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Abstract

Self-attention has been widely used in various

machine learning models, such as vision trans-

formers. The standard dot-product self-attention

is arguably the most popular structure, and there

is a growing interest in understanding the mathe-

matical properties of such attention mechanisms.

This paper presents a fine-grained local sensi-

tivity analysis of the standard dot-product self-

attention, leading to new non-vacuous certified

robustness results for vision transformers. De-

spite the well-known fact that dot-product self-

attention is not (globally) Lipschitz, we develop

new theoretical analysis of Local Fine-grained

Attention Sensitivity (LoFAST) quantifying the

effect of input feature perturbations on the atten-

tion output. Our analysis reveals that the local

sensitivity of dot-product self-attention to ℓ2 per-

turbations can actually be controlled by several

key quantities associated with the attention weight

matrices and the unperturbed input. We empiri-

cally validate our theoretical findings by comput-

ing non-vacuous certified ℓ2-robustness for vision

transformers on CIFAR-10 and SVHN datasets.

The code for LoFAST is available at https:

//github.com/AaronHavens/LoFAST.

1. Introduction

The self-attention mechanism (Bahdanau et al., 2014;

Vaswani et al., 2017) has become a major building block

in many modern deep learning-based systems, achieving

state-of-the-art performance in various applications such as

vision and natural language processing. In particular, dot-

product self-attention (Vaswani et al., 2017) is one of the

most popular architectures used by many best-performing

networks such as the well-known Transformer architecture

and its variants, and has enabled successful applications
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such as large language models (LLM) (Brown et al., 2020;

Bubeck et al., 2023) and vision transformers (ViT) (Doso-

vitskiy et al., 2021; Radford et al., 2021). However, unlike

traditional neural network building blocks such as convo-

lutional layers, whose structures and behaviors are well

understood, the self-attention mechanism has more involved

mathematical properties. For example, for a simple con-

volutional layer, it is well known that its operator norm is

bounded (Sedghi et al., 2019), and convolution is a Lips-

chitz operation that always produces bounded outputs given

bounded inputs (Delattre et al., 2023). However, for the pop-

ular dot-product self-attention mechanism, existing work

has shown that they are surprisingly, not (globally) Lips-

chitz (Kim et al., 2021). The lack of Lipschitzness indicates

that dot-product self-attention can theoretically be very sen-

sitive to its input, which can impede stable learning (Qi

et al., 2023) and lead to poor robustness (Zhou et al., 2022;

Cisse et al., 2017). Although several architectures have been

proposed to amend the popular dot-product attention mecha-

nism to achieve Lipschitzness and bounded sensitivity (Kim

et al., 2021; Dasoulas et al., 2021; Qi et al., 2023), none

of them are popular in large-scale networks deployed in

production, and it is still an open challenge to understand

why the non-Lipschitz dot-product attention mechanism can

work well in practice.

In this work, instead of amending the network structure to

achieve bounded sensitivity, we aim to analyze the local

sensitivity of the unmodified dot-product attention mecha-

nism directly. Despite being non-Lipschitz, local sensitiv-

ity of the unmodified self-attention mechanism is actually

sufficient for inducing certified robustness (Proposition 1).

Built upon this observation, we derived novel analytical

bounds for the local sensitivity of dot-product self-attention

using tools from optimization and matrix theory. Our key

result (Theorem 1) deciphers a few key quantities associ-

ated with the sensitivity of the dot-product self-attention

operation, related to the attention weight matrix and their

inputs. Our theorem can be easily interpreted, and gives us

insights on how to control the local sensitivity of a Trans-

former. In particular, we found that the local sensitivity

of the self-attention layer is directly related to the norm

of its input, thus theoretically explaining the necessity of

using layer normalization (Ba et al., 2016) in the popular

Transformer architecture (Xiong et al., 2020). In addition,
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it allows us to utilize the recent progress of 1-Lipschitz

feedforward neural network layers, such as orthogonal lay-

ers (Trockman & Kolter, 2021; Prach & Lampert, 2022) and

the SDP-based Lipschitz Layers (Araujo et al., 2023), to

control the local sensitivity of Transformers. Note that since

the self-attention layer is non-Lipschitz, naively applying

1-Lipschitz layers could not provide any guarantees without

our new local results.

We confirm our theoretical findings on a few practical vision

transformers by quantifying their local sensitivity and certi-

fied ℓ2-robustness. Our experiments show that our derived

local sensitivity bounds are practical for vision transformers

and significantly improve against a naive approach for sen-

sitivity analysis. In addition, we also use gradient ascent to

find the maximum sensitivity empirically, and demonstrate

that our theoretical bounds and empirical measurements are

well-aligned. By varying the design parameters of the vision

transformers (e.g., number of attention heads and number of

tokens), our theory predicts the observed changes in local

sensitivity. As a direct application of our bounds, we also

give non-vacuous (certified) adversarial robustness guar-

antees for vision transformers with standard dot-product

self-attention mechanisms on CIFAR and SVHN datasets.

Our main contributions are summarized as follows.

