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Abstract
Modern machine learning models are prone to over-reliance on spurious correlations, which can often

lead to poor performance on minority groups. In this paper, we identify surprising and nuanced behavior

of finetuned models on worst-group accuracy via comprehensive experiments on four well-established

benchmarks across vision and language tasks. We first show that the commonly used class-balancing

techniques of mini-batch upsampling and loss upweighting can induce a decrease in worst-group accuracy

(WGA) with training epochs, leading to performance no better than without class-balancing. While in

some scenarios, removing data to create a class-balanced subset is more effective, we show this depends

on group structure and propose a mixture method which can outperform both techniques. Next, we show

that scaling pretrained models is generally beneficial for worst-group accuracy, but only in conjuction

with appropriate class-balancing. Finally, we identify spectral imbalance in finetuning features as a

potential source of group disparities — minority group covariance matrices incur a larger spectral norm

than majority groups once conditioned on the classes. Our results show more nuanced interactions of

modern finetuned models with group robustness than was previously known. Our code is available at

https://github.com/tmlabonte/revisiting-finetuning.

1 Introduction
Classification performance in machine learning is sensitive to spurious correlations: patterns which are
predictive of the target class in the training dataset but not at test time. For example, in computer vision
tasks, neural networks are known to utilize the backgrounds of images as proxies for their content (Beery
et al., 2018; Sagawa et al., 2020a; Xiao et al., 2021). Beyond simple settings, spurious correlations have been
identified in high-consequence applications such as criminal justice (Chouldechova, 2016), medicine (Zech
et al., 2018), and facial recognition (Z. Liu et al., 2015). In particular, a model’s reliance on spurious
correlations disproportionately affects its accuracy on minority groups which are under-represented in the
training dataset; we therefore desire maximizing the model’s group robustness, quantified by its minimum
accuracy on any group (Sagawa et al., 2020a).

The standard workflow in modern machine learning involves initializing from a pretrained model and
finetuning on the downstream dataset using empirical risk minimization (ERM) (Vapnik, 1998), which
minimizes the average training loss. When group annotations are available in the training dataset, practitioners
utilize a rich literature of techniques to improve worst-group accuracy (WGA) (Sagawa et al., 2020a; Nam
et al., 2022; Kirichenko et al., 2023). However, group annotations are often unknown or problematic to obtain
(e.g., due to financial, privacy, or fairness concerns). While group robustness methods have been adapted to
work without group annotations (E. Z. Liu et al., 2021; M. Zhang et al., 2022; Qiu et al., 2023; LaBonte
et al., 2023), they remain complex variants on the standard finetuning procedure. Hence, it is often unclear
to what extent the WGA dynamics of these methods are attributable to details of model finetuning.

In this paper, we take an orthogonal approach to the literature focused on methodology to improve
group robustness, and instead pursue a comprehensive understanding of the fundamental properties of model
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finetuning on four well-established group robustness benchmarks across vision and language tasks. We focus
especially on the conjunction of model scaling and class-balancing — which was recently shown to greatly
improve robustness on some datasets (Idrissi et al., 2022) — on the worst-group accuracy of the ERM baseline.
These considerations enable us to isolate the impact of group disparities on worst-group accuracy, thereby
revealing far more nuanced behaviors of finetuned models than previously known. In particular, we challenge
overarching narratives that “overparameterization helps or hurts distributional robustness” and show striking
differences in finetuning performance depending on the class-balancing methodology.

In more detail, our main contributions include:

• Identifying two failure modes of common class-balancing techniques during finetuning: (1)
mini-batch upsampling and loss upweighting experience catastrophic collapse with standard
hyperparameters on benchmark datasets, and (2) removing data to create a class-balanced subset
can harm WGA for certain datasets.

• Proposing a mixture balancing method which combines the advantages of two class-balancing
techniques and can improve baseline WGA beyond either method.

• Showing that while overparameterization can harm WGA in certain cases, model scaling is
generally beneficial for robustness when applied in conjunction with appropriate pretraining
and class-balancing.

• Identifying a spectral imbalance in the top eigenvalues of the group covariance matrices —
even when the classes are balanced — and showing that minority group covariance matrices
consistently have larger spectral norm once conditioned on the classes.

1.1 Related work
Here we provide a brief summary of related work along three axes. Throughout the paper, we also provide
detailed contextualizations of our results with the most closely related work.

Spurious correlations. The proclivity of empirical risk minimization (ERM) to rely on spurious correlations
has been widely studied (Geirhos et al., 2020; Moayeri et al., 2023). Rectifying this weakness is an important
challenge for real-world deployment of machine learning algorithms, as spurious correlations can exacerbate
unintended bias against demographic minorities (Hovy and Søgaard, 2015; Blodgett et al., 2016; Tatman, 2017;
Hashimoto et al., 2018; Buolamwini and Gebru, 2018) or cause failure in high-consequence applications (Z.
Liu et al., 2015; Chouldechova, 2016; Zech et al., 2018; Oakden-Rayner et al., 2019). Reliance on spurious
correlations manifests in image datasets as the usage of visual shortcuts including background (Beery et al.,
2018; Sagawa et al., 2020a; Xiao et al., 2021), texture (Geirhos et al., 2019), and secondary objects (Rosenfeld
et al., 2018; Shetty et al., 2019; Singla and Feizi, 2022), and in text datasets as the usage of syntactic or
statistical heuristics as a substitute for semantic understanding (Gururangan et al., 2018; Niven and Kao,
2019; McCoy et al., 2019).

Class-balancing and group robustness. Group-balancing, or training with an equal number of samples
from each group, has been proposed as a simple yet effective method to improve robustness to spurious
correlations (Hashimoto et al., 2018; Sagawa et al., 2020b; Chatterji et al., 2023; Stromberg et al., 2024).
However, group-balancing requires group annotations, which are often unknown or problematic to obtain (E. Z.
Liu et al., 2021; M. Zhang et al., 2022; Qiu et al., 2023; LaBonte et al., 2023). On the other hand, class-

balancing, or training with an equal number of samples from each class, is a well-studied method in long-tailed
classification (Japkowicz and Stephen, 2002; Haixiang et al., 2017; Buda et al., 2018). Recent work has shown
that class-balancing is a surprisingly powerful method for improving worst-group accuracy which does not
require group annotations (Idrissi et al., 2022; LaBonte et al., 2023; Chaudhuri et al., 2023; Shwartz-Ziv
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et al., 2023). In particular, Idrissi et al., 2022 study the WGA dynamics of two common class-balancing
methods: removing data from the larger classes (which we call subsetting) and upsampling the smaller classes
(which we call upsampling). Our results complement those of Idrissi et al., 2022 and show more nuanced
effects of class-balancing than previously known; we provide additional contextualization with Idrissi et al.,
2022 in Section 3.1. We show similar nuanced behavior of upweighting smaller classes in the loss function,
a popular method in the group-balancing setting (E. Z. Liu et al., 2021; Qiu et al., 2023; Stromberg et al.,
2024) which Idrissi et al., 2022 did not study.

