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Preparing for high-stakes exams in introductory physics courses is generally a self-regulated activity.
Compared to other exam reviewing strategies, doing practice exams has been shown to help students
recognize gaps in their knowledge, encourage active practicing, and produce long-term retention. However,
many students, particularly students who are struggling with the course material, are not guided by
research-based study strategies and do not use practice exams effectively. Using data collected from a fully
online course in Spring 2021, this study examines two interventions aimed at improving student self-
regulated studying behaviors and enhancing student metacognition during exam preparation. We found that
a modified format of online practice exams with one attempt per question and delayed feedback, increases
the accuracy of feedback about student readiness for exams but does not change the accuracy of their
predicted exam scores or studying behaviors. Additionally, an added mock exam one week before the
actual exam impacts students’ intentions for studying but does not impact actual study behaviors or
facilitate metacognition. These results suggest that interventions designed to improve exam preparation
likely need to include explicit instruction on study strategies and student beliefs about learning.
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I. INTRODUCTION

Exams are an important and widely used method of
assessment in introductory college physics courses because
of their reliability, validity, and efficiency for large-scale
courses [1]. At the University of Illinois, students pursuing
degrees in the College of Engineering are required to
complete several introductory physics courses, in which
hour exams and final exam scores make up about 50% of
their total course grades. This means that despite getting
good “effort grades” in other components of the course
such as online assignments, lab projects, and participation
in lectures and discussions, students can receive low or
failing course grades solely due to low performance on the
exams. This discrepancy between effort grades and exam
scores is important to investigate [2], as grades in intro-
ductory courses are among the strongest predictors of
student persistence for science, technology, engineering,
and mathematics majors [3–7].
For these reasons, providing tools that help students

prepare for exams more effectively is an important task for
instructors and course designers. Particularly, research

shows that practice exams are a highly effective learning
tool and can significantly improve student performance on
their actual exams [8]. At the University of Illinois, we have
been implementing online practice exams with solution
videos for our large introductory-level physics courses for
the past decade. The online system is set up such that,
before every exam, students gain access to exam problems
that have been given on exams in previous years. They can
submit answers, receive immediate feedback, and watch
solution videos to the problems. A previous clinical study
demonstrated that doing practice problems paired with
solution videos improved student performance [9]. In
addition, our end-of-semester surveys consistently show
that students value online practice exams more than almost
any other component of the course. In Fall 2018, 72.4% of
the students reported that practice exams were “essential”
or “very important” in helping them understand the course
material.
Despite the demonstrated benefits of practice exams and

the high value students place on them, both anecdotal
evidence and analyses of students’ usage of online practice
exams suggest that many students are not engaging with
practice exams in ways that effectively prepare them for
actual exams. Thismay be particularly true for those students
who are struggling with the course material. In a preliminary
study [10], we found that students do most of their exam
practice less than 48 hours prior to the actual exam. This
cramming behavior likely limits the effectiveness of their
practice, not allowing enough time for improvement despite
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working through multiple practice exams. We also found
that, because students were able to update their answers on
the online practice exam system, they would eventually
achieve near-perfect practice exam scores online without
fully understanding the material. This inaccurate feedback
from the online system may potentially misguide students
during their exam preparation, giving them an “illusion of
understanding” [11–13].
In this paper, we present findings from two in situ

interventions implemented in a large-scale introductory
calculus-based mechanics course with online instruction to
address the observed issues and improve the effectiveness
of online practice exams. The first intervention examined
the effect of providing students with a new practice exam
format to give them more accurate feedback and more
realistic practice than the original format. The second
intervention provided incentives for students to avoid
cramming by providing students the opportunity to take
a “mock exam” a week before the actual exam. We then
collected practice exam usage data, survey data, and scores
on the course exams to answer the following research
questions:

1. How do different formats of online practice exams
affect students’ judgment of their proficiency, exam
preparation behaviors, and exam performances?

2. How does introducing a mock exam one week
before the actual exam impact students’ exam
preparation behaviors?

II. THEORETICAL FRAMEWORK

Among the various learning activities that students do for
a college physics course, exam preparation is an activity
that relies heavily on effective self-regulated learning
[14,15], where students have control over their own study-
ing process and how they utilize the resources provided.
While instructors can offer tools and materials to guide
students learning, such as review sessions and practice
exams, most exam studying occurs outside of the class-
room. As a result, students can approach exam preparation
with different preconceptions about effective exam prepa-
ration practices, leading them to adopt various studying
strategies, some of which are more likely to result in greater
exam performance than others.
A useful model of self-regulated learning for investigat-

ing the interaction between metacognition, academic suc-
cess, and other individual factors is the four-phase model
originally proposed by Winne and Hadwin [15,16]. In the
first phase, the learner analyzes and forms a perception of a
task (e.g., studying for an exam). In the second phase, the
learner uses their perception of the task and their epis-
temology (e.g., beliefs about knowledge and learning) to
generate goals for their studying. In the third phase, the
learner enacts a study plan to achieve the goals set during
planning. During this enactment, the learner monitors their
learning against their goals. Based on their monitoring,

their epistemology, and their knowledge of study strategies,
the learner can continue to study using the same strategies,
change their study strategies, discontinue studying, or go
back and modify their goals or task definition. After
studying, during the fourth phase, the learner, if motivated,
might adapt their strategies or beliefs about learning in
response to feedback.
In this section, we review the literature surrounding two

key aspects of self-regulated learning related to our inter-
ventions: (i) Metacognition, which is students’ judgment of
their knowledge and awareness of their learning process and
(ii) study strategies, which is students’ approach to exam
preparation and how they interact with the learning tools
provided. These two aspects of self-regulated learning are
entangled with each other and together impact the effective-
ness and outcome of exam preparation. Additionally, we
review existing theories of how the structure of practice
exams can support these aspects of self-regulated learning
and describe how these theories informed the design of our
interventions (see Fig. 1).

A. Metacognition

Self-regulated learning is guided by metacognitive mon-
itoring and control processes [15,17]. There is a dynamic,
reciprocal, and iterative relationship between metacognitive
monitoring of performance, beliefs about learning and
studying, and studying decisions enacted by students
[14,18]. When engaged in self-regulated learning tasks,
such as preparing for exams, students need to monitor their
current level of knowledge or understanding, then compare
their perceived understanding to their goal for the exam. By
monitoring the discrepancy between a self-assessed current
state and an internal model representing the desired state, a
student makes decisions about whether to continue study-
ing, change study strategies, or stop studying. These
decisions are also impacted by students’ beliefs about
effective learning and studying practices [19–24].
Because metacognitive control decisions depend on

students’ monitoring of their learning, the effectiveness
of the self-regulated learning process depends on the
accuracy of that monitoring. The accuracy of an

FIG. 1. Summary of the theoretical framework and rationales
for interventions.
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individual’s metacognitive judgments is often related to
one’s domain knowledge or proficiency [25,26]. While
student metacognitive judgments tend to correlate with
their performance in many settings [18,27], studies inves-
tigating the accuracy of metacognitive judgments usually
find that students overestimate their own performance on
exams, with low-performing students being overconfident
by as much as 2–3 letter grades [11–13]. This asymmetry in
the accuracy of learners’ metacognitive judgments is
thought to occur because the expertise and skills needed
to make accurate metacognitive judgments of performance
are the same types of expertise and skills needed to produce
good performance on a task [28]. From this perspective,
low-performing students suffer from a “double curse” of
being both unskilled and unaware of their lack of skill [11].
Because success at self-regulated learning is positively
associated with academic performance [29], all students—
and low-preforming students in particular—could benefit
from interventions that target improving the accuracy of
metacognitive monitoring.