• We are the first to consider a fine-grained theoretical anal-

ysis of local sensitivity bounds of unmodified dot-product

self-attention mechanism, contributing to the mathemati-

cal understanding of this popular network structure. De-

spite the non-Lipschitzness of dot-product self-attention,

our local bounds are non-trivial and can lead to non-

vacuous certified robustness for practical transformers.

• Our results give interpretable bounds that offer practi-

cal design insights into achieving low sensitivity on dot-

product self-attention-based transformers. It enables us to

borrow the recently developed algebraic tricks for training

globally 1-Lipschitz feedforward networks to provably

improve the local sensitivity of Transformers.

• Our theoretical results are validated through the empir-

ical evaluation of a large range of Transformers trained

with different design parameters. In addition, our tight

analytical bounds allow us to achieve fast scalable compu-

tation of non-trivial deterministic certified ℓ2-robustness

guarantees for vision transformers without modifying the

dot-product self-attention mechanism.

2. Related Work

Lipschitz Aspects and Regularity of Self-Attention. Since

the first Lispchitz analysis of dot-product self-attention

by (Kim et al., 2021), which showed that the standard dot-

product self-attention is not (globally) Lipschitz, a large

number of works have tried to propose variants of the origi-

nal dot-product self-attention to enforce this property (Kim

et al., 2021; Qi et al., 2023; Fei et al., 2022; Dasoulas et al.,

2021; Ye et al., 2023). For example, (Qi et al., 2023) pro-

posed scaled cosine similarity attention instead of dot prod-

uct attention and demonstrated the Lispchitz properties of

this new layer. Other works (Vuckovic et al., 2021; Castin

et al., 2023) have studied the regularity of attention under

a mathematical framework that uses measure theory and

integral operators to model attention. Under this new frame-

work, they show that the attention mechanism is regular

(under some specific assumptions) with respect to the 1-

Wasserstein distance. While this work generalizes the work

of (Kim et al., 2021), the regularity over the 1-Wasserstein

distance is not commonly used in practice.

Neural Networks with Prescribed Lipschitz Constant.

Recently, researchers have designed neural networks with

prescribed Lipschitz constant in order to better control the

stability (Miyato et al., 2018), robustness (Zhang et al.,

2021; Prach & Lampert, 2022; Meunier et al., 2022; Zhang

et al., 2022; Araujo et al., 2023; Wang & Manchester, 2023;

Li et al., 2019; Trockman & Kolter, 2021; Singla & Feizi,

2021; Yu et al., 2022; Xu et al., 2022; Havens et al., 2023;

Fazlyab et al., 2023; Barbara et al., 2024), and generaliza-

tion (Bartlett et al., 2017) of the network. However, most of

these techniques come with important design choices with

respect to the architecture that are not common in networks

with state-of-the-art performance.

Robustness of Transformer Networks. Randomized

smoothing (Cohen et al., 2019) has been used to obtain prob-

abilistic certified robustness of dot-product attention (Carlini

et al., 2023; Wu et al., 2023). However, randomized smooth-

ing suffers from high computational cost. General-purpose

certification tools such as CROWN (Zhang et al., 2018;

Wang et al., 2021) and zonotope abstractions have also been

tailored for robustness certification of dot-product attention

(Shi et al., 2020; Bonaert et al., 2021). However, these

prior approaches face severe scalability issues when applied

to large transformers on practical datasets such as CIFAR.

In this work, our analytical local sensitivity bounds can

be used to provide fast scalable computation of non-trivial

(deterministic) ℓ2 certified robust accuracy for dot-product

self-attention in ViT for image classification tasks such as

CIFAR-10 and SVHN. In our experiments, we provide a

comparison study looking at the trade-offs in terms of tight-

ness and scalability of CROWN, and show that our approach

LoFAST can complement existing deterministic verifiers

via providing enhanced scalability.

3. Preliminaries and Problem Formulation

Notation We denote the spectral norm and the Frobe-

nius norm as ∥·∥ and ∥·∥F , respectively. Two useful facts

are ∥AB∥F ≤ ∥A∥∥B∥F , and ∥A∥ = ∥AT∥. Given two

matrices A and B, their Kronecker product is denoted as

2



Fine-grained Local Sensitivity Analysis of Standard Dot-Product Self-Attention

A ⊗ B. We denote the vectorization operation as vec.

Let ei denote an n-dimensional vector whose i-th entry

is 1 and all other entries are 0. The n × n identity ma-

trix is denoted by In. The softmax mapping on matrices

with the temperature being 1 is denoted as softmax. We

know that softmax is 1-Lipschitz (Gao & Pavel, 2017), i.e.

∥softmax(A)− softmax(B)∥F ≤ ∥A−B∥F for any two

matrices A and B that have the same dimension.

Dot-Product Self-Attention. Let x1, x2, . . . , xn be a se-

quence of n vectors, where xi ∈ R
d. For vision tasks, each

xi is a patch. This sequence is represented as a matrix X .

The dot-product multi-head self-attention maps R
n×d to

R
n×d. With h heads, the l-th head maps Rn×d to R

n×d/h

as:

X =






− xT

1 −
...