Overparameterization and distributional robustness. While the accepted empirical wisdom is that
overparameterization improves in-distribution test accuracy (Neyshabur et al., 2014; C. Zhang et al., 2021),
the relationship between overparameterization and robustness is only incompletely understood. Sagawa et al.,
2020b considered a special class of ResNet-18 architectures and showed that increasing the width of the ResNet-
18 model reduces worst-group accuracy on the Waterbirds and CelebA datasets when trained with ERM
(without any class-balancing) — this contrasts with the improvement in average accuracy with width that is
widely observed in practice (see, e.g., Nakkiran et al., 2021). Conversely, Hendrycks et al., 2021 unearthed a
benefit of overparameterization in robustness to “natural” covariate shifts induced in computer vision, which
are quite different from the distribution shifts induced by unequal representations in groups (Koh et al., 2021).
On the mathematical front, Tripuraneni et al., 2021; Maity et al., 2022 showed that overparameterization in
random feature models that are trained to completion improves robustness to a wide class of covariate shifts,
including those induced by shifts in proportions of groups. However, both the optimization trajectory and
statistical properties of random features are very different from those of neural networks (see, e.g., Ghorbani
et al., 2019). Closely related to our work, Pham et al., 2021 investigated pretrained ResNet and VGG models
for vision, and BERT for language, and showed that in fact overparameterization can either improve WGA
or leave it unchanged. Our results complement those of Pham et al., 2021 with a richer setup and show
that class-balancing — which they do not study — can greatly impact model scaling behavior. We provide
additional contextualization with Pham et al., 2021 in Section 4.

2 Preliminaries
Setting. We consider classification tasks with input domain Rn and target classes Y ⇢ N. Suppose S is a
set of spurious features such that each example x 2 Rn is associated with exactly one feature s(x) 2 S. The
dataset is then partitioned into groups G, defined by the Cartesian product of classes and spurious features
G = Y ⇥ S. Given a dataset of m training examples, we define the set of indices of examples which belong to
some group g 2 G or class y 2 Y by ⌦g ✓ {1, . . . ,m} and ⌦y ✓ {1, . . . ,m}, respectively. Then, the majority

group(s) is defined by the group(s) that maximize |⌦g|. All other groups are designated as minority groups.
Further, the worst group(s)

1 is defined by the group(s) which incur minimal test accuracy. We define majority
and minority classes similarly. It is worth noting that, because groups are defined by the Cartesian product
of classes and spurious features, that all training examples in a particular group are identically labeled, and
therefore a group is a subset of a class. We will frequently invoke this terminology throughout the paper.

We desire a model which, despite group imbalance in the training dataset, enjoys roughly uniform
performance over G. Therefore, we evaluate worst-group accuracy (WGA), i.e., the minimum accuracy among
all groups (Sagawa et al., 2020a). We will also be interested in the relative performance on groups within the

same class, and we thereby define the majority group within a class y 2 Y as the group which maximizes
|⌦g| over all g 2 {g 2 G : y 2 g}. Other groups are designated as the minority groups within that class. For
example, referring to the Waterbirds section of Table 2, groups 1 and 2 are the minority groups within classes
0 and 1, respectively.

1
Note that, as is standard in the empirical literature on distributional robustness, majority, minority and worst groups are

defined with respect to the empirical training distribution, as this is all that we have access to. Moreover, test accuracy is

typically maximized by the majority group and minimized by a minority group, though this is not always the case.
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Class-balancing. A dataset is considered to be class-balanced if it is composed of an equal number of
training examples from each class in Y in expectation over the sampling probabilities. We primarily compare
three class-balancing techniques: subsetting, upsampling, and upweighting. We describe each briefly below:

• In subsetting, every class is set to the same size as the smallest class by removing the appropriate
amount of data from each larger class uniformly at random. This procedure is performed only once,
and the subset is fixed prior to training.

• In upsampling, the entire dataset is utilized for training with a typical stochastic optimization algorithm,
but the sampling probabilities of each class are adjusted so that mini-batches are class-balanced in
expectation. Specifically, to draw a single example, we first sample y ⇠ Unif(Y), then sample x ⇠ p̂(· | y)
where p̂ is the empirical distribution on training examples.

• In upweighting, the minority class samples are directly upweighted in the loss function according to the
ratio of majority class data to minority class data, called the class-imbalance ratio. Specifically, if the
loss function is `(f(x), y) for model f , example x, and class label y, the upweighted loss function is
�`(f(x), y) where � is defined as the class-imbalance ratio for minority class data and 1 for majority
class data. It is worth noting that upweighting is equivalent to upsampling in expectation over the
sampling probabilities.

Note that the terminology for these class-balancing techniques is not consistent across the literature.
For example, Idrissi et al., 2022 call subsetting subsampling (denoted SUBY) and upsampling reweighting

(denoted RWY). On the other hand, Stromberg et al., 2024 call (group-wise) subsetting downsampling and
use upweighting to describe increasing the weight of minority group samples in the loss function. We have
chosen our terminology to be as descriptive as possible without conflating commonly overloaded terms such
as “sampling” and “weighting”.

Datasets and models. We study four classification datasets, two in the vision domain and two in the
language domain, which are well-established as benchmarks for group robustness. We summarize each dataset
below and provide additional numerical details in Appendix A.