B. Study strategies

In addition to accurate metacognitive monitoring, stu-
dents need to know about effective study strategies, know
how to enact these strategies, and understand the types of
tasks for which each strategy is most effective in order to
improve their study behaviors. The accuracy with which
students monitor and evaluate their learning is positively
related to planning and enacting study strategies [30].
However, students who accurately monitor their learning
can struggle with knowing how to adapt their study
strategies. For example, lower-performing students may
know that they are unprepared for an upcoming exam but
be unaware of how to modify their studying to engage with
the material more effectively.
Students tend to prefer using passive methods when

studying for exams, such as rereading and reviewing notes
[31,32]. When students do engage in problem solving, they
often utilize methods that focus on memorizing formulas or
attempting to match the surface features to other problems
that they have solved [33–35]. Lower-performing students
also tend to take means-ends approaches to solve problems,
such as working backward from a goal state by reducing the
difference between the initial state and the goal state
[36,37]. This approach often leads students to use unpro-
ductive strategies, such as equation hunting, where students
simply search for equations that contain the to-be-solved-
for variables [34,38].

Besides using passive studying methods, students tend to
focus the majority of the studying one to two days before an
exam [31,32,39], a trend that was also apparent in our pilot
data [10]. While cramming can facilitate short-term per-
formance and lead to high student confidence [40,41], it
has a detrimental effect on long-term retention [42,43].
Additionally, engaging in rehearsal strategies, such as

reviewing notes or rewatching lectures, can create false
perceptions of mastery [44–46]. For long-term retention,
testing (e.g., studying using practice tests) is a particularly
effective method, especially when practice testing is spaced
over time (e.g., distributed practice and the spacing
effect) [47,48].

C. Practice exam as a learning tool
that facilitates self-regulated learning

Although students are the main agents that monitor and
control their studying, instructors can provide learning
tools that are specifically designed to support self-regulated
learning. In the case of exam preparation, practice exams
are helpful tools not only because they provide an effective
form of testing that promotes active studying strategies [49]
but also because they act as a type of formative assessment
[50] that offers students valuable feedback about their
current proficiency, which can guide students’ metacogni-
tive monitoring and future studying.
Compared to other exam studying strategies, practice

exams are a form of testing that encourages active retrieval
and help students recognize gaps in their knowledge (e.g.,
the testing effect). The testing effect has been shown in both
clinical studies [51,52] and secondary and university class-
rooms [53–56] where students engaging in testing achieve
better long-term retention than students engaging in passive
studying. In addition, engaging in active problem solving
or practice testing is shown to benefit learning for questions
similar to those that were tested [57], for analogical
problem solving [58], and for inferential and application
questions [44,59]. The learning benefits of testing appear to
enhance learning for items correctly answered, as well as
items that were not correctly solved as long as students are
provided with personalized feedback and the ability to
restudy the tested material [60–63]. Some studies have even
found that engaging in testing can enhance performance for
new material that had not been tested (i.e., test-potentiated
learning) [64–67]. This test-potentiated learning effect
suggests that providing students with feedback and incen-
tives to revisit material following testing can enhance future
learning.
Whether these potential learning benefits of practice

exams are realized depends on how the tests are imple-
mented, including their similarity to the actual exams and
the format of feedback given to students during testing
[8,9]. In some cases, using practice exams can lead to
inaccurate judgment of proficiency because the feedback
students receive from the practice contributes to an illusion
of understanding [68]. The effectiveness of practice exams
also depends on students’ prior knowledge and how they
engaged with the practice exams. For example, Balch found
that, for two groups of students who were given access to
the same practice test, the group that did the test before
viewing solutions performed better than the group that only
viewed solutions [69].
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Therefore, practice exams can be an important tool to
facilitate self-regulated learning during exam preparation,
but the structure of practice exams and how students
interact with the tasks are essential to the tool being
beneficial. These factors motivated the design of our
interventions in this study.

D. Rationales of interventions

Building on theories of self-regulated learning, we
implemented two interventions to support students’ exam
preparation that aim to help students fully utilize the benefit
of practice exams (see Fig. 1). The first intervention
modified the format of how practice exams are presented
to students online such that it provides students with more
accurate feedback on their proficiency (see Fig. 2) and
provides a task structure that incentivizes active practicing
rather than passive studying. We explain details about the
original and modified formats in Sec. IV. We expect this
change to improve students’ metacognitive judgment of
their proficiency during exam preparation, which can guide
them to engage in more effective exam preparation behav-
iors, for example, doing more practice exam problems if
their current feedback is not aligned with their goals on
the exam.
In the second intervention, we address the issue of

cramming by providing incentives for students to do a
“mock” exam and receive feedback a week ahead of the
actual exam. By providing this early testing opportunity, we
hope to improve students’ metacognitive judgments early,
giving them an extended period of time to practice and
reach the desired level of proficiency. We expect students
who did this early practice to engage in less cramming
behaviors and more evenly distribute practice problems

across the week ahead of the exam, hopefully resulting in
improved performance on the actual exam.

III. STUDY CONTEXT

This study is situated in a large calculus-based intro-
ductory mechanics course (Physics 211) required for
students pursuing a bachelor’s degree in the College of
Engineering at the University of Illinois Urbana-
Champaign. The course is designed to help students
understand fundamental concepts and continue to refine
their problem-solving skills through a variety of learning
activities each week, including multimedia prelectures,
preflights [70], lectures with Peer Instruction [71], online
homework, labs, and group problem solving in the
discussion section. The exams are set up so that students
take three “hour exams” throughout the semester and a
final exam at the end. These exams are meant to assess
their understanding of the material. At the end of the
course, students were graded on their performance on the
exams in addition to their participation in other compo-
nents of the course, with the exams accounting for 50% of
their course grade.
Students are given access to four online practice exams at

least one week before each hour exam. The format of these
exams has evolved over time, but the current implementa-
tion includes both a pdf file of the exam questions and a
version of the exam coded into their online homework
system. The online version includes the option to grade the
questions and provides students access to a video solution
of the problem. The practice exams are optional, but their
use for exam preparation was encouraged by the professors
and students self-reported that the practice exams were very
helpful in learning the material.

FIG. 2. Relationship between students’ actual exam score percentages (y axis) and the practice exam feedback they receive (x axis).
(a) In the original practice exam format, students can correct their answers after seeing solutions, resulting in feedback displaying near-
perfect practice exam scores, which is not reflective of actual proficiency. (b) In the modified practice exam format, students can only
input answers once, so the displayed scores better reflect their proficiency (i.e., correlate stronger with exam scores). Figure 2 is
reprinted from a Physics Education Research Conference Proceeding paper [10], which contains additional details.
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We implemented two separate interventions in Physics
211 during the spring semester of 2021, with 1108 students
registered in the course. Because of Covid-19, the course
was fully online during this semester. Lectures, discussions,
and labs were given synchronously over Zoom, with
extraordinary efforts made to engage students. However,
it has been robustly found that students and instructors
believe that remote instruction is less effective than in-
person instruction [72–74], findings that have also been
found at Illinois. The exams were done synchronously, but
online with teaching assistants (TAs) proctoring students
using Zoom.
In the next sections of this paper, we describe the

methods and findings from each intervention separately
and then summarize the results from both interventions at
the end.