− xT

n −




 ∈ R

n×d (1)

and

Yl = softmax

(

XWQ
l (XWK

l )T
√

d/h

)

XWV
l (2)

where WQ
l ,WK

l ,WV
l ∈ R

d×d/h denote the weight matri-

ces for the l-th head, and the softmax operation is applied

in a row-wise manner. Finally, the outputs of all heads are

concatenated as

f(X) = [Y1, . . . , Yh]W
O =

h∑

l=1

YlW
O
l , (3)

where WO = [(WO
1 )T, . . . , (WO

h )T]T ∈ R
d/h×d gives the

weight for the linear combination of the outputs from all the

heads. For simplicity, we introduce the notation Pl(X) as

Pl(X) = softmax

(

XWQ
l (XWK

l )T
√

d/h

)

. (4)

Hence the dot-product self-attention can be rewritten as:

f(X) =

h∑

l=1

Pl(X)XWV
l WO

l (5)

Residual Structure. Dot-product self-attention is typically

used in a residual form. In this case, the output is defined as

f(X) = X +
∑h

l=1 Pl(X)XWV
l WO

l .

Problem Statement. It is well-known that (5) is not glob-

ally Lipschitz (Kim et al., 2021). We are interested in an-

alyzing the local sensitivity of dot-product self-attention.

We consider the following model which unifies (5) and its

residual variant with H ∈ R
n×n:

F (X) = HX +

h∑

l=1

Pl(X)XWV
l WO

l . (6)

If H = 0, then (6) recovers the standard dot-product self-

attention (5). If H = I , then (6) reduces to the residual

setting. Given a local input point X and some small positive

scalar ϵ, we want to prove a bound in the following form:

∥F (X ′)− F (X)∥F ≤ δ(X, ϵ) (7)

for X ′ satisfying ∥X ′ −X∥F ≤ ϵ where the mapping F (·)
is defined by (6). We denote this set of ϵ-bounded perturba-

tions centered at X as Ω(X, ϵ) := {X ′ : ∥X ′ −X∥F ≤ ϵ}.

In principle, the tightest choice of δ(X, ϵ) is given by the

solution to the following constrained optimization problem

max
X′∈Ω(X,ϵ)

∥F (X ′)− F (X)∥F . (8)

One can use the projected gradient ascent method to search

solutions for (8). However, there are no polynomial-time

guarantees in solving the above problem globally. In ad-

dition, the bound (8) does not bring any insights for how

to control the local sensitivity via network structure design.

The goal of this paper is to develop a spectrum of choices

for δ(X, ϵ) that can capture the trade-off between tightness,

tractability, and interpretability.

Once we figure out an efficient way to compute δ(X, ϵ) for

the above problem, we can immediately apply the analysis in

a recursive manner to solve the local sensitivity analysis of

multi-layer networks consisting of various dot-product self-

attention layers. Specifically, consider a N -layer network:

F (X) = fN ◦ fN−1 ◦ · · · ◦ f0(X) (9)

where fk is either a dot-product self-attention layer (6) or

a globally 1-Lipschitz operation. Applying the local sen-

sitivity analysis in a recursive manner, we will be able to

compute δ(X, ϵ) for bounding the end-to-end local sensitiv-

ity of (9) as described by (7). Such a bound can be used to

prove the certified robustness of F on the data point X sub-

ject to adversarially chosen ℓ2 perturbations. Specifically,

the following result connects the local sensitivity bound

δ(X, ϵ) to certified ℓ2-robustness in a rigorous manner.

Proposition 1. Suppose F is a classifier that maps any

input X to the output as defined by (9). The j-th entry of

F (X) is denoted as [F (X)]j , which gives the logits value

for the j-th label class. The predicted label for X is given

by argmaxj [F (X)]j . Given an input X with the true label

y satisfying y = argmaxj [F (x)]j , if we have

Mf (X) := [F (X)]y −max
j ̸=y

[F (X)]j >
√
2δ(X, ϵ),

then for every τ satisfying ∥τ∥F ≤ ϵ, we must have

argmaxj [F (X + τ)]j = y.

The proof for the above result is almost identical to Tsuzuku

et al. (2018, Proposition 1), and hence deferred to the ap-

pendix. The above proposition provides a way to compute

the certified robust accuracy of dot-product self-attention

using our local sensitivity analysis.
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Distinction from Local-Lipschitz Bounds. We empha-

size that the local bound δ(X, ϵ) is not the same as a local-

Lipschitz bound. As a matter of fact, the local Lipschitz

approach can be unnecessarily conservative. Specifically,

the local Lipschitz bound applies for any two arbitrary points

in the ϵ-neighborhood of the original input X . In contrast,

our local sensitivity analysis is weaker in the sense that the

bound can only tell us the deviation of F (X ′) from a fixed

F (X). However, that is still sufficient for computing cer-

tified robustness as in Proposition 1. In Appendix A, we

will show explicitly how the existing local Lipschitz analy-

sis (Xixu, 2023) can only give vacuous certified robustness

results on CIFAR-10.

