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ABSTRACT. We prove that, under the continuum hypothesis ¢ = Xy, any ul-
traproduct II; factor M = [ M, of separable finite factors M,, contains more
w

than ¢ many mutually disjoint singular MASAs, in other words the singular
abelian rank of M, r(M), is larger than c¢. Moreover, if the strong continuum
hypothesis 2¢ = X, is assumed, then r(M) = 2¢. More generally, these results
hold true for any II; factor M with unitary group of cardinality ¢ that satisfies
the bicommutant condition (Aj " M)’ N M = M, for all Ay C M separable
abelian.
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INTRODUCTION

Following Dixmier [3], a maximal abelian *-subalgebra (MASA) A in a
von Neumann algebra M is called singular if the only unitary elements u € U (M)
that normalize A (i.e., uAu* = A) are the unitaries in A. The existence of such
MASAs in the hyperfinite II; factor R in [3] was a discovery that led to many in-
teresting developments and subsequent research (see e.g., [8], [10], [11], [14], [18],
[19]).

Most recently in this direction, the singular abelian core of a II; factor M
was defined in [2] as the (unique up to unitary conjugacy) maximal abelian *-
subalgebra A C M = M®@B((2K), with |K| > 24 (M)|  that is generated by finite
projections of M, is singular in 14M1,4 and is maximal in M with respect to
inclusion. Also, the singular abelian rank of M was defined as r(M) := Tra (14),
viewed as a cardinality when infinite. Alternatively, r(M) can be viewed as the
“maximal number” of disjoint singular MASAs (or pieces of it) in M. The sans-
core and respectively, sans-rank rns(M) were defined in [2] in a similar way, by



336 PATRICK HIATT AND SORIN POPA

considering the maximal singular abelian purely non-separable core A C M =
M®B(#?K) and respectively the semi-finite trace of its support in M.
It was pointed out in [2] that by results in [12], [15], for any separable II;
factor M one has r(M) = ¢ and that if M is an ultraproduct II; factor, M = [T M,,
w

associated to a sequence M, of separable II; factors and a free ultrafilter w on N,
then by simply considering ultraproducts of singular MASAs of M, one obtains
r(M) = rns(M) > c. But a more exact calculation of the singular abelian rank of
such M was left open.
We prove in this paper that if we assume the continuum hypothesis (CH),
¢ =2% = Ry, then for any II; factor of the form M = [] M;, with M, separable
w

tracial factors with dim(M,) — oo, one has r(M) = rps(M) > 2°, and that if
we further assume the strong continuum hypothesis (SCH), 2¢ = X,, then we
actually have equalities, r(M) = rps(M) = 2° (see Theorem 2.1). Note that in
particular this shows that, under CH, an ultraproduct II; factor has many more
singular MASAs than the ones arising as ultraproducts of MASAs.

To do this calculation, we in fact only use the property of an ultraproduct
II; factor M = [] M, that any copy Ay C M of the separable diffuse abelian

w

von Neumann algebra L®[0, 1] satisfies the bicommutant condition (Aj N M) N
M = Ap. When viewed as an abstract property of a II; factor M, we call this
property U.

We prove that, somewhat surprisingly, a II; factor M has property Uy if and
only if it has property Uj, requiring that any isomorphism between two copies of
L*]0,1] inside M is implemented by a unitary in M (see Theorem 1.2), and call a
II; factor satisfying any of these equivalent properties a U-factor.

We also relate properties Uy, U; with the weaker property that any two
copies of L*[0, 1] inside M are unitary conjugate, already considered in [12], [16],
and which we label here U,. This property for M implies for instance that M is
prime and has no Cartan subalgebras and that any MASA in M is purely non-
separable (see Proposition 1.4). Thus, for such factors one always has rns(M) =
r(M).

So with this terminology, our main result (Theorem 2.1) shows that if M is a
U-factor with unitary group U (M) having cardinality [/ (M)| = ¢, then with the
CH assumption we have r(M) > 2¢, with equality when SCH is assumed.

We mention that Gao, Kunnawalkam Elayavalli, Patchell and Tan have re-
cently been able to construct (under CH) examples of Iy U-factors M with |/ (M)|
equal to ¢ but which cannot be decomposed as an ultraproduct of separable finite
factors [7].

Throughout this paper we will systematically use notations, terminology
and basic results from [13] (for all things concerning ultraproduct II; factors) and
[14] (for intertwining of subalgebras and disjointness in II; factors, in particular
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for MASAs, especially singular ones). Our work here has been especially mo-
tivated by remarks and considerations in [2], notably Sections 2.3, 2.4 and the
remarks therein. We comment at length about this in Section 3 of this paper.

