simplicity write C' = C,(X). By Theorem [£.3] there is a natural
chain homotopy equivalence

c0CH,(C) ~ Barc, (M((C)), Q(C), M(£(C))) % Q(0).
M(Q(C)OM((C))»
Note that €©(C) is a cofibrant dg category being naturally isomorphic to A(X)
where A: sSet — dgCat, denotes the left adjoint of the dg nerve functor. Hence,
the natural map
Q(0) = A(X) = AX)[X] ] = Q(0)

induces a quasi-isomorphism after applying bar constructions. This is a classical
fact, for instance see [FM94] Section Q5]. More precisely, the natural map

Barc, (M(€(C)), (C), M(R(C))) — Barc, (M(€(C)), ©(C), M(Q(C)))
is a quasi-isomorphism. Consequently, we have a natural quasi-isomorphism

coCF.(C) = Barg, (M(R(C)), ©(C), M(Q(C)) X Q(0)
M(Q(C)) @M (Q(C))°P
= CH,(Q(C)).

The invariance of the Hochschild complex with respect to quasi-equivalences
between locally k-flat dg categories, together with Theorem [.5] implies that
CH,.((C)) is naturally quasi-isomorphic to €H, (C58(P|X|)). By a result proved
by Goodwillie [Goo85] and also (independently) by Burghelea and Fiedorowicz
[BES8G|, there is a natural quasi-isomorphism

CH.(CFM8(PIX|)) = CF™8(L|X]),
as desired. O

REMARK 6.2. If the simplicial set X has the property of being “group-like”,
namely, if the homotopy category of X is a groupoid, then the (non-extended)
co-Hochschild complex coCH,(C.(X)) of the underlying categorical coalgebra of
C.(X) is already naturally quasi-isomorphic to C5"(L|X|). In other words, there
is no need to localize if every 1-simplex in X is invertible up to homotopy. In this
case, coCH,(C,(X)) and C{"8(L|X|) are quasi-isomorphic as mixed complexes.
This follows since the quasi-isomorphism 7 in Theorem [5.3]is a morphism of mixed
complexes (i.e. it intertwines the operators B and P) together with the fact that
the quasi-isomorphism

CHL(CIE(PIX ) = CIM8(LIX])

constructed in [Goo85] and [BE86] is also a morphism of mixed complexes (i.e.
intertwines the operators B and R). A theory of cyclic homology for categorical
coalgebras will be developed by Daniel Tolosa in his PhD thesis.

7. dg Hopf algebras and the adjoint action

This section has two goals. The first goal is to clarify the relationship between
the co-Hochschild complex model for the free loop space and Brown’s twisted tensor
product model for the total space of a fibration. The latter uses the conjugation
action of (a topological group model of) the based loop space on itself when defining
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the twisted differential, while the first does not use any antipode map (or inverses)
when defining the co-Hochschild complex differential.
The second goal is to describe a natural chain map

C' — coCH,(C)

modeling the continuous map Y — LY sending each point of a space Y to its
corresponding constant loop in the free loop space. We expect this to be useful
in string topology of nonsimply connected manifolds, where constant loops play a
delicate role.

For simplicity, in this section we work with connected dg k-coalgebras instead
of categorical k-coalgebras, namely, we work in the one object case. For homotopy
theoretic applications this is not a strong hypothesis since pointed connected ho-
motopy types may be modeled by reduced simplicial sets (i.e., simplicial sets with
a single vertex). For any reduced simplicial set X, we denote by C,(X) the normal-
ized simplicial chains on X, which is a connected dg coalgebra when equipped with
the Alexander-Whitney coproduct. It follows from Section [4.2] that the dg algebra
(or dg category with one object) ﬁ(C’*(X)) has a natural dg bialgebra structure
naturally quasi-isomorphic to the dg bialgebra structure on the singular chain com-
plex C;"™8 (2| X|) of based (Moore) loops in |X| at b. One of the main technical
steps in this section is showing that the dg bialgebra ﬁ(C*(X )) has the property
of being a dg Hopf algebra. This means there is a map of dg k-modules

s: Q(CL(X)) = Q(C.(X))
satisfying
(7.1) po(s®id)oV=noe=po(id®s)oV,
where V: Q(C,(X)) = Q(C.(X)) ® Q(C,(X)) is the coproduct, ji: Q(C4(X)) ®
Q(CL (X)) = Q(C.(X)) the product, e: Q(C (X)) — k the counit, and n: k —

~

Q(C (X)) the unit.