IV. METHODS (INTERVENTION 1)

A. Description of intervention 1:
Modifying the format of practice exams

In order to compare the effects of two different practice
exam formats, we evenly divided the class into two random
groups of students and provided them with different
formats of practice exams for hour exam 2 and 3 (see
Fig. 3). The original format, which we will call “multiple-
attempt,” was set up such that when students approached
each question, they could see a “submit” and a “help”
button under the statement of each question. They could
submit an answer and receive immediate feedback on
whether their answer was right or wrong. They could
change their answer as many times as they want and receive
feedback each time. Meanwhile, they could click the help
button any time during the practice and view a solution
video. Students could choose to watch the solution video
before they submitted any answer and could change their
answer after they watched the video. When using the
original format, students often change their answers

multiple times until they get nearly perfect practice scores
[see Fig. 2(a)].

For the modified format, which we refer to as “single-
attempt,” we adjusted the format that these practice exams
were delivered such that, when students were working on
the problems, they had an experience closer to what they
would have in a real exam. Each practice exam was divided
into “clusters.” Students could view one cluster at a time,
which contained about 1–4 questions related to a single
situation. Students could submit answers to these questions,
but they would not get immediate feedback on whether
their answers were right or wrong. Only after they had
submitted answers to all the questions in that cluster, could
they click “Submit Cluster” and get feedback on correct-
ness and access the solution videos. Unlike in the multiple-
attempt format, students could not see any feedback or
solutions before they had submitted the entire cluster, so
they are more likely to actively attempt the whole cluster of
questions before reading solutions, similar to what they do
on a real exam. Students also could no longer change their
answers after they had submitted the entire cluster and had
seen solutions, so their final scores on the practice exam in
this format would better reflect the scores they would
receive on the actual exam [see Fig. 2(b)].

B. Data collection and analysis

We collected data related to students’ exam preparation
behaviors through the online practice exam system, includ-
ing how many practice exam questions they attempted,
when the questions were attempted, and their use of
solution videos. Additionally, we implemented surveys
to measure student metacognition, asking students to
predict the scores they would receive on the actual exam.
The surveys were due on the same day as the hour exams,
after students had already done some practice exam
questions, thus measuring their metacognitive judgment
at approximately the end of their exam preparation.

FIG. 3. Timeline and implementation of intervention 1. Practice exams became available to both groups of students one week ahead of
the actual exams. For hour exam 2, student group A received the single-attempt format, while group B received the multiple-attempt
format. We switched their formats in hour exam 3 so that each group experienced both formats. “Predict score” means that students
completed the prediction survey where they made predictions of the scores that they would earn on the exam.
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For intervention 1, a total of 1090 students completed
both hour exam 2 and hour exam 3. In our data analysis, we
focused on comparing the study behaviors, metacognition,
and exam performance of two groups: students who
received single-attempt practice exam format and students
who received multiple-attempt format. Except for the
comparison of the quantity of practice in Fig. 4, we
analyzed the data from hour exam 2 and hour exam 3
separately. There was a difference in the exam averages and
individual students differed in when they began studying
for each exam, making a combined statistical analysis
difficult. However, we interpret the analyses of exams 2 and
3 as replication studies and interpret any findings that are
not consistent across both exams as potential type I errors.

V. FINDINGS (INTERVENTION 1)

A. The effect of practice exam format on exam
preparation behaviors

Comparing the two format groups, we found no signifi-
cant difference in the way students interacted with the
online practice exam problems. Figure 4 shows that,
students who received the multiple-attempt format, either
in hour exam 2 or in hour exam 3, attempted similar
number of practice questions as students who received the
single-attempt format, with a similar distribution. To
compare the number of practice exam questions completed
by both groups, we examined homogeneity of variance
(HOV) and normality of the distributions. Levine’s tests of
HOV indicated that homogeneity of variance could be
assumed, however Shapiro-Wilk tests of normality indi-
cated non-normal distributions (see Fig. 4). Because t tests

are robust to deviations from normality, independent t tests
were conducted to compare the number of practice exam
questions completed before each hour exam between the
groups. The results show that there was no evidence for a
difference in the number of practice exam questions students
completed in either the single-attempt or multiple-attempt
formats [hour exam 2: tð1088Þ ¼ 1.89, p ¼ 0.06, d ¼ 0.11,
hour exam 3: tð1088Þ ¼ 0.42, p ¼ 0.67, d ¼ 0.02].
A factor that may explain this null finding is that

students’ cramming behaviors limit the number of practice
questions they do. To analyze whether there were any
differences between the conditions based on when an
individual began using the practice exams, we conducted
two analysis of covariance (ANCOVAs), with the number
of practice exam questions as the response variable,
practice test format as the independent variable, and time
of first practice test as the covariate, were conducted.
Analysis of the q-q plots indicated that the residuals were
relatively normally distributed, Levene’s tests indicated that
homogeneity of variance could be assumed, and examination
of the interactions between the independent variable and the
covariate indicated that homogeneity of regression could be
assumed for both exams. For exam 2, students who began
studying earlier attempted more practice exam problems,
Fð1; 1087Þ ¼ 886.59, p < 0.001, η2 ¼ 0.45, and students
who received single-attempt feedback attempted more prac-
tice exam problems on average controlling for the time of the
study, Fð1; 1087Þ ¼ 3.89, p ¼ 0.04. However, this effect
was small both practically (four additional problems on
average) and statistically (η2 ¼ 0.002). For exam 3, students
who began studying earlier attempted more practice exam
problems, Fð1; 1087Þ ¼ 724.88, p < 0.001, η2 ¼ 0.40,

FIG. 4. A comparison of the distributions of the quantity of practice for the two format groups, combining data collected across both
hour exam 2 and hour exam 3. In (a), a total of 1090 students received the multiple-attempt format (old version), and on average each
student did 41 practice exam questions. In (b), a total of 1090 students received the single-attempt format (modified version), and on
average each student did 43 questions.
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however, for this exam, studentswho received single-attempt
feedback did not attempt more practice exam problems,
Fð1; 1087Þ ¼ 3.15, p ¼ 0.08, η2 ¼ 0.002.
Therefore, despite being designed to encourage effective

exam preparation behaviors, the single-attempt format
practice exams did not have a significant effect on the
quantity of practice questions that students did. With the
single-attempt format, students have to work on a cluster of
practice questions without any help initially, so one might
expect some resistance from students to attempt practice
questions. We did find that students who begin studying
earlier attempt more problems on average, but prior
research has shown that students often do not engage with
the practice exams until the day or two before the course
exam [10]. We designed Intervention 2 to address this
cramming behavior.

