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Abstract

Classification models are expected to perform
equally well for different classes, yet in practice,
there are often large gaps in their performance.
This issue of class bias is widely studied in cases
of datasets with sample imbalance, but is rela-
tively overlooked in balanced datasets. In this
work, we introduce the concept of spectral imbal-

ance in features as a potential source for class
disparities and study the connections between
spectral imbalance and class bias in both theory
and practice. To build the connection between
spectral imbalance and class gap, we develop a
theoretical framework for studying class dispari-
ties and derive exact expressions for the per-class
error in a high-dimensional mixture model set-
ting. We then study this phenomenon in 11 dif-
ferent state-of-the-art pretrained encoders, and
show how our proposed framework can be used to
compare the quality of encoders, as well as evalu-
ate and combine data augmentation strategies to
mitigate the issue. Our work sheds light on the
class-dependent effects of learning, and provides
new insights into how state-of-the-art pretrained
features may have unknown biases that can be di-
agnosed through their spectra. Code can be found
at https://github.com/nerdslab/SpectraImbalance.

1. Introduction

A core objective in machine learning is to build fair classifi-
cation models that provide good performance irrespective
of the class to which the data belongs. In practice, however,
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models are often biased towards better performance on some
classes of the data and may do a poor job on others.

Most studies and approaches for dealing with class bias
have focused on sample imbalance, or the fact that different
classes often have different number of samples (Zhang et al.,
2023a). In this case, mechanisms to reweight the loss or
rebalance the dataset can be used to correct the sample
imbalance (Ren et al., 2020; Zhu et al., 2022). Somewhat
surprisingly, even without sample imbalance there can still
be significant performance gaps across classes, including
on state-of-the-art encoders (Ma et al., 2022; 2023). These
effects can become more pronounced depending on the
types of regularization and/or data augmentation used during
training (Balestriero et al., 2022; Kirichenko et al., 2023).
Thus, we need a better understanding of the sources of
class disparities and new approaches for identifying and
mitigating underlying biases in models. This is particularly
relevant due to the popularity of foundation and pretrained
models, since underlying biases in the pretrained features
may impact performance and robustness on downstream
tasks.

In this work, we introduce a new framework for studying
class-dependent generalization that relies on a concept that
we call spectral imbalance. The central idea behind this
perspective is that differences, or shifts, in the distribution
of features across classes could be the source of class bi-
ases. We characterize these differences in feature geometry
using the distribution of eigenvalues, i.e. the spectrum, for
each class and show, both in theory and in practice, that
deviations in spectra across classes will indeed produce
interesting effects on the class gap. Our findings comple-
ment recent empirical work that connects certain geometric
properties of learned features to per-class performance (Ma
et al., 2022; 2023) while also providing a formal theoretical
connection between spectral imbalance and class gaps in
high-dimensional linear models.

First, we develop a theoretical framework for studying this
phenomenon and dig deeper into the distinct ways in which
spectral imbalance may impact class gap. In particular,
we derive exact asymptotic expressions for the class-wise
error in a Gaussian mixture model with class-specific covari-
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ances. We use these expressions to uncover different types
of spectral imbalance and characterize their consequences
for the class gap. This theory provides a strong basis for the
investigation of the spectra in per-class generalization.

Next, in extensive empirical investigations, we study the
class-dependent spectra for 11 state-of-the-art pretrained
encoders (with 6 distinct types of architecture) on ImageNet.
Across the board, we observe that the class gap is strongly
correlated with the spectral imbalance of the representation
space and that through measuring different statistics of this
imbalance, we can predict which classes will perform worse
than others without actually testing the model. Furthermore,
we define a classwise spectral quantile measure that we use
to diagnose different models, predict which encoders will
have smaller class gaps, and also determine smarter aug-
mentation strategies. Our empirical results provide strong
evidence that spectral imbalance plays an important role in
the characteristics of representation space.

In summary, our major contributions are as follows:

• In Section 2, we introduce the concept of spectral

imbalance and study how discrepancies in eigenvalues
between classes are related to the problem of class-
dependent generalization.

• In Section 3, we derive exact theoretical expressions for
the per-class generalization in a high-dimensional lin-
ear mixture-model setting (Theorem 1). The resultant
simulations demonstrate the effect of different spectral
imbalances on the per-class performance gap.

• In Section 4, we empirically demonstrate that similar
phenomena hold in the representation space of pre-
trained models. Thus, we design a spectral quantile

score, that accurately measures the amount of ‘imbal-
ance’ in representation space.

• Finally, in Section 4.4, we provide an initial explo-
ration of how to improve augmentation design to miti-
gate spectral imbalance, and design a simple ensemble
method to combine augmentations and improve perfor-
mance across classes without any re-training.

2. Why spectral imbalance?

Effectively addressing class bias necessitates a deep under-
standing of the underlying structure of the representation
space. One promising avenue is through analyzing the spec-
tral properties of the features corresponding to each class.
The spectrum, i.e., the set of eigenvalues of the covariance
matrix of the representation, serves as a powerful indicator
of the features’ intrinsic geometry and dimensionality. It
characterizes how variance is distributed across different
principal components, offering a window into the structure
of the representation space. We thus hypothesize that varia-

Figure 1. Spectral imbalance in different pretrained models. (A)
We plot the spectrum of the top and bottom performing classes
and find that classes that achieve lower accuracy have larger eigen-
values. (B) Histogram of the k = 5 eigenvalue across classes for
two encoders (ResNet-50, ViT-B) with the quartiles indicated. If
we look at classes with similarly ranked or “adjacent” eigenvalues
(upper quartile) in ResNet-50, we find that they can be mapped to
very different positions in the distribution of eigenvalues in another
encoder (ViT-B).

tions in these spectral properties will provide crucial insights
into class-specific performance, potentially revealing biases
that are not immediately discernible through traditional mea-
sures of imbalance (e.g. sample size per class).

We explore in particular the extent to which spectral imbal-

ance, or variation in spectral characteristics across different
classes, impacts class performance. As a motivating exam-
ple, in Figure 1, we estimate and examine the spectrum for
different classes in a pre-trained ResNet-50 (He et al., 2016).
We make two important observations:

• First, we find that the eigenvalue distributions dif-
fer significantly between top-performing and worst-
performing classes, with top-performing classes ex-
hibiting a uniformly smaller spectrum (Figure 1(A)).

• Second, when comparing eigenvalues of different pre-
trained encoders, we observe that the distribution of the
eigenvalues shifts considerably. For example, classes
might have similarly ranked eigenvalues in one en-
coder, but vastly different eigenvalues in another (see
Figure 1(B), more in Appendix Figure 4).
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Both of these observations motivate the need to understand
the differences in class-dependent spectra, and how differ-
ent sources of spectral imbalance may impact downstream
performance.

2.1. Examining the role of the spectrum in

class-dependent generalization

To see more concretely how spectral balance across classes
can play a role in class-dependent generalization, we first
consider a simple linear classification setting, where the
features follow a 2-class Gaussian mixture model (GMM):

x | y i.i.d.⇠ N (y✓⇤
,⌃y).

Here, ✓⇤ 2 Rp is an unknown signal controlling the class
means, y 2 {�1, 1} is the label, and ⌃y are the covariance
matrices for each class. For any fixed estimator ✓̂, inference
is performed as ŷ = sign(x>✓̂). Then, the class-dependent
probability-of-error (POE) can be written as:

POE(✓̂|y) := P{sign(x>✓̂) 6= y|x in class y} (1)

= Q

 
h✓̂,✓⇤i

k⌃1/2
y ✓̂k2

!
(2)

where Q(·) is the Gaussian Q-function (see proof in Ap-
pendix A). Fixing the estimator ✓̂, we can see that the class
dependency of the POE is captured by the term k⌃1/2

y ✓̂k2.
Hence, it is natural to consider differences in this quantity as
indicators of how differently an estimator can be expected to
perform on the two classes. In particular, an estimator ✓̂ will
achieve small class gap when k⌃1/2

y=1✓̂k2 ⇡ k⌃1/2
y=�1✓̂k2,

for which a sufficient (but by no means necessary) condition
is that ⌃y=1 ⇡ ⌃y=�1.