We are very grateful to Adrian Ioana and Stefaan Vaes for many useful com-
ments on a preliminary draft of this paper.

1. SOME ABSTRACT PROPERTIES OF ULTRAPRODUCT II; FACTORS

While any separable approximately finite dimensional (AFD) tracial
von Neumann algebra (B, T) can be embedded into any II; factor M [9], when
M is an ultraproduct II; factor, M = [] M, such an embedding (By,7) — M

w

follows even unique up to unitary conjugacy in M. Also, any separable AFD sub-
algebra By C M satisfies the bicommutant condition (B " M)’ N M = By (see e.g.
Theorem 2.1 in [13]).

In particular, the uniqueness of the embedding and the bicommutant prop-
erty hold true when (By, T) is the separable diffuse abelian von Neumann algebra
(L*®[0,1], J - dA). In this section we will consider these two properties as abstract
properties of a II; factor M and prove that they are in fact equivalent. We also
discuss the apriori weaker condition that any two copies of L*|[0, 1] inside M are
unitary conjugate.

DEFINITION 1.1. Givenall; factor M, we consider the following three prop-
erties:
(Up) any separable abelian von Neumann subalgebra Ay C M satisfies the bi-
commutant property (Ay N M)' N M = Ay;
(U1) any trace preserving isomorphism between two separable diffuse abelian
von Neumann subalgebras of M is implemented by a unitary element in M;
(Uz) any two separable diffuse abelian von Neumann subalgebras of M are uni-
tary conjugate;
For each i = 0, 1,2, we say that M has stable property U;, if M! satisfies U; for
any t > 0.

THEOREM 1.2. Conditions Uy, Uy for a I1; factor M are equivalent and they are
both stable properties, i.e, if M satisfies property U;, for some i = 0,1, then M' satisfies
it for any t > 0.

Proof. Let us first show that U is stable. So assume M satisfies U;. We first
show that N = M, (M) satisfies U; as well. Let Aj, Ay C N be separable diffuse
abelian von Neumann algebras and 6 : A; ~ A an isomorphism preserving the
trace on N. Then A; contains a partition of 1 with projections { p}- };7:1 of trace
equal 1/n. Let p 7= (p]l) By conjugating with appropriate unitaries 11, u, € N
we may assume pj- =¢jj,1<j<mni=12 where {ei]- :1<i,j<n} CM,(C),
are the matrix units. Denoting by 6; the restriction of 6 to Aje;; ~ Ajej; and
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viewing them both as subalgebras in M ~ ¢;;Nej;, by the U; property for M
it follows that 0; is implemented by u; € ejjNe;;. But then u = %‘,uj € U(N)

implements 0 : A; ~ Aj.

We now show that if p € P(M) then pMp satisfies U;. If A, Ay C pMp
are separable diffuse abelian von Neumann algebras and 6 : A; ~ A, an isomor-
phism preserving the trace on pMp, then there exist separable dlffuse abelian
von Neumann subalgebras A C Msuch thatp € A,, and A; ip=A4;,1=1,2as
well as a trace preserving isomorphism 6 : Ay ~ A, whose restriction to A is
equal to 0. If u € U(M) implements 6, then up € U(pMp) implements 6. Thus,
Uj is stable.

Let us now prove that conditions Uy, U; are equivalent. Let Ag C M be a
separable diffuse abelian von Neumann algebra. Denote B = A{N M and Z =
B’ N M. Note that Z = Z(B). Indeed, because any element in M that commutes
with all elements in B = A6 N M must in particular commute with Ay, so B’ N
M C B, which is equivalent to B N M = Z(B).

Assume M satisfies Uy. If Z # Ay, then there exists a projection p € Z
with b = Ea,(p) # p- There exists a projection ¢ € Ag majorized by the support
s = s(b) of b such that cq < gb < (1 — c)q for some ¢ > 0. Thus, by replacing
p by gp we may assume p itself satisfies cs < b = E4 (p) < (1 —c)s. Denote
By = AgsV {p} C Zs. Note that the inclusion L*X ~ Ags C By ~ L®Y is
given by a surjective measure preserving map a : Y — X with two-points fiber
Vt € X. Consider then the trace preserving embedding of (By, 7p,) into a tracial
von Neumann algebra Q ~ Aps®R, endowed with the trace 74,; ® Tg, such that
Aps identifies with the center Z(Q) = Aps ® 1 ~ L*X and such that when we
view p as a measurable field p,t € X, with p; € P(R), we have tr(pt) = by,
where (b;); = .

