AROD: Adaptive Real-Time Object Detection
Based on Pixel Motion Speed

Yu Liu, Kyoung-Don Kang
Department of Computer Science
State University of New York at Binghamton
{yliu456, kang} @binghamton.edu

Abstract—Real-time object detection is essential for Al-based
intelligent traffic management. However, growing complexities of
deep learning models for object detection cause increased latency
and resource requirements. To tackle the challenge, we introduce
a new approach, named AROD (Adaptive Real-Time Object
Detection), that infers the pixel motion speed in continuous
traffic video frames and skips redundant frames when the pixel
velocity is low. Thereby, AROD aims to significantly enhance
the efficiency and scalability, sustaining the accuracy of object
detection. Our evaluation using real-world traffic videos reveals
that our method for pixel velocity inference via lightweight
deep learning reduces the RMSE (Root Mean Square Error)
by up to two orders of magnitude compared to state-of-the-
art approaches. AROD improves the frame processing rate of
YOLOVS, SSD, and EfficientDet by approximately 32-61%, 110-
174 %, and 120-213 %, respectively. AROD considerably enhances
scalability by supporting real-time object detection for up to
three concurrent traffic video streams on a commodity machine.
Moreover, AROD demonstrates its generalizability by supporting
competitive accuracy in object detection for a separate traffic
video that was fully hidden during training.

Index Terms—Al-based Intelligent Traffic Management, Pixel
Motion Speed Inference, Adaptive Real-Time Object Detection

I. INTRODUCTION

Real-time object detection is crucial in Al-based intelligent
traffic management in a smart city [|1]. Although deep learn-
ing models, such as [2]-[8]], have significantly improved the
quality of inference for computer vision tasks, their increasing
complexities result in higher latency and resource require-
ments. Therefore, it is challenging to improve the efficiency
and scalability of object detection, supporting the desired
processing rate of 30 fps (frames per second) for real-time
object detection.

To tackle the challenge, we introduce AROD (Adaptive
Real-Time Object Detection) that is not yet another object
detection model but an adaptive framework for efficient real-
time object detection. AROD infers the speed of pixel move-
ments (measured in pixels per frame), indicating the average
movement of objects between successive frames in a traffic
video. AROD then dynamically reduces the object detection
rate and drops redundant frames when the pixel velocity is
low. A summary of our contributions follows:

o To minimize errors in pixel motion speed inference, we
carefully design and train a new lightweight MLP (Multi-
ple Layer Perceptron) model for cost-effective regression,
avoiding overfitting.

e We devise a new, flexible object detection framework
that can utilize any effective object detection model. The
execution rate of the plugged-in object detection model
is dynamically adapted according to the inferred pixel
velocity for efficient object detection.

o To further enhance efficiency, AROD utilizes both the
CPU and GPU via pipelining. In the CPU that is mostly
idle otherwise, AROD infers the average pixel speed of
moving objects and adapts the object detection rate ac-
cordingly. At the same time, object detection is performed
for the frames that are forwarded to the GPU, instead
of getting dropped due to the slow pixel velocity. To
conceal the latency of AROD and improve the overall
frame processing rate in terms of fps, we ensure that the
latency of AROD run in the CPU is shorter than that of
object detection in the GPU.

Our evaluation is conducted using four real-world traffic
videos in a cost-effective video analytics system consisting
of commodity hardware components, much less powerful and
expensive than its cloud counterparts. Using the test sets of the
first three traffic videos captured under diverse environmental
lighting conditions, we analyze the accuracy of pixel velocity
inference, frame processing rate, and scalability in terms of
the RMSE, fps, and number of traffic video streams processed
concurrently, respectively. Our evaluation reveals that our MLP
model decreases the RMSE of pixel velocity inference by up
to two orders of magnitude compared to several SOTA (state-
of-the-art) methods. To demonstrate the flexibility of AROD,
we combine it with three popular object detection models:
YOLOVS [4], SSD [5]], and EfficientDet [6]. AROD improves
their fps by approximately 32-61%, 110-174%, and 120-213%,
respectively. When AROD runs alongside YOLOvV5 (fastest
among the three models above), it can process up to three
traffic video streams in real-time, supporting 30-34 fps for each
stream. Thus, AROD could considerably reduce the number of
machines needed for Al-based intelligent traffic management
in a smart city. Moreover, the integration of AROD with
YOLOVS effectively generalizes to the fourth traffic video
entirely unseen during training. It maintains an approximately
equivalent mean average precision (mAP), which serves as
the standard metric for assessing object detection accuracy, in
comparison to the mAP attained by the standalone YOLOv5
model without AROD.