As a concrete example, suppose for simplicity that the
eigendecompositions of the class covariances are ⌃y =P

j �
(y)
j vjv

T
j , i.e., both share the same eigenvectors. Then,

ClassGap(✓̂) :=
���POE(✓̂|y = �1)� POE(✓̂|y = 1)

���

is positively correlated with the quantity
������

X

j

(�(y=�1)
j � �

(y=1)
j )h✓̂,vji2

������

From these expressions, we can see that if the eigenvalues
of ⌃1 are uniformly smaller than those of ⌃�1, Class 1
will have smaller generalization error. This conforms with
the familiar intuition that classes with smaller variance (i.e.,
less noise) should be “easier” to identify, as shown in Fig-
ure 1. Moreover, the effect of an eigenvalue gap between

the two classes is unevenly distributed between different
coordinates, depending on the structure of the estimator ✓̂.

Of course, in general, the connection between the spectra of
features corresponding to a specific class and the per-class
generalization is considerably more nuanced, since ✓̂ is
itself learned from training examples and depends crucially
on the properties of the spectra of both classes. Indeed, many
recent works on benign overfitting in linear regression and
classification (Bartlett et al., 2020; Muthukumar et al., 2021;
Cao et al., 2021; Wang & Thrampoulidis, 2021) have shown
that the properties of the (overall) data spectrum play a vital
role in achieving good overall performance, particularly in
the overparameterized regime. In the forthcoming sections,
we extend these insights to a fundamental understanding of
how the class-wise spectrum affects per-class performance,
and build the framework of spectral imbalance.

3. An exact characterization of the class gap

In this section, we explore the factors that govern class im-
balances by studying the case of high-dimensional linear
classification in the GMM setting introduced in Section 2,
where the mixtures correspond to the classes. The GMM
is a natural way to study class covariance differences and
provides insights into the types of representations that might
result in larger class biases in practice. Here, we provide
an exact asymptotic characterization of the per-class gen-
eralization error and class gap. Our framework allows us
to model nuanced relationships between the eigenvalues
of each class covariance, providing a rigorous testbed for
studying their effect on per-class generalization.

3.1. Problem formulation

We consider a training scheme where we are given n i.i.d.
samples (x, y) from the GMM setting in Section 2.1, where
n1 (resp., n�1) samples come from Class 1 (resp., Class -1).
We study empirical risk minimization (ERM) estimators of
the form

✓̂ := arg min
✓2Rp

1

n

nX

i=1

L(yihxi,✓i) + rk✓k22,

where L is a convex loss function and r > 0 is the ridge
regularization parameter. Our goal is to characterize the
per-class test error of the resultant ✓̂, given by Equation (1).

Our theory considers the modern high-dimensional setting
where both the model complexity and the number of training
samples are large. Specifically, we study the per-class error
in the asymptotic limit where n, p ! 1 jointly, with the
ratios n

p = �, ny

n = ⇡y fixed (and clearly, ⇡1 + ⇡�1 =

1).1 Our theory allows for overparameterization (� < 1)

1We note here that the quantities ✓̂,⌃y,✓
⇤, and POE(✓̂ | y)
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or underparameterization (� > 1), and for any constant
regularization parameter r > 0.

Notation. The Mahalanobis norm of a vector, defined
for a positive semi-definite matrix H is given by kxkH =p
x>Hx. We also define the following function, which we

denote the Lth order Moreau envelope function of a given
convex function f : R ! R:

M(L)
f (x1, ..., xL; ⌧1, ..., ⌧L) := min

v2R
f(v)+

LX

`=1

1

2⌧`
(x`�v)2

Note that for L = 1 this is the classical Moreau envelope
function of f . We will often use the shorthand notation
M(2)(xy; ⌧y) = M(2)(x1, x�1; ⌧1, ⌧�1). The notation P!
denotes convergence in probability, W2! denotes convergence
in Wasserstein-2 distance, and the empirical distribution of
a random variable aj is denoted 1

p

Pp
j=1 �(aj).

3.2. Main results

We now state our general asymptotic result for the GMM
with spectral imbalance. Our analysis relies on the Convex
Gaussian Min-Max Theorem (Thrampoulidis et al., 2018)
and is influenced (particularly in the treatment of anisotropic
covariances) by (Montanari et al., 2019) and (Taheri et al.,
2020), who consider, respectively, max-margin classifica-
tion and adversarial training in the GMM without spectral
imbalance. After stating the assumptions and theorem, we
briefly outline major differences in the proof technique while
deferring the full proof to Appendix A.
Assumption 1. The target signal ✓⇤ and class covariances
⌃y satisfy the following:

1. The ⌃y are diagonal.
2. k✓⇤k

⌃
�1
y

! ⇣y and k✓⇤k2 ! C for some constants
⇣y, C > 0.

3. The empirical joint distribution of (pp✓⇤
j ,�

(1)
j ,�

(�1)
j )

converges to some distribution, denoted ⇧:
1
p

Pp
j=1 �(

p
p✓⇤

j ,�
(1)
j ,�

(�1)
j )

W2! ⇧.

Due to rotational invariance, the first assumption is for sim-
plicity and can be relaxed to the setting where the covari-
ances are simultaneously diagonalizable. We also note that
the last assumption is quite flexible; as we will see in Sec-
tion 3.3, various choices of ⇧ can reflect very different types
of spectral imbalance between the two classes.

Theorem 1. Let G,H1, H�1
i.i.d.⇠ N (0, 1) and

(T, L1, L�1) ⇠ ⇧. Under Assumption 1, the per-

class POE can be written as a function of scalars µy, ↵y,

and ⇣y:

should be interpreted as sequences indexed by n; however, we will
suppress the dependence on n in the notation for clarity.

POE(✓̂ | y) = Q

 
h✓̂,✓⇤i

k⌃1/2
y ✓̂k2

!
P! Q

0

@ µy⇣
2
yq

↵2
y + µ2

y⇣
2
y

1

A,

where (µy, ↵y) are found in the optimal solution (if it is

unique) of the following min-max problem over 12 scalar

variables:

min
↵y,⌧y�0
µy2R

max
�y,�y�0
⌘y2R

rEM(2)
(·)2

 
↵y�yHy

�y

p
�Ly

+
⌘y↵yT

�y⇣
2
yLy

;
↵yr

�yLy

!

+
X

y2{�1,1}


⇡y EG M(1)

L

✓
µy⇣

2
y +

q
µ2
y⇣

2
y + ↵2

yG;
⌧y

�y

◆

�
⌘
2
y↵y

2�y⇣2y
�

µ
2
y�y⇣

2
y

2↵y
�
↵y�

2
y

2��y
+
�y⌧y

2
� ↵y�y

2
+ ⌘yµy

#
.

(3)

First, we note that the min-max optimization specified in
Theorem 1 is straightforward to solve by gradient descen-
t/ascent. Hence, this theorem provides a simple analytical
framework to assess the exact asymptotic impact of various
high dimensional and spectrally-imbalanced GMM settings.
Specifically, we can apply the above theorem for different
choices of the distribution of features and ground truth (i.e.,
⇧) to characterize the precise impact of various types of
spectral imbalance. While these will be the main factors
which we study below, the theorem also provides the flexibil-
ity to analyze the effect of other parameters like the choice
of loss function L or regularization strength r. While we do
not explore this here, the result also allows for comparison
between recently proposed alternative performance metrics
in class-imbalanced settings, which are functions of the
per-class accuracies (Mullick et al., 2020).

A note on the proof technique: The objective function
in Equation (3) is quite similar to the min-max program
derived for the GMM with equal class covariances in (Taheri
et al., 2020); however, there are a few key differences in
our proof technique which allow us to generalize that result
and obtain a more refined per-class characterization of the
error. Firstly, we use a decoupling trick that introduces
two variables (one for each class) for each variable in the
objective function of (Taheri et al., 2020). This allows us
to isolate the quantities of interest for each class and apply
the CGMT separately for each class. Secondly, in contrast
to (Taheri et al., 2020), our result features the second order
Moreau envelope term, which functions as a way to link the
decision variables corresponding to each class.

3.3. Insights on spectral imbalance

We can use the predictions of Theorem 1 to precisely study
the impact of various types of spectral imbalance on per-
class performance. In Figure 2, we plot the asymptotic
predictions of the per-class error and the class gap for three
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Figure 2. Spectral imbalance in the GMM for the settings in Section 3.3. Top Row: Visualization of the spectra of both classes. Bottom
Row: Theoretical predictions of Theorem 1 (solid lines) and numerical simulations (average over 50 trials ±1 std.) for the per-class error.

different types of spectral imbalance which can arise in
GMMs. To isolate the effect of spectral imbalance, the pre-
dictions in this section fix the amount of data from each
class as identical (i.e. ⇡y = 0.5), the parameterization ratio
� = 2, regularization parameter r = 0.5 and the loss as the
squared hinge loss, L(t) = max(0, 1 � t)2. In each case,
we verify the theoretical predictions via numerical simu-
lations averaged over 50 independent draws of n = 1000
training examples. The results indicate that the asymptotic
predictions accurately describe the per-class behavior even
for moderate values of n and p. We provide further details
of the setup for these simulations in Appendix A.2. We also
explore the scenario where sample imbalance and spectral
imbalance are both present in Appendix A.3.