Since Q with its trace can be embedded into any II; factor, we can view it as
a von Neumann subalgebra of sMs and then by using U; for Ags C sMs we may
assume the center of Q coincides with Ags and By with Ags V {p}. So 1 ® R is in
the commutant of Ags, and hence of Ap. Since p € Z, we should thus have 1 ® R
commute with p. But by averaging p over the unitaries in 1 ® R we get b, which
is not equal to p, a contradiction.

Thus, we must have (Aj N M)’ N M = Ay, showing that Uy is satisfied.

Conversely, assume M satisfies the bicommutant condition Uy. Let A;, Ay C
M'/2 be separable diffuse abelian and 6 : A; ~ A be an isomorphism preserving
the restrictions of the trace on M/2 to Ay, Ay. Let A = {ae; +0(a)ex : a € A1}
which we view as a (separable abelian diffuse) von Neumann subalgebra of M =
My (M'/2). Then (A’N M)’ N M = A implies in particular that the projections
e11,exn € A’ N M are equivalent in A’ N M, via some partial isometry v = ueqp
where u is a unitary in e;;Me;; = M'/2. But this means 6(a) = uau* for any
aeA.
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We have thus proved that if M satisfies Uy then M'/2 satisfies U;. Since we
already showed that Uj is a stable property, this implies M satisfies U;. Thus,
Uy, Uj are equivalent, and since U; was shown to be stable, Uy follows stable as
well. 1

DEFINITION 1.3. We say that a II; factor M is a U-factor if it satisfies the
equivalent conditions Uy, Uj.

We already mentioned that ultraproduct II; factors M = [] M, satisfy the

bicommutant property U and the unique (up to unitary conjugcscy) embedding
property Uj. They are the typical examples of U-factors.

Since property U; for a II; factor M trivially implies the unitary conjugacy of
any two copies of L®[0, 1] inside M, i.e., condition Uj, any U-factor satisfies U, as
well. Condition U, was already considered as an abstract property of II; factors
in Proposition 2.3 of [12], where it was noticed that the arguments in Section 7 of
[10], showing that an ultraproduct II; factor M has no Cartan subalgebras and all
its MASAs are purely non-separable, only use the fact that M satisfies condition
Us. It was further noticed in [16] that U, factors are prime and have the property
that the commutant of any separable abelian *-subalgebra is of type II;.

We restate all these results here, including their proofs from [10], [12], [16],
for the reader’s convenience.

PROPOSITION 1.4 ([10], [12], [16]). Assume a 11y factor M satisfies property Uy
(for instance, if M is a U-factor). Then M automatically satisfies the following properties:
(i) for any MASA A in M, there exists a diffuse abelian von Neumann subalgebra
By C M orthogonal to A;
(ii) any separable abelian von Neumann subalgebra Ag C M has type 11y relative
commutant Ay N M;
(iif) any MASA in M is purely non-separable;
(iv) M has no Cartan MASA;
(v) M is prime.

Proof. (i) Let A C M be a MASA. Let D C A be a separable diffuse
von Neumann subalgebra. Since any two separable diffuse abelian subalgebras
in M are unitary conjugate and since M contains copies of the hyperfinite II;
factor (by [9]), we may assume D is the Cartan subalgebra of such a subfactor
R C M, represented as D = Dy'® C My 2(C)®® = R. Let DY C Ms2(C) be a
maximal abelian subalgebra of M;,,(C) that is perpendicular to D, and denote
D% = DJ”® C R. Then D L DP and since both D, D® are MASAs in R, we have
Epam(D®) = Epinr(D?) = Ep(D%) = C,ie. D° 1. D' M D A, proving (i).

(ii) By [9], one has R®R =~ R and so R®R embedds into M. If one takes any
MASA By C R®1 C R®R =~ R, then ByN M D 1® R, implying that Bj N M is
type II;. Since Ay, By are unitary conjugate in M, Aj N M is II; as well.
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(iii) Let A be a MASA in M. If Ap is separable for some projection p € M,
then by taking a smaller p if necessary we may assume 7(p) = 1/n for some
integer n > 1. Let vy = p,vy,...,0, € M be partial isometries with v}v; = p,
V1 <i < n,and Y v;vf = 1and define B = } v;(Ap)v;. Then B is a separable

MASA in M. Butl then taking By C B to be alny diffuse proper von Neumann
subalgebra of B, it cannot be unitary conjugate to B because By is not a MASA
while B is, contradiction.

(iv) Let A C M be a MASA. By part (i), there exist separable diffuse abelian
subalgebras D, D? in M such that D C A and D° | A. Let u € U(M) be so that
uDu* = DY. Then u is perpendicular to the normalizer of A in M. Indeed, for
any v € N(A) and any partition p; € D of mesh < ¢, we have

2

|'L'(uv)|2 = ’T(Zpiuvpi) , Zr(u*piuvpiv*) = Zr(pi)z <e.