4. Fine-Grained Local Sensitivity Analysis

In this section, we perform the local sensitivity analysis for
the dot-product self-attention where F is defined by (6). We

have F (X) = HX +
∑h

l=1 Pl(X)XWV
l WO

l for either
H = 0 or H = I . First, the following bound based on the
splitting trick is standard:

∥F (X ′)− F (X)∥F

≤
∥

∥H(X ′ −X) +

h
∑

l=1

Pl(X)(X ′ −X)WV
l WO

l

∥

∥

F

+
∥

∥

h
∑

l=1

(Pl(X
′)− Pl(X))X ′WV

l WO
l

∥

∥

F

Next, we will bound the two terms on the right side. We use
the following notation

∆1(X,X ′) =
∥

∥H(X ′ −X) +

h
∑

l=1

Pl(X)(X ′ −X)WV
l WO

l

∥

∥

F

(10)

∆2(X,X ′) =
∥

∥

h
∑

l=1

(Pl(X
′)− Pl(X))X ′WV

l WO
l

∥

∥

F
(11)

If we can derive bounds in the form of:

∆1(X,X ′) ≤ δ1(X, ϵ), ∆2(X,X ′) ≤ δ2(X, ϵ)

which hold for all X ′ satisfying ∥X −X ′∥F ≤ ϵ, then we

can immediately set δ(X, ϵ) := δ1(X, ϵ) + δ2(X, ϵ), and

obtain the following bound for the self-attention map which

can be computed given a point X and perturbation radius ϵ.

max
X′∈Ω(X,ϵ)

∥F (X ′)− F (X)∥F ≤ δ1(X, ϵ) + δ2(X, ϵ)

Our fine-grained analysis addresses how to reduce the con-

servatism in deriving δ1(X, ϵ) and δ2(X, ϵ).

Reducing Conservatism in Deriving δ1(X, ϵ): Based on

the property of matrix norms, one can obtain the following

naive upper bound for maxX′∈Ω(X,ϵ) ∆1(X,X ′) (see the

appendix for a detailed derivation):

δ
(naive)
1 (X, ϵ) =

(

∥H∥+
h∑

l=1

∥WV
l WO

l ∥∥Pl(X)∥
)

ϵ.

(12)

The above bound is informative in showing that one can

potentially control ∆1(X,X ′) by constraining the spectral

norm of {WV
l ,WO

l }hl=1. However, the above bound can be

loose quantitatively. In contrast, the best possible bound for

δ1(X, ϵ) can be obtained via solving the following problem

maximize
X′∈Ω(X,ϵ)

∆1(X,X ′) (13)

It turns out that this problem actually has an analytical

solution. This leads to our first result stated as follows.

Lemma 1 (Key Sensitivity Metric). The exact solution to

the optimization problem (13) is given by

δ1(X, ϵ) := max
X′∈Ω(X,ϵ)

∆1(X,X ′) = ζ(X)ϵ (14)

where ζ(X) is defined as

ζ(X) =
∥
∥H ⊗ In +

h∑

l=1

(Pl(X)⊗ (WV
l WO

l )T)
∥
∥. (15)

Consequently, we have ∆1(X,X ′) ≤ δ1(X, ϵ) = ζ(X)ϵ,
for all X ′ satisfying ∥X ′ −X∥F ≤ ϵ.

A detailed proof for Lemma 1 is presented in the appendix.
The main proof idea is based on the following key identity:

vec

(

h
∑

l=1

(Pl(X)(X ′ −X)WV
l WO

l )T
)

=

(

h
∑

l=1

(Pl(X)⊗ (WV
l WO

l )T)

)

vec((X ′ −X)T)

which enables us to solve (13) exactly via viewing it as a

largest singular value problem. The quantity ζ(X) is termed

as the key sensitivity metric which quantifies the local sen-

sitivity of the self-attention around the data point X due

to the error ∆1. The computation of this metric is reason-

ably scalable so that one can efficiently compute this metric

for ViT image classifiers for datasets like CIFAR-10 and

SVHN. Later, we will show that this term is the dominating

term in the bound ∆1 +∆2, and hence one should calculate

this term exactly when fine-grained sensitivity analysis is

needed.

Reducing Conservatism in Deriving δ2(X, ϵ) The best

possible bound for ∆2(X,X ′) is the solution to the follow-

ing constrained maximization problem:

maximize
X′∈Ω(X,ϵ)

∆2(X,X ′) (16)
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One can apply the projected gradient ascent method to the

above problem. However, there are no guarantees that the

resultant solution is global due to the form of the cost func-

tion. The solution from the gradient ascent method only

provides lower bound for (16). To obtain a more tractable

upper bound, it is straightforward to apply the triangle in-

equality to show that (16) can be bounded by the following

term:

h∑

l=1

(

max
X′∈Ω(X,ϵ)

∥
∥(Pl(X

′)− Pl(X))
∥
∥
F

· max
X′∈Ω(X,ϵ)

∥X ′WV
l WO

l ∥
)

, (17)

which involve two maximization problems. Now we discuss

these two problems separately.

To address the term maxX′∈Ω(X,ϵ)∥X ′WV
l WO

l ∥, we can

apply the triangle inequality and obtain the following

tractable upper bound:

max
X′∈Ω(X,ϵ)

∥X ′WV
l WO

l ∥ ≤ ∥XWV
l WO

l ∥+ ∥WV
l WO

l ∥ϵ

(18)

The above upper bound can be efficiently calculated via

power iteration, and is less conservative than the naive

bound ∥WV
l WO

l ∥(∥X∥+ ϵ). Later, we will show that the

above upper bound is reasonable for the purpose of upper

bounding ∆1+∆2, since replacing it with the lower bounds

obtained by the projected gradient ascent method does not

affect the final overall bound value significantly.