• Waterbirds (Welinder et al., 2010; Wah et al., 2011; Sagawa et al., 2020a) is an image dataset where
birds are classified as land species (“landbirds”) or water species (“waterbirds”). The spurious feature is
the image background: more landbirds are present on land backgrounds and vice versa.2

• CelebA (Z. Liu et al., 2015; Sagawa et al., 2020a) is an image dataset where celebrities are classified as
blond or non-blond. The spurious feature is gender, with 16⇥ more blond women than blond men in
the training dataset.

• CivilComments (Borkan et al., 2019; Koh et al., 2021) is a language dataset where online comments are
classified as toxic or non-toxic. The spurious feature is the presence of one of the following categories:
male, female, LGBT, black, white, Christian, Muslim, or other religion.3 More toxic comments contain
one of these categories than non-toxic comments, and vice versa.

• MultiNLI (Williams et al., 2018; Sagawa et al., 2020a) is a language dataset where pairs of sentences
are classified as a contradiction, entailment, or neither. The spurious feature is a negation in the second
sentence — more contradictions have this property than entailments or neutral pairs.

2
We note that the Waterbirds dataset is known to contain incorrect labels (Taghanaki et al., 2022). We report results on the

original, un-corrected version as is standard in the literature.
3
This version of CivilComments has four groups, used in this work and by Sagawa et al., 2020a; Idrissi et al., 2022; Izmailov

et al., 2022; Kirichenko et al., 2023; LaBonte et al., 2023. There is another version where the identity categories are not collapsed

into one spurious feature; that version is used by E. Z. Liu et al., 2021 and M. Zhang et al., 2022. Both versions use the WILDS

split (Koh et al., 2021).
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Waterbirds is class-imbalanced with a majority/minority class ratio of 3.31:1, CelebA a ratio of 5.71:1,
and CivilComments a ratio of 7.85:1. MultiNLI is class-balanced a priori. Since the Waterbirds dataset has
a shift in group proportion from train to test, we weight the group accuracies by their proportions in the
training set when reporting the test average accuracy (Sagawa et al., 2020a).

We utilize a ResNet (He et al., 2016) and ConvNeXt-V2 (Woo et al., 2023) model pretrained on ImageNet-
1K (Russakovsky et al., 2015) for Waterbirds and CelebA, and a BERT (Devlin et al., 2019) model pretrained
on Book Corpus (Zhu et al., 2015) and English Wikipedia for CivilComments and MultiNLI. We use the
AdamW optimizer (Loshchilov and Hutter, 2019) for finetuning on three independent seeds, randomizing
both mini-batch order and any other stochastic procedure such as subsetting, and we report error bars
corresponding to one standard deviation. We do not utilize early-stopping: instead, to consider the impact of
overparameterization in a holistic way, we train models to completion to properly measure the overfitting
effect.4 This can result in longer training than commonly seen in the literature (e.g., we finetune on CelebA
for about 3⇥ more gradient steps than is standard). See Appendix B for further training details.

3 Nuanced effects of class-balancing on group robustness
We now present our first set of results, which shows that the choice of class balancing method greatly impacts
the group robustness of the ERM baseline.

3.1 Catastrophic collapse of class-balanced upsampling and upweighting
In a recent paper, LaBonte et al., 2023 observed that contrary to the central hypothesis underlying the Just
Train Twice method (E. Z. Liu et al., 2021), the worst-group accuracy of ERM decreases dramatically with
training epochs on CelebA and CivilComments; however, they provide no explanation for this phenomenon.
In this section, we show that this degradation of WGA is due to their choice of class-balancing method (i.e.,
upsampling). Specifically, ERM finetuned with upsampling experiences a catastrophic collapse in test WGA
over the course of training, a phenomenon that was previously only noticed in synthetic datasets with a linear
classifier (Idrissi et al., 2022). Moreover, while Idrissi et al., 2022 state that class-balanced subsetting is not
recommended in practice, we show that it can in fact improve WGA conditional on the presence of a small
minority group within the majority class. Finally, we show that class-balanced upweighting — a popular
technique which Idrissi et al., 2022 do not study — experiences a similar WGA collapse as upsampling.

We finetune a ConvNeXt-V2 Base on Waterbirds and CelebA and a BERT Base on CivilComments, and we
compare the subsetting, upsampling, and upweighting techniques to a class-imbalanced baseline. The results
of our experiments are displayed in Figure 1. On CelebA and CivilComments, the more class-imbalanced
datasets, upsampling and upweighting both experience catastrophic collapse over the course of training and
reduces WGA to no better than without class-balancing. We believe this collapse is caused by overfitting to
the minority group data within the minority class, as any individual point from this group is sampled far
more often during upsampling and weighted far more heavily during upweighting, causing overfitting during
long training runs. In fact, upsampling does even worse on CelebA than observed in LaBonte et al., 2023
because we train 3⇥ longer to ensure convergence. With that said, optimally tuned early-stopping appears
to mitigate the collapse (as previously noticed by Idrissi et al., 2022 in a toy setting). While we focus on
training models to completion, optimal early-stopping could be an interesting direction for future research.

Our experiments also highlight a previously unnoticed disadvantage of class-balanced subsetting: if
there is a small minority group present in the majority class, subsetting will further reduce the minority
group proportion and cause WGA to decrease. For example, in the Waterbirds dataset, the type of bird
(landbirds/waterbirds) is the class label and the background (land/water) is the spurious feature. In this
dataset, landbirds/water is a small minority group within the majority class (landbirds). When the landbirds
class is cut by 3.31⇥, the landbirds/water group greatly suffers, harming WGA. On the other hand, in
the CelebA dataset, the hair color (non-blond/blond) is the class label and the gender (female/male) is

4
To be more specific, we finetune ConvNeXt-V2 Base roughly to a training loss of 10�4

on Waterbirds and 10�3
on CelebA,

and BERT Base roughly to a training loss of 10�3
on CivilComments and 10�2

on MultiNLI.
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(a) Waterbirds (b) CelebA (c) CivilComments

Figure 1: Class-balanced upsampling and upweighting experience catastrophic collapse in more

imbalanced datasets. We compare subsetting, where data is removed to set every class to the same size
as the smallest class, upsampling, where the sampling probabilities of each class are adjusted so that the
mini-batches are class-balanced in expectation, and upweighting, where the loss for the smaller classes is scaled
by the class-imbalance ratio. We observe a catastrophic collapse over the course of training of upsampling
and upweighting on CelebA and CivilComments, the more class-imbalanced datasets. On the other hand,
subsetting reduces WGA on Waterbirds because it removes data from the small minority group within the
majority class. MultiNLI is class-balanced a priori, so we do not include it here.

the spurious feature. In this dataset, the only small minority group is blond/male, while the majority and
minority groups are nearly balanced in the majority class. In this case, subsetting preserves all blond/male
examples and greatly increases their proportion, helping WGA.