B. The effect of practice exam format on the
metacognitive bias

Since the single-attempt practice exam format provides
more accurate feedback for students than the multiple-
attempt format [10] (see also Fig. 2), we expect students in
the single-attempt format group to demonstrate more
accurate metacognitive monitoring in the prediction survey
than students in the multiple-attempt format group. To
examine this, we calculated metacognitive bias using the
signed difference between predicted exam scores and actual
exam scores. Although there are many other ways to
measure the accuracy of student metacognitive monitoring
[75], this metacognitive bias value captures how close a
prediction is to the actual performance, as well as whether a
student is overconfident (positive metacognitive bias) or
underconfident (negative metacognitive bias).
We removed 8 students who made predictions greater

than 100 for their exam scores, leaving 1082 students who
completed exams 2 and 3. For exam 2, 1000 students
provided a valid prediction (i.e., between 0 and 100), and
for exam 3, 988 students provided a valid prediction. For
hour exam 2, students generally overestimated their exam
scores by 15 points, which is much higher bias overall than

hour exam 3 (see Table I). This is likely due to the different
exam difficulty levels between hour exam 2 and 3, with
hour exam 3 having a higher class average. Indeed, for both
cases, when we ask students to predict their exam scores,
we observe similar prediction distributions with means
around 80%.
Because the purpose of the practice exams is to give

students formative feedback regarding their preparedness,
we would expect that students who attempt at least 75% of
a practice exam, or about 20 practice questions, may
demonstrate more accurate metacognitive monitoring.
Therefore, to examine whether attempting practice exam
problems before making a prediction impacted student
metacognition or exam performance, we divided students
into three categories based on their use of the practice
exams. Students who did practice exams early (i.e.,
attempted 20 or more practice questions before they took
the prediction survey), those who did practice exams late
(i.e., if they attempted fewer than 20 practice questions
before they took the prediction survey), and those who did
not do any practice exam questions at all. This categori-
zation is crucial because students who did not do any
practice exams, or students who attempted less than 20
questions before they did the prediction survey, would not
have received valid proficiency feedback before making
their prediction. In other words, for the late and no practice
group, there is no reason for us to expect that the format of
the practice exam would impact their metacognitive bias.
We replicated the analyses using 1, 10, and 30 practice test
questions attempted and found no differences (see the
Appendix).
To examine the effect of practice exam format and the

timing of practice exam attempts, we conducted two 2 × 3
(format × time) two-way analysis of variance (ANOVAs)
with metacognitive bias as the response variable, practice
test format and time of first practice as the independent
variables. Analysis of the q-q plots and distributions of the
residuals indicated that the residuals were relatively nor-
mally distributed, Levene’s tests indicated that homo-
geneity of variance could be assumed for both exams.
See Table II for the detailed results.

TABLE I. Means and standard errors by condition and time to attempt the 20th question. Note that meta bias is the signed difference
between the exam prediction and the exam score for a given student. Single and multiple refer to the single-attempt and multiple-attempt
practice exam condition.

Early Late No practice test

Single M (SE) Multiple M (SE) Single M (SE) Multiple M (SE) Single M (SE) Multiple M (SE)

Exam 2
Meta bias 12.7 (1.5) 16.9 (1.7) 15.8 (1.1) 15.5 (1.2) 11.6 (2.0) 16.1 (1.9)
Exam score 71.3 (1.4) 67.9 (1.4) 69.9 (1.1) 69.6 (1.1) 70.0 (2.0) 69.2 (1.9)

Exam 3
Meta bias −0.4 (1.4) −1.6 (1.4) 3.4 (1.3) 2.2 (1.1) 5.1 (2.4) 10.0 (2.7)
Exam score 81.5 (1.2) 85.5 (1.1) 77.6 (1.0) 78.9 (0.9) 75.2 (2.0) 72.6 (2.3)
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For exam 2, we did not find a significant interaction, thus
we examined themain effects. The timing of the practice test
did not have a significant effect on metacognitive bias.
However, a significant difference was found between prac-
tice exam conditions, with students who received the single-
attempt practice exam format having a lower metacognitive
bias. However, given the low effect size and the presence of a
difference between conditions for students who did not
attempt any practice exam questions (see Fig. 5), we believe
this result is not robust and is likely a type I error.
For exam 3, we did not find any significant interaction,

thus we examined the main effects. The timing of the
practice exams had a significant effect on metacognitive
bias. However, a difference between the exam conditions
was not found. The difference in metacognitive bias by the
timing of the practice exam was as predicted with those
who began studying earlier demonstrating lower metacog-
nitive bias (Fig. 5).

In summary, unlike our expectations, the more accurate
feedbackprovided in the single-attempt practice examformat
did not affect the metacognitive bias that students had when
they were asked to predict their exam performance. It is
possible that the prediction data we collected did not reflect
students’ actual judgment of their proficiency because of
their optimism on exam day. However, this result is con-
sistent with our finding comparing their exam preparation
behaviors where the two format groups did a similar number
of practice questions and tended to use the practice tests in the
days immediately preceding an exam.

C. The effect of practice exam
format on exam performance

To examine the effect of practice exam format and
practice test timing, two 2 × 3 (format × time) two-way
ANOVAs were conducted with exam score as the response
variable, practice test format and time of first practice test as

TABLE II. Analysis of variance of metacognitive bias for exams 2 and 3. Note that for exam 2, practice exam
condition was only significant for the analysis using 20 questions. This main effect was not significant for all other
analyses (see the Appendix).

Exam 2

Source d.o.f. Type III SS MS F p

Practice exam condition 1 1512.90 1512.90 4.28 0.04
Timing 2 486.11 243.06 0.69 0.50
Practice exam condition × timing 2 1285.22 642.61 1.82 0.16
Error 994 351 066.43 353.19

Exam 3

Source d.o.f. Type III SS MS F p

Practice exam condition 1 129.55 129.55 0.34 0.56
Timing 2 6869.00 3434.50 8.93 <0:001
Practice exam condition × timing 2 1312.05 656.02 1.71 0.18
Error 982 37 7791.37 384.72

FIG. 5. Mean metacognitive bias for (a) hour exam 2 and (b) hour exam 3. Note: Error bars represent 1 standard error of the mean.
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the independent variables. Analysis of the q-q plots and
distributions of the residuals indicated that the residuals
were relatively normally distributed, and Levene’s tests
indicated that homogeneity of variance could be assumed
for both exams. See Table III for the detailed results.
For exam 2, we did not find a significant interaction, thus

we examined the main effects. The timing of the practice
test did not have a significant effect on exam score nor did
the practice exam condition. For exam 3, we did not find a
significant interaction, thus we examined the main effects.
A difference between the practice exam conditions was not
found, however, the timing of the practice exams had a
significant effect on exam scores. Post hoc Tukey’s tests
indicated that the difference in exam 3 score by timing of
the practice exam was as predicted with those who began
studying earlier earning higher exam scores, as shown in
Fig. 6(b). This could be due to how practice exams are more
effective when students use them earlier to prepare for
exams. This result could also be explained by how students

with higher proficiency tend to choose to start practicing
earlier. Interestingly, the effect of the timing of practice
exams on exam scores was not found for exam 2. It is not
clear why engaging with the practice exams earlier did not
impact scores on exam 2, but did on exam 3. In both cases,
students who started earlier completed about two practice
exams before the prediction survey and an additional one or
two after the prediction survey, while those who began the
practice exams after the prediction survey completed two to
three exams.
To examine the effect of the number of practice exam

questions attempted, we conducted two multivariate linear
regressions with exam score as the response variable and
the number of practice exam questions attempted and
practice exam condition as the independent variables.
Analysis of the q-q plots and distributions of the residuals
indicated that the residuals were relatively normally dis-
tributed. For both exam 2 and exam 3, students who
attempted more problems tended to earn higher exam

TABLE III. Analysis of covariance of exam score for exams 2 and 3.