Since € > 0 was arbitrary, T(uv) = 0. Thus u L Ny (A)".

(V) If M = M1®M, with My, M, of type II; then there exist separable diffuse
abelian von Neumann subalgebras A; C M;. By hypothesis, there exists a unitary
u € M such that uA;u* = A, 1L Aj. From the argument in (iv), it follows that
for any unitaries v; € My, v; € M, one has T(uv1vp) = T(vuvy) = 0. Taking
span of v; and using that the || - |2 closure of the span of 1 ® M, - My ® 1is M, it
follows that T(uu*) = 0, contradiction. 1

"< | Epiwop
z

COROLLARY 1.5. Ifa Il factor M satisfies property U, (e.g., if M is a U-factor),
then rps(M) = r(M).

Proof. By part (iii) of Proposition 1.4, any MASA in a Uj-factor is purely
non-separable. 1

Let us also mention that it was shown in [12, 2.3.1° (c)] that the Kadison—
Singer paving problem over a MASA in a factor satisfying the stable U, property
reduces to paving of projections having scalar expectation on the MASA. (Note
that by Theorem 3.3 in [17], in order for a MASA A in a II; factor M to have the
paving property, it is necessary that A be purely non-separable.) Whether Uj is
a stable property was however left open in [12], but upon reading a preliminary
draft of our paper Adrian Ioana pointed out to us that an argument in the same
vein as the proof of Theorem 1.2 easily implies Uj stability as well. We thank him
for sharing this with us.

PROPOSITION 1.6. Condition Uj is a stable property.

Proof. Assume the II; factor M satisfies U,. Since this trivially implies that
M, (M) satisfies Uy, ¥n, to prove the stability it is sufficient to show that pMp
satisfies Uy for any projection p € M. Let Aj, A» C pMp be separable diffuse
abelian von Neumann algebras. Let R C M be a copy of the hyperfinite II; factor
with D C R its Cartan subalgebra and so that p € D. Letalso A; C M,i =
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1,2, be separable diffuse abelian von Neumann algebras containing p and such
that A;p = A;. By the U, property of M, there exist unitaries u; € M such
that ul-giul’f = D. Since D C R is Cartan, there exist v; € Ng(D) such that
vi(u;jpu;)v; = p, i = 1,2. But this means w; = v;u;p are unitaries in pMp that
conjugate A; onto Dp, i = 1,2. Thus, Ay, A; are unitary conjugate as well. 1

COROLLARY 1.7. Ifa Il factor M satisfies property U, (e.g., if M is a U-factor),
then a MASA A C M has the paving property if and only if any projection q € M with
Ea(q) € C1 can be paved.

Proof. By Proposition 1.6 above, property U; is stable, so the statement fol-
lows from Proposition 2.3.1° (c) in [12]. 1

REMARK 1.8. (i) While Uy trivially implies U,, we have no examples of a II;
factor satisfying U, but not U;. Note in this respect that if M satisfies property U
and Aj, A1 ~ L*[0,1] are von Neumann subalgebras of M then by conjugating
by a unitary in M we may assume Ag = A; and then property U; amounts to
whether any automorphism of (A, T) is implemented by a unitary in M. Thus,
the following two additional properties of a II; factor M are relevant:

(Us3) given any separable diffuse abelian von Neumann subalgebra Ay C M,
any automorphism of (A, ) is implemented by a unitary in M;

(U’3) there exists a separable diffuse abelian von Neumann subalgebra Ay C M
such that any automorphism of (A, 7) is implemented by a unitary in M.

Thus, we see that U; = U; = U}, Uy & (Uy + Uj) < (Uy + Us), and that
both Us, U} are stable properties (proof being similar to the proof of the stability
of Uy, Uy). Thus, an example of a II; factor M satisfying U, but not U; (so M not
a U-factor) should contain a copy of the non-atomic probability space ([0,1],A)
whose normalizer in M does not implement all of its automorphism group.

(i) The equivalence between the bicommutant property Uy and the conjugacy
of embeddings U; for B = L*[0, 1] in Theorem 1.2 raises the possibility that a cor-
relation between these two properties may occur for other tracial von Neumann
algebras (B, T). If one takes B to be the hyperfinite II; factor, B = R, then it is easy
to see that both Uy and Uj are stable and that the proof of U; = Uy goes exactly
the same way as in the case B = L®[0,1] in Theorem 1.2. It would be interesting
to see if one has Uy = U; as well.

2. CONSTRUCTING DISJOINT SINGULAR MASAS IN U-FACTORS

We show in this section that, under the continuum hypothesis, the size of
the singular abelian core of any U-factor is quite “large” and can be estimated.

