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ABSTRACT. We prove that, under the continuum hypothesis c = ℵ1, any ul-
traproduct II1 factor M = ∏

ω
Mn of separable finite factors Mn contains more

than c many mutually disjoint singular MASAs, in other words the singular
abelian rank of M, r(M), is larger than c. Moreover, if the strong continuum
hypothesis 2c = ℵ2 is assumed, then r(M) = 2c. More generally, these results
hold true for any II1 factor M with unitary group of cardinality c that satisfies
the bicommutant condition (A′0 ∩ M)′ ∩ M = M, for all A0 ⊂ M separable
abelian.
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INTRODUCTION

Following Dixmier [3], a maximal abelian ∗-subalgebra (MASA) A in a
von Neumann algebra M is called singular if the only unitary elements u ∈ U (M)
that normalize A (i.e., uAu∗ = A) are the unitaries in A. The existence of such
MASAs in the hyperfinite II1 factor R in [3] was a discovery that led to many in-
teresting developments and subsequent research (see e.g., [8], [10], [11], [14], [18],
[19]).

Most recently in this direction, the singular abelian core of a II1 factor M
was defined in [2] as the (unique up to unitary conjugacy) maximal abelian ∗-
subalgebra A ⊂ M = M⊗B(`2K), with |K| > 2|U (M)|, that is generated by finite
projections of M, is singular in 1AM1A and is maximal in M with respect to
inclusion. Also, the singular abelian rank of M was defined as r(M) := TrM(1A),
viewed as a cardinality when infinite. Alternatively, r(M) can be viewed as the
“maximal number” of disjoint singular MASAs (or pieces of it) in M. The sans-
core and respectively, sans-rank rns(M) were defined in [2] in a similar way, by
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considering the maximal singular abelian purely non-separable core A ⊂ M =
M⊗B(`2K) and respectively the semi-finite trace of its support inM.

It was pointed out in [2] that by results in [12], [15], for any separable II1
factor M one has r(M) = c and that if M is an ultraproduct II1 factor, M = ∏

ω
Mn,

associated to a sequence Mn of separable II1 factors and a free ultrafilter ω on N,
then by simply considering ultraproducts of singular MASAs of Mn one obtains
r(M) = rns(M) > c. But a more exact calculation of the singular abelian rank of
such M was left open.

We prove in this paper that if we assume the continuum hypothesis (CH),
c = 2ℵ0 = ℵ1, then for any II1 factor of the form M = ∏

ω
Mn, with Mn separable

tracial factors with dim(Mn) → ∞, one has r(M) = rns(M) > 2c, and that if
we further assume the strong continuum hypothesis (SCH), 2c = ℵ2, then we
actually have equalities, r(M) = rns(M) = 2c (see Theorem 2.1). Note that in
particular this shows that, under CH, an ultraproduct II1 factor has many more
singular MASAs than the ones arising as ultraproducts of MASAs.

To do this calculation, we in fact only use the property of an ultraproduct
II1 factor M = ∏

ω
Mn that any copy A0 ⊂ M of the separable diffuse abelian

von Neumann algebra L∞[0, 1] satisfies the bicommutant condition (A′0 ∩M)′ ∩
M = A0. When viewed as an abstract property of a II1 factor M, we call this
property U0.

We prove that, somewhat surprisingly, a II1 factor M has property U0 if and
only if it has property U1, requiring that any isomorphism between two copies of
L∞[0, 1] inside M is implemented by a unitary in M (see Theorem 1.2), and call a
II1 factor satisfying any of these equivalent properties a U-factor.

We also relate properties U0, U1 with the weaker property that any two
copies of L∞[0, 1] inside M are unitary conjugate, already considered in [12], [16],
and which we label here U2. This property for M implies for instance that M is
prime and has no Cartan subalgebras and that any MASA in M is purely non-
separable (see Proposition 1.4). Thus, for such factors one always has rns(M) =
r(M).

So with this terminology, our main result (Theorem 2.1) shows that if M is a
U-factor with unitary group U (M) having cardinality |U (M)| = c, then with the
CH assumption we have r(M) > 2c, with equality when SCH is assumed.

We mention that Gao, Kunnawalkam Elayavalli, Patchell and Tan have re-
cently been able to construct (under CH) examples of II1 U-factors M with |U (M)|
equal to c but which cannot be decomposed as an ultraproduct of separable finite
factors [7].