Next, we discuss how to address

max
X′∈Ω(X,ϵ)

∥
∥Pl(X

′)− Pl(X)
∥
∥
F

(19)

Again, one can apply the projected gradient ascent method to

search for lower bounds for the above quantity. We are more

interested in obtaining less conservative upper bounds that

are computationally tractable. Since softmax is 1-Lipschitz,

we can show the following holds for any X:

∥Pl(X
′)− Pl(X)∥F

≤ 1
√

d/h
∥X ′WQ

l (WK
l )T(X ′)T −XWQ

l (WK
l )TXT∥F

(20)

Denoting Γ = X ′ −X . If ∥X ′ −X∥F ≤ ϵ, then we have

∥Γ∥F ≤ ϵ. We immediately have

∥Pl(X
′)− Pl(X)∥F

≤ 1
√

d/h
∥ΓWQ

l (WK
l )TXT +XWQ

l (WK
l )TΓT

+ ΓWQ
l (WK

l )TΓT∥F (21)

which leads to the following bound for (19):

1
√

d/h
max

Γ:∥Γ∥F≤ϵ
∥ΓWQ

l (WK
l )TXT

+XWQ
l (WK

l )TΓT + ΓWQ
l (WK

l )TΓT∥F
(22)

The above problem can be searched using the projected
ascent method. However, there are no polynomial-time
guarantees in maximizing a fourth-order polynomial subject
to a quadratic norm constraint. Fortunately, when ϵ is rea-
sonably small, the following bound is not loose due to the
negligible effects of the higher-order term. We can obtain
the following bound:

max
Γ:∥Γ∥F≤ϵ

1
√

d/h
∥ΓWQ

l (WK
l )TXT +XWQ

l (WK
l )TΓT∥F

+ max
Γ:∥Γ∥F≤ϵ

1
√

d/h
∥ΓWQ

l (WK
l )TΓT∥F

We can easily bound the second term as

max
Γ:∥Γ∥F≤ϵ

1
√

d/h
∥ΓWQ

l (WK
l )TΓT∥F (23)

≤ ϵ2
√

d/h
∥WQ

l (WK
l )T∥. (24)

In addition, the exact value of the first term can be calculated

using the following lemma.

Lemma 2. The following relation holds

max
Γ:∥Γ∥F≤ϵ

1
√

d/h
∥ΓWQ

l (WK
l )TXT +XWQ

l (WK
l )TΓT∥F

=
1

√

d/h
∥Ml(X)∥ϵ,

where Ml(X) is given by the following specific matrix

Ml(X) =In ⊗






xT

1W
K
l (WQ

l )T

...

xT

nW
K
l (WQ

l )T






+

n∑

i=1

(ei ⊗ In)⊗ (xT

i W
Q
l (WK

l )T).

(25)

The dimension of Ml(X) can be quite high. A bound that
can be quickly computed is given by

∥Ml(X)∥ ≤ ξl(X) :=
(

∥WQ

l (WK
l )TXT∥+ ∥XWQ

l (WK
l )T∥

)

.

(26)

With this we can now state two different bound for

∆2(X,X ′). Using Equation (25), we can state the following

bound

δ
(1)
2 (X, ϵ) =

h∑

l=1

ϵ
√

d/h

(

∥Ml(X)∥+ ϵ∥WQ
l (WK

l )T∥
)

·
(∥
∥XWV

l WO
l

∥
∥+ ϵ

∥
∥WV

l WO
l

∥
∥
)
.

(27)
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Using the relaxation of Ml(X) and Equation (26), we can

state a looser, but more tractable bound given by:

δ
(2)
2 (X, ϵ) =

h∑

l=1

ϵ
√

d/h

(

ξl(X) + ϵ
∥
∥WQ

l (WK
l )T

∥
∥

)

·
(∥
∥XWV

l WO
l

∥
∥+ ϵ

∥
∥WV

l WO
l

∥
∥
)
.

(28)

Obviously, we have δ
(1)
2 (X, ϵ) ≤ δ

(2)
2 (X, ϵ). Putting to-

gether all the bounds that we have obtained, we can state

the following local sensitivity result, which we will refer to

as Local Fine-grained Attention SensiTivity (LoFAST).

Theorem 1 (LoFAST). Consider the dot-product self-

attention model (6). Suppose an input point X is given.

For any X ′ satisfying ∥X ′ −X∥F ≤ ϵ, we have

∥F (X ′)− F (X)∥F ≤ ζ(X)ϵ+ δ
(1)
2 (X, ϵ)

≤ ζ(X)ϵ+ δ
(2)
2 (X, ϵ),

where ζ(X) is given by Equation (15), δ
(1)
2 (X, ϵ) is given

by Equation (27), and δ
(2)
2 (X, ϵ) is given by Equation (28).