(A) Impact of eigenvalue scaling: In this example, we
vary the relative scale of some of the eigenvalues of Class 1
while fixing the target signal as pp✓⇤

j = 1 for all j. Specif-
ically, we fix the eigenvalues of Class -1 to be either 0.5
or 2, in equal proportion. Then, we set all the eigenval-
ues for Class 1 to be a multiplicative scaling s � 1 of the
eigenvalues of Class -1. We can see in Figure 2(A) that as
s increases, the performance of Class 1 degrades severely
while that of Class -1 also degrades, but to a lesser extent.
In line with the general intuitions in Section 2.1, this results
in a net increase in the class gap.

(B) Impact of eigenvalue decay rate: Fixing p
p✓⇤

j = 1
for all i, we again consider a bi-level covariance model,
where the eigenvalues of each class take one of two values:
2 or 0.5. We fix the proportion of larger eigenvalues in Class
-1 to be 0.5 while varying the proportion p 2 [0, 1] of larger
eigenvalues for Class 1. This example indicates that there
can be an important trade-off between overall performance
and the class gap: the choice p = 0 (all small eigenvalues)

yields the best per-class performance for both classes while
p = 0.5 minimizes the class gap.

(C) Impact of alignment with the target signal: The
previous notions of spectral imbalance ignored the rela-
tive shape of each marginal distribution with respect to
the target signal ✓⇤. We now consider a situation where
the two class covariances are misaligned, so that either
(�(1)j ,�

(�1)
j ) = (0.5, 2) or (�(1)j ,�

(�1)
j ) = (2, 0.5). We

then increase the magnitude of ✓⇤
j by a factor a, only in the

directions j 2 [p] where �(�1)
j = 2. Here, as we increase

the parameter a � 1, the overall signal strength increases,
so the global performance improves. However, due to the
differences in the covariance alignment, the improvement
is not uniform between the two classes, and Class 1, which
has smaller variance in the directions of increased signal
strength, improves more quickly. Interestingly, for large a

the class gap decreases as the effect of large signal strength
outweighs the differences between the class spectra.

4. Spectral imbalance in pretrained features

In this section, we build on our theoretical findings to ex-
plore how the framework of spectral imbalance may be used
to understand and mitigate class bias in the image represen-
tation space of pre-trained models.

4.1. Experimental setup

Settings. We consider a common scenario in representa-
tion learning, where encoders are used to extract features,
and linear classifiers are trained on these features for down-
stream evaluation. Formally, a dataset D = {(xi, yi)}ni=1
of n images is used to train a network consisting of a pre-
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trained encoder f!(·) and a linear classifier g✓(·) = h✓, ·i.
The encoder produces a latent representation for each image
following zi = f!(xi). In this work, we aim to under-
stand the properties of the resulting representation space
Z = {zi}ni=1, and how the (estimated) spectral properties
of the distribution on Z can be correlated to the classifi-
cation results of the classifier g✓(·) for each class. Note
that the role of the latent features {zi}ni=1 in representation
learning is directly comparable to the role of the original
features {xi}ni=1 in the preceding GMM; this is because in
both cases the downstream model is linear.

Empirical estimation of the class-dependent spectra.

To obtain the estimated eigenspectrum, we first estimate
the empirical class-dependent covariance matrix as:

⌃C (f!) =
1

|⌦C |
X

i2⌦C

(zi � zc)(zi � zc)
T
,

where C is a class, ⌦C denotes the set of examples with
label yi = C, and zc denotes the empirical mean of features
with class C.

The eigenvalue decomposition of the covariance matrix is
then computed as ⌃C = VC⇤CV

�1
C , where ⇤C is a diag-

onal matrix with nonnegative entries �(C)
i , and the columns

of VC correspond to the eigenvectors of ⌃C . Without loss
of generality, we assume that �(C)

1 � �
(C)
2 . . . � �

(C)
m ,

where m is the rank of ⌃C . The resulting set of eigenvalues
�
(C)
i is the (empirical) eigenspectrum of class C.

Pretrained networks. In what follows, we evaluate the
representation space of a diverse set of classification models
to understand their class bias. Specifically:

• Residual networks: Using residual connections to
bridge convolutional blocks, ResNets are a class of
deep convolutional neural networks (CNNs) that is
instrumental in many visual recognition tasks (He et al.,
2016).

• Improved CNNs: DenseNet (Huang et al., 2017) and
EfficientNet (Tan & Le, 2019) are two representa-
tive convolutional architectures that aim to improve
ResNets. They design different strategies to build con-
nections across layers to improve the information flow
inside the networks.

• Vision transformers: The vision transformer splits an
image into patches and uses self-attention to study their
interactions (Dosovitskiy et al., 2020). ViT aggregates
global information at earlier layers, creating signif-
icantly different representations than CNNs (Raghu
et al., 2021).

• Transformers without self-attention: Recent studies
show that self-attention is not required for obtaining
good representations in vision. Along this line, we

Figure 3. Examining the relationship between class-dependent

spectra and performance. (left) The spectral offset of each class
vs. their classification accuracy, computed for ResNet-50 on the
validation set of ImageNet. (right) Pearson correlation coefficient
between class accuracy and individual eigenvalues (blue) and the
power law offset (red).

study MLP-Mixer (Tolstikhin et al., 2021) and Pool-
Former (Yu et al., 2022), which uses multi-layer per-
ceptrons and average pooling to mix information across
patches, respectively.

We found all checkpoints of the pretrained models in
Torchvision (Marcel & Rodriguez, 2010) and timm (Wight-
man, 2019) (see details in Appendix B). For all experiments,
we use the standard ImageNet ILSVRC 2012 dataset (Deng
et al., 2009), which contains C = 1000 object classes with
an average of 1281/50 training/validation images per class.
We also provide results on smaller datasets in Appendix B.3.

4.2. Spectra correlate with class-wise performance

Individual eigenvalues. We first analyze the correlation
between the class-wise performance and the magnitude of
individual eigenvalues of each class. To do this, we compute
the Pearson correlation coefficient (PCC) between the set
of eigenvalues {�(c)j } (validation set) and the set of across-
class accuracies, {Accuracy(c)}, for every eigenvalue index
j. In Figure 3, we observe that the class-wise accuracy
shows a strong negative correlation with most individual
eigenvalues (right), in line with the theoretical results on
eigenvalue scaling in Figure 2(A). Across the 11 models
examined, we obtained an average maximum negative cor-
relation of -0.69. Interestingly, unlike the examples in Sec-
tion 3.3, the first few eigenvalues do not show a strong
correlation for most models, potentially illustrating unique
properties of the features learned by real-world encoders.

Power law decay offsets. Natural images are known to
exhibit a power law decay in their eigenvalues (Ruderman,
1994). Recent work has shown that this also holds in visual
representations in pretrained models (Ghosh et al., 2022)
and can be used to examine the quality of learned repre-
sentations. Thus, we fit the class conditional spectrum to
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�i = ai
�b, and observe how the parameters (a, b) indicate

the class-wise accuracy. Interestingly, we observed that the
scale a (the offset on a log-scale) correlates most strongly
with class accuracy (an average of -0.68 across 11 models),
while the power (i.e. rate of decay) b does not strongly
correlate with class-wise performance. This phenomenon
demonstrates that there is a nuanced relationship between
the specific distribution and decay rate of eigenvalues (cf.
Figure 2(B)) and the class performance. We provide further
details and also measure the correlation between other decay
rate metrics and class-wise performance in Appendix B.2.

4.3. Spectral imbalance in your pretrained model

Next, we conduct a systematic investigation of the per-class
accuracy discrepancies across encoders and show that spec-
tral imbalance is often a measurable property of the encoder.
Surprisingly, out of the 55 unique pairs of encoders that we
consider, an average of 31% classes had a ranking (with du-
plicates) difference over 100 out of C = 1000 total classes,
with the input data held constant. To better understand the
large variability of per-class accuracy across encoders, we
propose the Spectral Quantile Score (SQS), which measures
the spectral imbalance between classes in a given encoder.

Spectral Quantile Score. Writing the set of per-class
accuracies as a sorted list of numbers {Acc1, . . . , AccC} in
descending order, we define the empirical class bias score
of an encoder as:

Class bias =

 
LX

k=1

Acck �
CX

k=C�L+1

Acck

!
/
�
L⇥Acc

�
,

where C is the total number of classes, Acc is the average
accuracy over all classes, and L is a selected cutoff. In our
experiments on ImageNet, we set L = 100 throughout.