Throughout this paper we will systematically use notations, terminology
and basic results from [13] (for all things concerning ultraproduct II1 factors) and
[14] (for intertwining of subalgebras and disjointness in II1 factors, in particular
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for MASAs, especially singular ones). Our work here has been especially mo-
tivated by remarks and considerations in [2], notably Sections 2.3, 2.4 and the
remarks therein. We comment at length about this in Section 3 of this paper.

We are very grateful to Adrian Ioana and Stefaan Vaes for many useful com-
ments on a preliminary draft of this paper.

1. SOME ABSTRACT PROPERTIES OF ULTRAPRODUCT II1 FACTORS

While any separable approximately finite dimensional (AFD) tracial
von Neumann algebra (B0, τ) can be embedded into any II1 factor M [9], when
M is an ultraproduct II1 factor, M = ∏

ω
Mn, such an embedding (B0, τ) ↪→ M

follows even unique up to unitary conjugacy in M. Also, any separable AFD sub-
algebra B0 ⊂ M satisfies the bicommutant condition (B′0 ∩M)′ ∩M = B0 (see e.g.
Theorem 2.1 in [13]).

In particular, the uniqueness of the embedding and the bicommutant prop-
erty hold true when (B0, τ) is the separable diffuse abelian von Neumann algebra
(L∞[0, 1],

∫
· dλ). In this section we will consider these two properties as abstract

properties of a II1 factor M and prove that they are in fact equivalent. We also
discuss the apriori weaker condition that any two copies of L∞[0, 1] inside M are
unitary conjugate.

DEFINITION 1.1. Given a II1 factor M, we consider the following three prop-
erties:

(U0) any separable abelian von Neumann subalgebra A0 ⊂ M satisfies the bi-
commutant property (A′0 ∩M)′ ∩M = A0;

(U1) any trace preserving isomorphism between two separable diffuse abelian
von Neumann subalgebras of M is implemented by a unitary element in M;

(U2) any two separable diffuse abelian von Neumann subalgebras of M are uni-
tary conjugate;

For each i = 0, 1, 2, we say that M has stable property Ui, if Mt satisfies Ui for
any t > 0.

THEOREM 1.2. Conditions U0, U1 for a II1 factor M are equivalent and they are
both stable properties, i.e, if M satisfies property Ui, for some i = 0, 1, then Mt satisfies
it for any t > 0.

Proof. Let us first show that U1 is stable. So assume M satisfies U1. We first
show that N = Mn(M) satisfies U1 as well. Let A1, A2 ⊂ N be separable diffuse
abelian von Neumann algebras and θ : A1 ' A2 an isomorphism preserving the
trace on N. Then A1 contains a partition of 1 with projections {p1

j }n
j=1 of trace

equal 1/n. Let p2
j = θ(p1

j ). By conjugating with appropriate unitaries u1, u2 ∈ N
we may assume pi

j = ejj, 1 6 j 6 n, i = 1, 2, where {eij : 1 6 i, j 6 n} ⊂ Mn(C),
are the matrix units. Denoting by θj the restriction of θ to A1ejj ' A2ejj and



338 PATRICK HIATT AND SORIN POPA

viewing them both as subalgebras in M ' ejjNejj, by the U1 property for M
it follows that θj is implemented by uj ∈ ejjNejj. But then u = ∑

j
uj ∈ U (N)

implements θ : A1 ' A2.
We now show that if p ∈ P(M) then pMp satisfies U1. If A1, A2 ⊂ pMp

are separable diffuse abelian von Neumann algebras and θ : A1 ' A2 an isomor-
phism preserving the trace on pMp, then there exist separable diffuse abelian
von Neumann subalgebras Ãi ⊂ M such that p ∈ Ãi, and Ãi p = Ai, i = 1, 2, as
well as a trace preserving isomorphism θ̃ : Ã1 ' Ã2 whose restriction to A1 is
equal to θ. If u ∈ U (M) implements θ̃, then up ∈ U (pMp) implements θ. Thus,
U1 is stable.

Let us now prove that conditions U0, U1 are equivalent. Let A0 ⊂ M be a
separable diffuse abelian von Neumann algebra. Denote B = A′0 ∩ M and Z =
B′ ∩M. Note that Z = Z(B). Indeed, because any element in M that commutes
with all elements in B = A′0 ∩ M must in particular commute with A0, so B′ ∩
M ⊂ B, which is equivalent to B′ ∩M = Z(B).

