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certify the stability of the closed-loop system with either

state or output feedback.

Many recent works have considered searching for Lyapunov

or barrier functions using sampled data to guide the synthe-

sis of neural-network controllers (Dawson et al., 2022; Jin

et al., 2020; Liu et al., 2023; Sun et al., 2021). Although

empirically successful in a diverse range of tasks, they do

not yet provide formal guarantees. In contrast, other re-

search (Dai et al., 2021; Wu et al., 2023; Everett et al., 2021;

Vincent & Schwager, 2022) focuses on the rigorous certifica-

tion, which is grounded in formal methods (Liu et al., 2021;

Edwards et al., 2023), with tools such as Satisfiable Modulo

Theories (SMT) (Chang et al., 2019; Abate et al., 2020),

Mixed-integer Programming (MIP) (Dai et al., 2021; Chen

et al., 2021) or Semidefinite Programming (SDP) (Wang

et al., 2023; Yin et al., 2021; Fazlyab et al., 2020). These

formal methods formulate the Lyapunov certification prob-

lem as proving that certain functions (the Lyapunov function

itself, together with the negation of its time derivative) are

always non-negative over a domain. The state-of-the-art

SMT solvers (Gao et al., 2013; De Moura & Bjørner, 2008)

become limited by the complexity of the functions they can

certify, especially when the controller, dynamics, sensor

output function, observer, and the Lyapunov function in-

tertwine. Consequently, the SMT-based approaches only

synthesized simple controllers (Chang et al., 2019). On

the other hand, MIP solvers (Bertsimas & Tsitsiklis, 1997)

employ a branch-and-bound process and divide the verifi-

cation problem into linear subproblems. This approach has

better scalability to higher dimensional systems with neural-

network controllers (Dai et al., 2021), with the limitation

of requiring the original system dynamics to be approxi-

mated as piecewise linear functions; hence, it cannot handle

generic nonlinear dynamical systems. Due to these lim-

itations in scalability, previous neural-network Lyapunov

control works predominantly provided guarantees only for

state-feedback control. Our work addresses the more chal-

lenging but practically relevant domain of output-feedback

control, identifying and overcoming the limitations of exist-

ing methods to synthesize and certify controllers for real-

world applications.

In addition to relying on resource-intensive solvers for SMT,

MIP or SDP, prior works on neural certificates (Chang et al.,

2019; Dai et al., 2021; Wu et al., 2023) imposed the Lya-

punov derivative constraint across an entire explicitly de-

fined region, rather than the implicitly defined region-of-

attraction. This results in unnecessarily restrictive condi-

tions over uncertified regions. Moreover, all of them failed

to find the largest certifiable ROA by applying incorrect

restrictions on the ROA. We remedy these issues with a new

formulation in Sec. 3.2 that eliminates the overly stringent

constraints on the Lyapunov time-derivative over uncertifi-

able regions.

To achieve the ambitious goal of synthesizing Lyapunov-

stable neural control for general nonlinear dynamical

systems with both state and output feedback, our work

utilizes the latest progress from the neural network

verification community. Recently, α,β-CROWN (Zhang

et al., 2018; Xu et al., 2020a;b; Wang et al., 2021; Zhang

et al., 2022; Shi et al., 2023) demonstrated great scalability

in robustness verification of large-scale computer vision

neural networks and safety verification of neural-network

controllers (Everett et al., 2023; Mathiesen et al., 2022;

Rober et al., 2023; Kotha et al., 2024). This complete

verifier has a few distinct features that are specialized for

verifying NN-controlled systems. First, it exploits the

network structure of the underlying verification problem

by efficiently propagating linear bounds through neural

networks; in contrast, general-purpose MIP or SMT solvers

do not effectively exploit the rich NN structure. Second,

the bound propagation process is GPU-friendly, allowing

the efficient verification of large networks and the fast

evaluation of many subproblems using branch-and-bound.

Our key contributions include:

• We synthesize and verify neural-network controllers, ob-

servers together with Lyapunov functions for general nonlin-

ear dynamical systems. To the best of our knowledge, this

is the first work to achieve this goal with formal guarantees.

• We propose a novel formulation that defines a large certi-

fiable region-of-attraction (see Fig. 1) and removes the un-

necessarily restrictive Lyapunov time-derivative constraints

in uncertified regions. Compared with previous works, our

new formulation is easier to train and certify, while affording

control over the growth of the ROA during training.

