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Abstract
In the burgeoning age of generative AI, watermarks
act as identifiers of provenance and artificial con-
tent. We present WAVES (Watermark Analysis via
Enhanced Stress-testing), a benchmark for assess-
ing image watermark robustness, overcoming the
limitations of current evaluation methods. WAVES
integrates detection and identification tasks and
establishes a standardized evaluation protocol com-
prised of a diverse range of stress tests. The attacks
in WAVES range from traditional image distortions
to advanced, novel variations of diffusive, and
adversarial attacks. Our evaluation examines two
pivotal dimensions: the degree of image quality
degradation and the efficacy of watermark detec-
tion after attacks. Our novel, comprehensive evalu-
ation reveals previously undetected vulnerabilities
of several modern watermarking algorithms.
We envision WAVES as a toolkit for the future
development of robust watermarks. The project
is available at https://wavesbench.github.io/.

1. Introduction
Recent and pivotal advancements in text-to-image diffusion
models (Ho et al., 2020; Dhariwal & Nichol, 2021; Rombach
et al., 2022) have garnered the attention of the AI community
and the general public. Open-source models such as Stable
Diffusion and proprietary models such as the Dall·E family
and Midjourney have enabled users to produce images that
are of human-produced quality. Consequently, there has
been a strong push in the AI/ML community to develop
reliable algorithms for detecting AI-generated content and
determining its source (Executive Office of the President,
2023). One avenue for maintaining the provenance of gen-
erative content is by embedding watermarks. A watermark
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is a signal encoded onto an image to signify its source or
ownership (Al-Haj, 2007; Zhu et al., 2018; Zhang et al.,
2019; Tancik et al., 2020; Fernandez et al., 2023; Wen et al.,
2023). To avoid degradation of image quality, an invisible
watermark is desired. Many such watermarks are robust
to common image manipulations (Lukas et al., 2023; Zhao
et al., 2023a; Wen et al., 2023; Fernandez et al., 2023), and
adversarial efforts to remove the watermark are complicated
by the difficulty of decoding/extracting the message without
private knowledge of the watermarking scheme (Tancik et al.,
2020; Fernandez et al., 2023). Despite this difficulty, various
watermark removal schemes can still be effective (Zhao et al.,
2023a; Saberi et al., 2023). However, a lack of standardized
evaluations in existing literature (i.e., inconsistent image
quality measures, statistical parameters, and types of attacks)
has resulted in an incomplete picture of the vulnerabilities
and robustness of these algorithms in the real world.

Figure 1. WAVES establishes a standardized evaluation framework
that encompasses a comprehensive suite of stress tests including
both existing and newly proposed stronger attacks (denoted by ⇤).

We present WAVES (Watermark Analysis via Enhanced
Stress-testing), a benchmark for assessing watermark robust-
ness, overcoming the limitations of current evaluation meth-
ods. WAVES consists of a comprehensive variety of novel &
realistic attacks, including classical image distortions, image
regeneration, and adversarial attacks. In an effort to stress-
test existing/future watermarks, we propose several new at-
tacks such as adversarial embedding attacks, and new variants
of existing attacks such as multi-regeneration attacks.

WAVES focuses on the sensitivity and robustness of water-
mark detection, measured by the true positive rate (TPR) at
0.1% false positive rate (FPR), and in the meantime, studies
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Table 1. Comparison of robustness evaluations with existing works. For categories of attacks, D, R, and A denote distortions, image
regeneration, and adversarial attacks. Joint test means whether the performance and quality are jointly tested under a range of attack
strengths. Our benchmark is the most comprehensive one, with a large scale of attacks, data, metrics, and more realistic evaluation setups.

Research Num. of Categories Num. of Sample Size Non-watermarked Performance Num. of Joint
Work Attacks of Attacks Datasets per Dataset Image Source Metric Quality Metrics Test

StegaStamp Watermark1 5 D 1 1000 — bit accuracy 3 7
Stable Signature Watermark2 12 D, R 1 5000 — bit accuracy 3 7

TreeRing Watermark3 6 D 2 1000 generate by same model TPR@1%FPR 2 7
Regeneration Attack4 10 D, R 2 500 — bit accuracy 3 7

Surrogate Model Attack5 2 R, A 1 2500 real images AUROC 0 7
Adaptive Attack6 10 D, A 1 1000 real images TPR@1%FPR 3 7

WAVES (ours) 26 D, R, A 3 5000 real images TPR@0.1%FPR 8 3

1 Tancik et al. (2020). 2 Fernandez et al. (2023). 3 Wen et al. (2023). 4 Zhao et al. (2023a). 5 Saberi et al. (2023). 6 Lukas et al. (2023).

the severity of image degradations needed to decrease this
sensitivity with multiple quality metrics. WAVES develops
a series of Performance vs. Quality 2D plots varying over
several prominent image similarity metrics, which are then
aggregated in a heuristically novel manner to paint an overall
picture of watermark robustness and attack potency.

We extensively evaluate the security of three prominent
watermarking algorithms, Stable Signature, Tree-Ring, and
StegStamp, respectively representing three major techniques
for embedding an invisible signature. WAVES effectively
reveals weaknesses in them and discovers previously
undetected vulnerabilities. For example, watermarking
algorithms using publicly available VAEs can have their
watermarks effectively removed with minimal image
manipulation. DALL·E3’s usage of an open-source KL-VAE
underscores the need for unique VAEs in such systems.

Our contributions are summarized as follows:

(1) In practical scenarios where false alarms incur high costs,
our evaluation metric for watermark detection prioritizes the
True Positive Rate (TPR) at a stringent False Positive Rate
(FPR) threshold, specifically 0.1%. This focus addresses the
inadequacies of alternative metrics such as the p-value and
Area Under the Receiver Operating Characteristic (AUROC).
(2) Additionally, our metric incorporates image quality
alongside TPR@0.1% FPR. This integration acknowledges
the necessity of maintaining a balance between reducing the
accuracy of watermark detection and the practical utility of
the image in practical scenarios.
(3) We introduce a comprehensive taxonomy of attacks that
encompasses classical distortions (blurring, rotation, crop-
ping, etc.) and powerful, novel variations of regeneration
and adversarial attacks, against watermarks.
(4) We standardize the evaluation of watermark robustness,
allowing us to rank attacks and watermarks. We formalize
the watermark detection and user identification problems
and evaluate the robustness under both scenarios.
(5) Our benchmark uncovers several especially harmful
attacks for popular watermarks, some of which are first
introduced in this work, underscoring the need for refinement

of existing watermarking algorithms and systems. WAVES
contributes as a toolkit to examine the watermark robustness
and helps future development of robust watermarks.

2. Image Watermarks
We briefly review invisible watermarks and defer detailed
discussions to Appendix A. Generally, there are two
types of watermarking methods. (1) Post-processing
watermarks embed watermarks after image generation.
(1a) Frequency-domain methods like DWT, DCT (Cox et al.,
2007), and DWTDCT (Al-Haj, 2007) modify images in
transform domains. (1b) Deep encoder-decoder methods

such as HiDDeN (Zhu et al., 2018), RivaGAN (Zhang et al.,
2019), and StegaStamp (Tancik et al., 2020) use trained
neural networks for embedding and decoding watermarks.
Post-processing watermarks are model-agnostic but can
introduce human-visible artifacts, compromising image
quality. (2) In-processing watermarks integrate water-
marking into the image generation process, substantially
eliminating visible artifacts. (2a) Whole model modifications

embed watermarks by training the entire generative models
on watermarked images (Yu et al., 2021; Zeng et al., 2023;
Lukas & Kerschbaum, 2023). (2b) Partial model modifi-

cations such as Stable Signature (Fernandez et al., 2023)
only fine-tune the decoder of the latent-diffusion model. (2c)

Random seed modification watermarks like Tree-Ring (Wen
et al., 2023) embed watermarks into the initial noise vector
of diffusion models which can be retrieved at detection time.

Robustness is an essential property of watermarks especially
since there is an incentive to remove watermarks. Besides
natural image distortions, some watermarks are shown to be
vulnerable to regeneration through diffusion models or VAEs
Zhao et al. (2023a); Saberi et al. (2023), and adversarial at-
tacks Lukas et al. (2023); Saberi et al. (2023). However, some
unrealistic attacks and inconsistent robustness evaluations
across different studies have muddled the understanding of
watermark robustness, obscuring the true vulnerabilities of
these methods. Therefore, this paper provides a standardized
and comprehensive benchmark, encompassing a set of realis-
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tic and strong attacks. Our benchmark enables apple-to-apple
comparison of watermarks as well as attacks, which helps
standardize and accelerate the studies of robust watermarks.

3. Standardized Evaluation through WAVES
3.1. Standardized Evaluation Workflow and Metrics

As shown in Table 1, our benchmark, WAVES, stands out
by considering three diverse datasets, incorporating 26
diverse attacks across three categories, and employing 8
quality metrics. These distinguish our work as the most
extensive and realistic setup to date for watermark robustness
evaluation. For more details on evaluation workflow, setups,
metrics, and more analyses, see Appendix E.

Applications and formulation of invisible image water-
marks. Invisible image watermarks, originally for protecting
creators’ intellectual property, have expanded into broader
applications like AI Detection — identifying AI-generated
images (Saberi et al., 2023), and User Identification —
tracking the source of an image to its creator (Fernandez
et al., 2023). We are interested in message-based approaches,
where a unique, invisible identifier is embedded into an image.
which may be recovered by the content creator at any time to
establish provenance. The choice of message varies across
methods, with Tree-Ring using random complex Gaussians
and others like Stable Signature employing binary strings.

Evaluation Workflow. The trade-off between watermark
performance and image quality, especially when watermark
attacks lead to image distortions, is critical. We introduce
Performance vs. Quality 2D plots for a comprehensive com-
parison, a novel perspective over the typical performance-
centric analyses. The evaluation process involves comparing
watermarked images with a diverse set of real and AI-
generated reference images to produce the performance vs.
quality 2D plots, and processing or aggregating the 2D plots
to compare attacks and watermarks, as depicted in Figure 2.

Performance Metrics in AI Detection and User Identifica-
tion. WAVES prioritizes fairness and comprehensiveness by
using evaluation metrics that are independent of the choice
of statistical tests and p-value thresholds, in contrast to some
prior practices such as (Fernandez et al., 2023). AI detection
in WAVES is akin to binary classification, utilizing ROC
curve-based metrics. Given the significant impact of false
positives in mislabeling non-watermarked images, strict con-
trol over the false positive rate (FPR) is crucial. Therefore,
rather than AUROC (since a high AUROC score does not nec-
essarily imply a high true positive rate (TPR) at low FPR lev-
els), WAVES focuses on TPR@x%FPR, specifically at a chal-
lenging low FPR threshold of 0.1%, extending recent studies
such as (Wen et al., 2023) with a larger dataset and a more
stringent FPR criterion. User identification is approached as
multi-class classification, and we measure performance by

the accuracy of correct image assignments to users.

Implementing Diverse Image Quality Metrics: Recogniz-
ing that no single metric can fully capture the aspects of gen-
erated images, we use a range of image quality metrics and
propose a normalized, aggregated metric for evaluating wa-
termark and attack methods. WAVES integrates over 8 met-
rics in 4 categories: (1) Image similarities, including Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity Index
(SSIM), and Normalized Mutual Information (NMI), which
assess the pixel-wise accuracy after attacks; (2) Distribution
distances such as Frechet Inception Distance (FID) (Heusel
et al., 2017) and a variant based on CLIP feature space (CLIP-
FID) (Kynkäänniemi et al., 2022); (3) Perception-based
metrics like Learned Perceptual Image Patch Similarity
(LPIPS) (Zhang et al., 2018); (4) Image quality assessments
including aesthetics and artifacts scores (Xu et al., 2023),
which quantify the changes in aesthetic and artifact features.

