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Abstract

The classical steratively reweighted least-squares (IRLS) algorithm aims to recover an unknown signal
from linear measurements by performing a sequence of weighted least squares problems, where the weights
are recursively updated at each step. Varieties of this algorithm have been shown to achieve favorable
empirical performance and theoretical guarantees for sparse recovery and ¢,-norm minimization. Recently,
some preliminary connections have also been made between IRLS and certain types of non-convex linear
neural network architectures that are observed to exploit low-dimensional structure in high-dimensional
linear models. In this work, we provide a unified asymptotic analysis for a family of algorithms that
encompasses IRLS, the recently proposed lin-RFM algorithm (which was motivated by feature learning in
neural networks), and the alternating minimization algorithm on linear diagonal neural networks. Our
analysis operates in a “batched” setting with i.i.d. Gaussian covariates and shows that, with appropriately
chosen reweighting policy, the algorithm can achieve favorable performance in only a handful of iterations.
We also extend our results to the case of group-sparse recovery and show that leveraging this structure in
the reweighting scheme provably improves test error compared to coordinate-wise reweighting.

1 Introduction

Many high-dimensional machine learning and signal processing tasks rely on solving optimization problems with
regularizers that explicitly enforce certain structure on the learned parameters. The traditional formulation
for such tasks involves a regularized empirical risk minimization (ERM) problem of the form

52%{11 L(6) + AR(0), (1)

where L(+) is a loss function that encourages fidelity to the observed training data and R(-) encodes desirable
structural properties. In many important applications, it is desirable to obtain a sparsity-seeking solution;
in such cases, the regularizer is typically non-smooth, as in the LASSO, group LASSO, and nuclear norm
regularizers. As an alternative approach to this non-smooth optimization, several recent works have proposed
the “Hadamard over-parameterization” of 8 into the entry-wise product of two factors uw ® v. While the
resulting minimization problem is non-convex, this parameterization, coupled with a smooth regularizer, has
been shown to achieve competitive empirical performance (in terms of numerical stability, robustness, and
convergence rate) when compared to traditional sparse recovery algorithms [13, 25]. For example, rather
than solving the convex, but non-smooth LASSO (where L is the squared loss and R is the ¢; norm), the
Hadamard reparameterization yields the following non-convex and smooth formulation:
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In the case where the regression function is linear in 6, solving (2) is equivalent to learning a function of
the form
Juw (@) = (2, u© V) = (diag(v)z, u),

which can be thought of as a one hidden layer neural network with linear activation function and inner weight
matrix diag(v). In this context, this linear diagonal neural network (LDNN) architecture has also been
studied as an illustrative case study to improve our understanding of how neural networks perform iterative
“feature learning” to leverage low-dimensional structure in high-dimensional settings [34, 23].

One way to understand the connection between classical sparse recovery algorithms and the Hadamard

product/LDNN form in (2) is to consider the change of variable v; — |/7; and u; — jni [25]. This yields the

following optimization problem, which is jointly convex in 1 and 6:

min min L(6) + ;\i(f + m>~ (3)
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After solving the minimum over 70 explicitly, the second term becomes exactly A||@]|1, and we recover the
Lasso objective. This is a special case of the so-called “eta-trick” [1], which can be used to write many common
sparsity-inducing penalties as the minimization of a quadratic functional of 6.

A variety of algorithms for learning Hadamard product parameterizations have recently been studied,
including alternating minimization [13], bi-level optimization [25], and joint gradient descent on (u,v) [34].
The connection to the (6,m) optimization in (3) can also be leveraged to construct algorithms based on
classical sparse recovery techniques. In particular, alternating minimization over € and 7 in (3) yields
the popular iteratively reweighted least-squares (IRLS) algorithm [11, 9]. Translating these updates to the
equivalent updates on (u,v), we obtain an iterative least-squares algorithm for LDNNs, which alternately
sets v+ = \/Ju® © v®| and performs a weighted least squares update on w. This particular form of
reparameterized IRLS was generalized in [28] to a larger family of iterative least-squares algorithms under
the name of linear recursive feature machines (lin-RFM).

While several methods for learning Hadamard /LDNN parameterizations have been introduced in the
literature, there remain many open questions about how they each perform and how they compare. Theoretical
analyses of these algorithms typically assume fixed, possibly worst-case training data, and aim to characterize
the properties of the fixed-points [28, 34] or give convergence guarantees to second-order stationary points
[25]. However, these worst-case analyses do not readily yield guarantees on the estimation error, which is
the principal metric of interest. Indeed, many works have shown that studying the average-case, or typical,
behavior of non-convex optimization algorithms can allow for estimation guarantees that are more precise
and reflective of practice [14, 18, 7].

In this paper, we provide a precise analysis of a general family of iterative algorithms for learning LDNNs

that take the form )
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for some reweighting function 1. As we show in Section 2, this formulation encompasses multiple existing
algorithms, including reparameterized IRLS, lin-RFM, and alternating minimization over u and v. We
consider the common scenario where training is performed with batches of data and characterize the ezact
distribution of the parameters after each iteration in the high-dimensional limit (n,d) — co. This allows us
to address questions such as

e How do different algorithm choices compare (in terms of convergence and signal recovery) in the
high-dimensional regime?

e How many iterations does it take common algorithms to find statistically favorable solutions?

e What is the effect of model architecture in LDNNs? Does leveraging group structure provably improve
sample complexity when the ground-truth signal is group-sparse?



Contributions:  We define a general class of algorithms which learns LDNNs by alternately performing
least-squares and reweighting steps in a sample-split/batched setting, and we show the following.

(1) Under mild assumptions on the target signal, initialization, and reweighting function, we provide an
exact characterization of the distribution of the entries of the parameters at each iteration in the limit as n, d
approach infinity.

(2) We show that this asymptotic result aligns well with numerical simulations and allows for accurate
prediction of the test error at each iteration. This enables rigorous comparison between different algorithms
and demonstrates that, with appropriate reweighting schemes, a statistically favorable solution can be
obtained in only a handful of iterations.

(3) Lastly, we extend our asymptotic framework to a setting of structured sparsity, where 8* has group-
sparse structure. Our results show that using a grouped Hadamard parameterization (i.e., tying together
groups of weights in the LDNN) effectively learns such signals, with performance scaling with the number of
non-zero groups, rather than the total sparsity level.

1.1 Related work

IRLS and the n-trick: The reformulation of non-smooth regularizers in terms of quadratic variational
forms (the “n-trick”) has been studied in various early works in computer vision and robust statistics [12, 4].
Further analysis and examples of sparsity-promoting norms are provided in [20, 2|, and [25] provides a
characterization of when a regularizer admits a variational form of this type. The resultant optimization
algorithm is iteratively-reweighted least-squares (IRLS), a popular technique for compressive sensing and
sparse recovery [11, 9]. These works also consider IRLS algorithms corresponding to £,-norm regularization for
0 < p < 1; in this case, the minimization is no longer convex, but [11] shows that such methods can find sparse
solutions with fast local convergence rate. The family of algorithms we consider includes a reparameterized
version of each of these IRLS algorithms, but unlike these prior works, we consider a batched setting and
the high-dimensional asymptotic regime. Moreover, our results apply to other algorithms which may not be
easily expressed as resulting from the n-trick.