The rest of the paper is organized as follows. Related
work is discussed in Section [[I] In Section background
information on optical flow analysis is followed by a
discussion of its limitations. Section [[V] describes AROD
introduced in this paper. Design and training of the
MLP model for pixel velocity inference, data sets, and
system configurations for evaluation are described in
Section [V, Section [VI| discusses the evaluation results.
Finally, Section concludes the paper and discusses future
work. Our source code is available at https://github.com/Real-
Time-Lab/AROD-Adaptive-Real-Time-Object-Detestion-
Aware-of-the-Traffic-Flow-Speed.

II. RELATED WORK

Object detection: Deep learning-based object detection mod-
els have significantly outperformed traditional approaches.
Single-stage object detection models based on CNNs (Convo-
lutional Neural Networks), such as YOLO [4], SSD [5], and
EfficientDet [6]], detect objects, produce their bounding boxes,
and classify them in one stage. Thus, they are more suitable for
real-time applications than two-stage object detection models,
such as [2], [3], [9]. Novel vision transformers, such as [7],
[8l, have improved the accuracy of computer vision tasks.
However, self-attention in vision transformers suffers from
quadratic complexity. Generally speaking, increasing complex-
ities of newer models tend to improve object detection accu-
racy, while increasing the latency and resource consumption.
Efficiency Improvements: In [[10], [11]], structural similarity
in successive frames is analyzed to drop redundant frames. In
[12], a new CNN model, called ERD (Empty Road Detection),
is used to preprocess every traffic video frame to infer if there
exists any predefined object of interest (e.g., a vehicle). ERD
then performs object detection only for nonempty frames with
at least one object. Also, L-filter [13] reduces the overhead of
ERD via hybrid time series analysis. However, the overhead
for structural similarity analysis [[10], [[11] and road occupancy
(empty or nonempty) inference [12], [13] cannot be amor-
tized when successive traffic video frames are dissimilar or
nonempty, for example, on a busy highway. Consequently, they
can actually decrease the frame processing rate essential for
real-time object detection. Different from [10]-[13], AROD
hides its latency via efficient CPU-GPU pipelining. Thus,
it supports at least as high fps as the corresponding stan-
dalone object detection model without AROD does. Moreover,
AROD can use any object detection model, e.g., a single-
stage YOLO model, and therefore it is complementary to
most existing work on object detection, including the ones
discussed above. This contrasts to [10], [[11]] that depend on a
relatively slow two-stage object detector [3]. Although model
compression [[14], [15] reduces model complexity, we do not
utilize a compressed object detection model in this paper, since
it often decreases accuracy.

III. BACKGROUND ON OPTICAL FLOW ANALYSIS

The Lucas-Kanade method (L-K method) [[16] is a widely
used optical flow analysis algorithm. It assumes 1) brightness

constancy, 2) temporal continuity, and 3) spatial coherence in
a sequence of images (frames). Brightness constancy assumes
that a pixel’s grayscale value does not change between frames.
Temporal continuity assumes that the displacement of image
contents between consecutive frames is small and approx-
imately constant. The first two assumptions allow taking
partial derivatives of grayscale values with respect to the pixel
position:

I, + Iyvy = —1; (D

where v, = dz/dt is the optical flow velocity of a pixel in
the horizontal direction and v, = dy/dt is the optical flow
velocity in the vertical direction. Additionally, I, = dI/dx
and I, = dI/dy are the gradients (partial derivatives) of image
intensity at position (x,y), while I; = dI/dt is the gradient
of the intensity at time ¢.