Exam 2

Source d.o.f. Type III SS MS F p

Practice exam condition 1 695.15 695.15 2.23 0.14
Timing 2 278.54 139.27 0.45 0.64
Condition × timing 2 763.72 381.86 1.22 0.29
Error 1084 338 239.63 312.03

Exam 3

Source d.o.f. Type III SS MS F p

Practice exam condition 1 88.96 88.96 0.30 0.58
Timing 2 10 174.43 5087.21 17.34 <0.001
Condition × timing 2 1414.69 707.35 2.41 0.09
Error 1084 318 027.83 293.38

FIG. 6. Comparison of mean exam scores for (a) hour exam 2 and (b) hour exam 3. Note: Error bars represent 1 standard error of the
mean.
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scores, but the format of practice exams had no significant
effect. See Table IV for detailed results.
In conclusion, we failed to find a significant exam score

difference between students who received multiple-attempt
and single-attempt format for either exam. This is perhaps
not surprising given the similarity in their exam preparation
behaviors and metacognitive bias. In other words, while the
new format of the practice exams provided more accurate
feedback, students tended to engage with the different
practice exam formats in very similar ways.

VI. METHODS (INTERVENTION 2)

A. Description of intervention 2: Adding a mock exam

The second intervention targeted students’ preparation
for hour exam 1 and was applied to the entire class. One
week before the actual exam, students were offered the
chance to take a mock exam online, which included 13
multiple-choice questions similar to the ones that would be
on the exam. Although optional, students were encouraged
to take the mock exam to become familiar with the new
environment. In addition, if students scored higher on their
mock exam than the actual exam, the mock exam would
count toward 25% of their exam 1 score. The potential
bonus scoring incentivized participation in the mock exam
because a low score would not negatively impact exam
grade, but a high score could potentially increase exam
grade. The online practice exams (in single-attempt format)
were made available to students one week before the mock
exam (two weeks before the actual exam). Students who
chose to take the mock exam received feedback on how
well they did the next day.
The mock exam provides students with a realistic exam-

taking experience and an evaluation of their proficiency one
week ahead of the actual exam so that students can have
better metacognitive monitoring and plan their exam
preparation activities accordingly. For example, students

who did not do as well as they wanted in the mock exam
can plan to start studying earlier.

B. Data collection and analysis

For the second intervention, we gave a survey after
students had just received their mock exam scores, five
days before when they took the actual exam, measuring
students’ metacognitive judgment at the early stage of their
exam preparation. To understand the connection between
students’ metacognition and studying plan, we also asked
them how many practice exams they plan to do in the next
five days on the same survey. We also collected students’
mock exam scores and exam scores.
To understand the effect of the mock exam, we first

compared exam preparation behaviors between a semester
with a mock exam (Spring 2021) and a semester when a
mock exam was not offered (Spring 2019). This compari-
son may be affected by the fact that the course was in-
person in Spring 2019, which we provide further explan-
ations for in the findings section. We did an additional
analysis with students’ prediction survey answers and their
mock exam performance to further understand our results.
We included all 1112 students who completed hour exam 1
in Spring 2021 in the analysis. Since the mock exam was
optional, 847 students completed the mock exam, and out
of those, 801 completed the prediction survey.

VII. FINDINGS (INTERVENTION 2)

A. The effects of adding a mock exam
on exam prep behaviors

In terms of exam preparation behaviors, we found that
adding a mock exam did not change the number of practice
questions students chose to do. Comparing data collected in
Spring 2021, when we implemented the mock exam, to
data collected from the same course in Spring 2019, a
semester when the mock exam was not offered to students,
we see that the distribution of the total number of practice
questions attempted was almost identical (see Fig. 7).
In Spring 2019 (without mock exam), there were a total

of 1077 students who did 41 practice questions on average.
In Spring 2021 (with mock exam), there were a total of
1112 students who did 40 practice questions on average. In
both plots in Fig. 7, the left peak is the percentage of
students that did not use any practice exams, and the right
peak is the percentage of students that attempted all
available practice exam questions. Four practice exams
were available to students, each containing about 23
questions, so it is natural for some students to stop
practicing at the end of one full practice exam, which
explains the smaller peaks in the middle. It is worth noting
that, in Spring 2021, students did extra practice questions
one week before the actual exam (when they took the mock
exam), which we did not include in the graph.

TABLE IV. Simple linear regression of exam score for exams 2
and 3.

Exam 2

Variable B SE B t p

Intercept 67.73 0.98 69.14 <0.001
Number of practice
exam problems

0.03 0.01 2.17 0.03

Single-attempt practice exam 1.17 1.07 1.09 0.27

Exam 3

Source B SE B t p

Intercept 72.33 0.93 77.5 <0.001
Number of practice
exam Problems

0.14 0.01 9.63 <0.001

Single-attempt practice exam −1.13 1.01 1.12 0.26
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We also found that adding a mock exam did not lead to a
qualitative change in the timing of students’ practice exam
use. Although the intervention was designed to incentivize
earlier and more evenly distributed practice over the week
before the exam, we saw similar cramming behavior. With
and without intervention, most students started their prac-
tice within 48 hours of the actual exam, as shown in Fig. 8.
We notice a slightly worse cramming behavior in Spring

2021 compared to Spring 2019. This may be due to the
course being fully online in Spring 2021, whereas in Spring
2019, the course had fully in-person instruction. This may
also be explained by there being a homework due at 8 am

on the day of the exam in Spring 2021, so students might
have been working on that homework instead of doing
practice exams, which could explain the extra practice on
the day of the exam.
Wedid find that, in Spring 2021, therewas a small increase

in practice exam use about one week before the exam
compared to Spring 2019. This change came from a small
portion of students using the practice exams to study for the
mock exam, leading to a bump in practice about one week
before exam time inFig. 8(b).However, this effectwent away
after the mock exam was over, so the mock exam did not
impact students’ practice timing pattern overall.

FIG. 7. Distribution of the number of practice exam questions attempted by students, without the mock exam (a) and with the mock
exam (b). The height of each bar represents the percentage of students whose number of attempted problems falls in that bin on the x
axis. In Spring 21 (b), students had access to one more practice question than in Spring 19 (a), so the maximum number of questions
attempted was 90 instead of 89.

FIG. 8. Timing of online practice activities. The height of each bar represents the percentage of online submissions that falls in the time
bin on the x axis. In Spring 2019 (a), there were a total of 47 686 submissions (whenever students click on anything in the online practice
exam system). In Spring 2021, with mock exam intervention (b), there were a total of 47 947 submissions. In Spring 2021, we made the
practice exams available to students 2 weeks (336 h) ahead of the exam so that they could practice for the mock exam.
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B. Effects of mock exam on students’ metacognition