We briefly recall (see e.g., [11]) that if M is a II; factor and A C M is a
MASA, then A is singular in M if and only if any partial isometry v € M sat-
isfying v*v,vv* € A, vAv* C A must be contained in A. Also, using notations
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from intertwining theory (see e.g., 1.5 in [13], for 1.3 in [14]) given two MASAs
Ai1,Ay C M one has A1 <p A if and only if there exists a non-zero partial
isometry v € M such that v*v € A1, vv* € Ay and vA10* C A; (note this is sym-
metric, i.e. Aj <p Az if and only if Ay <1 Aq). If there exists no such v we write
A1 Aum Ay (equivalently Ay Ay A1) and say that Aq, Ay are disjoint.

THEOREM 2.1. Let M be a 11} U-factor M with the property that the cardinality of
its unitary group U (M) is equal to c. If the continuum hypothesis, ¢ = Ny, is assumed,
then M contains more than ¢ many mutually disjoint singular MASAs, i.e., r(M) > c.
Moreover, if the strong continuum hypothesis 2¢ = R, is assumed, then r(M) = 2°.

Proof. Denote by (I, <) the set of ordinals < N; = ¢ endowed with its well
ordered relation. Since |U/(M)| = ¢, it follows that |P(M)| = ¢, and thus the
cardinality of the set V = V(M) = {up : u € U(M),p € P(M)} of partial
isometries of M is equal to c as well. Let {v; } ;| be an enumeration with repetition
of V, where each v € V appears c-many times.

Let A be a maximal family of disjoint singular abelian wo-closed subalge-
bras A C 14M1,4 (which apriori may be an empty set). Assume | A| < ¢ = Rj. Let
{A;}ic be a family of MASAs in M indexed by our set I, such thateach A € A
appears as a direct summand of some A;.

Note that if we can show that under these assumptions there exists a sin-
gular MASA B C M such that B Ap A;, Vi € 1, then this would contradict the
fact that {A;};c; contains all of A, which was chosen to be the maximal singular
core for M. This contradiction would show that one necessarily have |A| > ¢,
thus finishing the proof of the first part. If in addition we have 2° = N,, since the
total number of distinct MASAs in a II; factor M with |U/(M)| = ¢ is obviously
majorized by 2¢, it would then also follow that r(M) = | A| = 2°.

We construct B as the wo-closure of the union of an increasing family {B; };¢;
of separable diffuse abelian von Neumann subalgebras of M, which we construct
by transfinite induction over i € I, in the following way.

Assume that B; have been constructed for all j < i. We want to construct B;
so that v; is not intertwining B; into Bl’» N M, nor B; into A; for j < i. To this end,
we proceed as follows:

(a) Denote BY = U B;. Note that BY is separable abelian diffuse.

j<i

(b) If vv; & B? then by Uy there exists a self-adjoint element a € (B?)’ nM
such that [0}v;,a] # 0and welet B; = B? V {a}. Note that B; is then still separable
abelian and [v}v;, B;] # 0.

(©) If vfv; € B) thenwe let K; = {j € I,j < i:vBf ¢ Aj}and L; =
{jelj<i: viB?vl’f C A]-}. Note that Kj, L; are disjoint, countable sets, with
K;UL; = {j € I : j < i}. Denote p; = vjv; € BY and notice that for each j € L;

we have v} A;v; C QY def (BYp;)" N p;Mp;, with vf Ajv; a MASA in QY. Thus, if
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we denote S; := | v;A;v; then the set S; C Q? is a countable union of abelian
JEL;

von Neumann algebras (even MASAs) in the II; von Neumann algebra Q?, SO

QY \ S;is a Gs dense subset of QY.

Note already that if a9 € QY \ S; is a self-adjoint element then any separable
abelian von Neumann algebra that contains the abelian algebra B} = BY v {49}
cannot be intertwined by the partial isometry v; into A; for any j < i.

In order to choose B; D B! so that to exclude v; from properly normalizing
any MASA B containing B;, let us note that there are several possibilities:

(i) v; € Bl-l, in which case we just put B; = Bl-l.

(i) v;Blv} ¢ (B})’ N M, in which case we again let B; = B}.

(iii) v;B}v} C (B!)’ N Mbutv;Blv; ¢ B}. This means there exists a € B! p; such
that v;av} € ((B})' N M)\ B}, and by applying U there existsa; = a; € (B})' N M
such that [a1, v;a0}] # 0. We then let B; = B} V {a }.

(iv) v,-Bilvl’f C Bl-1 but UiBl-lvj =+ Bilvivl’f. In this case we have that v} Bl-lv,- strictly
contains B}v;kvi. Like in (iii) above, by Uy there exist 4’ € Bl.l and a self-adjoint
aj € (B}) N M such that [v}a'v;, a}] # 0. We then define B; = B! v {a}}.