Hadamard parameterization and linear diagonal networks: The reparameterization of @ into the
product of factors w ® v has been considered in a variety of recent works. The authors of [31, 35] show
that early-stopped joint gradient descent over the two factors can lead to optimal sample complexity for
sparse linear regression. The equivalence of this parameterization to LDNNs has also led to a surge of
interest in the implicit bias of gradient descent/flow on this parameterization, i.e., a characterization of which
solution gradient descent will reach without explicit regularization (corresponding to A = 0). These works
typically consider gradient flow run until completion and characterize the solution as a minimizer of a certain
sparsity-inducing functional that depends on the initialization [34, 10, 23].

The connection between the LASSO (as well as some non-convex ¢, penalties) and the Hadamard
parameterization was studied in [13], where alternating minimization over the two factors is used instead
of first-order methods. More recently, [25] extends these observations by making explicit the connection to
the n-trick and showing that saddle points are strict (escapable). These insights lead to global convergence
guarantees and a smooth bi-level optimization scheme [25, 26] for non-smooth structured optimization
problems that was shown to perform competitively with state-of-the-art solvers. The non-convex landscape
of such formulations is further explored in [15], where it is shown that for a large class of parameterizations
(including grouped, deep, and fractional Hadamard products), the non-convex problem has no spurious
local minima. Motivated by the type of feature learning observed in neural networks, the authors of [28]
propose lin-RFM, which updates one of the parameters via weighted least-squares while iteratively updating
the other parameter via a reweighting scheme based on the average gradient outer product of the learned
function. The authors characterize properties of the fixed-points and show that, for certain reweighting
schemes, lin-RFM is equivalent to a reparameterization of IRLS. The family of algorithms we consider is
similar, consisting of a weighted least-squares step and a reweighting step; however, it is more general and
doesn’t require the reweighting function to have the particular form required by lin-RFM. Moreover, our
asymptotic characterization of the iterates allows for a precise understanding of how the test error evolves.



On the other hand, our analysis relies on batching/sample-splitting of training data while all of the above
works reuse the entire batch of training data at each iteration.

We make particular note here of the few works which explicitly consider a “grouped” Hadamard param-

eterization, which we consider in Section 4. This corresponds to a LDNN with groups of tied weights in
the hidden layer. Early stopped gradient flow/descent for this type of architecture was shown in [17] to
achieve sample-complexity scaling with the number of non-zero groups (rather than the overall sparsity). The
non-convex landscape for this grouped architecture is studied in [36] and [15]. Our results complement these
works by studying group-reweighted least-squares algorithms (rather than gradient methods) for learning
functions of this form.
Precise characterization of higher-order non-convex optimization problems: On a technical
level, our work provides a precise deterministic characterization of a family of higher-order optimization
algorithms. In this sense, our results are of a similar flavor to [7], where Gaussian comparison inequalities are
used to obtain a precise characterization of non-convex optimization problems. However, since the Hadamard
parameterization is a re-parameterization of the actual estimator of interest (6 := u ® v), the results of [7]
are not directly applicable. While our results are asymptotic and do not provide finite-sample guarantees, we
provide a distributional characterization of v after each reweighting step, which allows us to characterize the
behavior of more complicated functions of the iterates. Precise characterizations of alternating minimization
and lin-prox methods for rank-1 matrix sensing are studied in the works [6, 19]. While these works obtain
non-asymptotic guarantees, the estimation model and resulting optimization objective is quite different, with
each unknown parameter interacting with independent sensing vectors (rather than a single sensing vector
interacting with the product of the two parameters).

2 Background and formulation

Notation: The ones vector of dimension d is denoted as 1;. We denote the element-wise multiplication
(Hadamard product) of two vectors  and y as  ® y. Element-wise division of two vectors is denoted as %

We say a function f: RP — R is pseudo-Lipschitz of order k if, for all x,y € RP,

(@) = f)l < O+ [lzl3™ + ylz™llz —yll2

for some constant C' > 0. The set of such functions is denoted by PL(k).

Convergence in probability of a sequence of random variables Xy to a random variable X is denoted by
X4 = x. Convergence in Wasserstein-2 distance of a sequence of probability distributions v4 to a limiting
distribution v is denoted as vy % v, and this fact is equivalent to the statement Ex..,, g(X) = Ex~., g(X)
for all g € PL(2) [3]. If the v4 are random probability measures, we say that vy We 1 if the same convergence
holds in probability, i.e., Ex.,, g(X) L Ex~, g(X) for all g € PL(2). The empirical distribution of a vector
z € R? is defined as % 2?21 d(zi), where 0(z;) is the Dirac delta distribution centered at z;.

Formulation: We consider a batched noisy linear model where, at each time t = 0,1, ..., a user has
access to an independent batch of data (X®) y®)) € R"*4 x R™ satisfying

1
O = —_Xx®g* 4e
Vo= a

Above, 8* € R? is an unknown signal, X has i.i.d. standard Gaussian entries, and € ~ N(0,0%I},) is i.i.d.
noise in the measurements. Given an initial weight vector v(?) € R%, we are interested in the behavior of
iterative algorithms of the form
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Table 1: Some algorithms taking the form (4)

Algorithm Reweighting function
Alternating minimization (AM) [13] P(u,v) =u
Reparameterized IRLS [9, 11, 28] P(u,v) = (vv? + €)®

Linear recursive feature machines (lin-RFM) [28]  9(u,v) = ¢(u?v?)

where 1: R x R — R is a “reweighting” function that acts entry-wise on (u(® v®) and A > 0 is a
hyperparameter governing the strength of the regularization. We we will study the behavior of the iterates
u® v® in the high-dimensional limit where n and d both approach infinity with fixed ratio % = k. Since our
primary interest is to reveal the feature learning capabilities of such algorithms when 6* is a high-dimensional
signal with low-dimensional structure, we will typically focus on the regime where k > T, where T is the
number of total iterations. This ensures that the total number of observed samples nT is smaller than the
ambient dimension d.

Before proceeding to our main results, we note that this formulation encompasses a wide variety of classical
and modern algorithms (summarized in Table 1):

e Alternating minimization: One perspective on this algorithm is to consider it as a way to perform
alternating minimization on the non-convex loss function

2
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Using the fact that the loss function is symmetric in w and v, choosing v (u,v) = u recovers the
mini-batched alternating minimization algorithm for this loss. In other words, v simply switches the
two parameters u and v.

2

e IRLS algorithms for sparse recovery: As shown in [28], classical IRLS reweighting schemes
used for sparse recovery and compressed sensing [11, 21| can be reparameterized in the form of (4)
P(u,v) = (uv? + €)*, where different choices of « correspond to different ¢, penalties.

e Lin-RFM [28]: Generalizing the reparameterized IRLS update, the authors of [28] propose the choice
P(u,v) = ¢(u?v?) for some continuous function ¢: R — R*. Here, the quantity u?v? arises from the
average outer product of the gradient of the learned regression function, which was shown empirically
in [27] to correlate with the features learned in the weight matrices of various common neural network
architectures.

Our goal is to understand statistical properties of the iterates for different choices of v, and in particular
how the test error evolves from iteration to iteration. In the following section, we develop an asymptotic
characterization of the iterates that can be used to gain insight into these questions for a large class of
reweighting functions and problem settings.

3 A precise characterization of the iterates

In this section, we provide a precise characterization of the iterates of the algorithm 4 with i.i.d. Gaussian
covariates. First, we introduce and discuss the two main assumptions needed for our main result. The first
assumption is concerned with the distribution of the initialization vy and the target signal 6*:

Assumption 1. The empirical distribution of the entries of v(©) and 0* converges in W, distance to some
joint distribution Iy, i.e., 52721 6(1}§0),9;*) e, I1y. Additionally, ’UEO) # 0 for all i and 6* has bounded
entries almost surely.