Assume M satisfies U1. If Z 6= A0, then there exists a projection p ∈ Z
with b = EA0(p) 6= p. There exists a projection q ∈ A0 majorized by the support
s = s(b) of b such that cq 6 qb 6 (1− c)q for some c > 0. Thus, by replacing
p by qp we may assume p itself satisfies cs 6 b = EA0(p) 6 (1− c)s. Denote
B0 = A0s ∨ {p} ⊂ Zs. Note that the inclusion L∞X ' A0s ⊂ B0 ' L∞Y is
given by a surjective measure preserving map α : Y → X with two-points fiber
∀t ∈ X. Consider then the trace preserving embedding of (B0, τB0) into a tracial
von Neumann algebra Q ' A0s⊗R, endowed with the trace τA0s ⊗ τR, such that
A0s identifies with the center Z(Q) = A0s ⊗ 1 ' L∞X and such that when we
view p as a measurable field pt, t ∈ X, with pt ∈ P(R), we have τR(pt) = bt,
where (bt)t = b.

Since Q with its trace can be embedded into any II1 factor, we can view it as
a von Neumann subalgebra of sMs and then by using U1 for A0s ⊂ sMs we may
assume the center of Q coincides with A0s and B0 with A0s ∨ {p}. So 1⊗ R is in
the commutant of A0s, and hence of A0. Since p ∈ Z, we should thus have 1⊗ R
commute with p. But by averaging p over the unitaries in 1⊗ R we get b, which
is not equal to p, a contradiction.

Thus, we must have (A′0 ∩M)′ ∩M = A0, showing that U0 is satisfied.
Conversely, assume M satisfies the bicommutant condition U0. Let A1, A2 ⊂

M1/2 be separable diffuse abelian and θ : A1 ' A2 be an isomorphism preserving
the restrictions of the trace on M1/2 to A1, A2. Let A = {ae11 + θ(a)e22 : a ∈ A1}
which we view as a (separable abelian diffuse) von Neumann subalgebra of M =
M2(M1/2). Then (A′ ∩ M)′ ∩ M = A implies in particular that the projections
e11, e22 ∈ A′ ∩ M are equivalent in A′ ∩ M, via some partial isometry v = ue12
where u is a unitary in e11Me11 = M1/2. But this means θ(a) = uau∗ for any
a ∈ A1.
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We have thus proved that if M satisfies U0 then M1/2 satisfies U1. Since we
already showed that U1 is a stable property, this implies M satisfies U1. Thus,
U0, U1 are equivalent, and since U1 was shown to be stable, U0 follows stable as
well.

DEFINITION 1.3. We say that a II1 factor M is a U-factor if it satisfies the
equivalent conditions U0, U1.

We already mentioned that ultraproduct II1 factors M = ∏
ω

Mn satisfy the

bicommutant property U0 and the unique (up to unitary conjugacy) embedding
property U1. They are the typical examples of U-factors.

Since property U1 for a II1 factor M trivially implies the unitary conjugacy of
any two copies of L∞[0, 1] inside M, i.e., condition U2, any U-factor satisfies U2 as
well. Condition U2 was already considered as an abstract property of II1 factors
in Proposition 2.3 of [12], where it was noticed that the arguments in Section 7 of
[10], showing that an ultraproduct II1 factor M has no Cartan subalgebras and all
its MASAs are purely non-separable, only use the fact that M satisfies condition
U2. It was further noticed in [16] that U2 factors are prime and have the property
that the commutant of any separable abelian ∗-subalgebra is of type II1.

We restate all these results here, including their proofs from [10], [12], [16],
for the reader’s convenience.

PROPOSITION 1.4 ([10], [12], [16]). Assume a II1 factor M satisfies property U2
(for instance, if M is a U-factor). Then M automatically satisfies the following properties:

(i) for any MASA A in M, there exists a diffuse abelian von Neumann subalgebra
B0 ⊂ M orthogonal to A;

(ii) any separable abelian von Neumann subalgebra A0 ⊂ M has type II1 relative
commutant A′0 ∩M;

(iii) any MASA in M is purely non-separable;
(iv) M has no Cartan MASA;
(v) M is prime.

Proof. (i) Let A ⊂ M be a MASA. Let D ⊂ A be a separable diffuse
von Neumann subalgebra. Since any two separable diffuse abelian subalgebras
in M are unitary conjugate and since M contains copies of the hyperfinite II1
factor (by [9]), we may assume D is the Cartan subalgebra of such a subfactor
R ⊂ M, represented as D = D⊗∞

2 ⊂ M2×2(C)⊗∞ = R. Let D0
2 ⊂ M2×2(C) be a

maximal abelian subalgebra of M2×2(C) that is perpendicular to D2 and denote
D0 = D0