In Equation |1} we encounter two unknown variables: v,
and v,. Thus, Equation |1| is under-constrained and cannot be
solved directly. The L-K algorithm addresses this challenge
using the third assumption of spatial coherence. It assumes that
adjacent pixels on the same surface in the scene share similar
motion and, therefore, their projections onto the image plane
and velocities are closely aligned and consistent. Based on this
assumption, the L-K method formulates multiple equations for
n neighboring pixels in matrix form, Av = b, to solve for v,
and vy:

I:El Iyl _It1
Ve :
A= | L, I, |,v= { } o= | =1 2)
’Uy)
Ixn Iyn 7Itn

In the equation, (I,, I,) ... (I4,, I,,) denote the positional
gradients at (x,y) coordinates of the n pixels, while I, ... I
represent the gradients of the pixels at time t.

Finally, the least square method is applied to find a solution
for the following linear equation:

v= (AT A)"" AT b 3)

Unfortunately, the L-K method has significant limitations.
First, the assumptions of the L-K method may not hold in
reality. A pixel’s gray scale value may change substantially
in nearby frames. Image contents between consecutive frames
may vary considerably if objects move fast. Thus, it is sus-
ceptible to large errors in the presence of noise or fast-moving
objects [17], [[18]]. Second, the L-K method suffers from the
depth compression effect, where the pixel motion velocity is
incorrectly considered higher when objects are closer to the
camera compared to when they are farther away, even if the
actual speed is the same. Moreover, solving Equations [I] [2]
and [3] for every pixel is prohibitively costly.

IV. AROD: ADAPTIVE REAL-TIME OBJECT DETECTION

Figure |1| gives an overview of the AROD framework.
As depicted in Figure |1} the positions of at most K moving

https://github.com/Real-Time-Lab/AROD-Adaptive-Real-Time-Object-Detestion-Aware-of-the-Traffic-Flow-Speed
https://github.com/Real-Time-Lab/AROD-Adaptive-Real-Time-Object-Detestion-Aware-of-the-Traffic-Flow-Speed
https://github.com/Real-Time-Lab/AROD-Adaptive-Real-Time-Object-Detestion-Aware-of-the-Traffic-Flow-Speed

Input Frame

Locations
Average Pixel
Speed
Object Detector OD Rate Adaptor
Bounding Boxes Adjusted OD
4 Classes Y O L O Rate -
C—— EE——

Optical Flow Tracker

MLP Pixel Speed Estimator

Top-K Objects

Fig. 1: Overall structure of AROD.

objects estimated via optical flow analysis are inputted to our
MLP model to infer the average pixel motion speed, where
K is a predetermined maximum threshold for efficient pixel
velocity inference. Given the inferred pixel motion speed,
the rate adaptor in Figure [T] dynamically adjusts the rate of
object detection and feeds traffic video frames into the adopted
object detection model, such as a YOLO model, according to
the adjusted rate. Then, the object detection model generates
bounding boxes around all objects it detects, while classifying
them as illustrated in Figure [I]

To address the limitations of optical flow analysis, we
design a new lightweight MLP model that significantly re-
duces potential errors in pixel velocity inference. Furthermore,
we substantially reduce computational costs for optical flow
analysis as follows:

o Utilizing the Shi-Tomasi method [19], the optical flow
tracker of AROD in Figure [I] identifies the corners of a
maximum of K moving objects (e.g., K = 10). If there
are a total of m objects in a frame, it tracks only one
corner of each of the n = min(m, K) objects. By doing
this, we limit the number of objects and decrease the
number of pixels to track in consecutive frames.

o To further enhance the efficiency, our optical flow tracker
tracks n object corners using the L-K method within
the region of measurements (RoM) only, where an arbi-
trary object appears big enough for visual identification,
as illustrated in Figure [2]

Given that, Algorithm |l formally describes how AROD
works. In line 1, we initialize the frame number ¢ = 1. Lines
2-12 are applied to incoming video frames for efficient object
detection. In line 3, we perform efficient optical flow analysis
to estimate the positions of n objects (i.e., their corners) in
the RoM of frame ¢ as discussed above.