To compute the imbalance across classes in their spectra,
we can similarly sort our per-class spectral metric of interest
(i.e., spectral offset, specific eigenvalues) as {s1, . . . , sC}
and compute the the Spectral Quantile Score (SQS):

SQS = sL/s1.

Again, we set L = 100 for our experiments. As shown
in Figure 4(A), we found the SQS of different encoders is
indicative of their empirical class bias (0.90 PCC), where
latent spaces with a higher SQS would likely give higher
empirical class bias. The strong correlation between SQS
and empirical class bias emphasizes the importance of inves-
tigating the spectra imbalance in encoders, which accurately
reflects and evaluates the encoders’ empirical class bias.
Moreover, as the worst class performance is often strongly
associated with the final average performance of an encoder
(Arjovsky et al., 2022), understanding spectral imbalance
provides an additional lens into the representation space
without training actual classifiers.

Testing for class disparity in a new encoder. Next, we
investigate how class-dependent spectra can be used to
estimate the performance of a new encoder. Following
(Balestriero et al., 2022), we used a one-sided Welch’s t-
test (Welch, 1947) to validate our hypothesis that the per-
class accuracy is significantly lower when their training
set spectra have a higher offset parameter a. We define
the random variable as the accuracy difference between
two encoders �f1,f2(c) := Accf1(c)� Accf2(c), and ��
represents the set of classes with spectral offset difference
af1(c) � af2(c) < 0 being negative. We define the null
hypothesis as H0 = E[�] > E [��].Intuitively, rejecting
the hypothesis means the classes with a higher spectral prop-
erty would give lower class-wise accuracies. We obtain
that there is enough evidence to reject this hypothesis with
95% confidence for 98 out of 110 pairs of encoders; and
99% confidence for 80 out of 110 pairs of encoders. This
demonstrates that spectral properties might reliably predict
class-wise accuracies for new encoders, despite the noise in
spectrum estimation.

4.4. Combine augmentations using spectral information

Recent work identified that commonly used data augmenta-
tions can in fact worsen class gap (Balestriero et al., 2022).
Thus, we sought to study the effect of data augmentation

on class disparity and ask whether different augmentations
can be used to alleviate gaps in class accuracies.

Do different augmentations impact spectral imbalance?

To begin, we supplement the results of Section 4.3 by show-
ing that spectral imbalance correlates strongly with class
gap not only across encoders, but also across data transfor-
mations. Following (Hendrycks & Dietterich, 2019), we
generated 16 versions of ImageNet where the images are
transformed differently. Specifically, given a sample x from
our train/test dataset D, we start by transforming every im-
age with the 16 candidate augmentations as x

` = t`(x),
where t` 2 T` is a sampled augmentation operation from
the `th augmentation plan. After feeding these transformed
images through our pretrained encoder f!, we obtain 16
different sets of latents {z` = f!(x`)}16`=1. Then, our pre-
diction corresponding to the `th augmented test sample is
given by the C-dimensional logit output L` = g✓(z`).

As in Section 4.2, we fit a power law to all classes and
use the offset parameter a as the studied spectral property.
Between the training set spectral properties and the testing
set class bias, we compute the SQS score across all 16 types
of augmentations and obtain a PCC of 0.90, demonstrating
strong positive correlation. Within each class, the spectral
property is also statistically significant for 78.9% out of
1000 classes. See Appendix B.5 for more details.
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Figure 4. Selecting model and data with spectra. (A) Given different encoders, the Spectral Quantile Score (SQS) is predictive of the
empirical class bias of the representation spaces. Note that SQS is estimated on training set without deploying the classifier(s). (B) Given
different data augmentation plans, we can use the class-level spectra to assign data to their optimal augmentation plan in a class-dependent
way. This assignment can be used at test time to re-factor the prediction and boost performance across all classes without any re-training
or modification to the encoder.

An ensembling method to combine augmentations using

spectral information. Based on the observed correlation
between imbalance of the spectral offset and performance
for each class, we propose a spectral re-factoring method
that adaptively combines the predictions across different
augmented views at test time to improve performance. To do
this, we extract the spectral offset parameter a for each class
(C = 1000) across all candidate augmentations (K = 16)
on the training dataset. This results in a matrix M 2 RK⇥C ,
where each entry M`,c = a`,c denotes the offset parameter
for all latents {z`} in class c.

Consider a test sample x. Suppose that an ‘oracle’ could
give us its true class c⇤. Then, we would use the prediction
corresponding to the augmented view that achieves mini-
mum ‘spectral score’ of class c⇤, i.e. use the augmentation
`
⇤ that minimizes M`,c⇤ . We depict this idea in Figure 4(B)

with two candidates Zoom Blur (ZB) and Snow (SW). In
this case, ZB achieves a smaller spectral score for 623/1000
classes, while SW acheives a smaller spectral score for the
other 377/1000 classes. Thus, our oracle would select the
predictions of ZB for the 623 classes with smaller spectra
and SW for the next 377 classes. This approach would yield
significant improvement across all classes: 6.0% on 623
classes (blue) and 10.2% on 377 classes (yellow).

Of course, in reality we do not have access to the class
information c

⇤ to apply the ‘correct augmentation’. Instead,
we propose an ensembling method for assigning final class
probabilities based upon the spectral property matrix M:

(Step 1) Pass K candidate augmentations of each sample
through f and g to produce a multi-view logits matrix
L 2 RK⇥C , where L` corresponds to the logits generated

by prediction on augmented data x
`.

(Step 2) Create a new logit vector l̂c = L`⇤(c),c where
`
⇤(c) minimizes M`,c. Intuitively, we select the logit corre-

sponding to the ‘optimal’ augmentation for class c, based
upon the spectral scores in M.

(Step 3) Classify test data x as c(x) = argmaxc2[C]L̂c.

This re-factored prediction is depicted in Figure 4(B). Essen-
tially, the procedure first estimates the correct augmentation
from the training set for each class to use in steps 1 and 2,
selects the corresponding logit for that class, and uses these
adaptively selected logits in a standard classification proce-
dure in step 3. This ensembling procedure improves Zoom
Blur (65.01%) and Snow (65.12%) to a combined accuracy
of 67.616%, giving an average performance improvement
of 2.55% and an average class gap improvement of 3.52%
without any re-training required.

Using the same approach, we repeat the experiments on all
combinations of augmentations provided by (Hendrycks &
Dietterich, 2019) in Appendix B.5. We show that, across
15x16 = 240 runs, our proposed ensemble method can stably
improve the average performance across two augmentations
and the worse augmentation by 2.6% and 5.9% respectively.

,

5. Related work

Class-dependent generalization and class bias. Re-
cently, (Balestriero et al., 2022; Kirichenko et al., 2023)
put forward the interesting observation that data augmenta-
tions can create class bias, and that the issue worsens the

8
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stronger the augmentation(s) is. In contrast to our work,
these works focus exclusively on the impact of data augmen-
tation and do not identify or characterize the role of spectra
in class bias. They propose a different hypothesis that is
less quantifiable; in particular, that classes that are inher-
ently more ‘fine-grained’, or harder to distinguish, are most
affected. Comparatively, our proposed measures of spectral
imbalance are precise, quantitative, and demonstrated to
correlate with class bias through formal statistical analysis.

The role of spectra in generalization. Many recent works
have highlighted the importance of the data spectrum in
generalization (Bartlett et al., 2020; Muthukumar et al.,
2021; Lin et al., 2022), especially in the overparameterized
regime. Specifically, the works (Chatterji & Long, 2021;
Wang & Thrampoulidis, 2021; Cao et al., 2021; Wang et al.,
2021) characterize the behavior of overparameterized linear
classifiers in GMMs through non-asymptotic, finite-sample
bounds and show good generalization under favorable spec-
tral properties of the data. However, they all assume equal
class covariances and do not explicitly consider the effects
of spectral imbalance. Another line of work provides ex-
act asymptotic bounds on the classification error achieved
by linear classifiers in the GMM (Deng et al., 2022; Mai
et al., 2019; Loureiro et al., 2021; Kini et al., 2021; Taheri
et al., 2020; Javanmard & Soltanolkotabi, 2022). Of these,
only (Loureiro et al., 2021) allow for different covariances
between classes. Their work studies a more general mul-
ticlass setting, but does not systematically study per-class
generalization. By contrast, we focus on a simpler binary
classification setting and use an alternative proof technique
based on Gaussian comparison inequalities to obtain a much
simpler expression that is easier to numerically evaluate, and
thus allows us to model various spectral imbalances. Finally,
our empirical results estimate the eigenspectra either on val-
idation/test data, on augmented training data, or on training
data but non-zero training error. This circumvents “neural
collapse" on training data (Papyan et al., 2020) which would
yield misleading estimates of eigenspectra.