2
⊗∞ ⊂ R. Then D ⊥ D0 and since both D, D0 are MASAs in R, we have

ED′∩M(D0) = ED′∩R(D0) = ED(D0) = C, i.e. D0 ⊥ D′ ∩M ⊃ A, proving (i).
(ii) By [9], one has R⊗R ' R and so R⊗R embedds into M. If one takes any

MASA B0 ⊂ R⊗ 1 ⊂ R⊗R ' R, then B′0 ∩M ⊃ 1⊗ R, implying that B′0 ∩M is
type II1. Since A0, B0 are unitary conjugate in M, A′0 ∩M is II1 as well.
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(iii) Let A be a MASA in M. If Ap is separable for some projection p ∈ M,
then by taking a smaller p if necessary we may assume τ(p) = 1/n for some
integer n > 1. Let v1 = p, v2, . . . , vn ∈ M be partial isometries with v∗i vi = p,
∀1 6 i 6 n, and ∑

i
viv∗i = 1 and define B = ∑

i
vi(Ap)v∗i . Then B is a separable

MASA in M. But then taking B0 ⊂ B to be any diffuse proper von Neumann
subalgebra of B, it cannot be unitary conjugate to B because B0 is not a MASA
while B is, contradiction.

(iv) Let A ⊂ M be a MASA. By part (i), there exist separable diffuse abelian
subalgebras D, D0 in M such that D ⊂ A and D0 ⊥ A. Let u ∈ U (M) be so that
uDu∗ = D0. Then u is perpendicular to the normalizer of A in M. Indeed, for
any v ∈ NM(A) and any partition pi ∈ D of mesh 6 ε, we have

|τ(uv)|2 =
∣∣∣τ(∑

i
piuvpi

)∣∣∣2 6
∥∥∥∑

i
piuvpi

∥∥∥2

2
= ∑

i
τ(u∗piuvpiv∗) = ∑

i
τ(pi)

2 6 ε.

Since ε > 0 was arbitrary, τ(uv) = 0. Thus u ⊥ NM(A)′′.
(v) If M = M1⊗M2 with M1, M2 of type II1 then there exist separable diffuse

abelian von Neumann subalgebras Ai ⊂ Mi. By hypothesis, there exists a unitary
u ∈ M such that uA1u∗ = A2 ⊥ A1. From the argument in (iv), it follows that
for any unitaries v1 ∈ M1, v2 ∈ M2 one has τ(uv1v2) = τ(v2uv1) = 0. Taking
span of vi and using that the ‖ · ‖2 closure of the span of 1⊗M2 ·M1 ⊗ 1 is M, it
follows that τ(uu∗) = 0, contradiction.

COROLLARY 1.5. If a II1 factor M satisfies property U2 (e.g., if M is a U-factor),
then rns(M) = r(M).

Proof. By part (iii) of Proposition 1.4, any MASA in a U2-factor is purely
non-separable.

Let us also mention that it was shown in [12, 2.3.1◦ (c)] that the Kadison–
Singer paving problem over a MASA in a factor satisfying the stable U2 property
reduces to paving of projections having scalar expectation on the MASA. (Note
that by Theorem 3.3 in [17], in order for a MASA A in a II1 factor M to have the
paving property, it is necessary that A be purely non-separable.) Whether U2 is
a stable property was however left open in [12], but upon reading a preliminary
draft of our paper Adrian Ioana pointed out to us that an argument in the same
vein as the proof of Theorem 1.2 easily implies U2 stability as well. We thank him
for sharing this with us.

PROPOSITION 1.6. Condition U2 is a stable property.

Proof. Assume the II1 factor M satisfies U2. Since this trivially implies that
Mn(M) satisfies U2, ∀n, to prove the stability it is sufficient to show that pMp
satisfies U2 for any projection p ∈ M. Let A1, A2 ⊂ pMp be separable diffuse
abelian von Neumann algebras. Let R ⊂ M be a copy of the hyperfinite II1 factor
with D ⊂ R its Cartan subalgebra and so that p ∈ D. Let also Ãi ⊂ M, i =
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1, 2, be separable diffuse abelian von Neumann algebras containing p and such
that Ãi p = Ai. By the U2 property of M, there exist unitaries ui ∈ M such
that ui Ãiu∗i = D. Since D ⊂ R is Cartan, there exist vi ∈ NR(D) such that
vi(ui pu∗i )v

∗
i = p, i = 1, 2. But this means wi = viui p are unitaries in pMp that

conjugate Ai onto Dp, i = 1, 2. Thus, A1, A2 are unitary conjugate as well.

COROLLARY 1.7. If a II1 factor M satisfies property U2 (e.g., if M is a U-factor),
then a MASA A ⊂ M has the paving property if and only if any projection q ∈ M with
EA(q) ∈ C1 can be paved.