If ¢ > 1, AROD executes lines 4-12. In lines 5-6, the
positions of n objects in frames t — 1 and ¢ are stored in

.|+ Region Of
| [Measurement

Fig. 2: Region of measurement for optical flow analysis

vectors L(t — 1) and L(t), respectively:

Lit—1) = [z (t—1),y1(t — 1))... (xn(t —
L(t) = [(z1(t), y1(2)) - - - (zn (1), yn(1))]

1), yn(t —1))]

“)

In line 6, we concatenate L(t — 1) and L(t) into a vector,
£(t). In line 7, given n and ¢(t), the MLP model of AROD
infers the average pixel motion speed of the n objects, 9(t).
The design and training of the MLP model for efficient, high-
accuracy inference of average pixel velocity is described in
Section [V

In line 8, we dynamically adapt the object detection rate,
~(t), according to ¥(t). In this paper, we assume that the input
frame rate v, from the camera, e.g., 30 fps, is constant. Given
that, v(t) < 7., Vt; that is, the current object detection rate
is less than or equal to the input frame rate, depending on
the pixel motion speed of objects. In particular, in line 8, the
object detection rate is adapted using a set of prespecified pixel
velocity thresholds: 71,...,Tjmae (pixels per frame), where
71 < ... < Tmag- Using them, we dynamically adapt the
object detection rate, y(t), according to 0(t):

Zf ’ﬁ(t) <7
G Ve if ; <0(t) <Tjg1 (1 <5 <maz) (5)
Ve if ﬁ(t) 2 Tmaz

1
(1) e
V(t) = !

Algorithm 1: Adaptive Real-Time Object Detection
input : Incoming video frames
output: Object detection results
t=1
while frue do

D=

// optical flow analysis
3 L(t) = OFA(frame t)
4 if ¢t > 1 then
// n objects in frames t—1 and t
5 n = min(m, K)
6 (t)=L(t—1)+ L(t)
// infer pixel motion speed
7 0(t) = MLP(n, £(t))
// adapt obj. detection rate
8 7(t) = adapt(d(t))
// Do obj. detection at rate ~(t)
9 results = OD(y(t))
// Bounding boxes & obj. classes
10 display(results)
11 end
12 t++;
13 end

where ¢(1) > ... > ¢(maz) > 1 to use a lower ob-
ject detection rate for a lower pixel motion speed, ©(t). If
O(t) > Timaw» Object detection is set to 7. and therefore AROD
performs object detection for every input frame. Otherwise,
object detection rate is reduced according to the pixel motion
speed using Equation [5| For example, if ¢(j +1) = 2, AROD
skips every other frame when 7; < 0(t) < Tj41.

In lines 9-10, we perform object detection at the rate of
~(t) and display the result. In line 12, we increment the
frame number, and repeat lines 2-12 for incoming traffic video
frames.

V. MLP MoODEL DESIGN, DATASETS, AND TRAINING
A. Objectives of Model Design

A main challenge for high-accuracy inference of pixel
velocity is how to minimize the risk of overfitting and improve
generalizability with little computational overhead. To face the
challenge, we take systematic approaches to design, train, and
evaluate the MLP model of AROD:

o Per-Weight Regularization: During training, we utilize
an effective optimization algorithm that significantly re-
duces overfitting via per-weight regularization [20].

« Early Stopping: To avoid overfitting, we analyze training
and validation losses over training epochs and terminate
training early as soon as both losses converge to small
values and stabilize.

e MLP Architecture Search: In an iterative feedback
loop, we vary the depth and width of MLP models and
analyze their losses. Thereby, we find an MLP model

with as low complexity as possible that converges to
minimal validation and training losses, reducing the risk
of overfitting due to a more complex structure.

o Generalizability Analysis using a Different Dataset:
We also verify the generalizability of AROD to a traffic
video entirely unseen during training (in Section [VI).

B. Datasets

In this paper, four HD (1280720 pixels) traffic monitoring
videos are used for evaluation. Video 1 [21]], Video 2 [22]],
and Video 3 [23]] were captured at different locations in bright
sunlight, under a cloudy condition, and at night, respectively.
Moreover, Video 4 [24]], annotated with ground-truth bounding
boxes, is set aside for assessing the risk of overfitting and
the generalization capability of AROD. None of the frames
in Video 4 are utilized in training our MLP model. If the
MLP model becomes overfitted and fails to generalize to a
new video, it could result in a degradation of the mAP (mean
Average Precision) by AROD.