Here, the requirement of empirical distribution convergence is easily satisfied by common choices of v(%),
including the ones vector and i.i.d. Gaussian entries. For a typical sparse regression setup, we might, for
example, consider the IIy induced by choosing v(®) = 1, and letting 8* have i.i.d. entries that equal 0 with
certain probability. The requirement that 8* has bounded entries appears to be an artifact of the proof, and
is used only in the proof of one technical lemma. In our simulations, we find that our asymptotic predictions
often remain accurate when 6* has entries from distributions which are not bounded almost surely (e.g.,
Gaussian entries).

Secondly, we define the set of reweighting functions 1 for which our result will apply.

Assumption 2. The reweighting function ¥: R x R — R satisfies the following:
1. If U,V are random variables such that U,V # 0 with probability 1, then (U, V') # 0 with probability 1.
2. 1 is continuous and bounded or ¢? is pseudo-Lipschitz of order 2.

This family allows us to consider many of the choices of ¥ discussed in the previous section, including
Y(u,v) = u (AM on linear diagonal networks), ¥(u,v) = y/|uv| (lin-RFM and IRLS), ¥ (u,v) = qzﬁ(u v?) for
bounded ¢ (lin-RFM). We note that this does not include some choices of 1) which apply more “aggressive”
weighting, such as ¥ (u,v) = |uv|. Nevertheless, we can apply our theoretical predictions for these choices of
¥ after passing the weights through a bounded activation (such as a sigmoid). In Appendix D, we show that
our predictions often still show excellent agreement with empirical simulation even when the boundedness
assumption is violated.

Our results are stated in terms of the following iteration, for ¢ > 0:

o2 0% + 3%k
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where th'lm'fi'N'((), 1). In words, given a probability distribution II; over R X R, 7,41 and ;41 are scalars
computed as the unique! solutions to a deterministic optimization problem (this can be solved easily by
studying the optimality conditions, as shown in Appendix C). Then, Q41 is defined as a random variable that
is a function of (V,0) ~ II; and Gy ~ N(0,1). Lastly, IT;, is defined as the joint distribution of ¢ (Q¢+1, V)
and ©.

Given this iteration, we obtain the following result, which is proved in Appendix A:

Theorem 1. Suppose Assumptions 1 and 2 are satisfied. Then, for any t > 0 and any function g: R> — R
such that g € PL(2) or g is bounded and continuous, we have

d
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where the expectation is over the independent random variables (V,0) ~ II; and Gy ~ N(0,1).

The limit in this theorem should be interpreted as being the limit as n,d — co with their ratio x = %
held as a constant. Applying the above theorem for each ¢ > 0, we can get precise asymptotic predictions for
a wide variety of test functions of the iterates. One example of particular interest is the test error, which we
measure as the normalized ¢! distance between u**") © v(Y) and 8*, corresponding to g(u,v,0) = |uv — 6|
(we provide a proof that this is PL(2) in Proposition 1 in Appendix B). We note that the limiting expectation

can be computed via simple Monte Carlo simulation of a scalar random variable.

IThe uniqueness of the solution is shown in the proof of Theorem 1.



From a technical standpoint, our result is obtained by applying the Convex Gaussian Min-Max Theorem
(CGMT) [30, 29] to the weighted least-squares objective function in (4). Previous works have obtained a
similar distributional characterization for the solution to least-squares with anisotropic covariates (where the
“weights” v are the square root of the eigenvalues of the data covariance) [8]. However, while [8] assume that
the eigenvalues are uniformly bounded by constants, this is not a reasonable assumption in our setting, since
many common choices of 1 are not bounded and hence v*) is not necessarily bounded uniformly for ¢ > 1.
A second key difference is that we need to obtain a distributional characterization which can be applied
recursively for all + > 0. In other words, if we assume that the empirical distribution of (v(?), 8*) converges
in W, distance, then we need to show that after one iteration, the iterates also converge in W, distance (and
not in any weaker sense).

To overcome these differences, we use a different technique to show distributional convergence of the
iterates. Similar to the approach in [5], we apply the CGMT to a perturbed optimization problem, which
ultimately allows us to show convergence of test functions of the solutions to the unperturbed problem. While
this approach necessitates the additional assumption that 8* has bounded entries and we obtain results for a
slightly smaller family of test functions g (note, for example, that the squared loss g(u,v,6) = (uv — 6)? is not
PL(2)), we obtain a distributional convergence result that can be applied to a sequence of recursively defined
least-squares problems which define the trajectory of an algorithm, rather than to a single optimization
problem. Moreover, our simulations in Appendix D suggest that the predictions of Theorem 1 still often
apply without these additional assumptions, including in the case of the squared loss, indicating that these
additional assumptions could potentially be weakened with a more complicated analysis.

3.1 Application to sparse linear regression

In this subsection, we apply Theorem 1 to a sparse recovery setting and compare the asymptotic predictions to
numerical simulations on high-dimensional Gaussian data. First, we consider a setting where n = 250, d = 2000,
and 6* has Bernoulli(0.01) entries (so the expected sparsity level is E[s] = 20). We run Algorithm 4 with
initialization v(®) = 14 for four different choices of reweighting function and display the test error at each
iteration (median over 100 trials) in Figure 1. For each choice of reweighting function ¢, we choose the
regularization parameter A that minimizes the asymptotic test loss achieved within 8 iterations, and we plot
the corresponding trajectory. As shown in the figure, the numerical simulations show excellent alignment
with the asymptotic predictions even for this moderate choice of n and d.

The asymptotic predictions show that this family of algorithms can find solutions with low test error
within only a few iterations. Our results also reveal fine-grained differences in the convergence behavior of the
different algorithms. For instance, more aggressive weightings 1) = tanh |uv| and v = tanh u? seem to find
better solutions after several iterations. Interestingly, the weighting functions which depend only on u (like
alternating minimization) sometimes display a non-monotonic, oscillatory decay of the test loss. However,
we do see a steady decrease in test error after every pair of iterations (e.g., in AM, after both parameters
have been updated). Finally, we note that our framework allows for analysis of new algorithms for training
LDNNSs. In particular, to our knowledge, weighting functions of the form ¢(u?) have not been previously
considered for this task, but our results indicate that this small modification to AM is competitive with many
existing algorithms in this setting.

4 Grouped IRLS and the benefits of structured feature learning

In many scenarios, the unknown signal 8* is known to possess additional structure that can be leveraged
during training. One commonly studied example of this is structured sparsity, or group sparsity, where 8*
has many blocks which are zero. In this section, we generalize the results of Theorem 1 to the case where the
reweighting function respects this additional structure in the signal, i.e., ¥ acts on blocks of v, rather than
on individual coordinates.

Concretely, we consider the following modification to our formulation. Let b > 1 be a constant and write
R? as a product space over M = % factors: R? x --- x R?. Then, 8*,u(") v® € R? can all be represented as
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Figure 1: Theoretical predictions and simulations of the test error éHu ® v — 0*]]1 (log scale, pluses denote
the median over 100 trials and the shaded region indicates the interquartile range) for two different noise
levels, where n = 250,d = 2000, and 6* has Bernoulli(0.01) entries. Here, ¢ = |uv|% corresponds to the
classical IRLS weighting from [11], ¢ = tanh |uv| is a version of lin-RFM, ¢ = u corresponds to AM, and
1 = tanhu? is a new reweighting scheme we introduce. We note that the 1/ which depend only on w can lead
to oscillatory behavior in the test risk.

M stacked blocks, each in R®. Under the same linear measurement model, we now let 7 : R® x R — R act
on each of the factors of (u¥),8*), and consider the same Algorithm 4.