The above bounds can be used to provide a competitive

method for fast scalable computation of non-trivial deter-

ministic ℓ2 certified robustness result of dot-product self-

attention on CIFAR-10 and SVHN datasets. We will show

this in the numerical result section.

Insights for Network Design. Based on the simple analyti-

cal forms of (15), (27), and (28), our bounds are highly inter-

pretable. Our theory should not suggest that weight matrices

and data with small magnitude are necessarily better for net-

work design. The right interpretation is that our bound can

be used to quantify the robustness/performance trade-off for

dot-product self-attention and achieve non-vacuous certified

robust accuracy. Importantly, Proposition 1 states that one

needs to simultaneously make the prediction margin Mf (X)
large and the local sensitivity δ(X, ϵ) small for inducing cer-

tified robustness. Based on Theorem 1, if we make ∥WQ
l ∥,

∥WK
l ∥, ∥WV

l ∥, ∥WO
l ∥, and ∥X∥ small, then our local sen-

sitivity bound is guaranteed to be small. However, using

very small matrix norm can also make the prediction margin

Mf (X) small (or even vacuous) for many data points. This

leads to a fundamental trade-off: we want to control the

matrix norms such that the local sensitivity in Theorem 1 is

not too high, while we also cannot overly reduce the matrix

norms (otherwise we sacrifice clean performance and the

prediction margin in Proposition 1 will become too small).

From this insight, it is possible to borrow the recent advance-

ments on how to constrain weight norms from the Lipschitz

network literature to design dot-product self-attention layers

with weight norm being controlled. In addition, the insight

on the need of controlling ∥X∥ further justifies the use of

layer normalization in training such attention layers.

5. Experiments

In this section, we will perform numerical experiments to

study the conservatism introduced in our fine-grained analy-

sis and how to use these local bounds in a scalable manner.

Furthermore, we will study how our analysis can be used

to inform the design of robust self-attention blocks when

applied to ViT on CIFAR-10 and SVHN datasets and ex-

plore the trade-offs between performance and robustness of

our regularized ViT. For concreteness, our experiments are

performed under the standard residual setting, i.e. H = I .

5.1. Studying Conservatism in the Local Bound

In our fine-grained local sensitivity analysis of multi-head

self-attention, each derivation step used to upper-bound

the output introduces conservatism. Of course, these steps

are important for making the local upper-bound computa-

tionally tractable and scalable. We aim to show that the

conservatism introduced by these choices does not signif-

icantly degrade the effectiveness of our approach and that

our key sensitivity metric in Lemma 1 is quite informative

for quantifying the robustness for small values of the ℓ2
input perturbation level ϵ. Recall that for the multi-head

self-attention block F , our analysis considers two major

terms, ∆1 and ∆2, in upper-bounding the local perturbed

output at an input X with respect to the Frobenius norm.

For the first term ∆1, we have already established a tight

upper-bound δ1(X, ϵ) = ζ(X)ϵ using the key sensitivity

metric, which can be readily computed by power-iterations.

Now we focus on the term ∆2.

Single-head Case: Bounding ∆2. To upper bound ∆2 in

the single-head case, we need to compute bounds for the

following two multiplicative terms.

∆2(X,X ′) ≤
∥
∥P (X ′)− P (X)

∥
∥
F

︸ ︷︷ ︸

:=∆2,1(X,X′)

·
∥
∥X ′WV WO

∥
∥

︸ ︷︷ ︸

:=∆2,2(X,X′)

For bounding ∆2,1, LoFAST (Theorem 1) offers us the

following two upper bounds from our fine-grained analysis:

δ
(1)
2,1 =

ϵ
√

d/h

(
∥M(X)∥+ ϵ∥WQ(WK)T∥

)

δ
(2)
2,1 =

ϵ
√

d/h

(

ξ(X) + ϵ
∥
∥WQ(WK)T

∥
∥

)

where M(X) is given in (25), and ξ(X) is defined in (26).

Clearly δ
(1)
2,2 is tighter than δ

(2)
2,1 , but more expensive to com-

pute. For ∆2,2, we compare two possible bounds for the

problem defined in Equation (18); δ
(1)
2,2 from LoFAST, and a

more conservative naive bound δ
(2)
2,2 .

δ
(1)
2,2(X, ϵ) =

∥
∥XWV WO

∥
∥+ ϵ

∥
∥WV WO

∥
∥,

δ
(2)
2,2(X, ϵ) =

∥
∥WV WO

∥
∥(∥X∥+ ϵ).

6







Fine-grained Local Sensitivity Analysis of Standard Dot-Product Self-Attention

Model
α, β-CROWN LoFAST (Theorem 1)

ϵ = 0.02 ϵ = 0.05 ϵ = 0.1 sec/sample ϵ = 0.02 ϵ = 0.05 ϵ = 0.1 sec/sample

ViT 3-Layer 41.2 14.1 - 6.7 29.1 16.0 3.0 0.055

ViT 4-Layer 42.9 - - 13.3 28.9 11.9 0.8 0.077

ViT 5-Layer 44.7 - - 20.4 27.6 8.3 0.0 0.094

Table 1: Certified robust accuracy results and average run-time for our local bound LoFAST compared to the verifier

α, β-CROWN (Zhang et al., 2018; Wang et al., 2021) on CIFAR-10. In order to accommodate CROWN, we consider smaller

ViTs with 128-dimensional features and only verify a subset of 1000 samples from the CIFAR-10 test set.