Proof. By Proposition 1.6 above, property U2 is stable, so the statement fol-
lows from Proposition 2.3.1◦ (c) in [12].

REMARK 1.8. (i) While U1 trivially implies U2, we have no examples of a II1
factor satisfying U2 but not U1. Note in this respect that if M satisfies property U2
and A0, A1 ' L∞[0, 1] are von Neumann subalgebras of M then by conjugating
by a unitary in M we may assume A0 = A1 and then property U1 amounts to
whether any automorphism of (A0, τ) is implemented by a unitary in M. Thus,
the following two additional properties of a II1 factor M are relevant:

(U3) given any separable diffuse abelian von Neumann subalgebra A0 ⊂ M,
any automorphism of (A0, τ) is implemented by a unitary in M;

(U′3) there exists a separable diffuse abelian von Neumann subalgebra A0 ⊂ M
such that any automorphism of (A0, τ) is implemented by a unitary in M.

Thus, we see that U1 ⇒ U3 ⇒ U′3, U1 ⇔ (U2 + U′3) ⇔ (U2 + U3), and that
both U3, U′3 are stable properties (proof being similar to the proof of the stability
of U1, U2). Thus, an example of a II1 factor M satisfying U2 but not U1 (so M not
a U-factor) should contain a copy of the non-atomic probability space ([0, 1], λ)
whose normalizer in M does not implement all of its automorphism group.

(ii) The equivalence between the bicommutant property U0 and the conjugacy
of embeddings U1 for B = L∞[0, 1] in Theorem 1.2 raises the possibility that a cor-
relation between these two properties may occur for other tracial von Neumann
algebras (B, τ). If one takes B to be the hyperfinite II1 factor, B = R, then it is easy
to see that both U0 and U1 are stable and that the proof of U1 ⇒ U0 goes exactly
the same way as in the case B = L∞[0, 1] in Theorem 1.2. It would be interesting
to see if one has U0 ⇒ U1 as well.

2. CONSTRUCTING DISJOINT SINGULAR MASAS IN U-FACTORS

We show in this section that, under the continuum hypothesis, the size of
the singular abelian core of any U-factor is quite “large” and can be estimated.

We briefly recall (see e.g., [11]) that if M is a II1 factor and A ⊂ M is a
MASA, then A is singular in M if and only if any partial isometry v ∈ M sat-
isfying v∗v, vv∗ ∈ A, vAv∗ ⊂ A must be contained in A. Also, using notations
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from intertwining theory (see e.g., 1.5 in [13], for 1.3 in [14]) given two MASAs
A1, A2 ⊂ M one has A1 ≺M A2 if and only if there exists a non-zero partial
isometry v ∈ M such that v∗v ∈ A1, vv∗ ∈ A2 and vA1v∗ ⊂ A2 (note this is sym-
metric, i.e. A1 ≺M A2 if and only if A2 ≺M A1). If there exists no such v we write
A1 6≺M A2 (equivalently A2 6≺M A1) and say that A1, A2 are disjoint.

THEOREM 2.1. Let M be a II1 U-factor M with the property that the cardinality of
its unitary group U (M) is equal to c. If the continuum hypothesis, c = ℵ1, is assumed,
then M contains more than c many mutually disjoint singular MASAs, i.e., r(M) > c.
Moreover, if the strong continuum hypothesis 2c = ℵ2 is assumed, then r(M) = 2c.

Proof. Denote by (I,<) the set of ordinals < ℵ1 = c endowed with its well
ordered relation. Since |U (M)| = c, it follows that |P(M)| = c, and thus the
cardinality of the set V = V(M) = {up : u ∈ U (M), p ∈ P(M)} of partial
isometries of M is equal to c as well. Let {vi}i∈I be an enumeration with repetition
of V , where each v ∈ V appears c-many times.

Let A be a maximal family of disjoint singular abelian wo-closed subalge-
bras A ⊂ 1A M1A (which apriori may be an empty set). Assume |A| 6 c = ℵ1. Let
{Ai}i∈I be a family of MASAs in M indexed by our set I, such that each A ∈ A
appears as a direct summand of some Ai.

Note that if we can show that under these assumptions there exists a sin-
gular MASA B ⊂ M such that B 6≺M Ai, ∀i ∈ I, then this would contradict the
fact that {Ai}i∈I contains all of A, which was chosen to be the maximal singular
core for M. This contradiction would show that one necessarily have |A| > c,
thus finishing the proof of the first part. If in addition we have 2c = ℵ2, since the
total number of distinct MASAs in a II1 factor M with |U (M)| = c is obviously
majorized by 2c, it would then also follow that r(M) = |A| = 2c.