In this paper, an object (e.g., a vehicle) in a traffic video
frame is one sample used for training. Videos 1, 2, and 3 have
2,833,699 samples in total. We split the videos so that the
samples in the first 30% of the videos are reserved for testing,
while the samples in the remaining 70% of the videos are used
for training and validation. (The 70% of the videos is further
divided into training and validation datasets with the split ratio
of 0.8:0.2.)

C. MLP Model Search and Training

For the sake of training only, we track a large number of
possible vehicle corners (e.g., K = 200). To reliably derive the
reference speed, we manually identify vehicle corners that pass
through the entire RoM (Figure [2), while rejecting noisy ones
that fail to go through the RoM. Subsequently, we analyze the
position of the identified vehicle ¢ over w successive frames
(e.g., w=120 frames for 4 seconds at 30 fps) using the Lucas-
Kanade [[16] and Shi-Tomasi [[19] methods (Section . Based
on that, we derive the reference pixel velocity of an arbitrary
vehicle i, v(¢), for all .

To train the MLP model, we use the following loss function,
where n denotes the number of samples in each mini-batch
and ©0(¢; 0) is the inferred pixel speed of the vehicle i using
the MLP with the current set of weights 0:

n

Loss = % > (0(3;0) — v(i))? (6)

i=1

To minimize the loss, we apply the Adam with weight decay
(AdamW) optimizer [20]. AdamW improves upon Adam [25]
by decoupling weight decay from gradient updates, supporting
per-weight regularization. In this way, it avoids overfitting and
enhances generalizability compared to Adam. In Equation[7] at
the jt" iteration, each weight is updated based on its gradient
mean (moving average), m;, and squared gradient (uncentered
variance), af—. In the equation, « is the learning rate, € is a

Optical flow analysis

Frame t-1

X)X X)X

0]

Frame t

No.

of neurons:

o

N)
//f\\».!,@wﬁm
1 'v“ J \\ | .

512

256 64 16 4

Fig. 3: Pixel motion speed inference for n objects via MLP-based regression

small constant used to prevent division by zero, and A is the
weight decay factor used to avoid overfitting via regularization:

.L_)\.gj (7
,/0]2+e

Thus, AdamW updates a weight by a smaller step size, if its
squared gradient is large or vice versa. In this paper, we set
a = 0.001 and A = 0.0005.

Based on this, we have analyzed various MLP model
architectures with different depths and widths, finding the
cost-effective MLP model in Figure [3] that minimizes the
loss efficiently. As depicted in the figure, our MLP model
has 5 hidden layers with 512, 256, 64, 16, and 4 neurons,
respectively. The final layer in Figure [3] has a single neuron
that produce the average pixel velocity of n objects, 0(t). As
illustrated in Figure [4 both the validation and training loss
curves of the MLP model exhibit a downward trend until
they plateau in the vicinity of the 20th epoch. The figure
demonstrates a favorable pattern of consistently decreasing
losses that swiftly stabilize. Hence, to avoid overfitting, we
terminate the training at epoch 20.

In addition, we empirically tune several parameters in
Algorithm [I] to optimize inference accuracy with minimal
complexity. For efficient inference, we set K=10 to track
at most 10 moving objects, e.g., vehicles, with the highest
confidence. The corner size is set to 15 x 15 pixels to track
fewer pixels than the entire pixels of a moving object. Finally,
in Equation El we set Tee = 76 = 10 pixels/frame and
71 = 1.7 pixels/frame, configuring ¢(1) > ... > ¢(6).

0j+1 :Qj —

D. Hardware Platform and Implementation

We assess AROD on a personal computer configured to
mimic a relatively inexpensive video analytics server, in
contrast to a high-end cloud server, for performing real-time
object detection near data sources (cameras) [I]]. It consists of
commodity hardware components: an Intel® Core i7-7820X
CPU, 64 GB of RAM, and an NVIDIA GeForce GTX 3080Ti

351

o \

251

—— Training Loss
Validation Loss

]
%]
o
— 154
101
5 \
-~ e~
01, ‘ ‘ ‘ ‘ ‘ ‘
0 5 10 15 20 25 30
Epochs

Fig. 4: Training and Validation Losses of MLP for Training
Epochs

GPU. The operating system is Ubuntu 18.04.6 LTS. All
methods are implemented using Python 3.10, PyTorch 2.0.1,
Scikit-learn 1.0.2, and OpenCV-python 4.7.0. For evaluation,
we employ three pretrained one-stage object detection models:
EfficientDet [6]], SSD [3], and YOLOVS5 [26], which provide
superior fps and similar detection accuracy, compared to two-
stage object detection models, such as [2]], [3], [9].