Analysis of the prediction survey data reveals several
possible reasons that the mock exam did not affect students’
overall exam preparation behavior. First, we found that the
number of practice exams students predicted they would do
is only weakly correlated with predicted improvement,
r ¼ 0.13, p < 0.01, which was calculated by subtracting
their mock exam score from their predicted exam score. To
examine the difference in predicted learning by predicted
practice test usage, an ANOVAwas conducted. ANOVAwas
used instead of regression because predicted practice test
usage was not continuous (i.e., only whole numbers were
options on the survey) and linearity could not be assumed.
Examination of the q-q plots indicated normality could be
assumed, and Levene’s test for homogeneity of variance
indicated homogeneity can be assumed, Fð4; 779Þ ¼ 1.21,
p ¼ 0.30. The ANOVA indicated differences in predicted
learning, Fð4; 779Þ ¼ 3.74, p ¼ 0.30, η2 ¼ 0.02 (see
Table V). Post hoc Tukey tests indicate that those who

predicted they would complete four practice tests expected
significantly more learning than those who predicted they
would complete one practice test. However, since only a
small number of students predicted that theyweregoing to do
zero or one practice test, this effect does not show up in the
weak correlation shown in Fig. 9(a).
This means that, overall, students who predicted more

improvement did not plan on doing a significantly greater
number of practice exam problems [see Fig. 9(a)]. We can
interpret this finding in two ways: (i) Students do not
believe that doing more practice problems will lead to much
improvement in exam scores. Although students indicated
that practice exams are a very helpful component of the
course for them in the course survey, valuing practice
exams could mean different things. Students may see it as a
way of checking what kind of questions are going to be on
the exam or a test of their familiarity with the material, and
not necessarily see it as a tool that facilitates learning
during exam preparation. (ii) Students are not using mock
exams scores as a measurement of their proficiency at the
moment, so the predicted score subtracting mock exam
score does not reflect the amount of improvement students
have in mind for themselves.
Second, we found that students who predicted that they

would do more practice questions actually did more practice
questions. Because normality and homogeneity of variance
couldnot be assumed, aKruskal-Wallis testwas conducted to
examine the relationship between predicted practice test use
and actual practice test use. The results indicate that those
who predict greater practice test use actually attempt more
practice test problems, χ2ð4Þ ¼ 176.91, p < 0.0001.

FIG. 9. Prediction survey findings. (a) Students’ prediction of how many practice exams they will do given their predicted
improvement, which is calculated by subtracting mock exam scores from their prediction of exam scores. Note: Error bars represent one
standard error of the mean. (b) Box plot of the quantity of actual practice given predicted practice (triangles are mean values, lines in the
boxes are median values). Note: Since each practice exam contains about 22 questions when a student predicts that they will do four
practice exams, we interpret that it is equivalent to about 88 practice questions.

TABLE V. Descriptive statistics for predicted learning by
expected practice test use.

Predicted learning

Practice tests predicted N Median Mean SE

0 11 15.6 15.75 5.79
1 68 20.7 21.85 2.07
2 224 25.4 25.67 1.35
3 200 29.1 29.03 1.54
4 281 29.5 29.66 1.21
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Post hoc Dwass, Steel, and Critchlow-Flinger tests indicate
that those who predict three or four practice tests actually
attempt more practice test problems than those who predict
zero, one, or two.However, students attempted slightly fewer
practice exam questions than they predicted that they would
[see Fig. 9(b)], showing a mismatch between their actual
study behavior and their initial intention a week before the
actual exam.
Third, we found that students’ predicted learning corre-

lated with their actual learning overall, r¼ 0.63,p< 0.0001,
where the actual learning is calculated using their actual
exam scores subtracting their mock exam scores [Fig. 10(a)].
To examine the magnitude of the relationship, a linear
regression was conducted with predicted learning as the
response variable and actual learning as the predictor
variable. Examination of the q-q plots and kernel density
plots of the residuals indicated a normal distribution of the
residuals, and aWhite test was nonsignificant, χ2ð2Þ ¼ 1.98,
p ¼ 0.37, indicating homoscedasticity. The results indicate
that for every 10% of learning that was expected, about 7%
of learning was observed, β ¼ 0.74, Fð1; 782Þ ¼ 515.31,
p < 0.001, η2 ¼ 0.40.

Given the extensive literature that lower-performing
students are less accurate in predicting performance, we
examined the relationship between the student’s exam
scores and learning (both predicted and observed). Two
linear regressions were conducted with predicted learning
and actual learning as the response variables and exam
score as the predictor variable. Examination of the q-q plots
and kernel density plots of the residuals indicated normal
distributions of the residuals. AWhite test was nonsignifi-
cant, χ2ð2Þ ¼ 0.58, p ¼ 0.75, for actual learning indicating
homoscedasticity. However, the White test was significant,
χ2ð2Þ ¼ 9.45, p ¼ 0.01, for predicted learning indicating

heteroscedasticity. Examination of the residuals for predicted
learning indicated that the heteroscedasticity is the result of a
few extremely low scores, but this does not appear to impact
the regression parameters. The regressions indicated that
higher-performing students experienced more learning,
β ¼ 0.26, Fð1; 782Þ ¼ 42.10, p < 0.001, η2 ¼ 0.05, with
a moderate effect size. However, in contrast, lower-perform-
ing students predicted that they would learn more,
β ¼ −0.45,Fð1; 782Þ ¼ 97.27, p < 0.001, η2 ¼ 0.11, with
a large effect size.
To more easily visualize the discrepancy between student

expectations and actual performance, we divided the
students into quartiles based on their exam scores and
plotted the mean predicted learning and actual learning
observed in each quartile [Fig. 10(b)]. Four paired t tests
were conducted to examine differences between individ-
uals’ predicted learning and their actual learning.
Bonferroni corrections were applied such that α ¼ 0.013
for these paired t tests. The results indicated that students in
the lower two quartiles significantly overestimated how
much they would improve over the week, tð154Þ ¼ 14.56,
p < 0.0001, and tð138Þ ¼ 5.28, p < 0.0001, respectively,
while the higher two quartiles did not exhibit an over-
confidence in the predicted amount of learning. Again, this
could be due to students not seeing their mock exam score
as an accurate assessment of their proficiency.
In summary, our additional analysis shows that (i) stu-

dents may not be using the feedback they received from the
mock exam to set appropriate goals or lay out plans for their
studying, (ii) they may not necessarily associate doing
more practice exam problems with improved performance,
and (iii) there is a mismatch between their intended
studying and their actual studying. All of these factors
combined explain the finding that the mock exam

FIG. 10. (a) A scatterplot of students’ predicted learning (predicted exam score subtracting mock exam score) given their actual
learning (actual exam score subtracting mock exam score). (b) Comparison between students’ expected learning and actual learning for
different proficiency quartiles.
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intervention did not have an effect on how students
interacted with the practice exams, and in particular, did
not reduce the cramming behavior as we expected.

C. Testing the theoretical model

To examine the theoretical model used to ground this
study (Fig. 1), a path analysis was conducted using the
students who both took the mock exam and made pre-
dictions (see Fig. 11). A path analysis is a statistical
technique that is a special case of structural equation
modeling, used to evaluate causal models. Path analyses
allow researchers to decompose correlations into direct and
indirect effects. Direct effects represent the direct effect that
one variable has on another as predicted in theoretical
models and are represented by the arrows (as seen in
Fig. 11). Indirect effects represent the indirect effect that
one variable has on another through their relationship with
one or more other variables. These indirect effects can be
visualized by following the arrows, or path, from one
variable to another by going through other variables.
Pairwise correlations are the sum of the direct effects
and the indirect effect, which can be found by multiplying
the standardized path coefficients along the indirect paths.
A fully specified model contains directional paths between
all variables and final models are compared to the fully
specified models to establish that there is no evidence for a
difference in model fit. Rather than finding the best fitting
model, path analyses aim to evaluate whether the data are
consistent with a prespecified theoretical model. It should
be noted that because path analyses are based on the
decomposition of correlations, the hypothesized causal
relationships between variables are not validated by the
path analysis. Rather conclusions from path analyses can
only establish that the data are consistent or inconsistent
with a given theoretical model.
Because students were only incentivized but not required