Finally, it is interesting to note that while upsampling and upweighting have similar WGA dynamics,
both differ greatly from subsetting. The similarity between upsampling and upweighting is to be expected,
as they are equivalent in expectation only over the randomness in the sampling mechanism for upsampling
on any training dataset. Recently, Stromberg et al., 2024 proved a broader theoretical equivalence between
subsetting and upsampling of the groups in what is commonly called the population setting in optimization
theory, i.e., assuming access to the training data distribution or, equivalently, an infinite number of training
examples. The further equivalence of upsampling and upweighting that we have outlined above would then
imply that all three balanced objectives are optimized by the same solution. Our results suggest that a similar
equivalence may not hold in the real-world empirical setting, where subsetting has distinctly different behavior
from upsampling and upweighting, and the number of training examples may in fact be comparable or even
smaller than the number of model parameters. As previously mentioned, this may be due to overfitting to a
small number of minority class data repeated often during training; we believe theoretically investigating this
discrepancy is an interesting future direction.

Contextualization with previous work. Our observations explain the decrease in WGA of CelebA
and CivilComments noticed by LaBonte et al., 2023, a phenomenon which they left unresolved. Our result
implies that group robustness methods which assume that WGA increases during training, such as Just
Train Twice (E. Z. Liu et al., 2021), may only be justified when appropriate class-balancing is applied. Idrissi
et al., 2022 show that upsampling can cause catastrophic collapse in WGA, but only in a synthetic dataset
with a linear classifier. In realistic datasets, Idrissi et al., 2022 perform extensive hyperparameter tuning
(using group labels, which may not always be available) to achieve good results with upsampling, while we
show that catastrophic collapse can occur in the same datasets when standard hyperparameters are used.
Moreover, Idrissi et al., 2022 state that class-balanced subsetting is not recommended in practice, but we
show that subsetting can be effective except when there is a small minority group within the majority class,
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(a) Waterbirds (b) CelebA (c) CivilComments

Figure 2: Mixture balancing mitigates catastrophic collapse of upsampling and upweighting.

We propose a class-balanced mixture method, which combines subsetting and upsampling by first drawing a
class-imbalanced subset uniformly at random from the dataset, then adjusting sampling probabilities so that
mini-batches are balanced in expectation. Our method increases exposure to majority class data without over-
sampling the minority class. Remarkably, mixture balancing outperforms all three class-balancing methods
on Waterbirds and CivilComments, and while it does not outperform subsetting on CelebA, it significantly
alleviates the WGA collapse experienced by upsampling and upweighting. MultiNLI is class-balanced a priori,
so we do not include it here.

a previously unnoticed nuance. Finally, we show that subsetting experiences different WGA dynamics from
upsampling and upweighting in the empirical setting, suggesting additional complexity compared to the
population setting equivalence results of Stromberg et al., 2024.

Without extensive hyperparameter tuning, class-balanced upsampling and upweighting can induce
WGA no better than without class-balancing. While class-balanced subsetting can improve WGA,
practitioners should use caution if a small minority group is present within the majority class.

3.2 Mixture balancing: interpolating between subsetting and upsampling
To mitigate the catastrophic collapse of class-balanced upsampling and upweighting, we propose a simple
mixture method which interpolates between subsetting and upsampling. Our method increases exposure
to majority class data without over-sampling the minority class, which can improve WGA and prevent
overfitting to the minority group. In our mixture method, we first create a data subset with a specified
class-imbalance ratio by removing data from the larger classes uniformly at random until the desired (smaller)
ratio is achieved. Next, we perform ERM finetuning on this subset by adjusting sampling probabilities so that
mini-batches are balanced in expectation. Clearly, using a class-imbalance ratio of 1:1 reduces to subsetting,
and using the original class-imbalance ratio reduces to upsampling.

We finetune ConvNeXt-V2 Base on Waterbirds and CelebA and BERT Base on CivilComments, and we
compare our class-balanced mixture method to the subsetting, upsampling, and upweighting techniques. The
results of our experiments are displayed in Figure 2. We plot the performance of our mixture method with
the best class-imbalance ratio during validation; an ablation study varying the ratio is included in Appendix
C. Remarkably, mixture balancing outperforms both all three class-balancing methods on Waterbirds and
CivilComments, and while it does not outperform subsetting on CelebA, it significantly alleviates the WGA
collapse experienced by upsampling.

Next, we perform an ablation of the necessity of subsetting in mixture balancing. We compare our
method with an alternative implementation that eschews subsetting entirely, instead adjusting the sampling
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Table 1: Mixture balancing is robust to model selection without group annotations. We compare
the best class-balancing method during validation with and without group annotations in the validation
set. We show that both worst-class accuracy (Yang et al., 2023) and the bias-unsupervised validation score
of Tsirigotis et al., 2023 are effective for model selection without group annotations, often selecting the same
method or mixture ratio as worst-group accuracy (WGA) validation. For each dataset, we list the method
which maximizes each validation metric as well as its average WGA over three seeds.

Validation Metric Group Anns Waterbirds CelebA CivilComments

Bias-unsupervised Score 7 Upsampling (79.9) Subsetting (74.1) Mixture 3:1 (77.6)
Worst-class Accuracy 7 Mixture 2:1 (81.1) Subsetting (74.1) Mixture 3:1 (77.6)
Worst-group Accuracy 3 Mixture 2:1 (81.1) Subsetting (74.1) Mixture 3:1 (77.6)

probabilities of each class so that the mini-batches have a particular class ratio in expectation. For example,
instead of performing upsampling on a 2:1 class-imbalanced subset, we simply upsample the majority class by a
ratio of 2:1 on the entire dataset. The results of our ablation are included in Appendix C; our mixture method
outperforms this alternative because the alternative incompletely corrects for class imbalance, therefore
suffering from from similar collapse behavior as upsampling and upweighting.