Normalization and Aggregation of Image Quality
Metrics: Addressing the distinct characteristics of various
image quality metrics, WAVES proposes a normalized and

aggregated quality metric for a unified measure of image
quality degradation and comprehensive scoring of attack or
watermark methods. We define the normalized scale for each
metric by assigning the 10% quantile value over all attacked
images (across 26 attack methods, three watermark methods,
and three datasets) as the 0.1 point, and the 90% quantile as
the 0.9 point. Normalized quality metrics are always ranked

in ascending order of image degradation. This normalization
ensures equivalent significance across different metrics,
defined by their quantiles in a large set of attacked water-
marked images. Normalized metrics are aggregated and
extensively utilized in Section 4 for Performance vs Quality
plots, watermark radar plots, and attack leaderboards.

3.2. Stress-testing Watermarks

We evaluate the robustness of watermarks with a wide range
of attacks detailed in this section and summarized in Table 2
and Table 5. Figure 24 demonstrates the visual effects.

Distortion Attacks. Watermarked images often face distor-
tions such as compression and cropping during internet trans-
mission, necessitating watermarks that can endure common
alterations. However, most studies only test resilience against
singular or extreme distortions. In WAVES, we establish the
following distortions within an acceptable quality threshold
as our baselines. Geometric distortions: rotation, resized-
crop, and erasing; Photometric distortions: adjustments in
brightness and contrast; Degradation distortions: Gaussian
blur, Gaussian noise, and JPEG compression; Combo
distortions: combinations of geometric, photometric, and
degradation distortions, both individually and collectively.
Detailed setups for each are provided in the Appendix F.1.
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(a) Evaluation of a single attack on a watermarking method. We first attack watermarked images over a variety of strengths (also labeled
’stg’). Then, we evaluate the detection performance (TPR@0.1%FPR) and a collection of image quality metrics such as PSNR and plot a set
of performance vs. quality plots. By normalizing and aggregating these quality metrics, we derive a consolidated 2D plot that represents the
overall performance vs. quality for the evaluation.

(b) Benchmarking watermarks and attacks. For each watermark, we plot all attacks on a unified performance vs. quality 2D plot to facilitate
a detailed comparison. Based on this, we provide two additional analytical perspectives. We compare watermarks’ robustness through the
averaged performance under different attacks. We evaluate attacks’ potency by ranking the quality at a specific performance threshold.

Figure 2. Evaluation workflow.

Table 2. A taxonomy of all the attacks in our stress-testing set. Novel attacks proposed by WAVES are marked with ⇤.
Category Subcategory (prefix) Description Attack Names (suffix)

Distortion
Single (Dist-) Single distortion -Rotation, -RCrop, -Erase, -Bright, -Contrast, -Blur, -Noise, -JPEG

Combination (DistCom-) Combination of a type of distortions -Geo, -Photo, -Deg, -All

Regeneration
Single (Regen-) A single VAE or diffusion regeneration -Diff, -DiffP1, -VAE, -KLVAE2

Rinsing⇤ (Rinse-) A multi-diffusion regeneration -2xDiff, -4xDiff

Adversarial
Embedding (grey-box)⇤ (AdvEmbG-)3 Use the same VAE -KLVAE8
Embedding (black-box)⇤ (AdvEmbB-) Use other encoders -RN18, -CLIP, -KLVAE16, -SdxlVAE
Surrogate detector attack⇤ (AdvCLS-)4 Train a watermark detector -UnWM&WM, -Real&WM, -WM1&WM2

1 DiffP requires user prompts. 2 KLVAE with bottleneck size 8 is grey-box. 3 AdvEmbG is grey-box. 4 AdvCLS needs data and training.

Figure 3. Regeneration attacks on Tree-Ringk. Regen-Diff is a
single diffusive regeneration and Rinse-[N]xDiff is a rinsing one
with N repeated diffusions, with the number of noising steps as
attack strength. Regen-VAE uses a pre-trained VAE with quality
factor as strength and Regen-KLVAE uses pre-trained KL-VAEs
with bottleneck size as strength. RinseD-VAE applies a VAE as a
denoiser after Rinse-4xDiff.

Regeneration Attacks, employing diffusion models or
VAEs (Saberi et al., 2023; Zhao et al., 2023a), aim at al-
tering an image’s latent representation by noising and then
denoising an image. Different from existing works that

only perform a Single regeneration, we also investigate
Rinsing regenerations, where an image undergoes multi-
ple cycles of noising and denoising through a pre-trained
diffusion model. Furthermore, we introduce two additional
variations: prompted regeneration and mixed regeneration
(rinse + VAE denoising). To simulate a realistic attack, we
use a lower version diffusion model than the one used to
generate watermarked images. All such attacks are detailed
in Appendix F.2. As shown in Figure 3, in contrast with the
conclusions of Zhao et al. (2023a), the Tree-Ring watermark
is not robust against regeneration attacks. In particular, a
single regeneration such as Regen-Diff and Regen-VAE can
significantly harm the TPR@0.1%FPR while maintaining
reasonable CLIP-FID. Rinsing regenerations significantly
lower the TPR@0.1%FPR at the cost of markedly decreased
image quality. A 2x rinsing regeneration (Regen-2xDiff)
strikes a balance between both low-TPR@0.1%FPR and high
image quality. In regards to the Stable Signature, Figure 7 and
Table 3 concur with the analysis of Zhao et al. (2023a) – regen-
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Figure 4. Adversarial embedding attacks target Tree-Ring at
strengths of {2/255, 4/255, 6/255, 8/255}. Tree-Ring shows vul-
nerability to embedding attacks, especially when the adversary can
access the VAE being used.

eration attacks are completely destructive and rinsing regener-
ations reiterate this phenomenon. The StegaStamp is mildly
affected by regenerations, and only by diffusive attacks, in-
cluding our novel rinsing and prompted regenerations.

Adversarial Attacks. Deep neural networks are vulnerable
to adversarial examples, (Ilyas et al., 2019; Chakraborty
et al., 2018). In WAVES, we explore watermark robustness
against two types of adversarial attacks.

(A) Embedding Attacks. Watermark detection can be
thwarted by perturbations on image embedding. Such
attacks have been used against Multimodal Large Language
Models like GPT-4V (Dong et al., 2023) and shown good
transferability (Inkawhich et al., 2019). We examine if
attacks on off-the-shelf embedding models can transfer
to watermark detectors. Given an encoder f : X ! Z
mapping images to latent features, we craft an adversarial
image xadv to diverge its embedding from the original
watermarked image x, within an l1 perturbation ball limit:
maxxadv kf(xadv) � f(x)k2, s.t. kxadv � xk1  ✏. We
approximately solve this using the PGD (Madry et al., 2017)
algorithm (see details in Appendix F.3.1), and see if the
adversarial image transfers to real watermark detectors.

We evaluate five off-the-shelf encoders. AdvEmbB-RN18
uses a pre-trained ResNet18 (He et al., 2016), targeting
the pre-logit feature layer. AdvEmbB-CLIP employs
CLIP’s (Radford et al., 2021) image encoder. AdvEmbG-
KLVAE8 utilizes the encoder of KL-VAE (f8) which is used
in the victim latent diffusion model. This is a grey-box setting
but reflects the use of public VAEs in proprietary models
(for example, DALLE·3 uses a public KL-VAE according to
https://cdn.openai.com/papers/dall-e-3.
pdf). Further, we do ablation studies on KL-VAE (f16),
which has a different architecture but is trained on the same
data, and on SDXL-VAE (Podell et al., 2023), an enhanced
version of KL-VAE (f8). They are black-box attacks and are
labeled AdvEmbB-KLVAE16 and AdvEmbB-SdxlVAE.

As shown in Figure 4, Tree-Ring is vulnerable to embedding
attacks, particularly under the grey-box condition where
TPR@0.1%FPR can drop to nearly zero, effectively
removing most watermarks. This is because the detection

Figure 5. Three settings for training the surrogate detector. The
Generator is the victim generator under attack. We externalize the
watermarking process for simplicity, but it could be in-processing
watermarks. After training the surrogate detectors, the adversary
performs PGD attacks on them to flip the labels.

process of Tree-Ring first maps the image to the latent
representation through the encoder of KL-VAE (f8), then
conducts inverse DDIM to retrieve the watermark. The
embedding attack changes the latent representation severely;
therefore, watermark retrieval becomes very difficult. Using
similar yet distinct VAEs, attack effectiveness diminishes
but still manages to remove some watermarks, with KL-VAE
(f16), trained on the same images, demonstrating the highest
transferability. CLIP-based attacks also achieve some suc-
cess, especially on natural images like MS-COCO, likely due
to CLIP being trained on natural images akin to those in MS-
COCO, enhancing the transferability. Conversely, Stable
Signature and StegaStamp demonstrate robustness against
embedding attacks (Figure 7), likely because their detectors
are trained independently from generative models, differing
significantly from standard classifiers and VAEs. Hence, our
attacks fail to effectively transfer to their detectors.

(B) Surrogate Detector Attacks. Watermark detection
hinges on a detector that decodes and verifies messages from
watermarked images. Adversaries might acquire numerous
watermarked and non-watermarked images to train a
surrogate detector, and transfer attacks on it to the actual
watermark detector. Figure 5 explores our various settings.

AdvCls-UnWM&WM trains a surrogate detector with both
watermarked and non-watermarked images from the victim
generative model, as per Saberi et al. (2023). Note that this is
an unrealistic setting for proprietary models since all their out-
puts are assumed to be watermarked. AdvCls-Real&WM
trains the surrogate watermark detector with watermarked
and non-watermarked images, where non-watermarked
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images are sampled from the ImageNet dataset (not from
the generative model). This approach is more applicable to
proprietary models. AdvCls-WM1&WM2 only uses water-
marked images. It actually trains a surrogate watermark mes-
sage classifier to distinguish two users. Suppose the system
assigns a particular message to each user for identification
purposes, the adversary can collect the training data from two
users’ outputs, with an identical set of prompts. Adversarial
attacks on this surrogate model aim at user misidentification.
All surrogate detectors are fine-tuned on ResNet18. We
use ImageNet text prompts “A photo of a {class name}” to
generate training images (see details in Appendix F.3.2).

With the trained surrogate detector f : X ! Y , where
Y={0,1}, adversaries launch targeted attacks. The goal is
to craft an adversarial image xadv from an original image
x so that f incorrectly predicts the target label ytarget (i.e.,
wrong label), minimizing the following with cross-entropy
loss: minxadvL(f(xadv),ytarget), s.t. kxadv�xk1  ✏. It
enables adversaries to erase watermarks from marked images
or implant them into clean images in the first two settings, and
to disrupt user identification as well as watermark detection
in the third setting. We solve it with the PGD algorithm.

Figure 6. Adversarial surrogate
detector attacks on Tree-Ring.

Figure 6 shows Tree-
Ring’s vulnerability to
surrogate detector-based
attacks. In AdvCls-
UnWM&WM, the ad-
versary accessing non-
watermarked images has
good transferability and
removes watermarks ef-
fectively. However, it
fails to add watermarks to
clean images (spoofing attack), as detailed in Figure 20. The
reason behind this is explored in Appendix G.2, where we
find the attacker disrupts the entire latent space, not just the
watermark (as shown in Figure 21). Conversely, the spoof-
ing attack fails to embed the precise watermark. AdvCls-
Real&WM attack fails entirely, likely due to the surrogate
model appearing to differentiate real from generated im-
ages, using broader features than the watermark. The newly
proposed AdvCls-WM1&WM2 successfully attacks Tree-
Ring using only watermarked images. Like the first scenario,
the surrogate model fails to precisely locate watermarks but
learns the mapping to the latent feature space, allowing a
PGD attack to remove the watermark by disturbing the entire
latent space (see Figure 22). In user identification tasks (Fig-
ure 23), the attack doesn’t consistently mislead the detector
into misidentifying User1’s watermarked images as User2’s
(targeted misidentification). Instead, imprecise perturbations
often lead to incorrect attribution of User1’s images to others.