Here, the case b = 1 recovers the results of the previous section, but the case b > 1 allows us to study the
interplay between signal structure and reweighting scheme in a more fine-grained way. For example, suppose
0* is known to be group-sparse, meaning that many of the factors {0;};2, are zero. In this case, it might
make sense for v to return a vector of the form

w(ugt), v-(t)) = a;1p,

K2

for some «; € R that is chosen as a function uz(»t) and vi(t). This corresponds to a reweighting scheme which
acts on blocks, rather than individual entries. Another way to motivate this “grouped reweighting” is to
leverage the connection to the 7-trick, as in (3). In particular, the group Lasso problem can be written in the
following variational form [2]:

A 116113
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where the closed-form solution to the 7 minimization yields the classical group norm regularizer Zf\il 116:1]2-

Here, reparameterizing as a; — /n; and u; — \??T gives rise naturally to the grouped Hadamard parameteri-

zation, with v; = a; 1.

From the perspective of linear diagonal networks, such an approach is equivalent to “tying” together the
weights of the hidden layer that correspond to each block. Rather than studying gradient descent/flow for
this parameterization (as in [16, 17]), we consider an optimization approach that relies on alternate updates
of u® and v®.

We make the same technical assumptions as in Assumptions 1 and 2, with the natural modifications to
accommodate b > 1:

1. My is the limit of the empirical distribution of factors of (v(?),8*) and hence is a distribution over
R’ x R.
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Figure 2: Group-blind (¢g;) vs. group-aware (tbg4,) reweighting when 6* has group-sparse structure. We set

n = 500, d = 4000,0 = 0.1, and Ofl'gBernoulli(0.0l)lb. For each curve, X is set to minimize the asymptotic
test error achieved. Simulation results are the median/IQR over 100 trials. Left: Comparison of the test
error trajectory (log scale) for a fixed block size b = 8. Right: ¢; test error after T' = 4 iterations, for varying
group sizes.

2. Each factor 8 € R® for i = 1,..., M has bounded f3-norm almost surely.
3. 9 is bounded and continuous or each of its coordinate projections satisfies wjz € PL(2) for j=1,...,b.

A straightforward extension of Theorem 1 yields the following generalization for the grouped algorithm,
where V,©, Gy, Q41 € R® are now vector-valued random variables: For ¢ > 0, let
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Terts B = argmaxmin ¢ — +7A(1 = k) =7+ TAEw @), bZTijer

Q = Tt+1v®(®+ﬂt+1Gt\/E)
- i1V O2 + B ALy

i1 = Law((Qu41, V), ©).

=1

, (entry-wise division)

Here, G’ti'i«'Si N(0,I). Then, we have the following result, which is proved in Appendix A.

Theorem 2. [Generalization of Theorem 1 for b > 1] Under the assumptions above, for any t > 0 and any
function g: (R®)? — R such that g € PL(2) or g is bounded and continuous, we have

M
S .
M g(u§t+l)7 Uz(t)v 01’ ) £> E[Q(QtJrh V7 @)]
i=1

Given a reweighting function v, Theorem 2 characterizes the distribution of the factors (blocks) of the
iterates. Hence, by choosing g(u,v,0) = |u ® v — 0|, we can predict the exact limiting test error for this
family of algorithms.

Computing these theoretical predictions reveals that choosing v in a group-aware way can lead to
significant performance improvements compared to coordinate-wise reweighting. In Figure 2, we fix 0 =
0.1,n = 500,d = 4000, and set the overall expected sparsity level of 8* as in Figure 1. We compare the
performance of Algorithm 4 for a “group-blind” (t45) and “group-aware” (144) choice of reweighting function:



e g(u,v) = tanh|u © v| — note this is identical to one of the reweightings considered in Section 3.1.

b
o Yga(u,v) = (% > j—1 tanh \ujvj|)1b

The theoretical predictions align with simulations and show a notable improvement in performance when
using the group-aware scheme with b > 1. Moreover, as the group size b increases, the performance of 4,
remains approximately the same, indicating that it is not able to take adapt to the group-structure. By
contrast, using 14, leads to a consistent improvement in test error as b gets larger. Hence, the test error when
using the group-aware scheme scales with the size/number of groups, rather than the overall sparsity level.

5 Conclusion

In this paper, we derived a precise asymptotic characterization of the iterates of a family of algorithms for
learning high-dimensional linear models with linear diagonal networks. We used these predictions to obtain
fine-grained predictions of the test error at each iteration for various existing algorithms for this task, and
we showed that our framework can also be used as a test bed for new variations on these algorithms that
take a similar form. Lastly, we demonstrated the advantage of embedding more structure into the model by
tying together groups of weights when the ground-truth has structured sparsity. Several interesting open
questions about these types of algorithms remain. While our simulations align very well with the predicted
asymptotic trajectory, it would be interesting to obtain finite-sample guarantees that hold even for batch sizes
that are much smaller than d (as in the “mini-batch” case studied by [19]). Moreover, seeing as our analysis
depends crucially on the independence the covariates at every iteration, developing precise predictions of the
trajectory in the non-batched setting remains an interesting direction for future work.
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A Proof of main results

In this section, we provide the proofs of our main results.

A.1 Notation and background

Notation The ones vector of dimension d is denoted 14. We write a < b when a < Cb for some sufficiently
large constant C' > 0 which does not depend on d. We denote the element-wise multiplication (Hadamard
product) of two vectors  and y as x @ y. Element-wise division of two vectors is denoted as % We use the
shorthand (-); = max(-,0). A function f: R? — R is called pseudo-Lipschitz of order k if, for all ¢,y € R?,

[f(@) = f)] < CO+ |5 + llyllz ™)l — yll

for some constant C' > 0. The set of such functions is denoted PL(k).
Convergence in probability of a sequence of random variables X; to a random variable X is denoted

Xa 2 x. Convergence in Wasserstein-2 distance of a sequence of probability distributions v4 to a limiting
distribution v is denoted as 4 Jds: v, and this fact is equivalent to the statement Ex.,, g(X) = Ex, g(X)

for all g € PL(2) [3]. If the v4 are random probability measures, we say that vy 2 1 if the same convergence
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holds in probability, i.e., Ex~,, g(X) B Exe g(X) for all g € PL(2). The empirical distribution of a vector
z € R? is defined as % 2?21 d(z;), where §(z;) is the Dirac delta distribution centered at z;. For any random
variable (or group of random variables) X, we use the notation Law(X) to denote the probability distribution
of X.

We also define two key quantities which appear in the analysis.

Definition 1. The Moreau envelope function of a proper, lower semi-continuous, convex function £: RP — R
with step size T is defined as
1
My(x;7) = min /¢ — ||y — x||?.
(i) = min () + 51y - |3

The prozimal (prox) operator of £ with step size T, denoted prox,(x,T) is defined as the argmin of the above
optimization problem.

Lastly, we restate the version of the Convex Gaussian Min-Max Theorem (CGMT) that we will use in our
proofs.

Theorem 3 (Convex Gaussian Min-Max Theorem [29]). Let G € R™*" g € R™ h € R" have i.i.d. N(0,1)
entries. Let S, C R™ and S, C R™ be compact, convex sets, and f: R® x R™ — R be convez-concave on
Sw X Sy. Define the following two min-max problems:

P = mi T
(G) Join max u Gw + f(w,u)

(g, h) = min max||w|\2uTg+ ||u||2wTh+f('w,u)
wWES, UES,

Then, for allc € R and t > 0,
P{|®(G) — c| > t} < 2P{|¢(g, h) — | >t}

A.2 Proof of Theorems 1 and 2

Proof of Theorem 1. Assume that é Zle (5(v§t), 07) We II; (note that this holds by assumption at ¢t = 0; we
will show later that it holds at time ¢t 4 1).