to participate in the mock exam, we first examined

differences between students who completed the mock
exam and those who did not. We found that 847 (76.2%)
students chose to take the mock exam, while 265 (23.8%)
students chose to not complete the mock exam. Students
who chose to take the mock exam not only had significant
higher actual exam scores (81.8%� 0.51) than students
who did not take the mock exam (74.3%� 1.03),
tð1110Þ ¼ 7.03, p < 0.001 but also students who took
the mock exam also did almost twice as many practice
exam problems (44.6 problems� 1.19), tð1110Þ ¼ 7.95,
p < 0.0001, and completed their first practice exam earlier
(53.4h� 2.4), tð1110Þ ¼ 7.15, p < 0.0001, than students
who chose to not participate in the mock exam
(25.8 problems� 1.80,20.4 h � 2.5). It should be noted
that students self-selected whether to complete the mock
exam, so causal conclusions should be avoided when
interpreting these results.
Of the 847 students who completed the mock exam, 801

made predictions about both their exam score and their exam
preparation. Seventeen of these students made predictions of
0% or above 100%. These students were removed from the
dataset leaving a sample size of 784 for the path analysis. Path
analyses were conducted using proc Calis in SAS version
9.4. Model fit was assessed using the benchmarks proposed
by Hu and Bentler, standardized root mean square residual
ðSRMRÞ < 0.08, root mean square error of approximation
ðRMSEAÞ < 0.06, comparative fit index ðCFIÞ > 0.95, and
normed fit index ðNFIÞ > 0.95 [76].
We examined how the relationship between a student’s

score on the mock exam and the actual exam was mediated
by their metacognitive monitoring (as measured by their
prediction) and metacognitive control (as measured by the
expected and actual number of practice exam problems
completed). A fully specified version of the theoretical
model shown in Fig. 11 was tested and the nonsignificant
paths were removed. Chi-square tests were nonsignificant
indicating that the model shown does not fit the data worse

FIG. 11. Path analysis of mediating variables that connect students’ mock exam scores and their actual exam scores. Note: � < 0.05,
�� ≤ 0.01, ��� ≤ 0.001, ���� ≤ 0.0001.
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than the fully specified model, χ2ð3Þ ¼ 0.44, p ¼ 0.93. In
addition, the fit indices indicate that the theoretical model
fit the observed data (SRMR ¼ 0.0055, RMSEA¼ 0.0000,
CFI ¼ 1.000, NFI ¼ 0.9992). The path coefficients shown
in Fig. 11 are standardized coefficients allowing for the
strengths of the paths to be directly compared to each other.
The path analysis indicates that, consistent with our

theoretical model, the score earned on the mock exam was
related to students’ metacognitive monitoring, practice
exam use, and performance on the exam. Unsurprisingly,
students who scored higher on the mock exam were more
confident and did better on the actual exam one week later.
As expected, there was a negative relationship between the
mock exam score and planning on doing more practice
exams. In other words, those who scored lower on the mock
exam planned on doing more practice exam problems than
those who score higher on the mock exam. However, there
was a weak positive relationship between the score on the
mock exam and the actual number of practice exam
problems completed. In other words, those who scored
higher on the mock exam actually did more practice exam
problems.
There was also a positive relationship between the

number of practice problems attempted and scores on
the exam, which seems to indicate a positive benefit for
completing practice exams as expected. In addition to the
significant direct effects shown, there were significant
indirect effects of the mock exam score on the number
of practice test problems completed (p < 0.001) and on the
exam score (p < 0.001). These indirect effects provide
evidence that supports the theoretical association between
metacognition (monitoring and control) and exam perfor-
mance. One expected correlation that was surprisingly not
significant in our data was the relationship between
metacognitive monitoring as measured by predictions
and one aspect of metacognitive control as measured by
the number of practice problems completed. The correla-
tion between the exam score prediction and the number of
practice problems completed was not significant. This may
be due to the impact of metacognitive beliefs about the
effectiveness of testing as a learning strategy. In other
words, students who view practice exams as measuring
rather than facilitating learning are likely to demonstrate
metacognitive control in other ways. Alternatively, the lack
of correlation could be due to the presence of the mock
exam score in our model or the general overconfidence that
is typically found in exam predictions.
Because we found that the introduction of an optional

mock exam did not have a significant effect on students’
behaviors when compared with a previous semester without
a mock exam (see Sec. VII A), we believe that the
differences between students who took the mock exam
and those who did not may be due to self-selection. This
means that students who already tend to do more exam
preparation may have been more willing to participate in

the mock exam and thus scored higher on the exam. In
other words, these students may have performed better even
if a mock exam were not given in the course. This finding
shows that it is important to consider that optional
interventions may not be reaching students who are most
in need of the intervention.

VIII. DISCUSSION

We report findings from two interventions designed to
support students’ exam preparation. The first intervention
modified online practice exams such that the way it is
delivered to students provided more accurate feedback for
students while they are practicing. We found that this
intervention did not have a significant effect on students’
metacognitive judgment, how much practice exam ques-
tions they attempted, or their actual exam performance. The
second intervention introduced a mock exam to mitigate the
cramming behavior that was impeding the benefit of
practice exams. We did not find any significant effect of
this intervention on the timing or quantity of practice exam
use, or how students planned for their studying over the
week before the exam. Further analysis showed that this
intervention may not have reached students who struggle
with the course.
We interpret this null result in two ways. First, the

interventions we implemented were small-scale adjust-
ments to a much larger course that already includes
multiple forms of formative assessment, such as online
homework and in-class clicker questions, where students
receive feedback on their understanding of course material.
Students also take weekly low-stakes quizzes that, in total,
make up 10% of their final course grade. Therefore, the
extra feedback we provided by modifying the format of
practice exams or adding a mock exam may not have been
enough to generate a measurable difference.
Second, this null result signals complications in our

initial theoretical model of self-regulated learning (Fig. 1).
The rationales of our interventions were built upon a chain
of events in the theoretical model of self-regulated learning:
we expected more accurate feedback on task performance
to lead to more accurate metacognitive judgment, more
accurate metacognitive judgment to lead to more produc-
tive exam preparation behaviors, and better exam prepa-
ration behaviors to lead to better exam performance.
However, the findings in this study show that there are
other important factors in this process each step of the way.
Particularly, many factors impact students’ metacognitive
judgments other than the feedback we provide them. This is
supported by existing literature showing that many meta-
cognitive monitoring judgments are also driven by the
desire for positive outcomes and misconceptions about the
normative difficulty of the tasks as well as misconceptions
about their own performance [77–79]. As such, students
tend to underutilize past exam performance when making
predictions about performance on future exams [80]. In
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addition, low-performing individuals maintain their unwar-
ranted overconfidence even after receiving feedback con-
cerning their performance and relative skill [81,82].
To conclude, this study shows that effective interventions

to support exam preparation require more than adjustments
of task structure or added incentives for earlier practice, such
as those implemented in this study. The benefits of a single
intervention may not be carried out in the complicated
process of self-regulated learning and the context of a large
course structure. Because the study took place in an online
course during theCOVID-19 pandemic, it is difficult to draw
strong causal conclusions for the reason the null results were
observed. It may be that students were less engaged with the
interventions due to the mental stress of the online course.
Alternatively, the positive effects of the interventions may
have been masked by the negative impacts of online
instruction. It is important to note that both interventions
were conducted during the same semester, so the earlier
intervention (intervention 2) may have led to smaller format
group differences in the later intervention (intervention 1).
However, as the earlier intervention was the same for all
students, we would not expect the earlier intervention to
impact the findings from the later intervention.
Although the null results may be partially due to the

course being online, an effective intervention likely needs
to directly address students’ metacognition and control of
learning [83–85], existing study habits, beliefs about

learning, and additional factors that affect how students
make goals and study plans [86,87]. This study also
suggests it maybe be helpful for future research to further
explore the mechanism of self-regulated learning with both
quantitative and qualitative data to identify variables that
may not have been considered in existing theories and
literature, such as using interviews and surveys to better
understand how metacognition interacts with students’
actual study behaviors.
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APPENDIX: REPLICATED ANALYSES FOR
INTERVENTION 1

While analyzing data collected from Intervention 1, we
divided students into 3 groups based on the timing of their

TABLE VI. Means and standard errors by condition and time to attempt the 1st question.