We construct B as the wo-closure of the union of an increasing family {Bi}i∈I
of separable diffuse abelian von Neumann subalgebras of M, which we construct
by transfinite induction over i ∈ I, in the following way.

Assume that Bj have been constructed for all j < i. We want to construct Bi
so that vi is not intertwining Bi into B′i ∩M, nor Bi into Aj for j 6 i. To this end,
we proceed as follows:

(a) Denote B0
i =

⋃
j<i

Bj. Note that B0
i is separable abelian diffuse.

(b) If v∗i vi 6∈ B0
i then by U0 there exists a self-adjoint element a ∈ (B0

i )
′ ∩ M

such that [v∗i vi, a] 6= 0 and we let Bi = B0
i ∨ {a}. Note that Bi is then still separable

abelian and [v∗i vi, Bi] 6= 0.
(c) If v∗i vi ∈ B0

i then we let Ki = {j ∈ I, j 6 i : viB0
i v∗i 6⊂ Aj} and Li =

{j ∈ I, j 6 i : viB0
i v∗i ⊂ Aj}. Note that Ki, Li are disjoint, countable sets, with

Ki ∪ Li = {j ∈ I : j 6 i}. Denote pi = v∗i vi ∈ B0
i and notice that for each j ∈ Li

we have v∗i Ajvi ⊂ Q0
i

def
= (B0

i pi)
′ ∩ pi Mpi, with v∗i Ajvi a MASA in Q0

i . Thus, if
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we denote Si :=
⋃

j∈Li

v∗i Ajvi then the set Si ⊂ Q0
i is a countable union of abelian

von Neumann algebras (even MASAs) in the II1 von Neumann algebra Q0
i , so

Q0
i \ Si is a Gδ dense subset of Q0

i .

Note already that if a0 ∈ Q0
i \ Si is a self-adjoint element then any separable

abelian von Neumann algebra that contains the abelian algebra B1
i = B0

i ∨ {a0}
cannot be intertwined by the partial isometry vi into Aj for any j 6 i.

In order to choose Bi ⊃ B1
i so that to exclude vi from properly normalizing

any MASA B containing Bi, let us note that there are several possibilities:
(i) vi ∈ B1

i , in which case we just put Bi = B1
i .

(ii) viB1
i v∗i 6⊂ (B1

i )
′ ∩M, in which case we again let Bi = B1

i .
(iii) viB1

i v∗i ⊂ (B1
i )
′ ∩M but viB1

i v∗i 6⊂ B1
i . This means there exists a ∈ B1

i pi such
that viav∗i ∈ ((B1

i )
′ ∩M) \ B1

i , and by applying U0 there exists a1 = a∗1 ∈ (B1
i )
′ ∩M

such that [a1, viav∗i ] 6= 0. We then let Bi = B1
i ∨ {a1}.

(iv) viB1
i v∗i ⊂ B1

i but viB1
i v∗i 6= B1

i viv∗i . In this case we have that v∗i B1
i vi strictly

contains B1
i v∗i vi. Like in (iii) above, by U0 there exist a′ ∈ B1

i and a self-adjoint
a′1 ∈ (B1

i )
′ ∩M such that [v∗i a′vi, a′1] 6= 0. We then define Bi = B1

i ∨ {a′1}.
(v) viB1

i v∗i = B1
i viv∗i but vi 6∈ B1

i . This implies the partial isometry vi nor-
malizes the II1 von Neumann algebra Qi = (B1

i )
′ ∩M, acting non-trivially on it,

having left and right supports in Z(Qi) = B1
i . There are two possibilities:

(v1) vi ∈ Qi. In this case v∗i vi = viv∗i = pi ∈ Z(Qi) and so vi is a non-
central unitary in the II1 von Neumann algebra Qi pi.

We claim that if this is the case, then there exists a unitary u ∈ Qi pi such
that viuv∗i does not commute with u.

To see this, first note that by Proposition 1.4(ii), Qi pi is of type II1, so Qi pi 6≺N
Z(Qi pi) in any ambient II1 factor N that we would embed Qi pi. Taking N to be a
free product of Qi pi with a diffuse tracial algebra, we can assume Qi pi is embed-
ded in a II1 factor N so that its relative commutant in N is equal to Z(Qi pi). But
then we can apply Theorem 0.1 (a) in [13] to get a Haar unitary u ∈ Qi pi that is
approximately free to x = vi− EN

Z(Qi pi)
(vi) 6= 0. In particular, one can take u to be

ε 4-independent to x, which for ε > 0 sufficiently small insures that [viuv∗i , u] 6= 0.
Taking now u ∈ Qi pi to be any unitary satisfying this property, we define

Bi = B1
i ∨ {u}.