Note on validation. In Figure 2, we plot the best class-imbalance ratio achieved using validation on a
group annotated held-out set. While this is a common assumption in the literature (Sagawa et al., 2020a; E. Z.
Liu et al., 2021; Izmailov et al., 2022; Kirichenko et al., 2023), it is nevertheless unrealistic when the training
set does not have any group annotations. Therefore, we compare with both worst-class accuracy (Yang
et al., 2023) and the bias-unsupervised validation score of Tsirigotis et al., 2023, which do not use any group
annotations for model selection, and in Table 1 we list the method which maximizes each validation metric as
well as its average WGA over three seeds.

The bias-unsupervised validation score uses a biased model (in our case, the original ERM model finetuned
without class-balancing) to construct a confusion matrix whose average accuracy is a proxy for worst-group
accuracy. Let K denote the number of classes and y denote the true class label for a particular datapoint
x. Let ŷbias represent the biased model prediction while ŷ represents the class-balanced model prediction.
Denote by Sy,ŷbias the validation datapoints which have true label y and biased model prediction ŷbias. Then,
we select the model with the highest bias-unsupervised validation score:

\ValScore :=
1

K2

X

y,ŷbias

1

|Sy,ŷbias |
X

(xi,yi)2Sy,ŷbias

(yi = ŷi). (1)

Overall, both worst-class accuracy and the bias-unsupervised validation score perform well for our use
case and enable tuning of the mixture ratio without any group annotations in the validation set.

Contextualization with previous work. The concept of increasing exposure to majority class data
without over-sampling the minority class was previously explored by Kirichenko et al., 2023, who propose
drawing ten independent class-balanced subsets, training a logistic regression model on each, and averaging
the weights. However, this method only works for linear models — as nonlinear models cannot be naively
averaged — and it requires training an additional model for each subset, which is computationally infeasible
for neural networks. In comparison, our mixture method is a simple and efficient alternative which extends
easily to nonlinear models.

The catastrophic collapse of class-balanced upsampling and upweighting can be mitigated by a mixture

method combining subsetting and upsampling. It increases exposure to majority class data without
over-sampling the minority class and can improve baseline WGA beyond either technique.
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(a) Waterbirds (b) CelebA (c) CivilComments (d) MultiNLI

Figure 3: Scaling class-balanced pretrained models can improve worst-group accuracy. We finetune
each model size starting from pretrained checkpoints and plot the test worst-group accuracy (WGA) as well
as the interpolation threshold, above which the model reaches 100% training accuracy. We find that model
scaling is generally beneficial for WGA only in conjuction with appropriate class-balancing, and in fact scaling
on imbalanced datasets or with the wrong balancing technique can harm robustness. Note that MultiNLI is
class-balanced a priori and does not interpolate at any size. See Appendix C for training accuracy plots.

4 Model scaling improves WGA of class-balanced finetuning
The relationship between overparameterization and group robustness has been well-studied in the literature,
with often conflicting conclusions depending on the setting (Sagawa et al., 2020b; Tripuraneni et al., 2021).
In this section, we study the impact of model scaling on worst-group accuracy in a new setting — finetuning
pretrained models — which more closely resembles practical use-cases. Importantly, we evaluate the impact
of model scaling in conjunction with class-balancing to obtain a more reflective picture of the impact of
group inequities alone on WGA as a function of model size. We find that with appropriate class-balancing,
overparameterization can in fact significantly improve WGA over a very wide range of parameter scales,
including before and after the interpolation threshold. On the other hand, scaling on imbalanced datasets or
with the wrong balancing technique can harm robustness.

We take advantage of advancements in efficient architectures (Turc et al., 2019; Woo et al., 2023) to finetune
pretrained models at vastly different parameter scales, ranging from 3.4M to 101M parameters. We study
six different sizes of ImageNet1K-pretrained ConvNeXt-V2 and five different sizes of Book Corpus/English
Wikipedia pretrained BERT; specifications for each model size are included in Appendix B. We utilize each
class-balancing method proposed in Section 3 and display our results in Figure 3.

We find that model scaling is beneficial for group robustness in conjunction with appropriate class-balancing,
with improvements of up to 12% WGA for interpolating models and 40% WGA for non-interpolating models.
This comes in stark contrast to scaling on class-imbalanced datasets or with the wrong class-balancing
technique, which shows either a neutral trend or decrease in WGA — the most severe examples being
upsampling and upweighting on CivilComments. Returning to the class-balanced case, we notice some subtle
nuances in performance across datasets. In particular, CivilComments WGA decreases slightly after the
interpolation threshold, while Waterbirds and CelebA WGA continue to increase well beyond interpolation.
On the other hand, BERT does not interpolate MultiNLI at any model size, greatly improving robustness
at scale. It is unclear why Waterbirds and CelebA experience different behavior from CivilComments after
the interpolation threshold; the toy linear model of Sagawa et al., 2020b suggests the presence of a benign
“spurious-core information ratio”, but a complete understanding is left to future theoretical investigation.

The most closely related work to ours is Pham et al., 2021, who also study the impact of scaling pretrained
models on group robustness. Specifically, they use different ResNet (He et al., 2016) sizes ranging from 11.2M
to 58.1M parameters, and they either train a linear probe on Waterbirds or finetune the entire model on
CelebA. However, because their experiments do not employ any form of class-balancing, their conclusions
about WGA scaling may be overly pessimistic. We replicate their experiments with our hyperparameters
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(a) Waterbirds (last layer only) (b) Waterbirds (finetuning) (c) CelebA (finetuning)

Figure 4: Class-balancing greatly affects ResNet scaling results of Pham et al., 2021. We contrast
the ResNet scaling behavior of Pham et al., 2021 — who do not use class-balancing — to the scaling of
class-balanced ResNets using the best method from Section 3. We finetune each model size starting from
pretrained checkpoints and plot the test worst-group accuracy (WGA) as well as the interpolation threshold,
where the model reaches 100% training accuracy. On Waterbirds, we find that class-balancing enables a much
more beneficial trend during model scaling. On CelebA, class-balancing greatly increases baseline WGA
but does not affect scaling behavior (in contrast to the ConvNeXt-V2 plots in Figure 3). We use SGD for
last-layer training and AdamW for full finetuning. See Appendix C for training accuracy plots.

and contrast with our results using class-balancing in Figure 4 to illustrate the performance disparity. We
find that class-balancing greatly affects their results: on Waterbirds, class-balancing enables a much more
beneficial trend during model scaling regardless of whether a linear probe or the entire model is trained.
On the other hand, class-balancing greatly increases baseline WGA on CelebA but does not affect scaling
behavior, whereas we observe a more positive WGA trend when scaling ConvNeXt-V2 in Figure 3.