Evaluating representations. Assessing the quality of rep-
resentations is a critical aspect of representation learning.
The importance stems from its ability to bypass the need for
training classifiers, especially when the quality and quantity
of downstream data are lacking (Martin et al., 2021; Liu
et al., 2022; 2023). Representations can be studied from the
perspective of manifold analysis (Hauser & Ray, 2017); Pre-
vious works show that estimated geometric properties like
intrinsic dimension correlate with performance (Ansuini
et al., 2019; Cohen et al., 2020; Doimo et al., 2020; Vale-
riani et al., 2023). Recently, (Ghosh et al., 2022; Agrawal
et al., 2022) uses the power law decay of eigenspectrum to
measure the quality of representations, and follow-up works
show that spectral properties can also be used to improve
self-supervised learning (He & Ozay, 2022; Zhang et al.,

2023b; Weng et al., 2023). In contrast to these works, we es-
pecially evaluate the spectral properties of the representation
space from the perspective of class bias and class-dependent
generalization error.

The recent works (Ma et al., 2022; 2023) also provide a
geometric interpretation of the class covariances of learned
representations and connect these differences in geometry
to differences in performance, both for long-tailed and bal-
anced datasets. Our work provides an alternate and comple-
mentary perspective, studying the decay rate and relative
magnitude of eigenvalues, rather than the “volume”, which
is related to the product of eigenvalues (Ma et al., 2022)
or the Gauss curvature (Ma et al., 2023) of the learned fea-
tures. Compared to these works, we provide an explicit
theoretical framework for studying spectral imbalance in
high-dimensional GMMs, and we focus our attention on pre-
trained representations and sample-balanced datasets. We
compare our empirical findings to (Ma et al., 2022) in more
detail in Appendix B.6.

6. Discussion

In this work, we introduced the concept of spectral imbal-
ance as a way to characterize class-dependent bias. We
studied spectral imbalance in theory and in practice, and
provided a new framework for studying the relationship
between class and spectral imbalance. While we identify
spectral imbalance as one of the factors influencing class
disparity, there could be others which we have as yet not
identified. Moreover, our theory assumes linear models and
our experiments assume pre-trained encoders. In the future,
we would like to understand how feature learning in neu-
ral networks could lead to spectral imbalance in the first
place. We hope such understanding will help us effectively
mitigate the class bias issue, either through re-training or
post-hoc manipulation of pre-trained features.
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Appendix

A. Theoretical Results for the Gaussian Mixture Model

A.1. Proofs

This section contains the proofs for spectrally-imbalanced GMM setting in Section 2.1.

Lemma 2 (Expression for the POE in the imbalanced GMM). In the GMM setting of Section 2.1, given an estimator ✓̂ 2 Rp
,

the per-class error and class gap satisfy

POE(✓̂|y) := P{sign(x>✓̂) 6= y|x in class y} = Q
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where Q(·) is the Gaussian Q-function.

Proof. Note we can write x as y✓⇤ +⌃
1/2
y z, for z ⇠ N (0, I). Then,

P{sign(x>✓̂) 6= y|x in class y} = P{y(x>✓̂) < 0|x in class y}

= P{y((y✓⇤ +⌃
1/2
y z)>✓̂) < 0}

= P{h✓̂,✓⇤i+ y✓̂
>
⌃

1/2
y z < 0}

= P{h✓̂,✓⇤i+ k⌃1/2
y ✓̂k2z < 0}

= P
(
z < � h✓̂,✓⇤i

k⌃1/2
y ✓̂k2

)

= Q
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where, in the fourth line, we use the fact that y✓̂
>
⌃

1/2
y z

d
= k⌃1/2

y ✓̂k2z, for a scalar z ⇠ N (0, 1). The upper bound on
the class gap follows from the mean value theorem, after noting that the derivative of the Q-function is the negative of the
Gaussian pdf.

Before proceeding with the full proof of our main technical result, we first provide a brief sketch of the proof technique and
the primary differences from previous works which study the balanced GMM setting.

Proof outline and remarks Our proof generalizes the result of (Taheri et al., 2020) to the case where each class has a
different covariance and allows us to characterize the error in a per-class way. To make the connections to this analysis (and
the key differences) clear, we make an attempt to follow the same notation when possible. Due to the covariate imbalance
between classes, our analysis of the ERM objective function differs in a few important respects. Typically, application of the
CGMT to anisotropic covariates requires a “whitening” step to obtain standard normal variables. The key step in our proof
is to separately whiten the data from each class, which “decouples” the objective function into a portion corresponding to
each class with its own decision variables. These two portions are tied together via the introduction of a new constraint.

We then invoke the CGMT once for each class (or more precisely, via a multivariate extension of (Dhifallah & Lu, 2021)) to
write the problem as an equivalent “Auxiliary Optimization” (AO) objective which has a similarly decoupled form. Each of
these portions of the AO can be simplified separately using the same “scalarization” techniques as in (Taheri et al., 2020).
The additional constraint we introduced during the whitening step then plays a role in the final step of the proof, yielding the
second-order Moreau envelope function which depends on the decision variables corresponding to both classes. Finally,
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we note that, unlike (Taheri et al., 2020), we do not consider the effect of adversarial training; however, the same proof
technique can be extended in a natural way to deal with this case.

We now proceed to the full proof of Theorem 1.

Proof of Theorem 1. We first analyze the ERM optimization through a series of simplifications.

min
✓2Rp

1

n

nX

i=1

L(yihxi,✓i) + rk✓k22 = min
✓2Rp

1

n

nX

i=1

L(yihyi✓⇤ +⌃
1/2
yi

zi,✓i) + rk✓k22

d
= min

✓2Rp

1

n

nX

i=1

L(h✓⇤ +⌃
1/2
yi

zi,✓i) + rk✓k22,

where the last line follows from yizi
d
= zi. Then, we re-index the data points as zy,i for y 2 {�1, 1} and i 2 [ny] to get

min
✓2Rp

1

n

X

y2{�1,1}

nyX

i=1

L(h✓⇤ +⌃
1/2
y zy,i,✓i) + rk✓k22

Next, let ✓̃y := ⌃
1/2
y ✓ and ✓̃

⇤
y := ⌃

�1/2
y ✓⇤. We now use a change of variable to write the problem as an optimization over

the two variables ✓̃1 and ✓̃�1 while enforcing that both correspond to the same ✓.

min
✓̃y2Rp

s.t.⌃�1/2
1 ✓̃1=⌃

�1/2
�1 ✓̃�1

rk⌃�1/2
1 ✓̃1k22 +

1

n

X

y2{�1,1}

nyX

i=1

L(h✓̃y, ✓̃
⇤
yi+ hzy,i, ✓̃yi)

By duality, we can now write this as a min-max problem.

= min
✓̃y2Rp

max
w2Rp

rk⌃�1/2
1 ✓̃1k22 + hw,⌃

�1/2
1 ✓̃1 �⌃

�1/2
�1 ✓̃�1i+

1

n

X

y

nyX

i=1

L(h✓̃y, ✓̃
⇤
yi+ hzy,i, ✓̃yi)

= min
✓̃y2Rp

max
w2Rp

rk⌃�1/2
1 ✓̃1k22 + hw,⌃

�1/2
1 ✓̃1 �⌃

�1/2
�1 ✓̃�1i

+
1

n

X
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" nyX

i=1

L(h✓̃y, ✓̃
⇤
yi+ hzy,i,⇥y✓̃yi+ hzy,i,⇥?

y ✓̃yi)
#

where we define ⇥y :=
✓̃
⇤
y ✓̃

⇤>
y

k✓̃⇤
yk2

2

as the orthogonal projection matrix onto ✓̃
⇤
y. Now, introduce the constraints vy,i =

h✓̃y, ✓̃
⇤
yi+ hzy,i,⇥y✓̃yi+ hzy,i,⇥?

y ✓̃yi, corresponding to dual variables uy to get:

min
✓̃y2Rp

vy2Rny

max
w2Rp

uy2Rny

rk⌃�1/2
1 ✓̃1k22 + hw,⌃

�1/2
1 ✓̃1 �⌃

�1/2
�1 ✓̃�1i

+
1

n

X

y2{�1,1}

h
1
>L(vy) + huy,1ih✓̃

⇤
y, ✓̃yi+ huy,Zy⇥y✓̃yi+ huy,Zy⇥

?
y ✓̃yi � huy,vyi

i (4)