(v) vl-Bilz;;-k = Bilvivl’f but v; ¢ Bl-l. This implies the partial isometry v; nor-
malizes the II; von Neumann algebra Q; = (B})’ N M, acting non-trivially on it,
having left and right supports in Z(Q;) = B}. There are two possibilities:

(vl1) v; € Q;. In this case vjv; = v;v] = p; € Z(Q;) and so v; is a non-
central unitary in the II; von Neumann algebra Q;p;.

We claim that if this is the case, then there exists a unitary u € Q;p; such
that v;uv; does not commute with u.

To see this, first note that by Proposition 1.4(ii), Q;p; is of type II;, so Q;p; AN
Z(Qjp;) in any ambient II; factor N that we would embed Q;p;. Taking N to be a
free product of Q;p; with a diffuse tracial algebra, we can assume Q;p; is embed-
ded in a II; factor N so that its relative commutant in N is equal to Z(Q;p;). But
then we can apply Theorem 0.1 (a) in [13] to get a Haar unitary u € Q;p; that is
approximately freeto x = v; — E g (Qipy) (vi) # 0. In particular, one can take u to be
¢ 4-independent to x, which for ¢ > 0 sufficiently small insures that [v;uv}, u] # 0.

Taking now u € Q;p; to be any unitary satisfying this property, we define
B; = B} v {u}.

(v2) v; ¢ Q;. In this case v; acts non-trivially on the center of Q;, so
there exists mutually orthogonal projections z1,z, € Z(Q;) such that z; < v}v;,
zp < vvf and v;210] = zp. Since Q;z; is II;, there exists a copy of M (C) inside
it. So there exist self-adjoint unitaries u,w € Qj;z; such that uw = —wu. Let
¢ = u +v;wo} and define B; = Bi1 V {c}. Note that ¢, z1, z, are elements in B; such

that [v;(cz1)v}, czp] # 0.
Finally, we define B = JB; . Let us first show that B is a MASA in M,

1

ie, B = B’ N M. To see this, it is sufficient to prove that any selfadjoint unitary
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v € B'N M lies in B. Since v € V), it is of the form v; for some i € I. This means v;
is being considered in step i of the induction and we see that we are necessarily
in the situation (v1), where we have chosen B; (which is a subalgebra of B) so that
to contain some b such that v;bv}b # bv;bv}, contradicting [B, v;] = 0.

Assume now that B is not singular. This implies there exists a non-zero
partial isometry w € M with w*w, ww* mutually orthogonal projections in B.
Thus w € V so w = v; for some i € I and so we have considered w at step i of
the induction, and we are necessarily in one of the situations (iii), (iv), (v1), (v2),
which all lead to contradictions.

Finally, assume B <) A; for some countable ordinal j € I. This means there
exists a partial isometry v € M such that v*v € B, vv* € A; and vBv* = Ajvv*.
Because of our choice of repeating v ¢-many times in {v; };c], there exists i € I
such that i > jand v = v;. But then the choices we made in (ii), (iii) for the
algebra B; C B, easily imply that we cannot have v;Bv] C A;. I

COROLLARY 2.2. Let {M,},>1 be a sequence of separable tracial factors with
dim(M,,) — oo and w a free ultrafilter on N. Denote M = []M,, the associated
w

ultraproduct 11y factor. If we assume the continuum hypothesis then r(M) > c. If we
further assume the strong continuum hypothesis, then r(M) = 2°.

Proof. Since any ultraproduct II; factor M = [] M, satisfies the bicommu-
w

tant axiom Uy, it is a U-factor. If in addition M, are all separable, then U/ (M,)| =
¢, so [U(M)| = ¢*0 = ¢. Thus, we can apply Theorem 2.1 to conclude that under
the CH condition we have r(M) > ¢. Since the total number of distinct MASAs
in M is majorised by the number of subsets of U/ (M), it is bounded by 2°. Thus,
r(M) < 2¢. So, if SCH is assumed then r(M) = 2°. 1

3. FURTHER CONSIDERATIONS

The motivation behind our calculations of singular abelian rank of ultra-
product II; factors was the hope that this invariant might be able to differentiate
among some of these factors (for instance, between [T M, (C), with k;, /* oo, and

w

M, for a separable non-Gamma II; factor M). But our calculations, which any-
way depend on CH/SCH, show that, like in the separable case where one has
r(M) = ¢ for any separable II; factor M (cf. [12], [15]; see Remark 2.7 in [2]), the
singular abelian rank is the same, equal to 2, for all ultraproducts II; factors.