Contextualization with previous work. While previous work has primarily studied either linear probing
of pretrained weights or training small models from scratch (Sagawa et al., 2020b; Tripuraneni et al., 2021),
we study full finetuning of large-scale pretrained models and show that class-balancing can have a major
impact on scaling behavior. We compare directly with the most closely related work, Pham et al., 2021, and
show that class-balancing can either induce strikingly different scaling behavior or greatly increase baseline
WGA. Overall, training with class-balancing allows us to isolate the impact of group inequities on robustness
and more precisely observe the often-beneficial trend of model scaling for worst-group accuracy.

While overparameterization can sometimes harm WGA, pretraining and appropriate class-balancing
make scaling generally beneficial. Moreover, modern language datasets are complex enough that
standard models do not interpolate, greatly improving robustness at scale.

5 Spectral imbalance may exacerbate group disparities
In a recent paper, Kaushik et al., 2024 propose spectral imbalance of class covariance matrices, or differences in
their eigenspectrum, as a potential source of disparities in accuracy across classes even when they are balanced
a priori. Here, we examine whether similar insights hold in the group robustness setting. Our observations
reveal surprising nuances in the behavior of group-wise spectral imbalance; nevertheless, we conclude that
spectral imbalance may play a similar role in modulating worst-group accuracy after class-balancing is applied.

Let us denote by zi the feature vector corresponding to a sample xi (i.e., the vectorized output of the
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(a) Waterbirds (b) CelebA (c) CivilComments (d) MultiNLI

Figure 5: Group disparities are visible in the top eigenvalues of the group covariance matrices. We
visualize the mean, across 3 experimental trials, of the top 10 eigenvalues of the group covariance matrices for
a ConvNeXt-V2 Nano finetuned on Waterbirds and CelebA and a BERT Small finetuned on CivilComments
and MultiNLI. The standard deviations are omitted for clarity. The models are finetuned using the best
class-balancing method from Section 3 for each dataset. The group numbers are detailed in Table 2 and the
minority groups within each class are denoted with an asterisk. The largest �1 in each case belongs to a
minority group, though it may not be the worst group, and minority group eigenvalues are overall larger
than majority group eigenvalues within the same class.

penultimate layer). Recall from Section 2 that ⌦g is the set of indices of samples which belong to group g. We
further define z̄g to be the empirical mean of features with group g. To obtain the estimated eigenspectrum,
we first compute the empirical covariance matrix for group g 2 G by

⌃g =
1

|⌦g|
X

i2⌦g

(zi � z̄g)(zi � z̄g)
>. (2)

We then compute the eigenvalue decomposition ⌃g = Vg⇤gV�1
g , where ⇤g is a diagonal matrix with

non-negative entries �(g)
i and the columns of Vg are the eigenvectors of ⌃g. Without loss of generality, we

assume �(g)
1 � �(g)

2 � · · · � �(g)
m where m is the rank of ⌃g.

We compute the group covariance matrices using a ConvNeXt-V2 Nano model for Waterbirds and CelebA,
and a BERT Small model for CivilComments and MultiNLI. The models are finetuned using the best
class-balancing method from Section 3 for each dataset. We plot the top 10 eigenvalues of each group
covariance matrix in Figure 5. Even though we finetune with class-balancing, disparities in eigenvalues across
groups are clearly visualized in Figure 5, especially for the largest eigenvalues. We include an extension to
the top 50 eigenvalues, as well as results for class covariance matrices, in Appendix C.

Close observation of Figure 5 yields interesting findings. First, the group g⇤ that maximizes �(g)
1 in each

case belongs to a minority group; though, importantly, it may not belong to the worst group. This is different
from the findings of Kaushik et al., 2024, who showed in their setting that the largest eigenvalues typically
belong to the worst-performing class, which usually depended on the model architecture in their setting as
the training dataset was in fact class-balanced. Second, we find that minority group eigenvalues are overall
larger than majority group eigenvalues, but only when conditioned on the class. In other words, a majority
group belonging to one class may have larger eigenvalues than a minority group belonging to another class,
but there exists a consistent spectral imbalance between majority and minority groups within the same class.5

To quantify this group-wise spectral imbalance, we introduce a new metric called the intra-class spectral

norm ratio. Suppose gmin(y) and gmaj(y) are the minority and majority groups within a particular class
y 2 Y . Then, we define the intra-class spectral norm ratio by ⇢(y) := �(gmin(y))

1 /�
(gmaj(y))
1 . We note that while

⇢(y) only considers the top eigenvalue and not the entire spectrum, the absolute magnitude of individual
5
For example, in Figure 5c, the spectrum for group 3 (the majority group within class 1) is larger than the spectrum for

group 1 (the minority group within class 0). However, conditioning on the class, we find that the spectrum for group 2 (the

minority group within class 1) is larger than that of group 3, and the spectrum of group 1 is larger than that of group 0 (the

majority group within class 0).
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(a) Waterbirds (b) CelebA (c) CivilComments (d) MultiNLI

Figure 6: Group-wise spectral imbalance is apparent once conditioned on the classes. We plot the
mean and standard deviation, across 3 experimental trials, of the intra-class spectral norm ratio ⇢(y), or the
ratio of the top eigenvalues of the minority and majority group covariance matrices, for each class y 2 Y . We
compute this metric using a finetuned ConvNeXt-V2 Nano on Waterbirds and CelebA and a finetuned BERT
Small on CivilComments and MultiNLI, each using the best class-balancing method from Section 3 for each
dataset. The key observation is that ⇢(y) is at least one for all classes y 2 Y (except a single seed for class 0
on CelebA), illustrating a group disparity captured by the eigenspectrum once we condition on the classes.

eigenvalues was found in Kaushik et al., 2024 to correlate better with worst-class accuracy than relative

metrics such as the “decay rate” of the eigenvalues. We plot the intra-class spectral norm ratios for each
dataset in Figure 6; notably, they are always at least one (except for a single seed for class 0 on CelebA),
showing more clearly the group disparity captured by the eigenspectrum.