Early Late No. of practice test

Single M (SE) Multiple M (SE) Single M (SE) Multiple M (SE) Single M (SE) Multiple M (SE)

Exam 2
Meta bias 13.5 (1.3) 16.5 (1.6) 15.5 (1.2) 15.6 (1.2) 11.6 (2.0) 16.1 (1.9)
Exam score 71.6 (1.4) 68.4 (1.5) 69.7 (1.0) 69.2 (1.0) 70.0 (2.0) 69.2 (1.9)

Exam 3
Meta bias 1.6 (1.3) −0.5 (1.4) 2.8 (1.5) 2.2 (1.2) 5.1 (2.4) 10.0 (2.7)
Exam score 80.7 (1.3) 84.5 (1.1) 77.7 (1.0) 79.0 (0.9) 75.2 (2.0) 72.6 (2.3)

TABLE VII. Analysis of covariance of exam score for exams 2 and 3 using time to attempt the 1st question.

Exam 2

Source d.o.f. Type III SS MS F p

Practice exam condition 1 559.75 559.75 1.79 0.18
Timing 2 8.87 4.44 0.01 0.98
Practice exam condition × timing 2 674.39 337.20 1.08 0.34
Error 1084 338 618.70 312.38

Exam 3

Source d.o.f. Type III SS MS F p

Practice exam condition 1 70.04 70.04 0.24 0.63
Timing 2 7808.32 3904.16 13.22 <0.001
Practice exam condition × timing 2 1697.38 848.69 2.87 0.06
Error 1084 320 194.47 295.39

ZHANG, MORPHEW, and STELZER PHYS. REV. PHYS. EDUC. RES. 19, 010130 (2023)

010130-16



practice. We used “attempting 20 or more questions”
as the criterion for the “early” group and presented
descriptive statistics and ANOVA results in Table I–III.
Here, we present summaries of descriptive statistics and
ANOVA results from replicated analyses using 1 practice

question (Table VI–VIII), 10 practice questions (Table IX–
XI), and 30 practice questions (Table XII–XIV) as the
criterion. This is to show that the significance of our
statistical findings is not affected by us choosing 20 as the
criterion.

TABLE VIII. Analysis of variance of metacognitive bias for exams 2 and 3 using time to attempt the 1st question.

Exam 2

Source d.o.f. Type III SS MS F p

Practice exam condition 1 1234.44 1234.44 3.49 0.06
Timing 2 394.17 197.08 0.56 0.57
Practice exam condition × timing 2 832.95 416.48 1.18 0.31
Error 994 351 599.29 353.72

Exam 3

Source d.o.f. Type III SS MS F p

Practice exam condition 1 92.10 92.10 0.24 0.63
Timing 2 5003.45 2501.72 6.47 0.002
Practice exam condition × timing 2 1512.07 756.04 1.96 0.14
Error 982 379 506.05 386.46

TABLE IX. Means and standard errors by condition and time to attempt the 10th question.

Early Late No. of practice test

Single M (SE) Multiple M (SE) Single M (SE) Multiple M (SE) Single M (SE) Multiple M (SE)

Exam 2
Meta bias 13.9 (1.8) 14.6 (2.0) 15.0 (1.0) 16.3 (1.1) 11.6 (2.0) 16.1 (1.9)
Exam score 70.7 (1.9) 69.6 (2.0) 70.3 (0.9) 68.7 (0.9) 70.0 (2.0) 69.2 (1.9)

Exam 3
Meta bias −0.7 (1.7) −1.9 (1.8) 3.1 (1.2) 1.8 (1.0) 5.1 (2.4) 10.0 (2.7)
Exam score 82.3 (1.5) 86.2 (1.4) 77.8 (0.9) 79.5 (0.8) 75.2 (2.0) 72.6 (2.3)

TABLE X. Analysis of covariance of exam score for exams 2 and 3 using time to attempt the 10th question.

Exam 2

Source d.o.f. Type III SS MS F p

Practice exam condition 1 579.62 579.62 1.85 0.17
Timing 2 47.59 23.80 0.08 0.93
Practice exam condition × timing 2 504.02 252.01 0.81 0.45
Error 1084 338749.93 312.50

Exam 3

Source d.o.f. Type III SS MS F p

Practice exam condition 1 78.77 78.77 0.27 0.61
Timing 2 8783.49 4391.75 14.90 <0.001
Practice exam condition × Timing 2 1435.21 717.61 2.44 0.09
Error 1084 319 452.15 294.70
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TABLE XI. Analysis of variance of metacognitive bias for exams 2 and 3 using time to attempt the 10th question.

Exam 2

Source d.o.f. Type III SS MS F p

Practice exam condition 1 1237.69 1237.69 3.50 0.06
Timing 2 565.77 282.88 0.80 0.45
Practice exam condition × timing 2 746.57 373.28 1.06 0.35
Error 994 351 523.72 353.65

Exam 3

Source d.o.f. Type III SS MS F p

Practice exam condition 1 85.81 85.81 0.22 0.64
Timing 2 5834.46 2917.23 7.56 <0.001
Practice exam condition × timing 2 1386.14 693.07 1.80 0.17
Error 982 378 782.35 385.73

TABLE XII. Means and standard errors by condition and time to attempt the 30th question.

Early Late No. of practice test

Single M (SE) Multiple M (SE) Single M (SE) Multiple M (SE) Single M (SE) Multiple M (SE)

Exam 2
Meta bias 12.7 (1.5) 16.9 (1.7) 15.8 (1.1) 15.5 (1.2) 16.1 (1.9) 11.6 (2.07)
Exam score 72.5 (1.6) 68.6 (1.7) 69.4 (1.0) 69.1 (1.0) 70.0 (2.0) 69.2 (1.9)

Exam 3
Meta bias −0.4 (1.4) −1.6 (1.4) 3.4 (1.3) 2.2 (1.1) 5.1 (2.4) 10.0 (2.7)
Exam score 81.5 (1.2) 85.5 (1.1) 77.6 (1.0) 78.9 (0.9) 75.3 (2.0) 72.6 (2.3)

TABLE XIII. Analysis of covariance of exam score for exams 2 and 3 using time to attempt the 30th question.

Exam 2

Source d.o.f. Type III SS MS F p

Condition 1 307.27 307.27 0.98 0.32
Timing 2 49.90 24.95 0.08 0.92
Condition × timing 2 12.95 6.47 0.02 0.98
Error 1084 339 239.31 312.95

Exam 3

Source d.o.f. Type III SS MS F p

Condition 1 105.49 105.49 0.36 0.55
Timing 2 9598.59 4799.30 16.32 <0.001
Condition × timing 2 1318.86 659.43 2.24 0.11
Error 1084 318 835.50 294.13
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