• Unlike previous work with formal guarantees (Dai et al.,

2021; Chang et al., 2019), which guided training with ex-

pensive verifiers like SMT or MIP, we show that cheap

adversarial attacks with strategic regularization are suffi-

cient to guide the learning process and achieve a certified

ROA via post-training verification using a strong verifier.

The paper is organized as follows. In Sec.2, we discuss

the problem formulation and our parameterization of the

controllers/observers using NNs. In Sec.3, we present our

new formulation to verify Lyapunov stability and our new

training algorithm to synthesize controllers. In Sec.4, we

demonstrate that our novel formulation leads to larger ROAs

compared to the state-of-the-art approaches in multiple dy-

namical systems. For the first time in literature, we present

verified neural network controllers and observers for pendu-

lum and 2D quadrotor with output feedback control.

2. Problem Statement

We consider a nonlinear discrete-time plant

xt+1 = f(xt, ut) (1a)

yt = h(xt) (1b)
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where xt ∈ R
nx is the state, ut ∈ {u|ulo ≤ u ≤ uup} ⊂

R
nu is the control input, and yt ∈ R

ny is the system output.

We denote the goal state/control at equilibrium as x∗/u∗

and assume that f is continuous.

Our objective is to jointly search for a Lyapunov function

and a neural-network control policy (together with a neural-

network state observer for output feedback scenarios) to

formally certify the Lyapunov stability of the closed-loop

system. Moreover, we aim to train the policy that maximizes

the region-of-attraction (ROA) for the closed-loop system

and certify its inner-approximation. We will first introduce

our parameterization of the policy and the state observer,

and then specify our training and verification goal.

State feedback control. In this scenario, the controller

has full access to the accurate state xt. We parameterize the

control policy with a neural network φπ : Rnx → R
nu as

ut = π(xt) = clamp (φπ(xt)− φπ(x
∗) + u∗, ulo, uup) .

(2)

By construction, this control policy π(•) produces the goal

control u∗ at the goal state x∗.

Output feedback control. In the output feedback setting,

the controller does not have access to the true state xt but

rather only observes the output yt. The output can be either

a subset of the state or, more generally, a nonlinear function

of xt. In this paper, we consider the situation where there

are only uncertainties in the initial conditions. We aim to

estimate the state as x̂t with a dynamic state observer using

a neural network φobs : R
nx × R

ny → R
nx as

x̂t+1 = f(x̂t, ut) + φobs(x̂t, yt − h(x̂t))− φobs(x̂t,0ny
),
(3)

where 0ny
∈ R

ny is a vector of all 0s. Notice that

this state observer resembles the Luenberger observer

(Luenberger, 1971), where the observer gain is replaced

by the neural network φobs. By construction, if x̂t = xt,

then our observer ensures that x̂t+1 = xt+1. The network

φπ : R
nx × R

ny → R
nu now takes in both the state

estimate x̂t and output yt rather than the true state xt

ut = π(x̂t, yt)

= clamp (φπ(x̂t, yt)− φπ(x
∗, h(x∗)) + u∗, ulo, uup) .

(4)

Unlike linear dynamical systems whose optimal output

feedback controller only depends on the estimated state x̂t

(i.e., the separation principle (Åström, 2012; Athans, 1971)),

we expand the design of our neural-network controller

to depend on both x̂t and y for the nonlinear dynamical

systems. By also incorporating the output yt, we enable

the controller to distinguish and appropriately react to

different actual states xt that may correspond to the same

state estimate. We find this controller design to be sufficient

for all our experiments.

Unifying state and output feedback notation. To unify

the design for both state and output feedback control and

simplify the notation, we introduce an internal state ξt ∈
R

nξ with the closed-loop dynamics

ξt+1 = fcl(ξt). (5)

For state feedback, the internal state is simply the true state

ξt = xt and the closed-loop dynamics is

fcl(ξt) = f(ξt, π(ξt)). (6)

For output feedback, we define the state prediction error

et = x̂t − xt, whose value at the equilibrium is required to

be e∗ ≡ 0nx
. The internal state is defined as ξt = [xt, et]

⊤

with closed-loop dynamics

fcl(ξt) =

[

f(xt, π(x̂t, h(xt)))
f(x̂t, π(x̂t, h(xt))) + g(xt, x̂t)− xt

]

(7a)

g(xt, x̂t) = φobs(x̂t, h(xt)− h(x̂t))− φobs(x̂t,0ny
).
(7b)

Definition 2.1 (region-of-attraction). The region-of-

attraction for an equilibrium state ξ∗ is the largest invari-

ant set R such that under the closed-loop dynamics (5),

limt→∞ ξt = ξ∗ for all ξ0 ∈ R.