Here, L(vy) 2 Rny is a vector containing L(vy,i) and Zy 2 Rny⇥p is a matrix with the zy,i as rows. We call this problem
the Primary Optimization (PO). We note here that for each y, Zy⇥y ? Zy⇥

?
y . Furthermore, Z1 ? Z�1. So, for each y, we

can replace Zy⇥
?
y by Ẑy⇥

?
y for an independent Gaussian matrix Ẑy . Conditioning on the Zy , we can see that the objective

function can be written in the form
X

y2{�1,1}

huy, Ẑy⇥
?
y ✓̃yi+  ((✓̃y,vy), (w,uy))

14



Unveiling Class Disparities with Spectral Imbalance

for a convex-concave function  . Here, we can apply Theorem 3 of (Dhifallah & Lu, 2021), which formalizes the repeated
application of the CGMT in this setting and allows us to write a corresponding Auxiliary Optimization (AO) problem. It
is important to note that using this theorem requires that the optimization be over compact sets. This can be relaxed as in
(Thrampoulidis et al., 2018) by arguing that the optimal solution in the limit is bounded so we can equivalently consider the
PO to be over a sufficiently large bounded set without changing its solution.

This theorem states that if the optimal solution of the AO converges in probability to some value �, then the optimal solution
of the PO converges to the same value. Moreover, if we restrict the AO decision variables to lie outside of some set S and
the resultant problem converges to some �0 > �, we can conclude that the optimal minimizers/maximizers of the PO belong
to S with probability tending to 1.

Applying the CGMT, we arrive at the following AO:

min
✓̃y2Rp

vy2Rny

max
w2Rp

uy2Rny

rk⌃�1/2
1 ✓̃1k22 + hw,⌃

�1/2
1 ✓̃1 �⌃

�1/2
�1 ✓̃�1i

+
1

n

X

y2{�1,1}

h
1
>L(vy) + huy,1ih✓̃

⇤
y, ✓̃yi+ huy,Zy⇥y✓̃yi+ k⇥?

y ✓̃yk2g>
y uy

+ kuyk2h>
y ⇥

?
y ✓̃y � huy,vyi

i
,

(5)

where gy ⇠ N (0, Iny ) and hy ⇠ N (0, Ip) are independent random vectors. We will now perform a series of simplifications
that show that this min-max problem converges in probability to the solution of the scalar problem provided in Theorem 1.

First, observe that the terms inside the summation are identical to the terms which appear in the AO which is studied in
(Taheri et al., 2020) (ignoring the terms in their analysis which correspond to adversarial training). So, we can “scalarize”
the AO problem by applying the same analysis separately over each y. Due to the similarity of the steps of this part of the
proof, we omit some of the details and emphasize places where the simplification of the AO differs.

To begin, we can decouple the optimization over uy into the optimization over its norm and its unit direction and explicitly
solve the maximization over its direction. Hence, we are left only with the maximization over its norm, which we denote
through the variables �y = kuyk2/

p
n. As in (Taheri et al., 2020), we introduce new variables ⇢̃y = ✓̃y (enforced via the

dual variables �y) to allow us to separate the terms inside the summation from the terms outside the summation:

min
⇢̃y,✓̃y2Rp

vy2Rny
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w,�y2Rp

�y2R+
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+
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1
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n
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���
2

+
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n
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1
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�

(6)

Next, we explicitly solve the minimization over ⇥?
y ✓̃y and let ↵y = k⇥?

y ✓̃yk2 to get

min
⇢̃y,⇥y ✓̃y2Rp

vy2Rny

↵y2R+
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
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n
1
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n
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���
2

�↵y
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?
y �yp
p
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?
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#
.

(7)

Note that this step requires switching the min and max (which is allowed by the compactification argument discussed
earlier). The next step is to rewrite the k·k2 as k·k22 using the trick x = min⌧�0

x2

2⌧ + ⌧
2 . This results in new decision

variables ⌧y, ⌘y � 0:
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min
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(8)

Then, we optimize over �y. This step involves a few intermediate simplifications (completing the square and separately
optimizing over ⇥� and ⇥

?� separately. These steps are identical to those in (Taheri et al., 2020), and hence the details
are omitted here. This step results in the additional constraint µy =

h✓̃⇤
y,⇢̃yi

k✓̃⇤
yk2

2

, which enforces ⇥y✓̃y = ⇥y⇢̃y. Again using
strong duality, we write this as a maximization over the dual variables ⌘y and ultimately obtain
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(9)

Note here, as in (Taheri et al., 2020), that the terms ↵y�
2
y

2p�y�
k⇥yhyk22 and 2�yp

n
hh,⇥y⇢̃yi tend to 0 in the limit.

Next, optimization over v1 and v�1 is done by noting that
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Finally, we optimize over ⇢̃. This step differs from that in (Taheri et al., 2020) since it accounts for the extra constraint that
⌃

�1/2
1 ⇢̃1 = ⌃

�1/2
�1 ⇢̃�1.

16



Unveiling Class Disparities with Spectral Imbalance

min
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Here, we have rewritten the term involving w as an explicit constraint on the ⇢̃y , using strong duality. Now, note that this is
equivalent to optimizing over a single variable ⇢ = ⌃
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We have now expressed the AO entirely in terms of a scalar optimization problem. We then can consider the asymptotics of
each term in the objective function of the scalarized AO, using the fact that k✓̃⇤

yk2 ! ⇣y and the Moreau envelope terms
converge in probability to their expectations as n, p ! 1. This shows pointwise convergence of the objective function. We
can use the fact that pointwise convergence of continuous, convex functions over compact sets is uniform (e.g., Cor II.1 in
(Andersen & Gill, 1982)) to conclude that the optimal value of the AO converges to the optimal value of the scalar min-max
problem. Hence, by the CGMT, the optimal value of the original ERM problem (the PO) also converges in probability to
this value.

We now need to extend this to a statement about the test error, as given in Lemma 2. By Lemma 7 in (Taheri et al., 2020),
the desired result follows if we can show that the solution ✓̃y of the POE satisfies

h✓̃y, ✓̃
⇤
yi

k✓̃⇤
yk22

P! µ
⇤
y, k⇥?

y ✓̃yk2
P! ↵

⇤
y,

where µ
⇤
y and ↵⇤

y are the optimal decision variables from 1. The proof of these two statements are identical, so we only

show the latter. First fix ✏ > 0 and define the sets Sy =
n
✓̃y :

���k⇥?
y ✓̃yk2 � ↵

⇤
y

��� < ✏

o
. Now we consider the same AO but

with the additional constraint ✓̃y 2 SC
y . By assumption that the scalar min-max in Theorem 1 has a unique solution, this

can only strictly increase the optimal value with probability approaching 1. Hence, we can apply the third part of Theorem
3 in (Dhifallah & Lu, 2021) to conclude that P{✓̃y /2 Sy} ! 0 and the desired convergence in probability to ↵⇤

y holds.
Substituting these values into the expression for the POE in Lemma 7 of (Taheri et al., 2020), we can conclude that the
per-class POE converges to the desired quantity.

A.2. Additional details for the numerical simulations

In this section, we provide additional details about the results displayed in Figure 2.

In each of the three spectral imbalance settings, we apply Theorem 1 with ⇡y = 0.5, the overparameterization ratio � = 2,
regularization parameter r = 0.5 and the loss as the squared hinge loss, L(t) = max(0, 1 � t)2. The scalar min-max
problem is solved using gradient descent/ascent with learning rate 0.01. The choice of ⇧ used for each of the three settings
is given below:
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(A) (B) (C)

Figure 1. Interplay of sample and spectral imbalance: Heatmap of the class gap across different amounts of sample imbalance and
spectral imbalance. Settings (A), (B), and (C) correspond to the same three types of spectral imbalance considered in Section 3.3 and the
simulation details provided in Appendix A.2.