VI. EVALUATION

In Subsections [VI-A' through [VI-D, we describe the evalu-
ation results acquired using the test sets of Videos 1, 2, and 3
unseen during the training. Furthermore, in Subsection |VI-E]
we assess the mAP and generalizability of AROD using entire
Video 4 completely unseen during the training.

A. Pixel Speed Inference Errors

We compare the RMSE of our MLP model to those of
the Lucas-Kanade method and five other SOTA machine
learning methods in Table |I, Our model provides the most
robust inference in terms of RMSE. It achieves the smallest

RMSE for Video 1 and the second smallest RMSE values
for the other videos. For Videos 2 and 3, polynomial linear
regression achieves the smallest RMSE; however, its RMSE
for Video 1 is over 6.25x the RMSE of our model. In contrast
to the L-K method, our model exhibits an RMSE that is one
or two orders of magnitude smaller for all three videos.

TABLE I: RMSEs (pixels/frame) in pixel velocity inference
(boldface: best; underlined: second best)

Models [Video1 | Video2 [Video3
L-K method 79.4 25.7 26.6
Linear Regression 4.02 1.37 1.86
Polynomial LR 5.38 1.24 0.89
ElasticNet 4.02 2.17 2.18
XGBoost 091 1.36 1.45
CatBoost 1.03 1.61 1.49
MLP of AROD 0.86 1.26 1.26

B. Model Size, GFLOP, and Latency Comparisons

In Table ([} the model size, GFLOP, and latency of AROD
are one or more orders-of-magnitude smaller than those
of the object detection models due to the lightweight design.
Also, the latency of AROD is concealed via effective CPU-
GPU pipelining: AROD runs in the CPU and its latency is
significantly shorter than that of object detection simultane-
ously performed in the GPU, as shown in Table

TABLE II: AROD vs. the three object detection models
utilized for evaluation. AROD is executed in the CPU, but
each object detection model is executed in the GPU.

Models [Parameters [GFLOP [Latency
YOLOVS 72 M 7.7 21.1 ms
SSD300 229M 18.9 45.2 ms
EfficientDet-BO 39M 2.5 114.4 ms
AROD 0.6 M 0.002 3.8 ms

C. Frame Processing Rate for A Traffic Video Stream

As illustrated in Table AROD improves the fps
by approximately 32-61%, 110-174%, and 120-213% for
YOLOVS, SSD300, and EfficientDet-B0, respectively. AROD
significantly outperforms ERD [12] and L-filter [[13]] that en-
hance the fps of the three object detection models by 10-44%
and 31-47%, respectively, on the same hardware platform. This
is because, unlike ERD [12], L-filter [[13], and the methods
based on structural similarity analysis [LO], [[11] (discussed in
Section [[I), the fps of AROD is at least as high as the fps of
the standalone models without AROD, regardless of the road
occupancy status or structural similarity between frames, due
to efficient CPU-GPU pipelining

In Table AROD-+object detection achieves the lowest
fps for Video 1 and highest fps for Video 2, because Video
1 and Video 2 exhibit the highest and lowest pixel velocity,
respectively. However, the fps values of the object detection

'ERD [12] and L-filter [[13] are much faster than structural similarity anal-
ysis used in [[10], [11]. Detailed results are omitted due to space limitations.

models without AROD in the “Baseline” column do not
noticeably change across videos, since they are not adaptive
to the pixel motion speed.

TABLE III: Average fps of the baseline object detection
models without AROD in the 2nd column and AROD+object
detection models in the 3rd though 5th columns.

Models | Baseline [Videol [Video2 | Video 3

YOLOV5 46.1 611 74.3 70.6

SSD300 115 242 315 27.1
EfficientDet-B0 8.7 19.1 272 26.2

D. Scalability of AROD for Concurrent Streams

In this subsection, we assess the scalability of AROD
when it works alongside YOLOvVS5, which is the fastest
among the tested object detection models. As shown in Ta-
ble [Vl AROD+YOLOVS5 supports approximately 30-34 fps
per stream, when it processes three concurrent streams.
This represents a significant scalability advancement, partic-
ularly given the high resource demands of real-time object
detection. For instance, even a high-end NVIDIA V100 GPU
can only process two 30 fps video streams for object detection
using YOLOvS [27].