Training and verification goal. Formally, we aim at finding

a Lyapunov function V (ξt) : Rnξ → R, and an invariant

and bounded set S that contains the goal state at the equi-

librium ξ∗ as a certified inner-approximation of the ROAR.

Our objective is formalized in the optimization problem

max
V,π,φobs

Vol(S) (8a)

s.t V (ξt) > 0 ∀ξt ̸= ξ∗ ∈ S (8b)

V (ξt+1)− V (ξt) ≤ −κV (ξt) ∀ξt ∈ S (8c)

V (ξ∗) = 0, (8d)

where κ > 0 is a fixed constant for exponential stability

convergence rate. Constraints (8b)-(8d) guarantee that tra-

jectories originating from any state within S will eventually

converge to the goal state ξ∗. Hence, S is an inner-

approximation of the ROA. Our subsequent efforts will fo-

cus on expanding this set S for broader stability guarantees.

3. Methodology

Previous works on verified neural certificates (Chang et al.,

2019; Dai et al., 2021; Wu et al., 2023) enforced overly

restrictive Lyapunov derivative constraints in an entire ex-

plicitly defined region, and failed to find the largest verifi-

able ROA. In this section, we present our new formulation

that defines a larger certifiable ROA and removes these con-

straints outside the ROA. We then discuss our verification

and training algorithms to generate stabilizing controllers

and observers together with Lyapunov certificates.
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A new formulation for verifying ROA. To overcome the

limitations of existing approaches, we describe how to re-

formulate the derivative condition (8c), originally defined

over S , to be verified over the explicitly defined region B.

Theorem 3.3. Let F (ξt) := V (fcl(ξt))− (1− κ)V (ξt). If

the condition

(−F (ξt) ≥ 0∧ ξt+1 ∈ B) ∨ (V (ξt) ≥ ρ), ∀ξt ∈ B (14)

holds, then the closed-loop system (5) is Lyapunov stable

with S as the certified ROA.

Namely a point ξt ∈ B either satisfies the Lyapunov function

value decreasing and will stay in B at the next time step,

or is outside of the certified ROA S. Adding the condition

V (ξt) ≥ ρ makes verification easier, as the verifier only

needs to check the Lyapunov derivative condition when ξt
is within the sublevel set V (ξt) < ρ.

Verification with α,β-CROWN. The verification prob-

lem (14) is presented as a general computation graph to

α,β-CROWN, and we extended the verifier to support all

nonlinear operations in our system, such as trigonometric

functions. Initially, α,β-CROWN uses an efficient bound

propagation method (Zhang et al., 2018) to lower bound

−F (ξt) and V (ξt) − ρ on B; if one of the lower bound

is nonnegative, (14) is verified. Otherwise, α,β-CROWN

conducts branch-and-bound: it splits B into smaller regions

by cutting each dimension of B and solving verification

subproblems in each subspace. The lower bounds tend

to be tighter after branching, and (14) is verified when

all subproblems are verified. We modified the branching

heuristic on B to encourage branching at ξ∗, since F (ξt)
tends to be 0 around ξ∗, and tighter lower bounds are

required to prove its positiveness. Compared to existing

verifiers for neural Lyapunov certificates (Chang et al.,

2019; Dai et al., 2021), the efficient and GPU-friendly

bound propagation procedure in α,β-CROWN that exploits

the structure of the verification problem is the key enabler

to solving the difficult problem presented in (14). We can

use bisection to find the largest sublevel set value ρmax that

satisfies (14). Our verification algorithm is outlined in 1.