Figure 7 shows that Stable Signature and StegaStamp are

robust to these attacks. Even with high surrogate classifier
accuracy in AdvCls-UnWM&WM, adversarial examples fail
to transfer to the true detector, possibly due to reliance on
different features than those used by the true detector.

4. Benchmarking Results and Analysis
We extensively evaluate the security of three prominent wa-
termarking algorithms (according to Appendix D.2), Stable
Signature, Tree-Ring, and StegaStamp, respectively repre-
senting three major watermarking types: in-processing via
model modification, in-processing via random seed modifica-
tion, and post-processing. We conduct thorough evaluations
with images from DiffusionDB (Wang et al., 2022), MS-
COCO (Lin et al., 2014), and the DALL·E3 datasets; see
Appendix D.1 for details. Note that our evaluation process
can be applied to any watermark (as shown in Appendix G.5).

Performance vs. Quality 2D plots. We evaluate 3 water-
marking methods under 26 attacks, and report results across
3 datasets in Figure 25 to Figure 30. The quality of images
post-attack is evaluated using 8 metrics and the detection per-
formance is measured by TPR@0.1%FPR. Figure 13 shows
that different quality metrics yield a similar ranking of attacks.
Consequently, we aggregate these metrics into a single, uni-
fied quality metric — Normalized Quality Degradation, with
lower scores indicating lesser quality degradation caused
by attacks. Furthermore, we aggregate the results across
three distinct datasets, and derive the unified Performance vs.
Quality degradation 2D plots in Figure 7, visualizing the uni-
fied evaluation results for each watermarking method against
each attack. We defer the aggregation details to Appendix E.
Based on these unified 2D plots, we benchmark watermarks
and attacks in the following sections.

4.1. Benchmarking Watermark Robustness

Figure 8 provides a high-level overview of watermarks’ ro-
bustness. We categorize effective attacks into seven types
(same as categories in Table 2): Distortion Single, Distortions

Combination, Regeneration Single, Regeneration Rinsing,
Adv Embedding Grey-box, Adv Embedding Black-box, and
Adv Surrogate Detector. Attacks considered are detailed in
Appendix E.5. The Average TPR@0.1%FPR, calculated for
each category across strength levels, assesses watermarking
method robustness. Figure 8 shows the robustness of three
watermarking methods where the area covered indicates the
overall robustness. Figure 8 shows the distribution of quality
degradation for each type of attack to illustrate the potential
trade-off between attack effectiveness and image quality.

WAVES provides a clear comparison of watermarks’ ro-
bustness and reveals undiscovered vulnerabilities. Fig-
ure 8 reveals that StegaStamp occupies the largest area, sig-
naling its exceptional robustness. Tree-Ring follows suit
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Figure 7. Unified performance vs. quality degradation 2D plots under detection setup. We evaluate each watermarking method under various
attacks. Two dashed lines show the thresholds used for ranking attacks.

(a) Average TPR@0.1%FPR under different types of attacks. (b) Distributions of quality degradation

Figure 8. (a) Detection performance of three watermarks after attacks, measured by Average TPR@0.1%FPR with lower values (near center)
indicating higher vulnerabilities. (b) The distribution of quality degradation. The lower, the better.

with a smaller area, and Stable Signature occupies the least
space. Interestingly, different watermarking methods exhibit
vulnerabilities to different types of attacks. Tree-Ring is par-
ticularly vulnerable to adversarial attacks introduced in this
paper, with a significant vulnerability to grey-box embedding
and surrogate detector attacks. It is also vulnerable to regener-
ation rinsing attacks. Stable Signature is vulnerable to almost
all regeneration attacks. All three watermarks maintain a rela-
tive robustness against distortions. Furthermore, as observed
in Figure 8, adversarial attacks generally cause less quality
degradation, highlighting their potency against Tree-Ring
watermarks. WAVES offers an apple-to-apple comparison of
watermarks through a multi-dimensional stress test of their
robustness, enabling a nuanced and comprehensive under-
standing of their security in various scenarios.

4.2. Benchmarking Attacks

Table 3 features a leaderboard ranking attacks based on
their impact on detection performance and image qual-

ity. We assess attacks using performance thresholds
(TPR@0.1%FPR=0.95 and TPR@0.1%FPR=0.7) and qual-
ity degradation at these thresholds (Q@0.95P and Q@0.7P).
Additionally, we evaluate average performance (Avg P) and
quality degradation (Avg Q) across all strengths. These met-
rics are used to rank 26 attacks for each watermarking method,
with details deferred to Appendix E.6.

Attack effectiveness varies among watermarks. Table 3
shows variability in attack efficiency across watermarking
methods. Metrics like Q@0.95P and Q@0.7P provide nu-
anced comparisons, while Avg P and Avg Q offer insights into
overall attack potency and image quality impact. Our anal-
ysis identifies each watermark’s specific weaknesses to cer-
tain attacks. For instance, AdvCls-UnWM&WM, AdvCls-
WM1&WM2, and AdvEmbG-KLVAE8 are notably effective
against Tree-Ring, whereas Regen-Diff and Regen-DiffP are
more potent against Stable Signature. Regeneration attacks
impact StegaStamp but do not greatly affect its average de-
tection performance; in contrast, certain distortion attacks
significantly lower detection performance, at the cost of qual-
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Table 3. Comparison of attacks across three watermarking methods in detection setup. Q denotes the normalized quality degradation,
and P denotes the performance as derived from Figure 7. Q@0.95P measures quality degradation at a 0.95 performance threshold where
"inf" denotes cases where all tested attack strengths yield performance above 0.95, and "-inf" where all are below. A similar notation applies
to Q@0.7P. Avg P and Avg Q are the average performance and quality over all the attack strengths. The lower the performance and the
smaller the quality degradation, the stronger the attack is. For each watermarking method, we rank attacks by Q@0.95P, Q@0.7P, Avg P,
Avg Q, in that order, with lower values (#) indicating stronger attacks. The top 5 attacks of each watermarking method are highlighted in red.

Attack Tree-Ring Stable Signature StegaStamp
Rank Q@0.95P Q@0.7P Avg P Avg Q Rank Q@0.95P Q@0.7P Avg P Avg Q Rank Q@0.95P Q@0.7P Avg P Avg Q

Dist-Rotation 11 0.464 0.521 0.375 0.648 12 0.624 0.702 0.594 0.650 5 0.423 0.498 0.357 0.616
Dist-RCrop 18 0.592 0.592 0.332 0.463 24 inf inf 0.995 0.461 6 0.602 0.602 0.540 0.451
Dist-Erase 26 inf inf 1.000 0.490 25 inf inf 0.998 0.489 25 inf inf 1.000 0.483
Dist-Bright 25 inf inf 0.997 0.304 23 inf inf 0.998 0.305 22 inf inf 0.998 0.317

Dist-Contrast 22 inf inf 0.998 0.243 20 inf inf 0.998 0.243 17 inf inf 0.998 0.231
Dist-Blur 20 0.861 1.112 0.563 1.221 5 -inf -inf 0.000 1.204 9 0.848 0.962 0.414 1.198

Dist-Noise 16 0.548 inf 0.980 0.395 8 0.402 0.520 0.870 0.390 24 inf inf 1.000 0.360
Dist-JPEG 12 0.499 0.499 0.929 0.284 9 0.485 0.485 0.793 0.284 21 inf inf 0.998 0.263

DistCom-Geo 13 0.525 0.593 0.277 0.768 13 0.850 inf 0.937 0.767 7 0.663 0.693 0.396 0.733
DistCom-Photo 22 inf inf 0.998 0.242 20 inf inf 0.998 0.243 17 inf inf 0.998 0.239
DistCom-Deg 19 0.620 inf 0.892 0.694 7 0.206 0.369 0.300 0.679 8 0.826 0.975 0.852 0.664
DistCom-All 14 0.539 0.751 0.403 0.908 11 0.538 0.691 0.334 0.900 10 0.945 1.101 0.795 0.870
Regen-Diff 5 -inf 0.307 0.612 0.323 1 -inf -inf 0.001 0.300 1 0.331 inf 0.943 0.327

Regen-DiffP 4 -inf 0.307 0.601 0.327 1 -inf -inf 0.001 0.303 1 0.333 inf 0.940 0.329
Regen-VAE 17 0.578 0.578 0.832 0.348 10 0.545 0.545 0.516 0.339 23 inf inf 1.000 0.343

Regen-KLVAE 22 inf inf 0.990 0.233 6 -inf 0.176 0.217 0.206 17 inf inf 1.000 0.240
Rinse-2xDiff 6 -inf 0.333 0.510 0.357 3 -inf -inf 0.001 0.332 4 0.391 inf 0.941 0.366
Rinse-4xDiff 7 -inf 0.355 0.443 0.466 4 -inf -inf 0.000 0.438 3 0.388 inf 0.909 0.477

AdvEmbG-KLVAE8 3 -inf 0.164 0.448 0.253 20 inf inf 0.998 0.249 17 inf inf 1.000 0.232
AdvEmbB-RN18 10 0.241 inf 0.953 0.218 17 inf inf 0.999 0.212 14 inf inf 1.000 0.196
AdvEmbB-CLIP 15 0.541 inf 0.932 0.549 26 inf inf 0.999 0.541 25 inf inf 1.000 0.488

AdvEmbB-KLVAE16 8 0.195 inf 0.888 0.238 19 inf inf 0.997 0.233 14 inf inf 1.000 0.206
AdvEmbB-SdxlVAE 9 0.222 inf 0.934 0.221 17 inf inf 0.998 0.219 14 inf inf 1.000 0.204

AdvCls-UnWM&WM 1 -inf 0.102 0.499 0.145 14 inf inf 0.999 0.101 11 inf inf 1.000 0.101
AdvCls-Real&WM 21 inf inf 1.000 0.047 14 inf inf 0.998 0.092 11 inf inf 1.000 0.106

AdvCls-WM1&WM2 1 -inf 0.101 0.492 0.139 14 inf inf 0.999 0.084 13 inf inf 1.000 0.129

ity degradation. No single attack excels across all water-
marking methods, yet regeneration attacks exhibit some level
of consistent effectiveness. This significant variation in at-
tack effectiveness emphasizes the imperative for diverse and
watermark-tailored defensive strategies.

4.3. Benchmarking Results for User Identification

We detail the user identification results, following the evalu-
ation method from Section 3.1. The key distinction here is
the use of identification accuracy as the performance metric.
Our study includes scenarios with 100, and 1 million users,
reflecting a range of real-world conditions. Utilizing the
same evaluation approach, we generate unified Performance
vs. Quality degradation 2D plots (Figure 19), radar plots for
watermark comparison (Figure 9), and an attack leaderboard
in the identification context (Table 6).

Identification results mirror findings from detection,
showing similar trends in watermark robustness and at-
tack effectiveness. Figure 9 and Table 6 reveal that trends in

Figure 9. Identification accuracy of three watermarks after attacks.

watermark robustness and attack potency closely match those
in detection, largely because both rely on precise watermark
decoding. Notably, watermarks become more vulnerable as
user numbers increase, a trend particularly evident in attacks
that already strongly affect detection. Since identification
demands more accurate decoding, its vulnerability ampli-
fies with user growth. Thus, insights gained from detection
scenarios generally apply to identification, especially when
attacks are not identification-specific. However, novel attacks
such as our AdvCls-WM1&WM2, may target user identi-
fication. Watermarking strategies should evolve to address
emerging challenges in both detection and identification.