First observe that convergence of the joint empirical distribution of (w(*+1), v(1) §*) to the joint distribution
of (Q¢+1,V,0) in Wasserstein-2 distance implies that

d
S 9@ 0. 07) B Elg(Qes1, V. 0)],
=1

SHE

for any g € PL(2) or which is bounded and continuous. This is because W5 convergence implies convergence
in expectation of any pseudo-Lipschitz function of order 2 [3, Lemma 5] and of any bounded continuous
function (since Wy convergence is stronger than weak convergence [33, Theorem 6.9]). Hence, it suffices to
show that

d
1
32 0™, 07) ™2 Law(Qi11,V.0), (®)
i=1

where (V,0) ~ II; and Q41 is defined as in Eq. 5.
Recall that the objective function for the update on w is given by
D)

+ .
2 d 2

1
wY = arg min —

ucRd N

1
) _ _— x® u® U(t)
Yy \/ZiX ( )

Rather than study this update directly, we first analyze a slightly more general problem (following the
approach in [5]). Let h: R® — R be a continuous test function with ||V?h|2 < C and that satisfies one of the
following:
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1. h is uniformly bounded.
2. h(u,v,0) = u?.

Then we consider the following problem (the dependence of X,y, and v on t is dropped to simplify the
notation):

2

1
Pi(p¢) = min —

1y
min —ly (u©Ow)

d
A2, B
\/a +E||u||2+32:: ulvvzv 1 (9)

2

where p € [—p*, p*] and p* = % is chosen sufficiently small so that the objective function (scaled by d) is

A-strongly convex for all y in this range. The case pu = 0 recovers the original problem of interest.

Step 1: Convergence of the loss Rewriting this in terms of the error vector A = T(U Ov—0%),w

have
d
LK dA; + 6} .
EZ: ( avi79i>'

In writing this, we use the fact that v; # 0 for all ¢ with probablhty 1 (and the notation in the second-to-last
term indicates entry-wise division). Now, using the identity ||-||3 = maxq2q" () — ||q||3, we can write this as

<M9> (10)

Vg

fAJro*
P1(M)=§1€1H§}dgl\e—XAllz d —_—

2 2
P;(p) = min max — —q" XA —|q|2+

€_
A€Rd geR™ fq \/ﬁ

A
d

vina + o |

HM&

LK
d
2

Next, in Lemma 1, we show that there exist Euclidean balls Ba and By, each of radius C1||v||« such that,
with probability approaching 1, we can constrain the feasible set to lie with these balls without changing the
value of Py(u), so we can study

2
- 2 2 7 A VdA + 6

Pi(p) = min max — XA —|ql3 + 7

A€Bx qeB, fq ¢ /ml +

ad
d

U;

=

h<M6> an

2

where P (1) = Py () with probability tending to 1. We can therefore condition on this event for the remainder
of the analysis without changing our asymptotic conclusions.

Now, noting that this is in the correct form to apply Theorem 3, we define the auxiliary optimization
problem

A|vaa + o+

2
Py(p) = min max —— A - =|AllhTq — |ql3 + -

2 2
- = 12
Anin, max =g e 7 lall2g NG (12)

d

d *
Z (\TA ‘—|-9 , 1‘79;‘k>, (13)

where g € R? and h € R" have i.i.d. standard normal entries. By Theorem 3, for all § > 0 and fixed
P(u) €R,

Q.\"R

P{IPy(4) — P(u)] > 6} < 2B{|Pa(p) — P(u)] > 8}.

In particular, if we can find some P(y) such that Py () EA P(p), then we can conclude also that Py (1) EA P(u).
To accomplish this, we next perform a series of simplifications to Py () which will later help us characterize
its asymptotic behavior. First, we can decouple the optimization over q into its norm and direction, and the
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latter can be solved explicitly. Letting 7 = ||g||2, this yields

2
VAA + 67

Py(p) = min max ——
v

27 A
—|Al2h|l, — =g A -T2+ =
AeBAosng\/ﬁHE 1A=kl g Tt

Jn d
d I (19
Z (\/EAU-F@ ’ i,9;>,

where R := C}||v||oc. Next, note that € and h are independent Gaussian vectors and hence € — ||Al|zh 2

Vo2 + ||Alj3h. So, we have
d . 27| k|2 5 27 g7
Pa(p) T ACBA 057SR NG Ve +lAll3 T A- d ,
(15)

d dni+0;
PyBe

u = \/EAera .

&\“;

2
M| Vda + 6+

v

Before proceeding further, we rewrite this in terms of a minimization over the variable

d . 2T|h‘||2\/ 2 1 * T T *
P2(u)—££02a537 o? + -lluov -0 - =g (uOv-6)
(16)

U

A 2 1 *
2y EHUH? J Zh(ui,vi,ﬁi)

i=1

Here, B, {uERd H\f’u,@’v—e*)

strongly concave in 7 and strongly convex in u (the sum of the last two terms is strongly convex in u based
on the assumption that h has bounded Hessian and g is sufficiently small). Since the objective function is
convex-concave over convex and compact sets, we can invoke Sion’s minimax theorem to switch the min and
max. Furthermore, we use the fact that /z = mings % + g to write this as

’ < R}. After this step, observe that the objective function is
2

d - 7lh]2 lu© v — 67 21 .
i s, ip T (5 P ) - e
o<pB<o+

(17)

d
A 2 | M
—72+3||u||2+32 (ui, 03, 67)

Here, note that we can add the constraint on 8 without changing the solution since the optimal value of /3

will be obtained at \/02 +iluov— 0*||§ € [0,0 + R] for all feasible u.

Next, we can explicitly solve the inner minimization over w. To do this, we first show in Lemma 2 that
the optimal solution to the unconstrained minimization is strictly feasible for large enough C, and hence, the
unconstrained and constrained minimizations over u are equivalent. Next, observe that the unconstrained
problem is separable over the indices, so we need only to solve the scalar problem

min TPz (uiv = 9;)2 - °r gi(u;v; —

u; €R Bdy/n Vod
Completing the squares, we obtain that the above problem can be written in terms of the Moreau envelope
(Definition 1) of the function £(u) = A\u? + ph:

* A *
—07) + du’ + dh(ul,vi,é‘i) (18)

6;2 0; — By:
p Tfﬁz —gg(ﬁgi\/g—Wf)Q+MA(-)2+uh(.,m,9;)(5l Bk, B >]7

€v; , 257’1}@2
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where we have introduced the shorthand notation & = ”\’;%2

. Substituting this into the expression for P,
above, we obtain

2 d *2
Po) L wmax  min T7E Grge 2y ;Z[Tfe FRCAGE 59*)}

0<7<Ro<B<o+R 5
d *
y §0; — Bgivk. B (19)
Z A2k (01,07 é_vi 3 257_1)(15)2

&\»—‘

= ma min
OSTSXRUSBSO'Jerd(T’ 5)
Now that the optimization has been fully “scalarized”, we proceed by considering its asymptotic behavior.
First, note that the partial minimization over u preserves the concavity/convexity in (7, 5). In Lemma 3, we
prove that for any fixed 7 and 3, the objective function fy(7, ) converges in probability to

© - BGVE, 8
% ’27‘/2)}’