Dataset Verifier
ϵ= 0.02 ϵ= 0.05
certified acc. (%) (sec/sample) certified acc. (%) (sec/sample)

CIFAR-10
CROWN 41.99 4.33 14.35 6.06

CROWN+LoFAST 41.99 1.71 20.03 4.17

SVHN
CROWN 43.73 5.68 27.45 8.60

CROWN+LoFAST 43.73 1.44 29.51 3.64

Table 2: Certified robust accuracy results and average run-time using our local bound LoFAST as a first past and then using

α, β-CROWN (Zhang et al., 2018; Wang et al., 2021) on CIFAR-10 and SVHN. We observed a significant speed up and

even increased certified accuracy for ϵ = 0.05, since there are some points which LoFAST can verify that CROWN can not

and vice-versa. In this sense, LoFAST and CROWN can be truly complementary. In order to accommodate CROWN, we

consider a smaller 3-layer ViT with 128-dimensional features and only verify a subset of 1000 samples.

that dot-product self-attention has not been covered in these

previous works). We emphasize that our certified robustness

results heavily rely on directly exploiting the residual struc-

ture in the key sensitivity metric of Lemma 1 (instead of the

naive bound) as well as using Lipschitz controlled weights.

Comparison to General Purpose Verifier α, β-CROWN.

Verifiers such as CROWN and its variants (Zhang et al.,

2018; Wang et al., 2021) have been developed and inte-

grated into the general-purpose automatic verification soft-

ware AutoLiRPA (Xu et al., 2020). AutoLiRPA supports

ℓ2 perturbation models and has in the past been used for

robustness certification of dot-product attention (Shi et al.,

2020). However, this certification tool can be computation-

ally expensive and has not been successfully scaled to large

datasets such as CIFAR. Our analysis can serve as a com-

plementary tool due to its enhanced scalability. To better

understand how LoFAST compares to AutoLiRPA in tight-

ness, scalability and speed, we analyze a set of smaller ViT

models with 128-dim. features on a subset of the CIFAR-10

dataset (compared to 384-dim features on the entire CIFAR-

10 dataset in our previous experiments). For these ViT

models trained on CIFAR-10 with layers l ∈ {3, 4, 5}, we

examine the certified robust accuracy for ℓ2 perturbation

sizes ϵ ∈ {0.02, 0.05, 0.1} and the average wall-clock time

in seconds per sample on our local machine. These results

are reported in Table 1. Due to memory limitations, we

were not able to run AutoLiRPA on ViT with 6-layers or

more. Although CROWN was able to provide tighter results

for ϵ = 0.02, we encountered overflow-related failures for

some larger perturbation values (in Table 1, these failure

entries are denoted by ‘-’). In addition, AutoLiRPA took

considerably longer time to verify samples as the number of

layers increased.

Combining LoFAST and α,β-CROWN It is possible to

combine LoFAST with AutoLiRPA to achieve the best of

both worlds. For example, we can always first apply Lo-

FAST for fast verification, and then only apply AutoLiRPA

to those samples that cannot be verified by LoFAST. The

result of this approach for Lipschitz regularized 3-layer ViT

applied to CIFAR-10 and SVHN can be found in Table 2

for perturbation sizes ϵ ∈ {0.02, 0.05}. We observed a

significant speed up (up to a 3× speed up for smaller pertur-

bations) and even increased certified accuracy for ϵ = 0.05.

This is because there are some points which LoFAST can

verify that CROWN can not and vice-versa. In this sense,

LoFAST and CROWN can be truly complementary.

6. Conclusion

This work has provided a fine-grained local sensitivity anal-

ysis of the standard dot-product self-attention mechanism.

Our local sensitivity bound is analytical and highly inter-

pretable, shedding light on design and sensitivity control of

transformers. The theoretical results presented in this paper

have been empirically validated through a comprehensive

set of experiments. These findings provide a deeper under-

standing of the sensitivity/robustness issues of the standard

dot-product self-attention models.
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A. Local sensitivity analysis vs. local Lipschitz analysis

Local Lipschitz analysis aims at showing that for any two points (X ′, X ′′) in the ϵ-ball around X , the following bound holds

∥F (X ′)− F (X ′′)∥F ≤ L∥X ′ −X ′′∥F ,

where L is the local Lipschitz constant. This is a stronger condition than our local sensitivity analysis, and may be too strong

for establishing non-trivial certified robustness results of dot-product self-attention. If one can show that the above local

Lipschitz bound holds, then clearly one can choose δ(X, ϵ) = Lϵ to obtain a local sensitivity bound. However, given our

local sensitivity bound (7), one cannot guarantee local Lipschitzness. Specifically, the local Lipschitz bound applies for

any two arbitrary points in the ϵ-neighborhood of the original input X . In contrast, our local sensitivity analysis is weaker

in the sense that the bound can only tell us the deviation of F (X ′) from a fixed F (X). However, that is still sufficient for

computing certified robustness as stated in Proposition 1. Below we show explicitly how local-Lipscshitz-based approaches

can be too conservative for computing non-trivial/practical certified robustness results.