4.4. Discussions

Understanding watermark vulnerabilities. Tree-Ring is
particularly vulnerable to adversarial attacks likely due to its
unique watermark detection process. The detection first en-
codes an image into a latent space using a VAE encoder, then
reverses the diffusion process to extract the initial noise vec-
tor and compares it with a key. Consequently, the detection
hinges on the integrity of the latent feature space, and thus
disturbances inside this domain significantly hinder water-
mark recovery. Embedding attacks, especially the grey-box
setting, effectively disrupt the latent features without alter-
ing the perceptual appearance of the image, making them
highly effective against Tree-Ring. We also observe a sim-
ilar phenomenon for surrogate detector attacks (Figure 21,
Figure 22), which also successfully disturb latent features,
including those related to the watermark. Stable Signature
is vulnerable to regeneration attacks due to its unique water-
marking protocol. Recall that latent diffusion models first
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perform diffusion in the latent space, and then map back to the
image space through a VAE decoder. To embed watermarks,
Stable Signature roots the watermark in the VAE decoder
by training. However, regeneration attacks circumvent this
special decoder by using an alternate VAE or diffusion model
with a different decoder. As a result, the regenerated images
are stripped of the original watermarks.

Limitations of attacks. As shown in Table 5, we focus on
realistic attacks where attackers have very limited knowl-
edge, unaware of the watermarking algorithm in all scenarios.
Distortion, regeneration, and adversarial embedding attacks
(except for the grey-box setting) are universal attacks that
do not use any watermark or model information. Therefore,
their effectiveness may vary. Adversarial surrogate detector
attacks target a watermark by training a surrogate detector
on watermarked images. However, we found that they do not
always work due to the transferability problem. That is, since
the attackers do not know the true detector, the architecture of
the surrogate detector (e.g., ResNet18 in this paper) may dif-
fer significantly from the true one. Additionally, there might
be many features that can distinguish non-watermarked and
watermarked images. Hence, despite achieving high classifi-
cation accuracy, the surrogate may rely on features different
from those of the true detector, leading to unsuccessful trans-
fer of attacks. Enhanced attacker knowledge, such as the
watermarking algorithm, could facilitate more effective ad-
versarial attacks, as explored in (Lukas et al., 2023).

Potential strategies to improve robustness. Although we
reveal many vulnerabilities of existing watermarks, there are
potential ways to improve them. For watermarks which rely
on image perturbations for encoder/decoder training (Ste-
gastamp, Stable Signature), including more types of trans-
formations may improve robustness. For example, we have
observed in internal testing that training Stable Signature’s
extractor with blur and rotation transformations as data aug-
mentations improves its robustness to these transformations
but also marginally reduces the encoded image quality. Sim-
ilar to blur and rotation, we can add other transformations
such as adversarial perturbations and regeneration as data
augmentations to improve robustness towards them.

There is also ample opportunity to improve the algorithmic
frameworks themselves. For example, Tree-Ring relies on
DDIM inversion, which we found is not accurate even with-
out attack, directly affecting the watermark detection accu-
racy. Future work can improve it by incorporating cutting-
edge techniques on more accurate DDIM inversion. For wa-
termarks such as Tree-Ring, one may also insert a trainable
U-Net which restores the watermark before it is extracted.
Such a strategy may degrade the image to enhance the signal
of the message, but this is irrelevant from the perspective of
the image owner whose only goal is to simply detect their
watermark.

For more agnostic strategies: (1) Incorporating redundant
bits. This technique, known as error correction coding, can
help reconstruct the original message even when parts of
the watermark are corrupted. (2) A hybrid approach. Since
different watermarks have varied vulnerabilities, one can try
to combine different watermarks, leveraging their strengths
to defend a wider range of attacks.

4.5. Summary of Takeaway Messages

WAVES provides a standardized framework for bench-
marking watermark robustness and attack potency.
WAVES evaluates both detection and identification tasks. It
unifies the quality metrics and assesses attack potency against
both performance degradation and quality degradation. The
Performance vs. Quality 2D plots allow for a comprehensive
analysis of various watermarks in one unified framework.
With over twenty attacks tested, WAVES exposes new vul-
nerabilities in popular watermarking techniques.

Different watermarking methods have different vulnera-
bilities. Our analysis reveals significant differences in water-
mark vulnerabilities against attacks. Specifically, Tree-Ring
is more vulnerable to adversarial attacks, which generally
cause less quality degradation, while Stable Signature is
susceptible to most regeneration attacks. This diversity in
vulnerabilities highlights the imperative for watermarking
methods to identify and strengthen their specific weak areas.

Avoid using publicly available VAEs. WAVES demon-
strates the risks of using publicly available VAEs in water-
marked diffusion models. An adversarial embedding attack
using the same VAE easily compromises Tree-Ring by al-
tering latent features with little visual change. Stable Signa-
ture’s design renders it vulnerable to regeneration attacks that
use a VAE with an encoder identical to the victim model’s
VAE encoder, while coupled with a different decoder. To-
day’s proprietary generators, like DALL·3, typically train the
latent diffusion model themselves but use a publicly avail-
able VAE. This practice, especially with Tree-Ring or Stable
Signature watermarking, increases vulnerability, pointing to
a critical security concern in those popular AI services.

The robustness of StegaStamp potentially illuminates a
path for future robust watermarks. The StegaStamp wa-
termark (Tancik et al., 2020) stands out in our evaluation
for its robustness. Designed for physical-world use which
requires high robustness, StegaStamp is trained with a series
of distortions that mimic real-world scenarios, significantly
enhancing its robustness. However, it’s important to recog-
nize the potential trade-off between watermark robustness
and quality. As a post-processing method, the original paper
finds that StegaStamp may introduce artifacts. In contrast,
this might not pose a problem for in-processing watermarks.
Therefore, in-processing watermarks could still benefit from
incorporating augmentation or adversarial training.
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A. A Mini Survey of Image Watermarks
In this section, we detail the existing landscape of watermarking approaches in the era of AI-Generated Content (AIGC)
everywhere. Figure 10 depicts our scenario of interest. First, an AI company/owner embeds a watermark into its generated
images. Then, if the owner is shown one of their watermarked images at a later point in time, they can identify ownership
of it by recovering the watermark message. Commonly, users might modify watermarked images for legitimate personal
purposes. There are also instances where users attempt to erase a watermark for malicious reasons, such as disseminating fake
information or infringing upon copyright. For simplicity, we term any image manipulation as an “attack.”

Figure 10. An illustration of a robust watermarking workflow. An AI company provides two services: (1) generate watermarked images,
i.e., embed invisible messages, and (2) detect these messages when shown any of their watermarked images. There is an attack stage between
the watermarking and detection stages. The watermarked images may experience natural distortions (e.g., compression, re-scaling) or
manipulated by malicious users attempting to remove the watermarks. A robust watermarking method should still be able to detect the
original message after an attack.

Watermarking AI-generated Images. Imprinting invisible watermarks into digital images has a long and rich history.
From conventional steganography to recent generative model-based methods, we categorize popular watermarking techniques
into two categories: post-processing methods and in-processing methods.

Post-processing approaches embed post-hoc watermarks into images. When watermarking AI-generated images, we apply
such methods after the generation process. Post-processing watermarks are model-agnostic and applicable to any image.
However, they sometimes introduce human-visible artifacts, compromising image quality. We review popular post-processing
methods.

P1) Frequency-domain methods. These methods manipulate the representation of an image in some transform domain (ó Ru-
anaidh et al., 1996; Cox et al., 1996; O’Ruanaidh & Pun, 1997). The image transform can be a Discrete Wavelet Transform
(DWT), Discrete Cosine Transform (DCT) (Cox et al., 2007), or SVD decomposition (Chang et al., 2005). These transforma-
tions have a range of invariance properties that make them robust to translation and resizing. The commercial implementation
of Stable Diffusion (Rombach et al., 2022) uses DWTDCT (Al-Haj, 2007) to watermark its generated images. However, many
studies have shown that these watermarks are vulnerable to common image manipulations (Zhao et al., 2023a).

P2) Deep encoder-decoder methods. These methods rely on trained networks for embedding and decoding the watermark
(Hayes & Danezis, 2017). Methods such as HiDDeN (Zhu et al., 2018) and RivaGAN (Zhang et al., 2019) learn an encoder
to imprint a hidden message inside an image and a decoder (also called a detector) to extract the message. To train robust
watermarks, RedMark (Ahmadi et al., 2020) integrates differentiable attack layers between the encoder and decoder in the
end-to-end training process; RivaGAN (Zhang et al., 2019) employs an adversarial network to remove the watermark during
training; StegaStamp (Tancik et al., 2020) adds a series of strong image perturbations between the encoder and decoder during
training, resulting in watermarks which are robust to real-world distortions caused by photographing an image as it appears on
a display.

P3) Others. There are other varieties of post-processing methods that do not fall into P1 or P2. SSL (Fernandez et al.,
2022) embeds watermarks in self-supervised-latent spaces by shifting the image’s features into a designated region. Deep-
Signs (Rouhani et al., 2018) and DeepMarks (Chen et al., 2019) embed target watermarks into the probability density functions
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of weights and activation maps. Entangled watermarks (Jia et al., 2021a) designs a reinforced watermark based on a target
watermark and the task data.

In-processing methods adapt generative models to directly embed watermarks as part of the image generation process,
substantially reducing or eliminating visible artifacts. With diffusion models presently dominating the field of image
generation, a surge of in-processing approaches specific to these models has recently emerged. We categorize current work
into three categories.

I1) Model modification. The entire model. This line of work inherits the encoder-decoder idea and bakes the encoder into the
entire generative model. This is usually accomplished by watermarking training images with a pre-trained watermark encoder
and decoder, then training or fine-tuning the generative model on these watermarked images (Yu et al., 2021; Zeng et al., 2023;
Lukas & Kerschbaum, 2023). This type of method has been shown to work well on small models like guided diffusion, but
suffers from the expensive training of large text-to-image generation models (Zhao et al., 2023b), making it inapplicable in
practice.

Parts of the model. Stable Signature (Fernandez et al., 2023) follows the above two-stage training pipeline while only fine-
tuning the decoder of the latent-diffusion model (LDM) (Rombach et al., 2022), leaving the diffusion component unchanged.
This type of watermarker is much more efficient to train. By fine-tuning multiple latent decoders, the model can embed
different messages into images.

The robustness of these two types of model modification critically relies on the robustness of the pre-trained encoder and
decoder.

I2) Modification of a random seed. Tree-Ring (Wen et al., 2023), different from all the above methods, embeds a pattern into
the initial noise vector used by a diffusion model for sampling. The pattern can be retrieved at detection time by inverting the
diffusion process using DDIM (Song et al., 2020) as the sampler. This method does not require any training, can easily embed
different watermarks, and is robust to many simple distortions and attacks. The robustness of Tree-Ring relies on the accuracy
of the DDIM inversion.

Removing Watermarks Robustness is an essential property of watermarks. Evaluations of robustness in existing literature
focus on simple image distortions like rotation, Gaussian blur, etc. Recently, inspired by adversarial purification (Nie et al.,
2022), Zhao et al. (2023a) and Saberi et al. (2023) both find that regenerating images by noising and denoising images through
a diffusion model or a VAE can effectively remove some watermarks. Saberi et al. (2023) propose adversarial attacks based on
a trained surrogate watermark detector. Lukas et al. (2023) also introduces adversarial attacks but requires the knowledge
of the watermarking algorithm and a similar surrogate generative model. Jiang et al. (2023) studies white-box attacks and
black-box query-based attacks. Some attacks are not possible in realistic scenarios where the attacker has only API access.
Furthermore, existing evaluations use differing quality/performance metrics, making it difficult to compare the effectiveness
between watermarking methods and between attacks.