7.1. Hochschild chain complex and adjoint action. Givenamap f: A —
B of dg k-algebras, denote by f*B the left dg A ® A°’-module whose underlying
dg k-module is B and the A ® A°P-right action is induced through f. Denote by
CH.(A, f*B) :=Bar(A, A, A) ®agacr [*B

the (normalized) Hochschild chain complex of A with coefficients in f*(B). This
has

@(S—HZ)@]: ® f*B
p=0
as underlying graded k-module and we write generators [a1| e |ap]b as usual.
Now suppose f : A — B is a map of dg k-bialgebras. Furthermore, suppose the

dg bialgebra B has the property of being a dg Hopf algebra. Denote by f,(B) the
left A-module whose underlying dg k-module is B and left A-action given by

a-b= Z(_1)\al\(\a”\+|b|)f(a//)bs(f(a/))7
(a)

for any a € A, b € B, where s : B — B denotes the antipode of B. We call this the
adjoint action of A on B via f.
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The counit €4 : A — k of the dg Hopf algebra A makes k into a right dg
A-bimodule. Define a dg k-module

C.(A, fx,B) :=Bar(k, A, fI,B).

PrOPOSITION 7.1. Let f : A — B be a dg k-bialgebra map, where B has the
property of being a dg Hopf algebra. There is a natural isomorphism of dg k-modules

CH.(A, [*B) = C.(A, fouB).

PROOF. Define

(7.2) ¢: CH.(A, f*B) = C.(A, f24B)
(7.3) pllar] - |aplb) =Y £[a| -+ [ap]bf(a} -~ ap).

The antipode compatibility (equation [.1)) in the definition of a dg Hopf algebra
implies that ¢ is a chain map with (strict) inverse given by the chain map

(7.4) o ([ar] -+ Japlb) = Y lay]---[aylbs(f(a -~ ap)),
where s : B — B denotes the antipode of B. O

7.2. The cobar construction as a dg Hopf algebra. We wish to apply
the above discussion to a dg Hopf algebra model for the based loop space. Recall
that, as discussed in Section[4.2] for any reduced simplicial set X, there is a natural
coproduct R R ~

V: Q(C.(X) = R(CL(X)) & HC(X))
making ((AZ(C'*(X))7 D,®,V) into a dg bialgebra, which turns out to be a dg Hopf
algebra, as shown next.

THEOREM 7.2. For any reduced simplicial set X, the dg bialgebra (ﬁ(C’*(X)),
D, ®,V) has the property of being a dg Hopf algebra.

PRrROOF. We must show the existence of an antipode map
s: Q(CL(X)) = Q(C.(X))

that is also a map of dg k-modules. First note that the k-bialgebra €(C, (X))o on
degree 0 is a Hopf algebra being isomorphic to the group algebra k[G(X1)], where
G(X1) denotes the free group generated by the set of 1-simplices. The antipode

s0: Q(C(X))o — Q(CL(X))o

is determined by sending a group-like element to its inverse. Recall that ©(C, (X)) if
and only if the identity map id: ﬁ(C*(X)) — ﬁ(C*(X)) is invertible as an element
in the convolution algebra (Hom(ﬁ(C*(X)), ﬁ(C’*(X))),*). So far we know that
the restriction R R
id ‘ﬁ(C*(X))OZ Q(C.(X))o = 2(C.(X))

is an invertible element in the convolution algebra. We now explain why id is
invertible following a classical argument of Takeuchi adapted to the dg setting. First
recall that Hess and Tonks constructed in [HT10] a chain homotopy equivalence
between ﬁ(C*(X )) and G(X), the simplicial group functorially associated to X
known as Kan’s loop group construction. In particular, this involved constructing
two maps of dg algebras

¢: Q(C.(X)) = CL(G(X))
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and R

¥: Cu(G(X)) = Q(CA(X))
that are chain homotopy inverses to each other, see [HT10| Theorem 15]. Since
G(X) is a simplicial group, the chain complex C,(G(X)) may be equipped with a
natural dg Hopf algebra structure with product induced by that of G(X) (together
with the Eilenberg—Zilber map) and Alexander—Whitney coproduct. The antipode

sax): O«(G(X)) = Cu(G(X))
is induced by applying the normalized chains functor to the inverse map
() G(X) = G(X).

Furthermore, the map g: Q(C,(X)) = Q(C,(X)) defined by g := 1) o 5G(x)© ¢ is
a map of dg k-modules extending sg. This map might not be the inverse of id in
the convolution algebra but the proof of [Tak71, Lemma 14] explains how one may
obtain such an inverse from g. ]

REMARK 7.3. [Tak71, Lemma 14] implies that a graded bialgebra B, over a
field, is a Hopf algebra if and only if the degree 0 bialgebra By is a Hopf algebra.
However, we cannot apply this result right away to our context because the proof
uses the existence of an arbitrary linear map extending the antipode in degree 0,
a fact we do not immediately have in the dg setting (even over a field) since the
arbitrary extension might not preserve differentials.