2
f(r,B8) = %‘FTﬁ(l—’f) — 72+ E | M2 4pn(. VO)(
where the expectation is over (V,0) ~ II; and an independent G ~ N(0,1). We note here that Lemma 3 is
the only place in our proof which requires the boundedness of the entries of 6*.
Since fq(T, B) is strongly concave in 7 with parameter 1 for all feasible /3, we can conclude that f(r, ) is
also strongly concave in 7 with parameter 1. Directly taking a derivative with respect to 3, we also find that
f has a single non-negative critical point, at the point 3 = \/02 + E[(aV — ©)2?], where

o ©—-pBGVk B
u=u(V,0) = PTOX)\ ()24 k(- V,0) ( Vv ; 27V2 )"

(20)

So, we can conclude that f has unique saddle point (7, B) Note f is a deterministic function that does not
depend on d and hence (7, 3) are also deterministic and independent of d.
Now let Cy := max{7, 5} + 1. By the “convexity lemma” (as stated in [24]), pointwise convergence (in

probability) of a convex function is uniform over compact sets. So, this result implies that the convergence is
uniform over (7, 3) € [0,C3] x [0, (3], so

max mll’l T, —) max mln T,
0<7<Cs 0<B<Cy Ja(T, B) 0<7<C5 0<B<Cy (.8

Let (%d,Bd) denote the optimnal solution for the problem on the left. We can also conclude that

(74, Ba) £ (7, 3) by [22, Theorem 2.1|, which states that uniform convergence in probability of a convex
function over a compact set implies convergence of the optimal minimizer. So, with probability approaching
1, (74, Ba) are strictly smaller than Cs, and the same solution is also optimal for Py(u). We can therefore
conclude

Py(p) 5 oMax,  min f(r,B) = max min f(m,B) =: P(p)

Therefore, by Theorem 3, for any fixed p € [—p*, 1*], we have the convergence

P —
Pi(u) 5 Pu).
In the special case p = 0, we can further simplify the Moreau envelope term to obtain

P(0) —maxmln%—&—Tﬂ(l—m)—T + )\E[m]

>0 B>0
2Note we could not have directly applied this to the feasible sets of P2(u), since R may have a dependence on d.

(21)
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Step 2: Convergence of the optimal solution We next need to extend this result to the desired
Wasserstein-2 convergence result (8). Recall here that u(*+1) is the solution of P;(0).

First, let h: R> — R be any bounded, Lipschitz function, and let A*) be a sequence of bounded, twice-
differentiable functions that converge uniformly to h as k — oo (e.g., the convolution of & with a sequence
of mollifiers). Let Pl(k)(u), P®) (1) be the optimal cost of P and P when using test function 2(*) and for

W € [—p*, p*]. Note the convergence Pl(k) (1) 5 p) () for any p in a sufficiently small neighborhood around
zero holds by Step 1.
By the uniform convergence of the h(*) to h,
lim P () = Pi(n)

k—o0

lim P® (1) = P(p).

k—o0

Now, fix § > 0 and choose k large enough that | P\ (1) — Py (n)| < ¢ and |[P® (u) — P(p)| < $. Then,

P{|Pi(n) — P(w)] > 6} < P{IP () = PO () > 5/3} — 0

since Pl(k) £ Pg(k) for all k. Hence, we can also apply the result of Step 1 to any bounded Lipschitz function
h.
Since the convergence result of Step 1 holds for any u in a neighborhood around zero, we can conclude

that
d

1 (t+1) o P dP(u)
E;h(m U, 07) — an

)

pn=0
where the derivative is well-defined since P has a unique solution in a neighborhood around zero. The
proof of this fact is identical to that of Lemma 7 of [5], so we omit it here. Moreover, using the Dominated
Convergence Theorem to differentiate inside the expectation, we can compute this exactly:
dp e — G 3 FV(0 - BG
(M) :Eh(pI‘OX)\()2< ﬁ \/E, AB ),M@) :Eh(w"/}G))’
pn=0

dp

14 27V?2 FV2 4+ B

where (3,7) are found in the optimal solution to P(0).
Hence, for all bounded, Lipschitz h, we have

d . .
1 —
,Zh(ugtﬂ)w“g;)ﬂﬂgh 7-1/(9—@’?\/%)7‘/7@ ’
d V2 + A

so the empirical distribution of the triple (u; (t+1)

variable (%, V,0), where G ~ N(0,1) and (V,©) ~ II;. By choosing h(u,v, ) = u?, we also know
that second moments of the empirical distribution converge in probability. Hence, the convergence can be

strengthened from weak convergence to convergence in W, distance (see, e.g. [33, Theorem 6.9]).

, 0, 0F) converges weakly to the distribution of the random

Step 3: Verifying the inductive hypothesis Lastly, we need to show that

d
1
120 (0,05 % Law($(Qis1, V), ©) = Ty

Here, weak convergence follows from the result of Step 2 since 1 is a continuous map. To show convergence
of second moments, we need to show

d d
1 1
pl E o2 = pl E , (W™, )2 5 E[(Quer, V).
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For ¢ that satisfy Assumption 2, this convergence is immediate from the result of Step 2 (since W, convergence
implies convergence in expectation of bounded continuous and PL(2) functions). Therefore, the initial inductive
assumption made at the beginning of this proof holds at time ¢ + 1, and we can apply the result inductively
to conclude Theorem 1. O

Proof of Theorem 2. The proof is an extension of the proof of Theorem 1 to the case where the test function i
acts on blocks rather than individual entries. Much of the proof is identical, so we only sketch the argument and

highlight the major differences here. We begin with the inductive hypothesis that ﬁ Zf\il é (vz(t), 0;) We 11,
for a known distribution IT; over R® x R®. Recall here that M denotes the number of blocks/factors of size b

(so M = ¢).
Then, let h: (R*)®> — R be a test function with |[V2h|z < C and such that either h is bounded or
h(u;,v;,0;) = ||u;||3. We consider a similar perturbed optimization problem:
1 1 SN i
. 2 *
Pi(p) = 51;1& - Yy — ﬁX(u Ov) ) + E”u”2 + i ; h(u;,v;, 07). (22)

Again, we consider this for |u| < bC’ so that the optimization problem is % strongly convex in u. Noting
that the proof of Lemma 1 still holds in this grouped case, we can constrain P; (i) to be over compact sets
and apply the CGMT to obtain the auxiliary problem

2
Py(p) = q’ TA - —||A|2h"q - 23
() = min max —=q" e~ —llalog” A~ [ Alh"q ]} + @
u M
E : () g
+ M £ ]’L('LLZ, v, 70i ) (24)
The sequence of “scalarization” steps on Ps is identical to in Theorem 1, until we arrive at
d 7l lu© v — 67 21 1

Py(p) < - = -0

2 (1) oBax, Join  — o B + 5 + B —9 (uov )
oc<p<o+R (25)

M
Ao 2 : Y g*
-7 + EHU’HQ + M i=1 h(uivvz( )’01')'

Here, since the sum of the last two terms in the objective function is % strongly convex by our choice of u,
the proof of Lemma 2 holds without change and we can consider the unconstrained minimization over u. In
this case, the minimization is block-separable over each of the M factors of u, so it can be expressed as

M
1
53 min {5 s 0, — 0713 — 2 s @ 00— 0) 4 Alul + pbh(us, 1,6)

) ’LLiERb
1 M TE
=7 Z min {,B“i © v — 0713 — 2rV/rg] (w; © v; — 6) + Au3 + ubh(ui,vi,en}

u; ER?