3.3. Training Formulation

We adopt a new single-step approach that can directly syn-

thesize and verify the ROA. We define H(ξt+1) as the viola-

tion of ξt+1 staying within B, which is positive for ξt+1 /∈ B
and 0 otherwise. Mathematically, for an axis-aligned bound-

ing box B = {ξ|ξlo ≤ ξ ≤ ξup},

H(ξt+1) = ∥ReLU(ξt+1− ξup)∥1+∥ReLU(ξlo− ξt+1)∥1.
(15)

Theorem 3.4. The following conditions are necessary and

sufficient for each other:

(F (ξt) ≤ 0) ∧ (H(ξt+1) ≤ 0) ∀ξt ∈ S ⇔ (16a)

Algorithm 1 Lyapunov-stable Neural Control Verification

1: Input: neural-network controller π, observer network

φobs, Lyapunov function V , sublevel set value estimate

ρ̂max (possibly from training), scaling factor λ, conver-

gence tolerance tol
2: Output: certified sublevel set value ρmax

3: // Find initial bounds ρlo and ρup for bisection

4: Verify (14) with (π, φobs, V, ρ̂max) via α,β-CROWN

5: if verified then

6: ρlo = ρ̂max

7: ρup = multiply ρ̂max by λ until verification fails

8: else

9: ρup = ρ̂max

10: ρlo = divide ρ̂max by λ until verification succeeds

11: end if

12: // Bisection to find ρmax

13: while ρup − ρlo > tol do

14: ρmax ←
ρlo+ρup

2
15: Verify (14) with (π, φobs, V, ρmax) via α,β-CROWN

16: if verified then

17: ρlo ← ρmax

18: else

19: ρup ← ρmax

20: end if

21: end while

min(ReLU (F (ξt))+c0H(ξt+1), ρ−V (ξt)) ≤ 0 ∀ξt ∈ B.
(16b)

Here, c0 > 0 balances the violations of Lyapunov derivative

condition and set invariance during training. The condition

H(ξt+1) ≤ 0 ensures S is invariant. Now we can synthesize

the Lyapunov function and the controller satisfying condi-

tion (16b) over the explicitly defined domain B.1 We define

the violation on (16b) as

L
V̇
(ξt; ρ) = ReLU(min(ReLU(F (ξt))+c0H(ξt+1), ρ−V (ξt))).

(17)

The objective function (8a) aims at maximizing the vol-

ume of S. Unfortunately, the volume of this set cannot

be computed in closed form. Hence, we seek a surrogate

function that, when optimized, indirectly expands the vol-

ume of S. Specifically, we select some candidate states

ξ
(i)
candidate, i = 1, . . . , ncandidate that we wish to stabilize with

our controller. The controller and Lyapunov function are

optimized to cover ξ
(i)
candidate with S, i.e., V (ξ

(i)
candidate) < ρ.

1To enforce (8c) in polynomial optimization, the S-procedure
(Pólik & Terlaky, 2007) from control theory employs finite-degree
Lagrange multipliers to decide whether a polynomial inequality
V (ξt+1)− V (ξt) ≤ −κV (ξt) is satisfied over an invariant semi-
algebraic set {ξt|V (ξt) < ρ}. In contrast, we can directly enforce
(16b) thanks to the flexibility of α,β-CROWN.
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Formally we choose to minimize this surrogate function

Lroa(ρ) =

ncandidate
∑

i=1

ReLU

(

V (ξ
(i)
candidate)

ρ
− 1

)

(18)

in place of maximizing the volume of S as in (8a). By

carefully selecting the candidate states ξ
(i)
candidate, we can

control the growth of the ROA. We discuss our strategy to

select the candidates in more detail in Appendix B.1.

3.4. Training Controller, Observer and Lyapunov

Function

We denote the parameters being searched during training as

θ, including:

• The weights/biases in the controller network φπ;

• (NN Lyapunov function only) The weights/biases in

the Lyapunov network φV ;

• The matrix R in (9) or (10).

• (Output feedback only) The weights/biases in the ob-

server network φobs.

Mathematically we solve the problem (8) through optimiz-

ing θ in the following program

min
θ

objective (18) (19a)

s.t constraint (16b), (19b)

where (8b) and (8d) are satisfied by construction of the

Lyapunov function. Note that the constraint (16b) should

hold for infinitely many ξt ∈ B. To make this infinite-

dimensional problem tractable, we adopt the Counter Exam-

ple Guided Inductive Synthesis (CEGIS) framework (Abate

et al., 2018; Dai et al.; Ravanbakhsh & Sankaranarayanan),

which treats the problem (19) as a bi-level optimization

problem. In essence, the CEGIS framework follows an

iterative process. During each iteration,

a. Inner problem: it finds counterexamples ξiadv by maxi-

mizing (17) .

b. Outer problem: it refines the parameters θ by minimiz-

ing a surrogate loss function across all accumulated

(and hence, finitely many) counterexamples ξiadv.