One can try to “diminish” the number of disjoint singular MASAs by re-
stricting our attention to MASAs that satisfy various stronger versions of sin-
gularity, thus attempting to bring them to a “small cardinality”, even finite if
possible.
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Thus, in the spirit of the terminology in Definitions 2.5, 2.9 in [2], let us
denote by A}, a maximal family of disjoint “special” singular MASAs in the II;
factor M satisfying a “generic” stronger singularity property *. As in [2], we will
in fact view A}, in “unfolded” form, as one single singular abelian wo-closed
x-subalgebra generated by finite projections in the Il factor M = M®B((?K),
where K is a set of sufficiently large cardinality (K > 2/“M)| will do), which is
so that any of its finite corners has the property %, and which is maximal (with
respect to inclusion) with these properties. Note that these requirements force the
definition of disjointness to be taken possibly stronger as well.

One then takes the corresponding rank r.(M) to be the trace Try4 of the
support of A}, C M. Like in [2] one clearly has the amplification formula
r.(M!) = r,(M)/t, Vt > 0, making such considerations particularly interesting if
the rank of the “special” singular core could be shown finite.

We illustrate below with four examples of such a possible strengthening.

3.1. THE SUPERSINGULAR ABELIAN CORE. Following [12], we will say that a wo-
closed abelian *-subalgebra A in a II; factor M is supersingular if there is no auto-
morphism 6 € Aut(M) such that (Ap) C A for some non-zero p € P(A) other
than the inner automorphisms of M that act trivially on pMp. Two such supersin-
gular abelian subalgebras A1, Ay C M are disjoint if there exists no automorphism
6 of M satisfying 6(A1p1) C A, for some non-zero projection p; € A;. Note that
this is the same as requiring that A; & A, be supersingular in M? = M, (M).

As we mentioned above, like in [2], we in fact view any family A of disjoint
(in this stronger sense) supersingular abelian subalgebras in M in its “unfolded”
form, as one single supersingular abelian algebra generated by finite projections
in M@B(¢2K), for a sufficiently large K. One clearly has a maximal such algebra
with respect to inclusion, A%}, which is moreover unique up to unitary conjugacy
in M, and which we will call the superrsingular abelian core. The corresponding
supersingular rank rss(M) is then given by the trace Tr 4 of the support of A3} in
M, viewed as a cardinality when infinite.

3.2. THE COARSE ABELIAN CORE. In the same spirit, this time following [15],
one can take in M = M®B(¢{?K) the coarse abelian core to be a wo-closed abelian
*-subalgebra A5, C M generated by finite projections with the property that
Ap is coarse in pMp for any finite projection p € A5, and which is maximal
with respect to inclusion. Note that disjointness for coarse abelian Ay, Ay C M
amounts to A1, Ay being a coarse pair (as defined in [15]).

The coarse core this way defined is clearly unique in M up to unitary con-
jugacy. The coarse abelian rank is then rc(M) = Traq (14, )-

Note however that by results in [15], for any separable M one has r.(M) >
N, so if we assume CH then r.(M) = ¢ = N;.

3.3. THE MAXIMAL AMENABLE ABELIAN CORE. We define the maximal amenable
abelian core A3f of the II; factor M as the wo-closed abelian *-subalgebra A =
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Ama C M = M®B({*K) generated by finite projections with the property that
A is maximal amenable in M, and which is maximal with respect to inclusion.
Its maximal amenable abelian rank is rma (M) = Traq(1ama).
While it is not clear how this invariant fares for separable II; factors, note
that by Theorem 5.3.1 in [12] any ultraproduct A = [] A, of singular MASAs in
w

II; factors A, C M, is maximal amenable in M = [] M,,. Thus, for such factors

w
one has ry, (M) > ¢. It would be interesting to know whether any singular MASA
in an ultraproduct II; factor (and more generally in a U-factor) is automatically
maximal amenable.

3.4. THE SINGULAR S-MASA CORE. Following [14], a MASA A in a II; factor M
isan s-MASA if AV A°P isa MASA in B(L>M). By a well know result of Feldman
and Moore [6], any Cartan subalgebra satisfies this property. It has been shown
in [14] that if the II; factor M is separable and has s-MASAs, then it has singular
s-MASAs, and in fact it has > RNy many disjoint s-MASAs.