1 *
= W ZQ(UZ" 01 agi)7
=1

where g; € R® denotes the ith block of g and ¢ := (R?)? — R is defined as a shorthand for the quantity inside
the summation.

Next, we consider the asymptotic behavior of Py(u). Here, the only term which is different than in
Theorem 1 is the term bM ZZ 19(v;,07,g;). By the same argument as in Lemma 3, we can write ¢ as the
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Moreau envelope of a convex function and show that
1 < p o1
m ; Q(via 0:3 g’L) —E gQ(Va @7 G)a

where the expectation is over (V,0) ~ II; and G ~ N (0, I,). After the same uniform convergence argument
as in the proof of Theorem 1, we can conclude that for all u € [—pu*, p*], P1(p) K P(p), where

= To?

P(u) = max %“218 5 +78—-1*+E %q(V, 0,G).
In particular, when p = 0, the minimization implicit in the definition of ¢ can be solved exactly; this yields
exactly the optimization problem in 7. Step 2 of the proof (convergence of test functions of the optimal
minimizer) is identical to that of Theorem 1, and for the final step (showing the inductive hypothesis holds
at the next iteration), we need to argue that the second moment of v(*+1) = w(ugtﬂ), v;) converges to its
expectation under II;q:

M

1 P

37 2l o)l 5 Bl (@i, VI3
i=1

If 4 is bounded and continuous or has PL(2) coordinate projections (as we have assumed), then the above
convergence holds based on the Wasserstein-2 convergence of the joint distribution of (u(t“), v).

O
B Technical lemmas
Proposition 1. The function g(u,v,0) = |uv — 0| is pseudo-Lipschitz of order 2.
Proof. The result follows from the following series of inequalities:
[luv — 0] — |u'v" — 0'|| < Juv — 0 — (u'v" — ")
< Juv —u'V' |+ 10 — 0|
< Jullv = [+ ['|lu — | + |0 — ¢
< (Jul + [0+ D(ju — /| + [v =[]0 — 6'])
< (T2l + '] le — 2]y
<31+ 22 + lz']2) |z — ]2,
where x, ' € R? denote (u,v,0) and (u',v’,0"), respectively. O

Lemma 1. Let A* q* be the optimal solution to (10). Then, there exists universal constant C1 > 0 such that

lim P{[|A"[|z < Cifjv]jec} = lim P{flg"[l2 < Ci|v]loc} = 1.
d—oo d— o0

Proof. We proceed via a similar argument to Lemma 2 in [5]. First, consider the original expression for Pj(u)
from (9) :

Pi(p) = Inin F(u) + R(u),

where F(u) = 1

2
Y- ﬁX(u@v)H2 and R(u) := %Hqu + %Z?Zl h(ui,vl(t)ﬁ;"). Recall here that R is

%—strongly convex for all u € [—p*, 1*], and denote the unique optimal minimizer to this problem as w*.
Then, the following chain of inequalities holds, by the optimality of u* and the non-negativity of F.

%Ilyllg + R(0) = F(0) + R(0) > F(u") + R(u") > R(u”).

19



Moreover, by the strong convexity of R, we have

A
R(u*) > R(0) + VR(0) "u* + ﬁ||u*||§.

Combining the above two series of inequalities, we obtain (recall k = %)

N 2d . _ 2K
3+ S VRO) < =yl

A
After completing the square, this yields

2

L d 2K d?
|+ 5vr0)| < Sl + GIVROE

2

whence, by the triangle inequality,

d 2K d?
Y IVEO)]2 + \/y||§ +3:IVE(0) 5

|
*IIVR ||2+\/ “llyll.

|
Here, standard concentration inequalities for Gaussian random variables (e.g., [32, Theorem 5.2.2, Corollary
7.3. 3]) imply that, with probability approaching 1, || X ||z < v/d and |€]l2 < \f And Assumptlon 1 implies
that [|6*||2 < v/d with probability tending to 1. So

I A

[[u"]2

I /\

lylls < =1 X1167 12 + [lell> < vV
Vd

with probability approaching 1. Next, we bound ||[VR(0)||2. Recalling the definition of R,

2 d
1 1 0
= —= - —h U, V;, 9:
u—O) \/a d i—1 (5‘u ( )

is Lipschitz (by the fact that h has bounded second derivatives),
u=0
g? is pseudo-Lipschitz of order 2. So, the quantity under the square root converges in probability to
Ew,e)~, g> by Assumption 1, and, with probability tending to 1, we have |[VR(0)|, < 1/V/d.
Combining the above bounds on ||y||2 and |[VR(0)]||2, we can conclude that ||u*||» < v/d. The first part
of the lemma follows by noting that

d

_K 9 i, v, 07
VRO =[5 5ne .6

i=1

Since the function g(v, ) = 2 h(u,v,)

[A™]]2 = TOv—07p < "ol + =672

2 1
Vi Vd
< jolloltls + —=|
=g e Tl

S [l

— I
Vd
607[|2

where the last inequality holds with probability approaching 1. Lastly, the optimal q for any A has closed-form

q= \}e — TX A. By the triangle inequality, we then obtain

ellz + —=IXIA"2 S [[v]]oo;

la*ll2 < —=lells + |
q |2 > \f NG
with the last inequality holding with probability approaching 1, by the concentration of norms of € and X as
discussed above, and the bound on ||A*|2. O

20



Lemma 2. Consider the following unconstrained minimization problem over u € R%:

27| h 1 2
o e, T'f"z%zullu@v—eﬂ@—T T(wov- 6

d
A
2 2 1% *
-7 +8Hu||2+gzh’(uza i 79)

With probability approaching 1, the solution u* satisfies H%(u* Ov—0%| <|v]oo-
2

Proof. First note H ﬁ(u* Ov—60%)

with probability approaching 1 by the assumed W5 convergence of 8* to a fixed limit. Hence, it suffices to

show that ||u* |2 < v/d with high probability. We begin by noting that the inner maximization over 7 admits

a closed form solution, so the problem becomes

, S Tl llzllvllsc + = [16%]|2, and —=[|6%||2 is bounded by a constant

. ”“’HQ 2 1 2
k12 Z — 9% =
rreund<2\/ﬁ o+ —|lucv I3

Now, we can proceed similarly to in the proof of Lemma 1. Let

gT(uGJv—@*)) *IIUIIQ Nzh (us, 0", 67)

+

1
2vnd

2

gT(u Ov— 0*)> )

+

[R]]2 1 2 1
F(u) = o2+ fluev—0*; - ——
(w) (m - ;- —=
A 1 d
2
R(u) ::EHuHQ—i_EZ ui,vi, 0

Then, noting F' is always non-negative and R is % strongly-convex, we use the same argument as in Lemma 1
to obtain the inequality

* (|12
ot + %

SF0).

After completing the squares, we obtain

2

2d d?
< TF0) + SIVRO)

Hu* + %VR(O)

2

so we can conclude

L d 2d a2 2d
ol < D9 RO + /2P 0) + S IvRO)E < 2 VRO 2 FO)

As shown in Lemma 1, |[VR(0)|]2 < 7 with probability approaching 1. It remains to show that \/F(0) <1
with probability approaching 1. To see this, observe that

F(0) = (”"'2 >4 L)

I+
R
2v/n 2 2\/ndg >+

[P 5, 1 2 1 T
=l2vn a1l = 558
[[Pl2 1 2 1
< 24 Z)6*||2 + —— 0"
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where the last line uses the triangle and Cauchy-Schwarz inequalities. By concentration of the norm for
Gaussian vectors, there exists a universal constant ¢ such that % < ¢ and % < ¢ with probability

approaching 1. Moreover, by Assumption 1, Le” 1l H2 < ¢ with probability approaching 1. Hence, +/F(0) < 1

with probability approaching 1. Substituting thls into the bound for ||u*||2 from above completes the
proof. O

Lemma 3. Under Assumption 1, the function fq(7,3) (Eq. 19) converges pointwise in probability to f(r, )
(Eq. 20) as d — co.