Benchmarks for Image Watermarks. Before the advent of AIGC, there were significant benchmarks introduced that greatly
accelerated the progress of watermark standardization (Kutter & Petitcolas, 1999; Tao et al., 2014; Petitcolas, 2000). However,
with the development of AIGC, the need to watermark images generated by AI has become urgent, as previous methods were
weak in robustness and could not meet current requirements. Nowadays, more and more methods for watermarking images
generated by AI have been proposed, but they all use different methods to evaluate robustness. Therefore, this paper proposes
a benchmark for the AIGC era.

B. Formalism of Watermark Detection and Identification
Invisible image watermarks, which are inspired by classical watermarks to protect the intellectual properties of creators, are
now applied for a wider range of application scenarios. With the vast development of AI generative models, most current
research focuses on applying invisible watermarks to (1) identify AI-generated images (AI Detection) (Saberi et al., 2023),
and (2) identify the user who generated the image for source tracking (User Identification) (Fernandez et al., 2023).

To fairly evaluate the different watermark methods for different applications, we start from formulating a general, message-
based watermarking protocol, partially adopting the notation of (Lukas et al., 2023), which generalizes most of the existing
setups. Let ✓G denote an image generator, M the space of watermark messages, and X the domain of images. We assume
M is a metric space with distance function D(·,·). The choice of message space M can be very different depending on
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the watermarking algorithm: for Tree-Ring, messages are random complex Gaussians, while for the Stable Signature and
StegaStamp, each message is a length-d binary string, where d denotes the length of the message. For watermarking algorithms
following the encoder-decoder training approach, like Stable Signature and StegaStamp, the choice of message length d is
fixed after training. Some methods, such as Tree-Ring, enjoy flexible message length at the time of injecting watermarks.

In addition to classifying images as watermarked or non-watermarked, a good detector will often provide a p-value for the
watermark detection, which measures the probability that the level of watermark strength observed in an image could occur by
random chance. The Tree-Ring watermark also includes an image location parameter ⌧ to embed a message m2M, but we
subsume this under the parameters of ✓G. We now introduce several important watermarking operations:

• EMBED :✓G⇥M!X is the generative procedure that creates a watermarked image given user-defined parameters of
✓G (such as prompt, guidance scale, etc. for a diffusion model) and a target message m2M.

• DECODE : X ! M is a recovery procedure of a message m embedded within a watermarked image x =

EMBED(✓G,m). In particular, the recovery m
0
=DECODE(x) may be imperfect, i.e., m0 6=m.

• VERIFY↵ :M⇥M! {0,1} is conducted by the model owner to decide whether x was watermarked by inspecting
m

0
=DECODE(x), where x=EMBED(✓G,m). For a decoded message m0, we consider the following p-value (further

discussed in Section C) for evaluating whether the image could have been watermarked using m. which is defined as

p=Pm

�
D(!,m

0
)<D(m,m

0
) |H0

�
,

where, D(!,m
0
) is the similarity between an arbitrary message ! ⇠ M (drawn uniformly at random) and m

0, and
D(m,m

0
) is the similarity between the ground truth message m and the recovered message m0. H0 denotes the null

hypothesis that the image was generated without knowledge of the watermark (and therefore the recovered message is
random). VERIFY↵(m

0
,m) returns 1 if p<↵, and 0 otherwise. In our experiments, we set ↵=0.001.

To establish a comprehensive evaluation toolbox, we consider two distinct problems that naturally arise during watermark
analysis: detection and identification. Let A :X !X represent an image attack function and denote by Q a fixed subset
of messages independently drawn from M used by ✓G. Further, assume that the owner of ✓G will only embed messages
contained within a finite subset Q drawn randomly from M.

B.1. Detection

In the watermark detection problem, given x=EMBED(✓G,m), and an attack x
0
=A(x), the model owner is tasked with

producing EMBED and DECODE protocols which satisfy the following,

(1) If x=EMBED(✓G,m) is a watermarked image, then VERIFY↵(DECODE(x0
))=1.

(2) If x=EMBED(✓G,NULL) is an unwatermarked image, then VERIFY↵(DECODE(x0
))=0.

For both conditions, a comparison of the extracted message m
0
= DECODE(x) is performed against all messages in Q.

Failure of the above conditions is referred to as Type II and Type I errors, respectively. Exploration of the tradeoff between
minimization of both error types is an interesting research topic in its own right (Zhao et al., 2023a; Saberi et al., 2023).

B.2. Identification

While watermark detection requires only that VERIFY(✓G,x
0
)=1, the watermark identification problem further requires that

one can accurately determine which message from Q is embedded in the image. Rigorously, given x=EMBED(✓G,m), an
attack x

0
=A(x), and m

0
=DECODE(✓G,x

0
), the user requires the EMBED and DECODE to satisfy

argmin
m02Q

P
�
D(!,m)<D(m

0
,m) |H0

�
=m,

for randomly drawn !⇠M if x.

The identification problem is useful in the scenario where the model owner wishes to identify the user who created an image
(e.g., a user of DALL·E). Note that as |Q| ! 1, the identification problem becomes difficult as Q will resemble M in
distribution.
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C. Details on Performance Metrics
C.1. Clarifications on p-Value

Here, we clarify the definition of the p-value as follows.

Watermark injection and evaluation are often done by encoding a message m into the image, and later recovering the message
m

0, which may be an imperfect recovery. In addition to classifying images as watermarked or non-watermarked, a good
detector will often provide a p-value for the watermark detection, which measures the probability that the level of watermark
strength observed in an image could happen by random chance. Rigorously, we have

p=Pm

�
D(!,m

0
)<D(m,m

0
) |H0

�
,

where D(!,m
0
) is a dissimilarity metric between an arbitrary message !⇠M (selected uniformly at random) and recovered

message m0 from the image by the detector, and D(m,m
0
) denotes dissimilarity between the ground truth message m and the

recovered message m0. H0 denotes the null hypothesis that the image was generated without knowledge of the watermark
(and therefore, the recovered message is random). The same hypothesis testing can also be applied to user identification.

As in some prior work (Fernandez et al., 2023), one may set a threshold on the estimated p-value to determine the detection
result. However, this approach makes it difficult to compare different watermark methods fairly. Even if we set the same
p-value threshold on all watermark methods, the distinct choice of message spaceM, message distribution Pm, and hypothesis
test may differ. Therefore, we seek to evaluate watermark methods mainly using metrics that are independent of the choice of
p-value threshold and statistical test.

C.2. Performance Metrics for User Identification

For user identification, we also focus on metrics that do not depend on statistical testing and hyperparameters like p-value
thresholds.

The user detection issue involving K users is aptly conceptualized as a K-way classification task. This can be reframed into a
binary classification problem by designating the positive class as the correct user and the negative class as all other users. From
this perspective, the TPR@x%FPR metric becomes applicable, defined for a specific FPR threshold and user count. In our
study, we focus on TPR@0.1%FPR for a scenario involving 1,000 users. The identification performance results are shown
in Section 4.3.

C.3. Other Performance Metrics

While this paper primarily focuses on the TPR@0.1%FPR metric, it’s important to acknowledge other common metrics such
as p-values, AUROC scores, mean accuracies, and bit accuracies.

However, we do not report p-values since their absolute values depend heavily on the chosen statistical test, making them less
comparable across different watermark methods.

AUROC scores, although independent of the choice of p-value threshold and statistical test, have limitations used as a metric
for evaluating watermark detection. In AI-generated image applications, labeling non-watermarked images as watermarked
(false positive) are particularly detrimental. As a result, strict control of false positive rate (FPR) is crucial. However, a high
AUROC does not guarantee a high true positive rate (TPR) at low false positive rate (FPR) levels.

Using message distances such as bit accuracy as a metric for evaluating watermarks’ performance has several limitations:
(1) Insensitivity to error distribution: bit accuracy measures the proportion of correctly identified bits in the watermark but
does not account for the distribution of errors. This means it treats all errors equally, regardless of their impact or pattern. In
watermarking, certain types of errors (like clustered errors) might be more detrimental than others.
(2) Lack of contextual insight: bit accuracy alone doesn’t provide insights into the types of errors (false positives or false
negatives). In watermark detection, understanding the nature of errors is crucial, especially in differentiating between missing
a watermark and incorrectly identifying one.
(3) Threshold dependency: the effectiveness of bit accuracy is dependent on the threshold chosen for determining a bit’s value.
Different thresholds can yield significantly different bit accuracies, making the metric somewhat arbitrary and less reliable for
comparing different watermarking schemes.
(4) Non-representation of overall system performance: bit accuracy focuses narrowly on the correctness of individual bits,
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neglecting the broader context of the watermarking system’s performance, such as its robustness against attacks, computational
efficiency, or impact on image quality.
(5) Potential misleading results in imbalanced cases: in scenarios where the watermark bits are not evenly distributed (e.g.,
more 0s than 1s or vice versa), bit accuracy might give a skewed view of the system’s performance. It could show high
accuracy even if the system is only good at detecting the majority class. For these reasons, it’s often more effective to use a
combination of metrics that can provide a holistic view of the watermarking system’s performance, considering aspects like
error distribution, false positives/negatives, and overall impact on the media.

Although these metrics are not included in the paper, they are incorporated in the benchmark software and available for future
research use.

D. Design Choices of WAVES
D.1. Dataset Preparation

We utilize three datasets for the non-watermarked reference images in our evaluation: DiffusionDB, MS-COCO, and
DALL·E3, each comprising 5000 reference images and prompts. DiffusionDB represents a diverse collection from the
DiffusionDB dataset (Wang et al., 2022), focusing on images generated from the Stable Diffusion (Rombach et al., 2022)
models. MS-COCO is derived from the well-known Microsoft COCO detection challenge (Lin et al., 2014), featuring a wide
range of everyday scenes and objects. DALL·E31 includes images from the DALL·E3 model, showcasing another popular
diffusion model trained on substantially different data. These datasets provide a comprehensive range of image types and
contexts, ideal for robust watermark evaluation.

The three datasets are filtered subsets of the corresponding source dataset using the same filtering algorithm. The source
dataset information is listed below.

• DiffusionDB: the 2m_random_100k split of DiffusionDB dataset (Wang et al., 2022), link.

• MS-COCO: the validation split of the 2017 Microsoft COCO detection challenge (Lin et al., 2014), link.

• DALL·E3: the train split of the dalle-3-dataset repository on HuggingFace, collected from the LAION share-dalle-3
discord channel, link.

The filtering algorithm considers the following rules to subsample the 5,000 image subset:

• Remove columns: Remove irrelevant columns and only keep the reference images and prompt strings.

• Filter prompts: Tokenize the prompt strings by the Open Clip’s tokenizer, and filter out samples with no tokens and more
than 75 tokens. This is because Stable Diffusion (Rombach et al., 2022) truncates prompts at 75 tokens (Wang et al.,
2022).

• Rank images: Rank the images by their aesthetics score, as defined by (Xu et al., 2023), in descending order. We
then select the top 5,000 images, along with their corresponding prompt strings. This approach is adopted because
the DiffusionDB and DALL·E3 datasets, sourced from chat-bots, contain some lower-quality images. We posit that
watermarking holds greater utility for high-quality AI-generated images, as the copyright protection of low-quality
generated images is less meaningful and practical.

In our study, we examined three distinct datasets—DiffusionDB, MS-COCO, and DALL·E3—each characterized by a unique
distribution of prompt words. As illustrated in the word-cloud plots (Figure 11), we observe notable differences. DiffusionDB
predominantly features prompt words that emphasize the desired quality of the generated images, such as “beautiful” and
“highly detailed.” In contrast, MS-COCO’s prompts mainly focus on describing the objects within the images. Meanwhile,
DALL·E3’s prompts show a tendency towards describing aspects of fine arts.