Finally, in Table 5, we compare the class with the largest ⇢(y) to the class with the largest disparity in
group test accuracies, i.e., Acc(gmaj(y))� Acc(gmin(y)). We see that in most cases these classes correspond,
suggesting an explanatory power of the intra-class spectral norm ratio. In particular, this correspondence is
consistent throughout all trials of CelebA and CivilComments, the most class-imbalanced datasets we study.

Contextualization with previous work. Our spectral analysis of the group covariance matrices is
inspired by Kaushik et al., 2024. We both study class-balanced settings, with the key difference that they
study class disparities instead of group disparities. However, we show a more nuanced impact of spectral
imbalance across both classes and groups, i.e., spectral imbalance is more prevalent between majority and

minority groups within to the same class, rather than across groups globally.

Spectral imbalance in the group covariance matrices may exacerbate group disparities even when
the classes are balanced. While the worst-group covariance may not have largest spectral norm, the
minority group spectra are consistently larger conditioned on the class.

6 Discussion
In this paper, we identified nuanced impacts of class-balancing and model scaling on worst-group accuracy, as
well as a spectral imbalance in the group covariance matrices. Overall, our work calls for a more thorough
investigation of generalization in the presence of spurious correlations to unify the sometimes contradictory
perspectives in the literature. We hope that, as the community continues to develop group robustness methods
with increasing performance and complexity, researchers and practitioners alike remain cognizant of the
disproportionate impact of the details.
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A Dataset composition

Table 2: Dataset composition. We study four well-established benchmarks for group robustness across
vision and language tasks. The class probabilities change dramatically when conditioned on the spurious
feature. Note that Waterbirds is the only dataset that has a distribution shift and MultiNLI is the only
dataset which is class-balanced a priori. The minority groups within each class are denoted by an asterisk in
the “Num” column. Probabilities may not sum to 1 due to rounding.

Dataset Group g Training distribution p̂ Data quantity

Num Class y Spurious s p̂(y) p̂(g) p̂(y|s) Train Val Test

Waterbirds

0 landbird land
.768

.730 .984 3498 467 2225
1* landbird water .038 .148 184 466 2225
2* waterbird land

.232
.012 .016 56 133 642

3 waterbird water .220 .852 1057 133 642

CelebA

0 non-blond female
.851

.440 .758 71629 8535 9767
1* non-blond male .411 .980 66874 8276 7535
2 blond female

.149
.141 .242 22880 2874 2480

3* blond male .009 .020 1387 182 180

CivilComments

0 neutral no identity
.887

.551 .921 148186 25159 74780
1* neutral identity .336 .836 90337 14966 43778
2* toxic no identity

.113
.047 .079 12731 2111 6455

3 toxic identity .066 .164 17784 2944 8769

MultiNLI

0 contradiction no negation
.333

.279 .300 57498 22814 34597
1* contradiction negation .054 .761 11158 4634 6655
2 entailment no negation

.334
.327 .352 67376 26949 40496

3* entailment negation .007 .104 1521 613 886
4 neither no negation

.333
.323 .348 66630 26655 39930

5* neither negation .010 .136 1992 797 1148
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B Training details
We utilize a ResNet (He et al., 2016) and ConvNeXt-V2 (Woo et al., 2023) model pretrained on ImageNet-
1K (Russakovsky et al., 2015) for Waterbirds and CelebA, and a BERT (Devlin et al., 2019) model pretrained
on Book Corpus (Zhu et al., 2015) and English Wikipedia for CivilComments and MultiNLI. These pretrained
models are used as the initialization for ERM finetuning under the cross-entropy loss. We use standard
ImageNet normalization with standard flip and crop data augmentation for the vision tasks and BERT
tokenization for the language tasks (Izmailov et al., 2022). Our implementation uses the following packages:
NumPy (Harris et al., 2020), PyTorch (Paszke et al., 2017; Paszke et al., 2019), Lightning (Falcon and
the PyTorch Lightning maintainers and contributors, 2019), TorchVision (TorchVision maintainers and
contributors, 2016), Matplotlib (Hunter, 2007), Transformers (Wolf et al., 2020), and Milkshake (LaBonte,
2023).

To our knowledge, the licenses of Waterbirds and CelebA are unknown. CivilComments is released under
the CC0 license, and information about MultiNLI’s license may be found in Williams et al., 2018.

Our experiments were conducted on four Google Cloud Platform (GCP) 16GB Nvidia Tesla P100 GPUs
and two local 24GB Nvidia RTX A5000 GPUs. The spectral imbalance experiments in Section 5 were
conducted on a GCP system with a 16-core CPU and 128GB of RAM. We believe our work could be
reproduced for under $5000 in GCP compute credits, with a majority of that compute going towards running
experiments over multiple random seeds.

We list model scaling parameters in Table 3 and hyperparameters used for each dataset in Table 4. The
smaller BERT models were introduced by Turc et al., 2019. We perform model selection only for our mixture
balancing method (see Table 1) and not for the ERM finetuning hyperparameters, most of which are standard
in the literature (Sagawa et al., 2020a; Idrissi et al., 2022; Izmailov et al., 2022). For the last-layer training
experiments in Figure 4a and Figure 9a, we use SGD with learning rate 10�3 and train for 20 epochs. Different
from previous work, we train CelebA for about 3⇥ more gradient steps than usual to ensure convergence,
and we double the batch size for CivilComments and MultiNLI to increase training stability (we also double
the epochs to hold the number of gradient steps constant).

Table 3: Model scaling parameters. ConvNeXt-V2 and ResNet are composed of four separate “stages”,
and we list the depths of these stages individually. All of these configurations are standard in the literature.

(a) ConvNeXt-V2 parameters.

Size Width Depth (4 stages) Params

Atto 40 (2, 2, 6, 2) 3.4M
Femto 48 (2, 2, 6, 2) 4.8M
Pico 64 (2, 2, 6, 2) 8.6M
Nano 80 (2, 2, 8, 2) 15.0M
Tiny 96 (3, 3, 9, 3) 27.9M
Base 128 (3, 3, 27, 3) 87.7M

(b) BERT parameters.