TABLE IV: Per-stream fps of AROD+YOLOv5 when one or
more streams are processed concurrently

Number of Streams [1 [2 [3
Video 1 61.1 41.5 30.2
Video 2 74.3 49.7 34.2
Video 3 70.6 48.5 31.6

E. Generalizability

For Video 4, AROD+YOLOV5 in Table [V] achieves com-
parable mAP to YOLOvS with respect to different IoU (In-
tersection over Union) thresholds used to measure the mAP.
This reveals that our MLP model is not overfitted and effec-
tively generalizes to Video 4 totally unseen during training.
Moreover, AROD+YOLOVS5 produces good visual results, as
captured in Figure

TABLE V: mAP of object detection for different IoU thresh-
olds

loUthreshold [01 [02 | 05
YOLOVS5 0.443 0.442 0401
AROD+YOLOVS5 0.445 0.444 0.406

VII. CONCLUSIONS AND FUTURE WORK

Efficient real-time object detection is essential for Al-based
intelligent traffic management. However, increasing complex-
ities of deep learning models for object detection result in
significant latency and resource requirements. In this paper,
we introduce a new framework for adaptive object detection
that dynamically reduces the execution rate of a plugged-in
object detection model during periods of low pixel velocity.

[EMEGAS | co, ©ar,0.70
- =3 X
\ L | person 0.67
”-\ &1 2
b \\ \;-)
| ud "

Fig. 5: Visualization: AROD+YOLOVS5 effectively detects moving objects under different lighting conditions.

We rigorously design and train a new lightweight MLP model
to infer pixel velocity with high accuracy, avoiding overfitting.
Moreover, AROD hides its latency via efficient CPU-GPU
pipelining. Our evaluation verifies the cost-effectiveness of
AROD: 1) AROD supports robust pixel velocity inference;
2) it enhances the fps of YOLOvVS, SSD, and EfficientDet
by approximately 32-61%, 110-174%, and 120-213%, respec-
tively; and 3) AROD+YOLOVS can concurrently process up
to three traffic video streams, supporting at least 30 fps per
stream without requiring expensive cloud GPUs. Moreover, it
effectively generalizes to a separate traffic video set aside by
providing the comparable mean average precision to that of
YOLOVS. In the future, we will investigate more advanced
approaches to further improve the efficiency and scalability
of real-time object detection, sustaining accuracy. Moreover,
we will explore how to raise the accuracy of real-time ob-
ject detection without largely increasing latency and resource
demands.

ACKNOWLEDGEMENT

This work was partially supported by National Science
Foundation grants CNS-2007854 and CNS-2326796.

REFERENCES

[1] P. Arthurs, L. Gillam, P. Krause, N. Wang, K. Halder, and A. Mouzakitis,
“A taxonomy and survey of edge cloud computing for intelligent
transportation systems and connected vehicles,” IEEE Transactions on
Intelligent Transportation Systems, vol. 23, no. 7, pp. 62066221, 2021.

[2] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international
conference on computer vision, pp. 1440-1448, 2015.

[3] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” Advances in neural
information processing systems, vol. 28, 2015.

[4] “YOLOVS.” https://github.com/ultralytics/yolov5/wiki.
cessed in April 2024.

[5] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “SSD: Single shot multibox detector,” in Computer Vision—
ECCV 2016: 14th European Conference, Amsterdam, The Netherlands,
October 11-14, 2016, Proceedings, Part I 14, pp. 21-37, Springer, 2016.

[6] M. Tan, R. Pang, and Q. V. Le, “EfficientDet: Scalable and efficient
object detection,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 10781-10790, 2020.

[71 H. Yin, A. Vahdat, J. M. Alvarez, A. Mallya, J. Kautz, and P. Molchanov,
“AdaViT: Adaptive tokens for efficient vision transformer,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 10809-10818, 2022.

[8] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[Online] Ac-

[9] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 580-587, 2014.