1. Impact of eigenvalue scaling (Setting (A)):

(
p
p✓⇤

i ,�
(1)
i ,�

(�1)
i )

i.i.d.⇠
(
(1, 2s, 2) with prob. 0.5
(1, 0.5s, 0.5) with prob. 0.5

2. Impact of eigenvalue decay (Setting (B)):

(
p
p✓⇤

i ,�
(1)
i ,�

(�1)
i )

i.i.d.⇠

8
>>><

>>>:

(1, 2, 2) with prob. 0.5p
(1, 2, 0.5) with prob. 0.5p
(1, 0.5, 2) with prob. 0.5(1� p)

(1, 0.5, 0.5) with prob. 0.5(1� p)

3. Impact of alignment with target signal (Setting (C)):

(
p
p✓⇤

i ,�
(1)
i ,�

(�1)
i )

i.i.d.⇠
(
(1, 2, 0.5) with prob. 0.5
(a, 0.5, 2) with prob. 0.5

In each case, the numerical simulations are averaged over 50 independent draws of n = 1000 training examples (so p = 500)
from the GMM. For each trial, we solve the ERM objective function using gradient descent.

A.3. The interplay of sample imbalance and spectral imbalance

In Figure 2, we aimed to isolate the effect of spectral imbalance, so we assume that the training data is sample-balanced, i.e.,
⇡1 = ⇡�1 = 1

2 and an equal proportion of the training data comes from each class. The asymptotic predictions in Theorem
1, however, apply for general ⇡y , allowing for a careful study of the interplay between these aspects of the model setting.

In Figure 1, we provide the exact asymptotic predictions for this interplay in the three spectrally-imbalanced settings we
introduce in Section 3.3. These results reveal a nuanced relationship between these factors: for a fixed amount of spectral
imbalance, data imbalance can either reduce or exacerbate the class gap, depending on the “direction” of the imbalance.
Interestingly, we find that this relationship depends crucially on the type of spectral imbalance in the dataset. For example,
in setting (A), sample imbalance seems to have little asymptotic effect on the class gap for a fixed amount of spectral
imbalance. By contrast, in settings (B) and (C), the sample imbalance and spectral imbalance both have a pronounced role
in determining the class gap.
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B. Additional Experimental Details

In Section B.1, we first provide additional visualizations to supplement the visualizations presented in the main text. In
Section B.2, we record the Pearson correlation coefficient score and other statistical metrics for each encoder. In Section B.4,
we record the performance and details of the pre-trained models studied. In Section B.5, we record the details of the
ImageNet-C dataset created and used in Section 4.4 and also expand on the results in Section 4.4.

B.1. Additional visualizations

In Figure 2, we visualize the eigenspectrum in VIT-B as an additional example to complement Figure 1(A), which visualized
the eigenspectrum for ResNet-50. Specifically, the left panel plots the eigenspectrum on regular scale (as in Figure 1(A)) for
VIT-B; the right panel plots the eigenspectrum on log-log scale to reveal the power law behavior, which was also observed
and analyzed for ResNet-50 in Section 4.

Figure 2. Eigenspectrum visualization plots in normal scale and log scale for VIT-B.

Additionally, in Figure 3, we show the direct visualization of eigenspectrum in other encoders. The distributional differences
across classes are consistent and strong in all observed representation spaces.

Figure 3. Eigenspectrum visualization plots for other encoders.

In Figure 4, we show that the distribution of eigenvalues across encoders are different for additional eigenvalue positions.
The same figure as in Figure 1(B) (which was plotted for �5) is plotted for �50 and �100. We observed similar trends for all
other eigenvalue indexes as well.

Finally, in Figure 5, we show the Pearson correlation coefficient plots corresponding to Figure 3(B) (which corresponded to
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Figure 4. Comparing the eigenvalue distributions across encoders for �50 and �100 (for all classes C = 1000).

ResNet-50) for all the other models.

Figure 5. Correlation plots for other encoders.

B.2. Correlation analysis of all the encoders

First, we systematically record the average accuracy of the bottom 10, bottom 100, top 100, and top 10 classes of each
encoder in Table 1 to highlight the extent of the class bias.

Table 1. The prevalence of class bias across encoders.
MODEL BOTTOM 10 BOTTOM 100 TOP 100 TOP 10

DENSENET 21.40% 40.76% 96.44% 99.80%
EFFICIENTNET-B1 24.60% 44.00% 97.64% 100.00%
EFFICIENTNET-B3 25.60% 44.64% 98.00% 100.00%
RESNET-18 15.40% 34.06% 94.34% 99.60%
RESNET-50 28.80% 46.94% 98.40% 100.00%
RESNET-101 29.60% 49.44% 98.64% 100.00%
VIT-S 25.20% 41.22% 96.02% 100.00%
VIT-B 26.40% 48.86% 98.54% 100.00%
MLPMIXER 20.80% 38.52% 96.08% 100.00%
POOLFORMER-S24 27.40% 48.10% 98.60% 100.00%
POOLFORMER-S36 27.20% 49.04% 98.80% 100.00%

AVG 24.76% 44.14% 97.41% 99.95%

Second, we record the Pearson correlation coefficient (PCC) between per-class accuracy and class-dependent eigenspectrum
properties for each encoder in Table 2. Aside from the individual eigenvalue scaling and power law offset, we also record
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the power law slope and two effective ranks that measure the rate of eigenvalue decay in different ways. The definition of
the studied two effective ranks are as below:

Definition 3 (Effective Rank). For any covariance matrix (spectrum) ⌃, we define its two effective ranks:

⇢k(⌃) =

P
i>k �i

�k+1
, Rk(⌃) :=

(
P

i>k �i)
2

P
i>k �

2
i

. (10)

This definition was proposed in (Bartlett et al., 2020) and has been shown to constitute a “sufficient" statistic to explain
average generalization error across regression and classification tasks (Bartlett et al., 2020; Tsigler & Bartlett, 2020;
Muthukumar et al., 2021; Wang & Thrampoulidis, 2021). We examine the relationship between effective ranks for k = 0
and defer a more detailed study for other values of k to future work.

Table 2. Examining the correlation between spectral properties and per-class accuracy on different pre-trained encoders.
MODEL MAX CORR. PL CORR a. PL CORR b. EFFECTIVE RANK 1 EFFECTIVE RANK 2

DENSENET -0.6677 -0.6636 -0.0598 -0.5107 -0.5384
EFFICIENTNET-B1 -0.7599 -0.7476 -0.0107 -0.6283 -0.6131
EFFICIENTNET-B3 -0.7505 -0.7210 0.0007 -0.6209 -0.5816
RESNET-18 -0.6229 -0.5649 0.0968 -0.4434 -0.4722
RESNET-50 -0.6293 -0.6270 0.0447 -0.4943 -0.4952
RESNET-101 -0.6560 -0.6454 0.0170 -0.4869 -0.4896
VIT-S -0.6891 -0.6783 -0.0571 -0.5195 -0.5399
VIT-B -0.6536 -0.6531 -0.1493 -0.4824 -0.4934
MLPMIXER -0.7785 -0.7715 0.0460 -0.7074 -0.6707
POOLFORMER-S24 -0.6961 -0.6755 0.0708 -0.5544 -0.5895
POOLFORMER-S36 -0.7062 -0.6904 0.0006 -0.5652 -0.5638

AVG -0.6918 -0.6762 -0.0002 -0.5466 -0.5497

Interestingly, we observe across models that the spectral metrics that measure relative rate of eigenvalue decay — such as
the power law decay parameter b and the effective ranks — do not strongly correlate with class-wise accuracy, while the
spectral metrics that are more absolute — i.e. the individual eigenvalues and the power law parameter a — do strongly
correlate.

B.3. Correlation analysis on smaller datasets

Aside from ImageNet, we also perform the same correlation analysis on smaller-scale datasets like CIFAR-10 and FASHION-
MNIST to demonstrate the versatility of the proposed method. As shown in Table 3, the negative correlation is stronger in
smaller-scale datasets with fewer classes.

Table 3. Examining the correlation between spectral properties and per-class accuracy on smaller datasets.
MODEL CIFAR-10 FASHION-MNIST IMAGENET

DENSENET -0.8750 -0.8045 -0.6636
EFFICIENTNET-B1 -0.8104 -0.7330 -0.7476
EFFICIENTNET-B3 -0.8906 -0.5591 -0.7210
RESNET-18 -0.8311 -0.7634 -0.5649
RESNET-34 -0.8334 -0.6677 -0.5772
RESNET-50 -0.8859 -0.8605 -0.6270
VIT-S -0.7293 -0.7922 -0.6783
VIT-B -0.8049 -0.4837 -0.6531
MLPMIXER -0.7228 -0.9127 -0.7715
POOLFORMER-S24 -0.8477 -0.6522 -0.6755
POOLFORMER-S36 -0.8173 -0.7057 -0.6904

AVG -0.8226 -0.7213 -0.6700
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B.4. Details of pretrained networks

In this section we record the details of the pre-trained networks that we used and evaluated to allow for reproducibility of
our results.