Image examples from the three datasets are illustrated in Figure 12. The reference images for DiffusionDB are produced by
Stable Diffusion, MS-COCO includes real-world photographs, and DALL·E3 contains images generated by the DALL·E3
model. This choice of datasets effectively covers two popular generative models and the real-world scenario, highlighting their
relevance in practical watermarking applications.

1The DALL·E3 dataset is hosted at https://huggingface.co/datasets/laion/dalle-3-dataset.
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(a) DiffusionDB prompts (b) MS-COCO prompts (c) DALL·E3 prompts

Figure 11. Word clouds of DiffusionDB, MS-COCO, and DALL·E3 prompts.

(a) DiffusionDB (b) MS-COCO (c) DALL·E3

Figure 12. Image examples of DiffusionDB, MS-COCO, and DALL·E3.

D.2. Selection of Watermark Representatives

Table 4. A list of alternative watermarking algorithms not tested by WAVES in this work.
Method Known Weakness(es)

DwtDct (Al-Haj, 2007) Distortion (Wen et al., 2023), Purification (Saberi et al., 2023)
DwtDctSvd (Al-Haj, 2007) Distortion (Zhao et al., 2023a; Wen et al., 2023), Purification (Saberi et al., 2023), Regeneration (Zhao et al., 2023a)
RivaGan (Dong et al., 2023) Regeneration (Zhao et al., 2023a), Purification (Saberi et al., 2023)
SSL (Fernandez et al., 2022) Distortion(Zhao et al., 2023a), Regeneration (Zhao et al., 2023a)

WatermarkDM (Zhao et al., 2023b) Purification (Saberi et al., 2023)

Our WAVES framework can be used to stress-test the robustness of any watermark. In this work, however, we focus on
three methods: the Stable Signature, Tree-Ring, and Stegastamp. This is due to existing and extensive studies (Zhao et al.,
2023a; Saberi et al., 2023; Wen et al., 2023) indicating these three methods are far more robust to simple off-the-shelf attacks
than alternative watermarking algorithms listed in Appendix A. We list these competitors along with their documented
vulnerabilities in Table 4.

E. Evaluation Details
In this section, we provide more details on the evaluation scheme of WAVES.

E.1. Watermarking Protocol and Evaluation Workflow.

In-depth information on the applications of invisible image watermarks is provided, focusing on AI detection and user
identification. We delve into the evolution of watermarks from classical copyright protection tools to their modern uses in AI
scenarios. The appendix discusses the specific roles of AI detection in distinguishing AI-created images and user identification
in tracing image origins, citing studies like (Saberi et al., 2023; Fernandez et al., 2023).

The formulation of our watermarking protocol is detailed, explaining the use of an image generator ✓G, a metric space of
watermark messages M, and an image domain X . We elaborate on the variations in the choice of message space M across
different watermark methods. For example, Tree-Ring uses random complex Gaussians, whereas Stable Signature and
StegaStamp use binary strings. The implications of these choices on the flexibility and effectiveness of watermark methods are
discussed.

An extensive analysis of the trade-off between watermark performance and image quality in the context of watermark attacks
is provided. This includes the rationale for using Performance vs. Quality 2D plots for attack comparisons, highlighting the
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comprehensive perspective this offers over traditional performance-focused analyses. The methodology of our evaluation
process is laid out in detail, describing how we compare watermarked images from model ✓G with a mixed set of real and
AI-generated images to achieve a robust and unbiased assessment. This section also covers the specific metrics used, including
TPR@0.1%FPR and various image quality metrics, and how they are integrated into a consolidated performance vs. quality
analysis.

E.2. Performance Evaluation Metrics

The evaluation approach in WAVES addresses the challenges of using p-values for fair watermark method comparison. The
diversity in message spaces M, distributions Pm, and hypothesis tests can lead to biased results when traditional p-value
thresholds are used. Our metrics, designed to be independent of these thresholds and tests, offer a balanced and thorough
evaluation of watermark methods, focusing on their inherent strengths in encoding and recovering messages.

Emphasizing TPR@x%FPR, particularly at the low FPR of 0.1%, sets WAVES apart in evaluating watermark methods. This
novel approach, inspired by studies like Wen et al. (2023); Fernandez et al. (2023), challenges watermark methods beyond
typical benchmarks such as TPR@1%FPR. Applied to a broader image dataset, it provides a more comprehensive evaluation
of their effectiveness. In user identification, WAVES’s multi-class classification approach assesses watermark methods’
efficacy in correctly attributing users. The appendices detail the methodology’s implementation and present additional results,
demonstrating the effectiveness and accuracy of our approach in various user identification scenarios.

We treat the user identification problem as a multi-class classification task, as outlined in Section 3.1. This involves defining a
set of ground-truth messages, each corresponding to a unique user. To avoid the exhaustive evaluation process (watermark
encoding, attacking, and decoding) for varying numbers of users, we consistently watermark images with the same message,
the ground-truth message of the first user, and generate a random set of ground-truth messages for the remaining users at the
time of evaluation. This approach is feasible since the ground-truth messages for users other than the first do not influence
the watermarking or attack phases. We conduct the identification assessment ten times with ten distinct random sets of
ground-truth messages for the other users, and we report the mean multi-class classification accuracy.

E.3. Processing Results

A set of Performance vs. Quality 2D plots show the detailed evaluation results. We evaluate 3 watermarking methods
under the 26 attacks, and report results across 3 datasets in Figure 25 to Figure 30. The quality of images post-attack is
evaluated using 8 metrics and the detection performance of 3 methods is measured by TPR@0.1%FPR.

Figure 13. Ranking attacks with different quality metrics on DiffusionDB images watermarked by Tree-Ring. Attack potency is ranked
by image quality at 0.95 TPR@0.1%FPR. Colors indicate the ranks (1=best, 9=worst), and values show the measured quality. We use ’NA’
to label an attack if its attack curve lies entirely above TPR=0.95; the attack is automatically ranked last.

Different quality metrics yield similar ranking of attacks. Despite measuring different aspects of image quality, we observe
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Figure 14. Cumulative distribution functions (CDFs) for eight image quality metrics across all attacked watermarked images. The horizontal
dashed lines mark the 10% and 90% quantiles, and the intersecting vertical dashed lines delineate the bounds of the normalization intervals.
Values at the lower bound are normalized to 0.1, and those at the upper bound to 0.9.

that eight quality metrics consistently produce similar rankings for attacks, as illustrated in Figure 13. Since a strong attack
should remove the watermark without sacrificing the image quality, we rank attack potency by ranking the post-attack quality,
from best to worst, at a frozen performance threshold (e.g., TPR@0.1%FPR=0.95). Upon comparing the rankings derived
from different quality metrics, we find that the variations in rank order are minimal. Consequently, we aggregate these metrics
into a single, unified quality metric.

Unified Performance vs. Quality degradation 2D plots. We first set the “standardized” 0.1 and 0.9 points for each metric
according to the distribution of measured values (as depicted in Figure 14). Subsequently, every metric’s value is normalized
to predominantly fall within the [0.1,0.9] range of the normalized quality metric (the detailed methodology is provided in
Appendix E.4). We average these normalized quality scores to derive the Normalized Quality Degradation, with lower scores
indicating lesser quality degradation caused by attacks, which is preferred. Furthermore, we aggregate the results across three
distinct datasets. The Performance vs. Quality degradation 2D plots, as shown in Figure 7, visualize the unified evaluation
results for each watermarking method. We use unified Performance vs. Quality degradation 2D plots to benchmark watermarks
and attacks in the following sections.

E.4. Normalization and Aggregation of Quality Metrics

The eight quality metrics in WAVES exhibit unique range characteristics. To synthesize these into a single metric, we normalize
each metric into a common interval, assigning the 10% quantile of all attacked images as the 0.1 point, and the 90% quantile as
the 0.9 point. This normalization is based on a comprehensive dataset covering 26 attack methods, three watermark methods,
and three datasets. Our focus is on specific applications, particularly attacking invisible image watermarks. The normalization
process is informed by the cumulative distribution functions (CDFs) of these metrics, which exhibit a roughly linear distribution
between the 10% and 90% quantiles, but a non-linear pattern outside this range. This observation is particularly evident in
metrics like PSNR. The normalization method ensures values carry equivalent significance across different metrics. Figure 14
in this appendix provides a visual representation of the CDFs across all metrics. After normalization, metrics are aggregated by
averaging to form the comprehensive quality metric, utilized in Section 4 for Performance vs Quality plots, watermark radar
plots, and attack leaderboards. This section elaborates on the normalization and aggregation process, providing a foundation
for understanding the metric’s application and significance.

In Figure 14, the cumulative distribution functions (CDFs) for eight image quality metrics over all attacked watermarked images
are presented. This illustration includes the metric values at the 10% and 90% quantiles, which are used as the boundaries
for normalizing the metric values within the range of [0.1,0.9]. Such normalization ensures that all normalized metrics
exhibit a comparable statistical distribution over attacked watermarked images, facilitating an unbiased aggregated evaluation.
To consolidate these normalized metrics, we first calculate the average within each of the four defined categories (image
similarities, distribution distances, perception-based metrics, and image quality assessments) as delineated in Section 3.1.
Subsequently, the average of these category averages is calculated to yield a single, consolidated normalized, and aggregated
quality metric.
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E.5. Details of Benchmarking Watermarks

When benchmarking watermark robustness in Figure 8 and Figure 9, we consider the following effective attacks. We select 21
attacks from 26 attacks. We include all distortion attacks. We select the two most effective single regeneration attacks and two
rinsing attacks. For adversarial attacks, we do not include AdvEmbB-RN18, and AdvCls-Real&WM since they basically
do not work. We also eliminate AdvCls-UnWM&WM and only use AdvCls-WM1&WM2 to represent surrogate detector
attacks since AdvCls-UnWM&WM is based on an unrealistic assumption. For each type of attack, we compute Average
TPR@0.1%FPR across all practical strength levels that cause quality degradation less than 0.8, and across all attacks in each
category.

• Distortion Single: Dist-Rotation, Dist-RCrop, Dist-Erase, Dist-Bright, Dist-Contrast, Dist-Blur, Dist-Noise, Dist-JPEG.

• Distortions Combination: DistCom-Geo, DistCom-Photo, DistCom-Deg, DistCom-All.

• Regeneration Single: Regen-Diff, Regen-KLVAE.

• Regeneration Rinsing: Regen-2xDiff, Regen-4xDiff.

• Adv Embedding Grey-box: AdvEmbG-KLVAE8.

• Adv Embedding Black-box: AdvEmbB-CLIP, AdvEmbB-SdxlVAE, AdvEmbB-KLVAE16.

• Adv Surrogate Detector: AdvCls-WM1&WM2.

E.6. Details of Benchmarking Attacks

In addition to benchmarking watermarks, WAVES also facilitates the analysis from the perspective of attacks. Table 3
provides a leaderboard of individual attacks. A strong attack should result in low post-attack detection performance while
simultaneously preserving image quality for practical uses. Therefore, we benchmark attacks according to both performance
and quality degradation. Based on three Performance vs. Quality 2D plots in Figure 7, we first select two performance
thresholds, TPR@0.1%FPR=0.95 and TPR@0.1%FPR=0.7, ensuring intersections with most attack curves. Then, we
calculate the quality degradation for each attack at these two performance thresholds, denoted as Q@0.95P and Q@0.7P.
Given that some attack curves do not intersect with either threshold, we also compute each attack’s average performance and
quality degradation across all strengths, termed as Avg P and Avg Q. We report these metrics — Q@0.95P, Q@0.7P, Avg P,
and Avg Q — for attack comparison. Based on them, we also provide a ranking of 26 attacks for each watermarking method for
reference. During this ranking process, we incorporate a 0.01 buffer for both P and Q, meaning that if the difference between
any two values is less than 0.01, they are considered a tie in terms of ranking.