(v2) vi 6∈ Qi. In this case vi acts non-trivially on the center of Qi, so
there exists mutually orthogonal projections z1, z2 ∈ Z(Qi) such that z1 6 v∗i vi,
z2 6 viv∗i and viz1v∗i = z2. Since Qiz1 is II1, there exists a copy of M2(C) inside
it. So there exist self-adjoint unitaries u, w ∈ Qiz1 such that uw = −wu. Let
c = u + viwv∗i and define Bi = B1

i ∨ {c}. Note that c, z1, z2 are elements in Bi such
that [vi(cz1)v∗i , cz2] 6= 0.

Finally, we define B =
⋃
i

Bi
wo. Let us first show that B is a MASA in M,

i.e., B = B′ ∩M. To see this, it is sufficient to prove that any selfadjoint unitary
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v ∈ B′ ∩M lies in B. Since v ∈ V , it is of the form vi for some i ∈ I. This means vi
is being considered in step i of the induction and we see that we are necessarily
in the situation (v1), where we have chosen Bi (which is a subalgebra of B) so that
to contain some b such that vibv∗i b 6= bvibv∗i , contradicting [B, vi] = 0.

Assume now that B is not singular. This implies there exists a non-zero
partial isometry w ∈ M with w∗w, ww∗ mutually orthogonal projections in B.
Thus w ∈ V so w = vi for some i ∈ I and so we have considered w at step i of
the induction, and we are necessarily in one of the situations (iii), (iv), (v1), (v2),
which all lead to contradictions.

Finally, assume B ≺M Aj for some countable ordinal j ∈ I. This means there
exists a partial isometry v ∈ M such that v∗v ∈ B, vv∗ ∈ Aj and vBv∗ = Ajvv∗.
Because of our choice of repeating v c-many times in {vi}i∈I , there exists i ∈ I
such that i > j and v = vi. But then the choices we made in (ii), (iii) for the
algebra Bi ⊂ B, easily imply that we cannot have viBv∗i ⊂ Ai.

COROLLARY 2.2. Let {Mn}n>1 be a sequence of separable tracial factors with
dim(Mn) → ∞ and ω a free ultrafilter on N. Denote M = ∏

ω
Mn the associated

ultraproduct II1 factor. If we assume the continuum hypothesis then r(M) > c. If we
further assume the strong continuum hypothesis, then r(M) = 2c.

Proof. Since any ultraproduct II1 factor M = ∏
ω

Mn satisfies the bicommu-

tant axiom U0, it is a U-factor. If in addition Mn are all separable, then |U (Mn)| =
c, so |U (M)| = cℵ0 = c. Thus, we can apply Theorem 2.1 to conclude that under
the CH condition we have r(M) > c. Since the total number of distinct MASAs
in M is majorised by the number of subsets of U (M), it is bounded by 2c. Thus,
r(M) 6 2c. So, if SCH is assumed then r(M) = 2c.

3. FURTHER CONSIDERATIONS

The motivation behind our calculations of singular abelian rank of ultra-
product II1 factors was the hope that this invariant might be able to differentiate
among some of these factors (for instance, between ∏

ω
Mkn(C), with kn ↗ ∞, and

Mω, for a separable non-Gamma II1 factor M). But our calculations, which any-
way depend on CH/SCH, show that, like in the separable case where one has
r(M) = c for any separable II1 factor M (cf. [12], [15]; see Remark 2.7 in [2]), the
singular abelian rank is the same, equal to 2c, for all ultraproducts II1 factors.

One can try to “diminish” the number of disjoint singular MASAs by re-
stricting our attention to MASAs that satisfy various stronger versions of sin-
gularity, thus attempting to bring them to a “small cardinality”, even finite if
possible.
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Thus, in the spirit of the terminology in Definitions 2.5, 2.9 in [2], let us
denote by A∗M a maximal family of disjoint “special” singular MASAs in the II1
factor M satisfying a “generic” stronger singularity property ∗. As in [2], we will
in fact view A∗M in “unfolded” form, as one single singular abelian wo-closed
∗-subalgebra generated by finite projections in the II∞ factor M = M⊗B(`2K),
where K is a set of sufficiently large cardinality (K > 2|U (M)| will do), which is
so that any of its finite corners has the property ∗, and which is maximal (with
respect to inclusion) with these properties. Note that these requirements force the
definition of disjointness to be taken possibly stronger as well.