• Residual Networks. ResNet is instrumental in many visual recognition tasks, as it addresses the vanishing gradient
problem, allowing very deep networks to be trained effectively. In this paper, we used the pre-trained weights for
ResNet from TorchVision. We list their performance, model card name, and parameters below.

– For ResNet-101, we used the v2 weight from the new training recipe of torchvision. The Top1 accuracy is 81.886%
and Top5 accuracy is 95.78% on ImageNet-1K, with 44.5M parameters. Its representation dimensionality is equal
to 2048.

– For ResNet-50, we used the v2 weight from the new training recipe of torchvision. The Top1 accuracy is 80.858%
and Top5 accuracy is 95.434% on ImageNet-1K, with 25.6M parameters. Its representation dimensionality is
equal to 2048.

– For ResNet-18, we used the default weight (or v1 weight from torchvision). The Top1 accuracy is 69.758% and
Top5 accuracy is 89.078% on ImageNet-1K, with 11.7M parameters. Its representation dimensionality is equal to
512.

• Improved CNNs. Many research works propose variants of convolutional architectures to improve ResNets. Among
these efforts, DenseNet (Huang et al., 2017) and EfficientNet (Tan & Le, 2019) are two representative architectures that
are more parameter-efficient. They design different strategies to connect layers differently to improve the parameter-
efficiency as well as information flow inside the networks. DenseNet improves the flow of information and gradients
throughout the network by densely connecting all layers directly with each other. EfficientNet designs a compound
coefficient that uniformly scales the depth, width, and resolution of CNNs and thus improves performance with fewer
parameters.

– For DenseNet, we used the weights from timm (model card densenet121.ra_in1k). The Top1 accuracy is
75.57% and Top5 accuracy is 92.61%, with 8.0M parameters. Its representation dimensionality is equal to 1024.

– For EfficientNet-B3, we used the weights from timm (model card efficientnet_b3.ra2_in1k). The Top1
accuracy is 77.60% and Top5 accuracy is 93.59%, with 12.2M parameters. Its representation dimensionality is
equal to 1536.

– For EfficientNet-B1, we used the weights from timm (model card efficientnet_b1.ft_in1k), The Top1
accuracy is 78.54% and Top5 accuracy is 94.38%, with 7.8M parameters. Its representation dimensionality is
equal to 1280.

• Vision Transformers. Recently, the transformer architecture has achieved strong performance even in the vision
domain (Dosovitskiy et al., 2020). The vision transformer splits an image into patches and uses self-attention to study
the interaction of patches. By doing so, it aggregates global information at an early stage, creating significantly different
representations than CNNs (Raghu et al., 2021).

– For VIT-B, we used the weights from timm (vit_base_patch16_224.augreg2_in21k_ft_in1k), The
Top1 accuracy is 81.10% and Top5 accuracy is 95.72%, with 86.6M parameters. Its representation dimensionality
is equal to 768. We note that the model is pre-trained on ImageNet21k and later fine-tuned on ImageNet1k.

– For VIT-S, we used the weights from timm (vit_small_patch16_224.augreg_in21k_ft_in1k). The
Top1 accuracy is 74.63% and Top5 accuracy is 92.67%, with 22.1M parameters. Its representation dimensionality
is equal to 384. We note that the model is pre-trained on ImageNet21k and later fine-tuned on ImageNet1k.

• Transformers without Self-Attention. Recent studies show that self-attention is not required for obtaining good
representations in vision. We study in particular MLP-Mixer (Tolstikhin et al., 2021) and PoolFormer (Yu et al., 2022),
which uses multi-layer perceptrons and average pooling to mix information across patches, respectively.

– For MLP-Mixer, we used weights from timm (model card mixer_b16_224.goog_in21k_ft_in1k). The
Top1 accuracy is 72.57% and Top5 accuracy is 90.06%, with 59.9M parameters. Its representation dimensionality
is equal to 768. We note that it is pre-trained on ImageNet21k and later fine-tuned on ImageNet1k.
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– For PoolFormer-S36, we used the weights from timm (model card poolformerv2_s36.sail_in1k). The
Top1 accuracy is 81.54% and Top5 accuracy is 95.69%, with 30.8M parameters. Its representation dimensionality
is equal to 512.

– For PoolFormer-S24, we used the weights from timm (model card poolformerv2_s24.sail_in1k). The
Top1 accuracy is 80.76% and Top5 accuracy is 95.39%, with 21.3M parameters. Its representation dimensionality
is equal to 512.

B.5. Details of ImageNet-C results

We created the “augmented" ImageNet-C datasets based on (Hendrycks & Dietterich, 2019). The preprocessing plans
(corruptions) we selected are:

• Gaussian Noise, Shot Noise, Impulse Noise, Defocus Blur, Motion Blur, Zoom Blur, Snow, Fog, Brightness, Contrast,
Elastic, Pixelate, JPEG, Speckle Noise, Spatter, and Saturate.

Note that these corruptions correspond to the 16 augmentations discussed in Section 4.4. While (Hendrycks & Dietterich,
2019) only augment the test dataset, we perform the image altering operations on the training set as well, as we wish to
estimate the eigenvalues using the training data.

Figure 6. Spectral Quantile Score (SQS) of different data manipulation plans.

In Figure 6, we show the Spectral Quantile Score (SQS) of applying the same encoder on different data with different data
manipulation plans (as discussed in Section 4.4). The PCC is 0.90, showing strong correlation (again) between class bias
and the SQS.

For the statistical significance results for each class, we first compute the Pearson correlation coefficient r for each class,
and calculate the p-value as below:

p = 2P (Tn�2 > t), where t =
r
p
n� 2p
1� r2

(11)

where n is the number of samples, and Tn�2 is a Student t’s distribution with n� 2 degrees of freedom.

Complete results We repeat the experiments to systematically demonstrate that the proposed ensemble method works
across many different combinations and types of augmentations. Here, for each version of ImageNet-C (out of 16 total
versions), we apply the ensemble method based on the other 15 types of corruption, creating 16x15 = 240 runs. For each
column, we report the average and best improvement in overall accuracy obtained by ensembling. As shown in Table 4,
across 240 runs, our proposed ensemble method can improve the average augmentation and worse augmentation by 2.6%
and 5.9%, respectively.

B.6. Comparing spectral imbalance and semantic scale

The authors of (Ma et al., 2022) study the overall volume of each class (related to the product of eigenvalues of the
class-covariances) and its correlation with class disparities. In contrast, our work reveals dependence on the eigenvalue
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Table 4. Full improvement results on ImageNet-C.

IMPROVEMENT
GAUSSIAN SHOT IMPULSE DEFOCUS MOTION ZOOM

NOISE NOISE NOISE BLUR BLUR BLUR SNOW FOG BRIGHTNESS

�(AVG, OURS) 0.019 0.022 0.031 0.019 0.017 0.039 0.040 0.024 0.034
�(MIN, OURS) 0.044 0.048 0.068 0.045 0.044 0.080 0.081 0.056 0.074

IMPROVEMENT
SPECKLE

IMP. AVG.CONTRAST ELASTIC PIXELATE JPEG NOISE SPATTER SATURATE

�(AVG, OURS) 0.030 0.024 0.033 0.010 0.020 0.024 0.030 0.026
�(MIN, OURS) 0.066 0.054 0.075 0.075 0.045 0.057 0.064 0.059

distributions rather than the overall volume, which we believe provides a more fine-grained characterization of feature
imbalances.

To demonstrate the difference between the two approaches, we compare our results to those reported in (Ma et al., 2022)
for the case of sample-balanced data. Interestingly, we obtain similar overall levels of predictive accuracy (as measured
by the Pearson correlation coefficient between the spectra and the per-class performance) to their proposed inter-cluster
corrected measure (S), which takes into account inter-cluster distances in addition to the eigenvalue volume (S’). In contrast,
the spectral volume (S’) itself does not have as strong predictive performance. Thus, this shows that a more fine-grained
analysis of the eigenvalues can have a big benefit when describing class gaps in the sample-balanced setting.

Table 5. Direct comparison with the semantic scale method on CIFAR-10.
MODEL METHOD ABSOLUTE CORRELATION

RESNET-18 (MA ET AL., 2022) (S’) 0.5433
RESNET-18 (MA ET AL., 2022) (BEST S) 0.7850
RESNET-18 OURS 0.8311

RESNET-18 � 0.0461

RESNET-34 (MA ET AL., 2022) (S’) 0.5750
RESNET-34 (MA ET AL., 2022) (BEST S) 0.8056
RESNET-34 OURS 0.8334

RESNET-34 � 0.0278
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