7.3. co-Hochschild complex and Brown’s twisted tensor product. Re-
call the following classical construction of Ed Brown.

DEFINITION 7.4. Let (C,d¢, Ac) be a dg coalgebra, (A, da, pa) an dg algebra,
and (M, dy) aleft dg A-module with action pp : AQ M — M. Suppose 7: C' — A
is a twisting cochain, that is, a map of degree —1 satisfying

daoT+Tode+pso(r®7)0Ac =0.

The twisted tensor product of C' and M over T is defined to be the chain complex
C®; M:=(C®M,d,) where

dr = do ®idy +ide Rdps + (idc ®MM) o (idc RT X idM) o (AC ® idM).

Brown proved that the above construction gives rise to a chain model for the
total space E of a fibration FF — E — B using a canonical twisting cochain
7: Cu(B) — C_1(02B) (following a geometric construction of F. Adams) and the
holonomy chain map pp: C.(Q2B) ® C.(F) — Ci(F).

We now compare the extended co-Hochschild complex of the chains on a re-
duced simplicial set to a twisted tensor product constructed via the adjoint action
on the dg Hopf algebra structure of the cobar construction. The adjoint action
is an algebraic model for the conjugation action of based loops and consequently
encodes the holonomy of the free loop fibration 2B — LB — B.

For any connected dg coalgebra C' denote by

t: C = Q(C)

the twisting cochain given by
v(z) = {x}.

The twisting cochain ¢ is called the universal twisting cochain of C.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



AN ALGEBRAIC MODEL FOR THE FREE LOOP SPACE 45

Given any reduced simplicial set X, let i: Q(C.(X)) < Q(C,(X)) the canon-
ical inclusion map, and ¢} ,Q(C. (X)) the left dg Q(C.(X))-module determined by
the action action, as defined in Section [Z.1] using the dg Hopf algebra structure of

Theorem [7.2

THEOREM 7.5. For any reduced simplicial set X there is a natural chain ho-
motopy equivalence of dg k-modules

Cu(X) @, i O (X)) S 0T, (CL(X)).

PRrROOF. For simplicity, we denote the connected dg coalgebra C.(X) by C, the
augmented dg algebra Q(C.(X)) by A, and the dg Hopf algebra Q(C,(X)) by A.
Let i: A — A be the natural inclusion map. As in Section [I.I] we denote by ;A
to be A equipped with the right dg A-module structure given by the adjoint action
and i*(A) when equipped with the left (A ® A°P)-action.

Note there is a natural isomorphism of dg k-modules
(7.5) C®, it A0k, C,A) @40k, A,

where k is thought of as a right dg A-module via the augmentation map.
By Proposition [5.2] there is a natural chain homotopy equivalence

(7.6) A(k,C, A) ®4 it A S Bar(k, A, A) @4 0% A = C, (A, il A).

By Proposition [Z.1] there is a natural isomorphism of dg k-modules

(7.7) Cu(A, i JA) = CH,(A,i* A) = Bar(A, A, A) @ gg aer i* A

Again by Proposition [5.2] there is a natural chain homotopy equivalence

(7.8) Bar(A, A, A) ® agaor i*A S Q(A, C, A) ® g aor i* A.

Now observe there is a natural isomorphism of dg k-modules

(7.9) Q(A, C, A) @ aga0r i* A = coCH, (O).

Putting together equations (Z.5), (Z.6), (Z.7), (Z.8), and (Z9) yields the desired
result. |

REMARK 7.6. Note that the k-linear map C.(X) — @*(C*(X)) given by
sending o — o ® 1 is not in general a chain map (it would be if C\ (X) was strictly
cocommutative, which is not). However, we do have a chain map

Cu(X) = Cu(X) @, i7gQUCu(X)
given by the same formula
o0 ® 1.
Composing this map with the chain map
Cu(X) ©, i24QC. (X)) = coCH.(CL(X))
given in Theorem [7.5] we obtain a chain map
C.(X) = coCH,(C,(X))

modeling the continuous map X — LX that sends a point b in X to the constant
loop at b. We expect this map to be useful in studying the Goresky—Hingston
coproduct and the corresponding Lie cobracket in the S'-equivariant setting in the
string topology of nonsimply connected manifolds.
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