Proof. We consider the limit of each term in f; separately. The limit of the term
noting that £ — 1 in probability by Gaussian Lipschitz concentration.
The first summation term simplifies as follows:

d *2 d
;2[759 72 o - 61)7] = ;Z[ Bl g2r — 29 /RE0;)
T

d
:_Eé 62k — 2Bgi/rE0;] 5 —r B,

where the last line follows from the weak law of large numbers since the g; are i.i.d. standard Gaussian
variables.

For the last term, after again using the fact that & LS 1, we need to consider

d
07 — Bgivk . ﬁ 1
le A()2+ph(-, “%0;)( z O EZ vi, 07, 9:)

To show convergence in probability of this term, first fix § > 0. Then, we want to show

d
1
gz v, 07,9:) —Eq(V,0,G) >(51—>0
where the expectation is over (V,0) ~ II; and G ~ N (0, 1). It suffices to show the following two statements:
d d
1 1 0
[ EZ v;, 0 791 gZ v;, 0 791 2‘| — 0, (26)
1 5
gz vi,07,9:) —~Eq(V,0,G)| > 5| = 0. (27)

To show (26), we rely on a concentration inequality for the Moreau envelope of a Gaussian vector plus a
bounded vector from [5]. First note that

d
1
EZ q(vi, 67, g:) —mm{AllullﬁuZhuuvu Hu®v—9*+ﬁngg}

=1
2}

+9

1 uOv 9*
= = HllIl ||| + h(ui, i, 07) + TOR| ——=

+,uz (Bﬁ Y l,9f) + 76k||0

2 i=1

*

NG

\ BVFO |°
v

)



2
where the second to last line follows from the change of variable 8 = ’ﬂ‘—%, and £(6) = /\H'Bvﬂ ) +

,uzgzl (5 V/0; , Vi, 9’-*). Here, for fixed v, ¢ is a proper convex function of 8. Moreover, by Assumption 1,

Vg

;—\;E has norm of order v/d with high probability. Hence, by [5, Lemma 8], this quantity concentrates around
its expectation (with respect to g), and we can conclude that there is some ¢ > 0 such that

d d
1 1 2102 ,.2
el |13 o500 B 3 a0 > ] < T

5 152 — 0.
To show (27), note that

d
éz q(vi, 07, 9i) = ZEcqu,@,G)

i=1
Observe that this quantity is an expectation with respect to the joint empirical distribution of (v, 8*). By
the assumption of Wy convergence of the empirical distribution of (v,0*) (Assumption 1), if we can show

that mapping (v,0) — Eg q(v, 0, G) is bounded, then we can conclude that the above quantity converges in
probability to E ¢(V, 0, G), with (V,0) ~ II;. To see this, recall that for all G € R, ¢ is bounded below as

q(v,0,G) > min Mu? + ph(u,v,6),

which is always bounded below since h is bounded (or, in the case h = u?, the lower bound is zero). Next, for
a given GG, we can bound ¢ above as

(0,0, G) < uh(0,0,6) + 56~ SV/RG)*
Hence,
Ec q(v,0,G) < ph(0,v,0) + %92 t 18k < C
for some universal constant C' > 0, since 6 is bounded by assumption and h(0, v, 8) is either bounded above
or equal to 0 (in the case where h = u?). Combining (26) and (27) yields the desired result. O

C Solving the min-max problem

Below, we show that the max-min problems (5) and (7) have easily computable solutions. Note it suffices
to consider the grouped case (7), since we can apply it with b = 1 to recover the ungrouped case. The
following derivation closely follows the analysis of the scalar max-min problem in [8], who study a similar
scalar problem (albeit in the case of A = 0, which we do not consider).

First recall that, as shown in the proof of Theorem 1, there exists a unique saddle point, due to the strong
convexity in 7 and strict convexity in 5. Now, taking derivatives with respect to 7 and 3, we obtain the
following saddle point conditions:

2 1 02+ 3% ]

0=—+6(1—-kK)—2r+BNE|- (28)
B b; V2+6/\
T0? 1< 1 a1 b 07 + Bk

0= +7(1—r) +TAE Zm —T)\IEB;(TV;TAP : (29)

b 024 5%k

im1 m} and then equating the two, we

Solving each of these equations for the quantity 32\2E [% >

arrive at
b

278 — B*(1 — k) —0? = B%(1 — k) — 0 + 2\B3kE

1 1
E;Tvium ’
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which implies
b

T=p(1—k)+ A\FKE

1 1
gzer—i—ﬁ)\ '

i=1

Defining the auxiliary variable v = 7/, this yields the fixed point equation

b

1 1
5;7‘/124—)\

vy=1—k+IE . (30)

Substituting this v back into the first optimality condition in (28), we can express the optimal S in closed-form,
in terms of ~:

b 0?2
ﬁ_ U2+)\2E|:% Zi:l (’Y‘/;:Z+>‘)2i|
= 5 .
2’)/ + KR — ]. - )\2/€E|:% Zi:l (,Y‘/i21+)\)2i|

Finally, the optimal 7 can be found simply as 7 = 8.

This yields a simple recipe for solving the min-max problem. First, compute the positive solution 4 to the
fixed point equation (30) (this can be found easily using standard numerical solvers). Then, (3,7) are both
given in closed-form as functions of 4 (where the required expectations can all be approximated via Monte
Carlo simulation).

D Further simulations

In this section, we demonstrate that our asymptotic predictions can provide accurate estimates of the test
error, even when some of our technical assumptions are not satisfied.

First, we compare the two “heavier” weightings considered in Section 3.1, ¢(u,v) = tanh |uv| and
(u,v) = tanhu?, to the same weightings without the bounded tanh activation: (u,v) = |uv| and
(u,v) = u?. We note that the reweighting choice |uv| is considered in [21, 28] as a limit as p — 0 of the
classical IRLS update for £, minimization. In Figure 3a, we consider the same sparse regression as in Section

3.1, i.e., with n = 250,d = 2000,0 = 0.1,Gjl'l&fi'Bernoulli(0.0l) and A\ chosen to minimize the predicted
asymptotic loss.

For each choice of 1, we apply the theoretical predictions of Theorem 1, even if ¢ violates Assumption 2.
We find that our predictions remain accurate for all these choices of 1. The choice tanh |uv| performs almost
identically without the tanh activation. Interestingly, the choice b = tanh u? outperforms the variant without
the tanh and has a more regular decay of the test loss.

In Figure 3b, we apply Theorem 1 to predict the asymptotic squared test loss: L[lu ® v — 6*||3 at each
iteration. While this function is not PL(2), as required by the theorem, the asymptotic predictions still align
well with simulations. Extending our technical results to hold formally in such scenarios is an interesting
direction for future work.
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¢, Test Error
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Figure 3: Here, we fix n = 250,d = 2000,0 = 0.1,6; l’l&d'Bernoulli(O.Ol) and select A to minimize the
predicted asymptotic loss. Plus marks denote the median over 100 trials, and the shaded region indicates
the interquartile range. Left: Predictions and simulations for weighting functions which are not uniformly
bounded. Right: Predictions and simulations for the squared error %|lu ® v — 0*|]3
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