F. Details of Attacks
F.1. Distortion Attacks

For single distortions, we consider, as described in Section 3.2, eight types: rotation, resized-crop, random erasing, brightness
adjustment, contrast adjustment, Gaussian blur, Gaussian noise, and JPEG compression. For each distortion, we consider five
evenly distributed distortion strengths between minimum and maximum; the minimums and maximums are listed as follows.

• Rotation: rotate 9� to 45� clock-wise.

• Resized-crop: crop 10% to 50% of the image area.

• Random erasing: erase 5% to 25% of the image area and fill with gray color.

• Brightness adjustment: increase image brightness by 20% to 100%.

• Contrast adjustment: increase image contrast by 20% to 100%.

• Gaussian blur: blur with kernel size from 4 to 20 pixels.

• Gaussian noise: add Gaussian random noise with standard deviation from 0.02 to 0.1 (when pixel values normalized to
[0, 1]).
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Table 5. The knowledge of attackers

Attacks Know Watermark
Algorithm

Know Victim
Model Know Data Training

Distortion All 7 7 7 7

Regeneration
Regen-DiffP 7 7 user prompts 7

Regen-KLVAE 7
VAE encoder (only
bottleneck size 8) 7 7

Others 7 7 7 7

Adversarial
Embedding

AdvEmbG-KLVAE8 7 VAE encoder 7 7
Others 7 7 7 7

Adversarial
Surrogate
Detector

AdvCLS-UnWM&WM 7 7
watermarked and

non-watermarked images
from the victim model

3

AdvCLS-Real&WM 7 7 watermarked images 3

AdvCLS-WM1&WM2 7 7
watermarked images

from two users 3

• JPEG compression: compress with JPEG quality score from 90 to 10.

It is worth noting that our strength selections are more conservative than most of the watermark papers, such as (Wen et al.,
2023; Fernandez et al., 2023). This is because we want to keep the image quality after distortion within a reasonable interval
compared to the other attacks. While some watermark papers intentionally select unreasonably large distortion strength
(for example, cropping 90% of image area in (Fernandez et al., 2023), or Gaussian blurring with kernel size 40 (Wen et al.,
2023)) to demonstrate their robustness under some distortions. We implement the distortions following the standard image
augmentations in the torchvision library.

For combinations of distortions (also called combo distortions in paper for short), we apply each single distortion with the
same relative strength, where the relative strength is between 0 and 1, normalized with respect to the minimum and maximum
strengths above. For combinations of geometric, photometric, and degradation distortions, we consider five evenly distributed
normalized strengths from 0.05 to 0.45. For combinations of all distortions, we consider five evenly distributed normalized
strengths from 0.05 to 0.20. The relative strengths are selected for reasonable image qualities after distortions again.

(a) Geometric distortions (PSNR ") (b) Degradation distortions (PSNR ")

Figure 15. Distortions and their combinations. We combine three types of distortions: geometric, photometric, and degradation, both
individually and collectively. By comparing quality-performance plots, we see combinations of distortions do not necessarily lead to better
attacks.

F.2. Regeneration Attacks

Following the language of Section 3, regeneration attacks (Zhao et al., 2023a) use off-the-shelf VAEs and diffusion models
to transfer a target image x2X to a latent representation followed by a restoration to x

0 2X that is faithful to its original
representation, i.e., x0⇡x. Since the chosen VAE or diffusion model will not be contained by the attacker’s model of interest,
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the entire regeneration is likely to disrupt the latent representation of x, thereby damaging an embedded watermark. However,
since the capacity of the attacker’s regenerative model is inferior to the target model, x0 will likely be of reduced quality. In this
work, the target model is Stable Diffusion v2.1 while the surrogate model used for regeneration is Stable Diffusion v1.4.

Figure 3 demonstrates that a long diffusion or low-quality VAE attack will significantly reduce watermark detectability
but at the expense of reduced image quality, which is clear by visual inspection of the sequence of images in Figure 16.
Rising regenerations achieve similar reductions in detection, although too deep of rinsing regenerations (>30 noising steps)
significantly alter image quality as evidenced by Figure 17.

(a) Regen-Diff-40 (b) Regen-Diff-120 (c) Regen-Diff-200 (d) Regen-VAE-1

Figure 16. Regenerative diffusion with varying depth of noising steps and a VAE regeneration with a low quality factor.

(a) Rinse-4xDiff-10 (b) Regen-4xDiff-30 (c) Regen-4xDiff-50

Figure 17. 4x rinsing regeneration with varying depth of noising steps per diffusion.

F.2.1. PROMPTED REGENERATION

We propose a simple variation on a regenerative diffusion attack: if an image is produced via a known prompt, then an attacker
uses the prompt to guide the diffusion of their surrogate model. This type of attack is reasonable and realistic for users of
online generative models such as DALL·E or Midjourney. Figure 3 and Tables 6 & 3 indicate that this type of attack, labeled
Regen-DiffP is slightly stronger than conventional Regen-Diff.

F.2.2. MIXED REGENERATION

Mixed regeneration refers to any style of attack that uses a regenerative diffusion on an image followed by VAE-style
regeneration for the purposes of denoising. In Figure 3, we label examples of such attacks as RinseD-VAE and RegenD-KLVAE,
which respectively denote VAE and KLVAE denoising following a 4x rinsing regeneration with 50 steps (Rinse-4xDiff-50).
According to Figure 3, such a combination improves PSNR and CLIP-FID, as opposed to a Rinse-4xDiff alone. The restorative
effects of mixed regeneration are visually observable for shallower (i.e., 2x or 3x) rinsing regenerations, as depicted in Figure
18. We do not extensively study or rank such attacks in this work, but include them as a future topic of research.

All tested regeneration attacks are summarized as follows, with five evenly divided strengths between the listed minimum and
maximum unless specified otherwise:

• Regeneration via diffusion: passes an image through Stable Diffusion v1.4 with strength as the number of noise/de-noising
steps timesteps, 40 to 200.
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(a) Unattacked (b) Rinse-3xDiff (c) Rinse-3xDiff+VAE

Figure 18. An image of a dragon attacked using a 3x rinsing regeneration. Pushing the image through a VAE restores image quality,
noticeable in the eye color of the dragon (indicated by the green box). Image is drawn from the Gustavosta Stable Diffusion dataset available
@ https://huggingface.co/datasets/Gustavosta/Stable-Diffusion-Prompts.

• Regeneration via prompted diffusion: passes an image through Stable Diffusion v1.4 conditioned on its generative prompt
with strength as the number of noise/de-noising steps timesteps, 40 to 200.

• Regeneration via VAE: Image is encoded then decoded by a pre-trained VAE (bmshj2018) (Ballé et al., 2018) with
strength as quality level from 1 to 7.

• Regeneration via KL-VAE: Image is encoded and then decoded by a pre-trained KL-regularized autoencoder with strength
as bottleneck sizes 4, 8, 16, or 32.

• Rinsing generation 2x: an image is noised then de-noised by Stable Diffusion v1.4 two times with strength as number of
timesteps, 20-100 (per diffusion).

• Rinsing generation 4x: an image is noised then de-noised by Stable Diffusion v1.4 two times with strength as number of
timesteps, 10-50 (per diffusion).

• Mixed Regeneration via VAE: an image passed through a rinsing regeneration 4x (for 50 timesteps each) and then a VAE
with strength as quality level from 1-7.

• Mixed Regeneration via KL-VAE: an image passed through a rinsing regeneration 4x (for 50 timesteps each) and then a
KL-VAE with strength as bottleneck sizes 4, 8, 16, or 32.

F.3. Adversarial Attacks

F.3.1. EMBEDDING ATTACK

The embedding attacks use off-the-shelf encoders and perform untargeted attacks. We use the Projected Gradient Descent
(PGD) algorithm (Madry et al., 2017) to optimize the adversarial examples. We conduct the attack using a range of perturbation
budgets ✏, specifically {2/255, 4/255, 6/255, 8/255}. All the attacks are configured with a step size of ↵=0.05⇤✏ and the
number of total iterations of 200. The attacks are on the watermarked images, aiming to remove the watermarks by perturbing
their latent representations.

F.3.2. SURROGATE DETECTOR ATTACK

Figure 5 illustrates the three settings of training the surrogate detectors. In all three settings, we train the surrogate detectors
by fine-tuning the ResNet182 for 10 epochs with a learning rate of 0.001 and a batch size of 128. The training images are
either generated by the victim generator with the ImageNet text prompts "A photo of a {ImageNet class name}," or real
ImageNet images. We randomly shuffle those images and build the binary training set according to each setting. In the
AdvCls-UnWM&WM setting, we train the surrogate detector with 3000 images (1500 images per class) since we find a

2https://pytorch.org/vision/main/models/generated/torchvision.models.resnet18.html
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larger training set might have the overfitting problem. In the AdvCls-Real&WM and AdvCls-WM1&WM2 settings, we train
the surrogate detector with 15000 images (7500 images per class). The watermarked images in AdvCls-WM1&WM2 are
embedded with two distinct messages. One message is the one used in the test watermarked images. The other one is randomly
generated. In all three settings, we use 5000 images (2500 images per class) for validation (derived from the same source as
the training set), and the training yields nearly 100% validation accuracy in all cases.

After completing the training phase, the adversary executes a Projected Gradient Descent (PGD) attack on the surrogate
detector using the testing data (DiffusionDB, MS-COCO, DALL·E3). In all three settings, we conduct the attack using a range
of perturbation budgets ✏, specifically {2/255, 4/255, 6/255, 8/255}. The attack is configured with a step size of ↵=0.01⇤✏
and the number of total iterations of 50. By flipping the label, the adversary can either try to remove the watermarks or add the
watermarks. The analyses of results appear in Appendix G.2.

G. Additional Results
G.1. More Results for Identification

Figure 19 shows the Performance vs. Quality degradation plots under the user identification setting. Table 6 presents the
ranking of attacks in the identification setup.

Figure 19. Aggregated performance vs. quality degradation 2D plots under identification setup (one million users). We evaluate each
watermarking method under various attacks. Two dashed lines show to thresholds used for ranking attacks.

G.2. More Analyses on Surrogate Detector Attacks

The AdvCls-UnWM&WM attack leverages a surrogate model to distinguish between images that are watermarked and
those that are not. As demonstrated in Figure 6, the PGD attack is effective in removing watermarks by flipping the label of
watermarked images. This raises a question: Is it possible to similarly ‘add’ watermarks to clean images by flipping their
labels? This process, commonly referred to as a spoofing attack, which demonstrates a false detection of watermarks in clean
images, is explored in our study.

However, as illustrated in Figure 20, our attempts to add watermarks to clean images by simply flipping the labels were
unsuccessful. In this experiment, detailed in Figure 20, we focus exclusively on unwatermarked images, aiming to introduce
watermarks, while leaving already watermarked images untouched. Despite employing the most intensive perturbations,
we were unable to artificially add watermarks to these images. This outcome leads to an intriguing inquiry: Why is the
technique effective in removing watermarks but not in adding them? We delve into the underlying reasons for this asymmetry
in Figure 21.
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Table 6. Comparison of attacks across three watermarking methods under the identification setup (one million users). Q denotes the
normalized quality degradation and P denotes the performance as derived from aggregated 2D plots. Q@0.7P measures quality degradation
at a 0.7 performance threshold where "inf" denotes cases where all tested attack strengths yield performance above 0.7, and "-inf" where all
are below. Q@0.4P is defined analogously. Avg P and Avg Q are the average performance and quality over all the attack strengths. The
lower the performance and the smaller the quality degradation, the stronger the attack. For each watermarking method, we rank attacks by
Q@0.7P, Q@0.4P, Avg P, Avg Q, in that order, with lower values (#) indicating stronger attacks. The top 5 attack of each watermarking
method are highlighted in red.