Comparison to Existing Local-Lipschitz-based Bound in Xixu (2023). For a concrete comparison, let us examine the

local Lipschitz bound from SpecFormer (Xixu, 2023), a recent work that computes the local Lipschitz bound by bounding

the gradient of the self-attention unit. In Table 3, we compare the SpecFormer local-Lipschitz-based bound from (Xixu,

2023) (Theorem 4.3) and LoFAST to bound the error maxX′∈Ω(X,ϵ)∥F (X ′)− F (X)∥F . We can see that LoFAST is better

by an order of magnitude and very close to the PGD lower-bound. As a consequence, SpecFormer is too conservative to

achieve non-vacuous certified robust accuracy on CIFAR-10. Our key sensitivity metric (Lemma 1) is novel and crucial for

obtaining non-vacuous certified robustness results on CIFAR-10 and SVHN.

Method ϵ = 0.01 ϵ = 0.03 ϵ = 0.05 ϵ = 0.07 ϵ = 0.09 ϵ = 0.10
PGD Lower-bound 0.0286 0.0860 0.1427 0.2008 0.2582 0.2860

LoFAST Upper-bound (ours) 0.0291 0.0875 0.1462 0.2052 0.2646 0.2943

SpecFormer Upper-bound (Xixu, 2023) 16.901 52.515 90.600 131.219 174.436 197.036

Table 3: We compare our approach LoFAST against the SpecFormer method based on a local-Lipschitz bound (Xixu, 2023).

We report the upper-bound maxX′∈Ω(X,ϵ)∥F (X ′)− F (X)∥F for a single residual multi-head attention layer.

B. Detailed Derivations and Proofs

B.1. Proof of Proposition 1

Let X be an input and suppose that the margin of the classifier F at X satisfies Mf (X) >
√
2δ(X, ϵ). Then for any

∥τ∥2 ≤ ϵ we have:

Mf (X + τ) =[F (X + τ)]y −max
j ̸=y

[F (X + τ)]j

=[F (X)]y −max
j ̸=y

[F (X)]j − ([F (X)]y − [F (X + τ)]y) + (max
j ̸=y

[F (X)]j −max
j ̸=y

[F (X + τ)]j)

=[F (X)]y −max
j ̸=y

[F (X)]k −
[
1
−1

]⊤ [
[F (X)]y − [F (X + τ)]y

maxj ̸=y[F (X)]j −maxj ̸=y[F (X + τ)]j

]

≥[F (X)]y −max
j ̸=y

[F (X)]j −
∣
∣
∣

[
1
−1

]⊤ [
[F (X)]y − [F (X + τ)]y

maxj ̸=y[F (X)]j −maxj ̸=y[F (X + τ)]j

] ∣
∣
∣

≥[F (X)]y −max
j ̸=y

[F (X)]j −
∥
∥
∥

[
1
−1

] ∥
∥
∥
2
∥F (X)− F (X + τ)∥2

≥Mf (X)−
√
2δ(X, ϵ) > 0

Therefore, argmaxj [F (X + τ)]j = y for all τ such that ∥τ∥2 ≤ ϵ. This completes the proof.
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B.2. A Detailed Derivation of (12)

By the triangle inequality, we have

∆1 ≤ ∥H∥+
h∑

l=1

∥Pl(X)(X ′ −X)WV
l WO

l ∥F

≤ ∥H∥+
h∑

l=1

∥Pl(X)∥∥(X ′ −X)WV
l WO

l ∥F

≤ ∥H∥+
h∑

l=1

∥Pl(X)∥∥X ′ −X∥F ∥WV
l WO

l ∥,

which gives the stated bound.

B.3. Proof of Lemma 1

First, we observe that

∥
∥H(X ′ −X) +

h∑

l=1

Pl(X)(X ′ −X)WV
l WO

l

∥
∥
F
=
∥
∥(X ′ −X)THT +

h∑

l=1

(WV
l WO

l )T(X ′ −X)T(Pl(X))T
∥
∥
F

Since (A⊗B) vec(V ) = vec(BV AT), we must have

vec

(

(X ′ −X)THT +

h∑

l=1

(WV
l WO

l )T(X ′ −X)T(Pl(X))T

)

=

(

(H ⊗ In) +

h∑

l=1

Pl(X)⊗ (WV
l WO

l )T

)

vec((X ′ −X)T).

Therefore, we are minimizing the ℓ2 norm of the right side of the above equation subject to an ℓ2 norm constraint

on vec((X ′ − X)T). Therefore, the maximum value is achieved by the product of the largest singular value of
(

(H ⊗ In) +
∑h

l=1 Pl(X)⊗ (WV
l WO

l )T
)

and ϵ.

B.4. Proof of Lemma 2

To prove this lemma, we denote Γi = x′
i − xi ∈ R

d. Set βij = ΓT

i W
Q(WK)Txj + xT

i W
Q(WK)TΓj . We can augment

{βij} as the following big vector:

Λ =






















β11

β12

...

β1n

β21

β22

...

βn1

...

βnn






















= M(X)








Γ1

Γ2

...

Γn







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