[10] U. Ahmed, J. C.-W. Lin, and G. Srivastava, “Multi-aspect detection
and classification with multi-feed dynamic frame skipping in vehicle
of internet things,” Wireless Networks, pp. 1-12, 2022.

[11] U. Ahmed, J. C.-W. Lin, and G. Srivastava, “Efficient Multimedia
Frame-Skipping Architecture Using Deep Learning in Vehicular Net-
works,” IEEE MultiMedia, vol. 29, no. 2, pp. 66-73, 2022.

[12] Y. Liu and K.-D. Kang, “Preprocessing via Deep Learning for Enhancing
Real-Time Performance of Object Detection,” in IEEE 97th Vehicular
Technology Conference (VIC2023-Spring), 2023.

[13] Y. Liu and K.-D. Kang, “Filtering empty video frames for efficient real-
time object detection,” Sensors, vol. 24, no. 10, 2024.

[14] A. Taheri Tajar, A. Ramazani, and M. Mansoorizadeh, “A lightweight
Tiny-YOLOV3 vehicle detection approach,” Journal of Real-Time Image
Processing, vol. 18, no. 6, pp. 2389-2401, 2021.

[15] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model compression and
hardware acceleration for neural networks: A comprehensive survey,”
Proceedings of the IEEE, vol. 108, no. 4, pp. 485-532, 2020.

[16] B. D. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” in IJCAI'81: 7th international joint
conference on Artificial intelligence, vol. 2, pp. 674-679, 1981.

[17] J. Lee, C.-J. Park, and L.-H. Lee, “An arbitrary point tracking using
multi-scale refined optical flow,” in The 9th International Conference
on Advanced Communication Technology, vol. 1, pp. 373-377, 1IEEE,
2007.

[18] C. Pan, D. Xue, Y. Xu, J. Wang, and R. Wei, “Evaluating the accuracy
performance of Lucas-Kanade algorithm in the circumstance of PIV
application,” Science China Physics, Mechanics & Astronony, vol. 58,
pp. 1-16, 2015.

[19] J. Shi et al., “Good features to track,” in 1994 Proceedings of IEEE
conference on computer vision and pattern recognition, pp. 593-600,
IEEE, 1994.

[20] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
2019.

[21] V. Kiraly, “Relaxing highway traffic.” https://www.youtube.com/watch?
v=nt3D26Irkho, 2017. [Online] Accessed in April 2024.

[22] R. Liu, “A nighttime traffic video of Guangfuxi Road, Shanghai, China
for object detection and tracking.” https://youtu.be/ZI-tcEbklks, 2023.
[Online] Accessed in April 2024.

[23] R. Liu, “A traffic video of Jinshajiang Road, Shanghai, China.” https:
/lyoutu.be/KD_9g1FIJYc, 2023. [Online] Accessed in April 2024.

[24] 1. Sboukraa, “Car Object Detection in Road Traf-
fic.” https://www.kaggle.com/datasets/boukraailyesali/
traffic-road- object-detection-dataset-using-yolo, 2023. [Online]
Accessed in April 2024.

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[26] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 7263-7271, 2017.

[27] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “Yolox: Exceeding yolo series
in 2021,” 2021.

https://github.com/ultralytics/yolov5/wiki
https://www.youtube.com/watch?v=nt3D26lrkho
https://www.youtube.com/watch?v=nt3D26lrkho
https://youtu.be/ZI-tcEbklks
https://youtu.be/KD_9g1FIJYc
https://youtu.be/KD_9g1FIJYc
https://www.kaggle.com/datasets/boukraailyesali/traffic-road-object-detection-dataset-using-yolo
https://www.kaggle.com/datasets/boukraailyesali/traffic-road-object-detection-dataset-using-yolo

	Introduction
	Related Work
	Background on Optical Flow Analysis
	AROD: Adaptive Real-Time Object Detection
	MLP Model Design, Datasets, and Training
	Objectives of Model Design
	Datasets
	MLP Model Search and Training
	Hardware Platform and Implementation

	Evaluation
	Pixel Speed Inference Errors
	Model Size, GFLOP, and Latency Comparisons
	Frame Processing Rate for A Traffic Video Stream
	Scalability of AROD for Concurrent Streams
	Generalizability

	Conclusions and Future Work
	References