Attack Tree-Ring Stable Signature StegaStamp
Rank Q@0.7P Q@0.4P Avg P Avg Q Rank Q@0.7P Q@0.4P Avg P Avg Q Rank Q@0.7P Q@0.4P Avg P Avg Q

Dist-Rotation 8 -inf 0.434 0.131 0.648 12 0.613 0.642 0.400 0.650 4 0.454 0.500 0.288 0.616
Dist-RCrop 11 -inf 0.592 0.094 0.463 24 inf inf 0.972 0.461 6 0.602 0.602 0.494 0.451
Dist-Erase 26 inf inf 0.986 0.490 25 inf inf 0.988 0.489 25 inf inf 1.000 0.483
Dist-Bright 22 inf inf 0.913 0.304 23 inf inf 0.982 0.305 22 inf inf 0.995 0.317

Dist-Contrast 23 inf inf 0.949 0.243 20 inf inf 0.979 0.243 17 inf inf 0.994 0.231
Dist-Blur 21 1.105 1.437 0.551 1.221 5 -inf -inf 0.000 1.204 9 0.897 0.970 0.280 1.198

Dist-Noise 16 0.427 inf 0.728 0.395 8 0.415 0.480 0.633 0.390 24 inf inf 1.000 0.360
Dist-JPEG 17 0.499 0.499 0.700 0.284 9 0.485 0.485 0.540 0.284 21 inf inf 0.995 0.263

DistCom-Geo 9 -inf 0.559 0.105 0.768 13 0.788 0.835 0.519 0.767 7 0.676 0.717 0.359 0.733
DistCom-Photo 23 inf inf 0.947 0.242 20 inf inf 0.981 0.243 17 inf inf 0.994 0.239
DistCom-Deg 18 0.556 0.864 0.570 0.694 7 0.216 0.281 0.183 0.679 8 0.870 0.957 0.737 0.664
DistCom-All 10 -inf 0.575 0.123 0.908 11 0.550 0.623 0.176 0.900 10 0.995 1.096 0.682 0.870

Regen-Diff 6 -inf 0.307 0.258 0.323 1 -inf -inf 0.000 0.300 2 0.333 inf 0.766 0.327
Regen-DiffP 6 -inf 0.308 0.256 0.327 1 -inf -inf 0.000 0.303 1 0.336 0.356 0.763 0.329
Regen-VAE 19 0.578 0.578 0.701 0.348 10 0.545 0.545 0.340 0.339 23 inf inf 1.000 0.343

Regen-KLVAE 14 0.257 inf 0.810 0.233 6 -inf -inf 0.047 0.206 17 inf inf 0.999 0.240
Rinse-2xDiff 5 -inf 0.270 0.220 0.357 3 -inf -inf 0.000 0.332 3 0.390 0.402 0.778 0.366
Rinse-4xDiff 1 -inf -inf 0.110 0.466 4 -inf -inf 0.000 0.438 5 0.488 0.676 0.687 0.477

AdvEmbG-KLVAE8 4 -inf 0.168 0.259 0.253 20 inf inf 0.985 0.249 17 inf inf 1.000 0.232
AdvEmbB-RN18 15 0.288 inf 0.811 0.218 17 inf inf 0.990 0.212 14 inf inf 1.000 0.196
AdvEmbB-CLIP 20 0.697 inf 0.798 0.549 26 inf inf 0.991 0.541 25 inf inf 1.000 0.488

AdvEmbB-KLVAE16 12 0.158 0.309 0.540 0.238 19 inf inf 0.983 0.233 14 inf inf 1.000 0.206
AdvEmbB-SdxlVAE 13 0.214 inf 0.692 0.221 17 inf inf 0.986 0.219 14 inf inf 1.000 0.204

AdvCls-UnWM&WM 2 -inf 0.123 0.352 0.145 14 inf inf 0.991 0.101 11 inf inf 1.000 0.101
AdvCls-Real&WM 25 inf inf 0.986 0.047 14 inf inf 0.990 0.092 11 inf inf 1.000 0.106

AdvCls-WM1&WM2 2 -inf 0.118 0.343 0.139 14 inf inf 0.991 0.084 13 inf inf 1.000 0.129

Figure 20. The spoofing attack fails for AdvCls-UnWM&WM.

The insights from Figure 21 reveal that the surrogate model does not exactly remove the watermark. Instead, it perturbs the
watermark along with other features within the latent space. The disturbance alone is sufficient to confuse the detector, making
it challenging to recognize the watermark. In contrast, successfully adding watermarks requires precise modifications in the
latent space, rather than mere perturbations, which proves to be a more challenging task. The relative imprecision of this attack
may stem from the ‘transferable gap’ between the surrogate model and the ground-truth detector. Notably, for the purpose of
watermark removal, perturbing the latent space proves to be adequately effective.

These findings have led to the development of our proposed AdvCls-WM1&WM2 attack, which utilizes images watermarked
with different messages (e.g., collected from two users, User1 and User2). The essential requirement for this approach is
the surrogate model’s ability to map images to the generator’s latent space. This mapping allows the attacker to perturb the
latent space, removing the watermark. In contrast to the AdvCls-UnWM&WM approach, which uses both watermarked
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Figure 21. Visualization of AdvCls-UnWM&WM attack. (a) shows the watermarking mask of Tree-Ring where there are four channels, and
we only watermark the last channel. The watermark message is the rings, which contain ten complex numbers that are not shown in the
figure. (b) and (c) show the inversed latent before and after the attack in the Fourier space. We only show the real part of the latent. Clearly,
the rings exist before the attack and vanish after the attack. (d) shows the magnitude of the element-wise difference before and after the
attack. The attack not only perturbs the watermark part but also other features. The average magnitude change of the watermark-part and
non-watermark-part is around 2:1. The attack successfully disturbs the watermark, albeit in an imprecise manner.

Figure 22. Visualization of AdvCls-WM1&WM2 attack. (a) and (b) are the same as that in Figure 21. (c) shows the inversed latent after the
attack, where the watermark vanishes instead of changing to another watermark. (d) shows the magnitude of the element-wise difference
before and after the attack. The attack not only perturbs the watermark part but also other features. The average magnitude change of the
watermark-part and non-watermark-part is also around 2:1. Although the surrogate detector is trained to classify two different watermark
messages. The attack based on it cannot change the watermark message from one to another but can effectively disturb the watermark.
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and non-watermarked images for training (differing only in the latent space), AdvCls-WM1&WM2 uses two sets of images,
each embedded with a distinct watermark message (differing only in the latent space as well). Figure 22 shows that AdvCls-
WM1&WM2 attack effectively disrupts the latent features of the images, including the watermarks. However, it lacks the
precision to interchange the embedded watermark message. Consequently, while this attack can remove watermarks and
mislead user identification—mistaking an image originally generated by User1 as belonging to another user—it cannot
accurately manipulate the identification to frame User2 as desired by the attacker. The identification results in Figure 23 also
support this finding. Although AdvCls-WM1&WM2 aims to misidentify images as belonging to User2, it often leads to
misidentification as users other than User2. However, in a system with fewer users, like 100 users, and under intense attack
conditions (e.g., strength=8), AdvCls-WM1&WM2 demonstrates a targeted identification success rate of 0.7%, showing a
potential direction for attacks aimed at targeted user identification.

Figure 23. The user identification results for Tree-Ring under AdvCls-WM1&WM2 attacks. The original watermarked images are embedded
with User1’s message. AdvCls-WM1&WM2 tries to disrupt the latent feature of those images so that they can be misidentified as User2
generated. We simulate two settings: 100 users and 1000 users in total. The blue curves represent the proportion of images correctly
identified as belonging to User1, while the orange curves show those misidentified as User2’s. Note that, the axes for blue and orange
curves have different ranges in the figure. With increasing attack strengths, the likelihood of correctly identifying them as User1’s decreases
significantly under both 100 and 1K user scenarios. However, misidentification as User2’s images occurs notably only when the total number
of users is small (e.g., 100 users).

G.3. Visualization of Attacks

In Figure 24, we present visualizations of several attacks included in the WAVES benchmark. Prefix indicates the attack
strategy, while suffix indicates the strength.

G.4. Full Results on DiffusionDB, MS-COCO and DALL·E3

G.5. Evaluation on Additional Watermarks: DWT-DCT and MBRS

To further demonstrate the utility and versatility of the WAVES benchmark, we evaluated two additional watermark methods:
DWT-DCT (Al-Haj, 2007) and MBRS (Jia et al., 2021b). DWT-DCT combines Discrete Wavelet Transform (DWT) and
Discrete Cosine Transform (DCT) for watermark embedding, while MBRS enhances the resilience of DNN-based watermarks
to JPEG compression by incorporating real and simulated JPEG artifacts during training.

Stress tests were conducted on these watermarks using all the attack methods in WAVES. Results are presented in Figures 31
and 32 as performance vs. quality degradation 2D plots. Figure 7 in the main paper provides a comparison with the three
existing watermarks (Tree-Ring, Stable Signature, and StegaStamp).

These findings confirm the utility of WAVES for identifying weaknesses in different watermark methods and demonstrate the
ease of use and versatility of our benchmark toolkit, making it a valuable standard for the watermark research community.
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(a) Tree-Ring Unattacked (b) AdvEmbG-KLVAE8-2/255 (c) AdvEmbG-KLVAE8-8/255 (d) AdvEmbB-CLIP-2/255

(e) AdvEmbB-CLIP-8/255 (f) AdvClsWM1WM2-2/255 (g) AdvClsWM1WM28/255 (h) Regen-Diff-40

(i) Regen-Diff-200 (j) Rinse-2xDiff-20 (k) Rinse-2xDiff-100 (l) Rinse-4xDiff-10

(m) Rinse-4xDiff-50 (n) DistCom-Photo-0.15 (o) DistCom-Geo-0.15 (p) DistCom-Deg-0.15

Figure 24. A visual demonstration of various adversarial, regeneration, and distortion attacks on a Tree-Ring watermarked image. Figure (a)
is the base unattacked image. The base prompt, drawn from DiffusionDB, is “digital painting of a lake at sunset surrounded by forests and
mountains,” along with further styling details.
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Figure 25. Evaluation on DiffusionDB dataset under the detection setup (part 1).
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Figure 26. Evaluation on DiffusionDB dataset under the detection setup (part 2).
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Figure 27. Evaluation on MS-COCO dataset under the detection setup (part 1).
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Figure 28. Evaluation on MS-COCO dataset under the detection setup (part 2).
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Figure 29. Evaluation on DALL·E3 dataset under the detection setup (part 1).
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Figure 30. Evaluation on DALL·E3 dataset under the detection setup (part 2).
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Figure 31. Stress test results for DWT-DCT. It is highly susceptible to regeneration attacks (cross markers) and most distortion attacks
(square markers), but relatively robust against adversarial attacks.

Figure 32. Stress test results for MBRS. It is vulnerable to certain distortion attacks (resized-cropping, blurring, rotation, combo distortions)
and regeneration attacks, but robust against other distortions (JPEG compression, brightness/contrast, random erasing, noise) and adversarial
attacks.

H. Limitations
Although we have stress-tested five watermarks and 26 attacks, there could exist more watermarks and attacks that we did
not include in this paper. However, we emphasize our framework is extensible to any watermarking method and attacks.
Additionally, our attack ranking method relies on author-selected TPR thresholds and image quality metrics that we believe
will fairly capture attack potency based on existing literature and experimental studies. The use of other quality metrics (MSE,
Watson-DFT, etc.) and differing TPR thresholds may affect attack rankings.
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