Size Width Depth Params

Tiny 2 128 4.4M
Mini 4 256 11.2M
Small 4 512 28.8M
Medium 8 512 41.4M
Base 12 768 109M

(c) ResNet parameters.

Size Width (4 stages) Depth (4 stages) Params

18 (64, 128, 256, 512) (2, 2, 2, 2) 11.2M
34 (64, 128, 256, 512) (3, 4, 6, 3) 21.3M
50 (256, 512, 1024, 2048) (3, 4, 6, 3) 23.5M
101 (256, 512, 1024, 2048) (3, 4, 23, 3) 42.5M
152 (256, 512, 1024, 2048) (3, 8, 36, 3) 58.1M

19



Table 4: ERM finetuning hyperparameters.

Dataset Optimizer Initial LR LR schedule Batch size Weight decay Epochs

Waterbirds AdamW 1⇥ 10�5 Cosine 32 1⇥ 10�4 100
CelebA AdamW 1⇥ 10�5 Cosine 32 1⇥ 10�4 20
CivilComments AdamW 1⇥ 10�5 Linear 32 1⇥ 10�4 20
MultiNLI AdamW 1⇥ 10�5 Linear 32 1⇥ 10�4 20

20



C Supplemental experiments

(a) Waterbirds (b) CelebA (c) CivilComments

Figure 7: Mixture balancing ablation studies. We perform two ablation studies on our mixture
balancing method. First, we vary the class-imbalance ratio across the x axis. On the left-hand side, using a
class-imbalance ratio of 1:1 reduces to the subsetting technique; on the right-hand side, using the original
class-imbalance ratio in the dataset reduces to upsampling. Second, we perform an ablation of whether
subsetting is essential in mixture balancing. We plot our proposed method (which takes a subset of data
based on the class-imbalance ratio, then performs upsampling) against a similar method which does not use
subsetting, instead adjusting the class probabilities on the entire dataset as specified by the class-imbalance
ratio. MultiNLI is class-balanced a priori, so we do not include it here.

(a) Waterbirds (b) CelebA (c) CivilComments (d) MultiNLI

Figure 8: Average accuracy of scaled models. We finetune each model size starting from pretrained
checkpoints and plot the train average accuracy (AA) as well as the interpolation threshold, where at least

one seed of the non-class-balanced model reaches 100% training accuracy. (For example, CelebA does not
interpolate with all three seeds). Average accuracy consistently increases with model size regardless of
class-balancing, implying the scaling dynamics for AA and WGA are starkly different. Note that MultiNLI is
class-balanced a priori and does not interpolate at any size.
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(a) Waterbirds (last layer only) (b) Waterbirds (finetuning) (c) CelebA (finetuning)

Figure 9: Average accuracy of scaled ResNets. We contrast the ResNet scaling behavior of Pham
et al., 2021 — who do not use class-balancing — to the scaling of class-balanced ResNets using the best
method from Section 3. We finetune each model size starting from pretrained checkpoints and plot the train
average accuracy (AA) as well as the interpolation threshold, where the model reaches 100% training accuracy.
Similarly to Figure 8, average accuracy consistently increases with model size. We use SGD for last-layer
training and AdamW for full finetuning.

(a) Waterbirds (b) CelebA (c) CivilComments (d) MultiNLI

Figure 10: Additional eigenvalues of the group covariance matrices. In contrast to Figure 5, we
visualize the top 50 eigenvalues of the group covariance matrices for a ConvNeXt-V2 Nano finetuned on
Waterbirds and CelebA and a BERT Small finetuned on CivilComments and MultiNLI. The models are
finetuned using the best class-balancing method from Section 3 for each dataset. The group numbers are
detailed in Table 2 and minority groups are marked with an asterisk. It becomes difficult to distinguish
patterns between the groups in the lower eigenvalues, which is why we focus only on local properties of the
top eigenvalues (e.g., the spectral norm and the relative ordering of the groups). With that said, it would be
interesting to explore power-law decay metrics (Kaushik et al., 2024), which characterize relatively global
properties of the eigenspectrum, in future work.
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(a) Waterbirds (b) CelebA (c) CivilComments (d) MultiNLI

Figure 11: Class disparities are visible in the top eigenvalues of the class covariance matrices. We
visualize the mean, across 3 experimental trials, of the top 10 eigenvalues of the class covariance matrices for
a ConvNeXt-V2 Nano finetuned on Waterbirds and CelebA and a BERT Small finetuned on CivilComments
and MultiNLI. The standard deviations are omitted for clarity. The models are finetuned using the best
class-balancing method from Section 3 for each dataset. The class numbers are detailed in Table 2. The
minority class eigenvalues for CelebA and CivilComments are overall larger, while the reverse is true for
Waterbirds, a slightly different conclusion than Kaushik et al., 2024.

(a) Waterbirds (b) CelebA (c) CivilComments (d) MultiNLI

Figure 12: Additional eigenvalues of the class covariance matrices. In contrast to Figure 11, we
visualize the top 50 eigenvalues of the class covariance matrices for a ConvNeXt-V2 Nano finetuned on
Waterbirds and CelebA and a BERT Small finetuned on CivilComments and MultiNLI. The models are
finetuned using the best class-balancing method from Section 3 for each dataset. The class numbers are
detailed in Table 2. Similar to the groups, it becomes difficult to distinguish patterns between the classes in
the lower eigenvalues, which is why we again focus only on local properties of the top eigenvalues (e.g., the
spectral norm and the relative ordering of the classes).

Table 5: Correspondence between ⇢(y) and intra-class group accuracy disparity. We compare ⇢(y),
the intra-class spectral norm ratio, to the difference in intra-class group accuracy. Each row represents a
different experimental seed. Each cell contains a tuple with the class label for the class with largest value of
⇢(y) paired with the class label for the class with the largest intra-class group test accuracy disparity, i.e.,

Acc(gmaj(y))� Acc(gmin(y)). We see that in most cases these classes correspond, suggesting an explanatory

power of the spectral norm ratio. In particular, this correspondence is consistent throughout all trials of
CelebA and CivilComments, the most class-imbalanced datasets we study.

Seed Waterbirds CelebA CivilComments MultiNLI

1 (1, 1) (1, 1) (0, 0) (0, 0)
2 (1, 1) (1, 1) (0, 0) (0, 1)
3 (0, 1) (1, 1) (0, 0) (2, 0)
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