One defines the s-MASA core of a II; factor M, as the wo-closed abelian *-
subalgebra A = Aj, C M generated by finite projections with the property that
Ap is a singular s-MASA in pMp for any finite projection p € A, and which is
maximal with respect to inclusion. Again, this is obviously unique in M up to
unitary conjugacy. The s-MASA rank of M is then rs(M) = Tr(1,43,)- So by [14],
in this case as well the associated rank is huge, rs(M) > ¥y, so equal to ¢ when
CH is assumed. It is not clear if ultraproduct factors, or even more generally U-
factors, can have singular s-MASAs at all. Since existence of an s-MASA in a II;
factor is a “thinness” property that ultraproducts are unlikely to have, it seems
that such factors cannot have s-MASAs, but this remains an open problem.

Acknowledgements. This paper is dedicated to Jacques Dixmier, whose seminal mono-
graphs [4], [5] and many pioneering contributions to operator algebras played a crucial
role in the development of this area. May this be just a small token of gratitude, on the oc-
casion of his 100th anniversary, in the name of the several generations of mathematicians
who benefitted from his work over more than seven decades.

REFERENCES

[1] C. ANANTHARAMAN, S. POPA, An introduction to II; factors, www.math.ucla.edu/
~popa/Books/ITun-v13.pdf

[2] R. BOUTONNET, D. DRIMBE, A. IOANA, S. POPA, Non-isomorphism of A*",2 < n <
0o, for a non-separable abelian von Neumann algebra A, Geom. Funct. Anal 34(2024),
393-408.

[3] J. DIXMIER, Sous-anneaux abéliens maximaux dans les facteurs de type fini, Ann. of
Math. 59(1954), 279-286.



ON THE SINGULAR ABELIAN RANK OF ULTRAPRODUCT II; FACTORS 347

[4] J. DIXMIER, Les algébres d’opérateurs sur l'espace Hilbertien (Algébres de von Neumann),
Gauthier-Villars, Paris 1957.

[5] J. DIXMIER, Les C*-algebres et leurs representations, Gauthier-Villars, Paris 1964.

[6] J. FELDMAN, C. MOORE, Ergodic equivalence relations, cohomology, and von Neu-
mann algebras. II, Trans. Amer. Math. Soc. 234(1977), 323-359.

[7] D. GAO, S. KUNNAWALKAM ELAYAVALLI, G. PATCHELL, H. TAN, A highly inde-
composable II; factor, in preparation.

[8] C. HOUDAYER, S. POPA, Singular MASAs in type III factors and Connes’ bicentralizer
problem, in Proceedings of the 9th MS]-SI “Operator Algebras and Mathematical Physics”
held in Sendai, Japan 2016.

[9] EJ. MURRAY, J. VON NEUMANN, On rings of operators. IV, Ann. of Math. 44(1943),
716-808.

[10] S. Pora, Orthogonal pairs of x-subalgebras in finite von Neumann algebras, J. Oper-
ator Theory 9(1983), 253-268.

[11] S. Pora, Singular maximal abelian *-subalgebras in continuous von Neumann alge-
bras, J. Funct. Anal. 50(1983), 151-166.

[12] S. PorA, A II; factor approach to the Kadison-Singer problem, Comm. Math. Physics.
332(2014), 379-414.

[13] S. PorA, Independence properties in subalgebras of ultraproduct II; factors, J. Funct.
Anal. 266(2014), 5818-5846.

[14] S. PoraA, Constructing MASAs with prescribed properties, Kyoto J. Math. 59(2019),
367-397.

[15] S. Popra, Coarse decomposition of II; factors, Duke Math. J. 170(2021), 3073-3110.
[16] S. PorA, Topics in I factors, in Graduate Courses at UCLA, Winter 2020, Fall 2022.

[17] S. PoraA, S. VAES, Paving over arbitrary MASAs in von Neumann algebras, Anal.
PDE 8(2015) 1001-1023.

[18] L. PUKANSZKY, On maximal abelian subrings in factors of type II;, Canad. |. Math.
12(1960), 289-296.

[19] F. RADULESCU, Singularity of the radial subalgebra of L(Fy) and the Pukanszky
invariant, Pacific ]. Math. 151(1991), 297-306.

PATRICK HIATT, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA
LOs ANGELES, Los ANGELES, CA 90095, U.S.A.
E-mail address: pjhiatt@math.ucla.edu

SORIN POPA, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA LOS
ANGELES, LOS ANGELES, CA 90095, U.S.A.
E-mail address: popa@math.ucla.edu

Received March 11, 2024; revised March 16, 2024.



	INTRODUCTION
	1. SOME ABSTRACT PROPERTIES OF ULTRAPRODUCT II1 FACTORS
	2. CONSTRUCTING DISJOINT SINGULAR MASAS IN U-FACTORS
	3. FURTHER CONSIDERATIONS
	3.1. The supersingular abelian core
	3.2. The coarse abelian core
	3.3. The maximal amenable abelian core
	3.4. The singular s-MASA core

	REFERENCES