One then takes the corresponding rank r∗(M) to be the trace TrM of the
support of A∗M ⊂ M. Like in [2] one clearly has the amplification formula
r∗(Mt) = r∗(M)/t, ∀t > 0, making such considerations particularly interesting if
the rank of the “special” singular core could be shown finite.

We illustrate below with four examples of such a possible strengthening.

3.1. THE SUPERSINGULAR ABELIAN CORE. Following [12], we will say that a wo-
closed abelian ∗-subalgebra A in a II1 factor M is supersingular if there is no auto-
morphism θ ∈ Aut(M) such that θ(Ap) ⊂ A for some non-zero p ∈ P(A) other
than the inner automorphisms of M that act trivially on pMp. Two such supersin-
gular abelian subalgebras A1, A2 ⊂ M are disjoint if there exists no automorphism
θ of M satisfying θ(A1 p1) ⊂ A2 for some non-zero projection p1 ∈ A1. Note that
this is the same as requiring that A1 ⊕ A2 be supersingular in M2 = M2(M).

As we mentioned above, like in [2], we in fact view any family A of disjoint
(in this stronger sense) supersingular abelian subalgebras in M in its “unfolded”
form, as one single supersingular abelian algebra generated by finite projections
in M⊗B(`2K), for a sufficiently large K. One clearly has a maximal such algebra
with respect to inclusion,Ass

M, which is moreover unique up to unitary conjugacy
in M, and which we will call the superrsingular abelian core. The corresponding
supersingular rank rss(M) is then given by the trace TrM of the support of Ass

M in
M, viewed as a cardinality when infinite.

3.2. THE COARSE ABELIAN CORE. In the same spirit, this time following [15],
one can take inM = M⊗B(`2K) the coarse abelian core to be a wo-closed abelian
∗-subalgebra Ac

M ⊂ M generated by finite projections with the property that
Ap is coarse in pMp for any finite projection p ∈ Ac

M, and which is maximal
with respect to inclusion. Note that disjointness for coarse abelian A1, A2 ⊂ M
amounts to A1, A2 being a coarse pair (as defined in [15]).

The coarse core this way defined is clearly unique inM up to unitary con-
jugacy. The coarse abelian rank is then rc(M) = TrM(1Ac

M
).

Note however that by results in [15], for any separable M one has rc(M) >
ℵ0, so if we assume CH then rc(M) = c = ℵ1.

3.3. THE MAXIMAL AMENABLE ABELIAN CORE. We define the maximal amenable
abelian core Ama

M of the II1 factor M as the wo-closed abelian ∗-subalgebra A =
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Ama
M ⊂ M = M⊗B(`2K) generated by finite projections with the property that
A is maximal amenable in M, and which is maximal with respect to inclusion.
Its maximal amenable abelian rank is rma(M) = TrM(1Ama

M
).

While it is not clear how this invariant fares for separable II1 factors, note
that by Theorem 5.3.1 in [12] any ultraproduct A = ∏

ω
An of singular MASAs in

II1 factors An ⊂ Mn, is maximal amenable in M = ∏
ω

Mn. Thus, for such factors

one has rma(M) > c. It would be interesting to know whether any singular MASA
in an ultraproduct II1 factor (and more generally in a U-factor) is automatically
maximal amenable.

3.4. THE SINGULAR S-MASA CORE. Following [14], a MASA A in a II1 factor M
is an s-MASA if A∨ Aop is a MASA in B(L2M). By a well know result of Feldman
and Moore [6], any Cartan subalgebra satisfies this property. It has been shown
in [14] that if the II1 factor M is separable and has s-MASAs, then it has singular
s-MASAs, and in fact it has > ℵ0 many disjoint s-MASAs.

One defines the s-MASA core of a II1 factor M, as the wo-closed abelian ∗-
subalgebra A = As

M ⊂ M generated by finite projections with the property that
Ap is a singular s-MASA in pMp for any finite projection p ∈ A, and which is
maximal with respect to inclusion. Again, this is obviously unique in M up to
unitary conjugacy. The s-MASA rank of M is then rs(M) = TrM(1As

M
). So by [14],

in this case as well the associated rank is huge, rs(M) > ℵ0, so equal to c when
CH is assumed. It is not clear if ultraproduct factors, or even more generally U-
factors, can have singular s-MASAs at all. Since existence of an s-MASA in a II1
factor is a “thinness” property that ultraproducts are unlikely to have, it seems
that such factors cannot have s-MASAs, but this remains an open problem.
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