This framework has been widely used in previous works

to synthesize Lyapunov or safety certificates (Chang et al.,

2019; Dai et al., 2021; Abate et al., 2018; Ravanbakhsh

& Sankaranarayanan). However, a distinct characteristic

of our approach for complex systems is the avoidance of

resource-intensive verifiers to find the worst case counterex-

amples. Instead, we use cheap projected gradient descent

(PGD) (Madry et al., 2017) to find counterexamples that

violate (16b). We outline our training algorithm in 2.

CEGIS within S. A major distinction compared to many

CEGIS-based approaches is in line 12 and 16, where LV̇

Algorithm 2 Training Lyapunov-stable Neural Controllers

1: Input: plant dynamics f and h, region-of-interest B,

scaling factor γ, PGD stepsizes α and β, learning rate η
2: Output: Lyapunov candidate V , controller π, observer

φobs all in θ
3: Training dataset D = ∅

4: for iter = 1, 2, · · · do

5: Sample points ξ̄j ∈ ∂B
6: for rho descent = 1, 2, · · · do

7: ξ̄j ← Project∂B

(

ξ̄j − α ·
∂V (ξ̄j)

∂ξ̄

)

8: end for

9: ρ = γ ·minj V (ξ̄j)
10: Sample counterexamples ξiadv ∈ B
11: for adv descent = 1, 2, · · · do

12: ξiadv ← ProjectB

(

ξiadv + β ·
∂LV̇ (ξiadv;ρ)

∂ξadv

)

13: end for

14: D ← {ξiadv} ∪ D
15: for epoch = 1, 2, · · · do

16: θ ← θ − η∇θL(θ;D, ρ)
17: end for

18: end for

only enforces the Lyapunov derivative constraint inside the

certifiable ROA which depends on ρ. To encourage the

sublevel set in (11) to grow beyond B, we parameterize

ρ = γ ·minξ̄j∈∂B V (ξ̄j) with the scaling factor γ > 1. The

largest γ that leads to ρ̂max can be found using bisection. In

line 5−9, we sample many points ξ̄j on the periphery of B,

and apply PGD to minimize V (ξ̄j). In line 10−14, we apply

PGD again to maximize the violation (17) over randomly

sampled ξiadv ∈ B to generate a set of counterexamples in

the training set D. To make the training more tractable, we

start with a small B and gradually grow its size to cover the

entire region we are interested in.

Loss functions for training. In line 16 of Algorithm 2, we

define the overall surrogate loss function as

L(θ;D, ρ) =
∑

ξi
adv

∈D

LV̇ (ξ
i
adv; ρ)+c1Lroa(ρ)+c2∥θ∥1+c3Lobs,

(20)

where c1, c2, c3 > 0 are all given positive constants. The

term LV̇ (•) is the violation on the Lyapunov derivative con-

dition, defined in (17); the term Lroa is the surrogate loss

for enlarging the region-of-attraction, defined in (18). To

ease the difficulty of verification in the next step, we indi-

rectly reduce the Lipschitz constant of the neural networks

through the l1 norm regularization ∥θ∥1. Finally, we add

Lobs for output feedback case. We observe that it is impor-

tant to explicitly regulate the observer performance during

the training process. Otherwise, the training can easily di-

verge, and the observer will become unstable. In particular,
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methods cannot handle such non-polynomial observation

function with clamp
(

y
cos(θ−φ) , 0, 5

)

. Similar to the state

feedback 2D quadrotor, we compare against the previous

formulation (13) and observe that verification is impossi-

ble since PGD attack can always find adversarial samples

during training. In contrast, training using our formulation

converges quickly to the stage where PGD attack cannot find

adversarial samples. Fig. 7b demonstrates that the synthe-

sized Lyapunov function using our approach keeps decreas-

ing along the simulated trajectories using our Lyapunov-

stable NN controller and observer. The black contours in

Fig. 7c and 7d represent a decently large ROA verified by

α,β-CROWN.

5. Conclusion

In this paper, we propose a novel formulation to efficiently

synthesize and verify neural-network controllers and ob-

servers with Lyapunov functions, providing one of the earli-

est formal stability guarantees for output feedback systems

in the literature. Our new formulation actively promotes

a large certifiable region-of-attraction. Distinct from prior

works which rely on resource-intensive verifiers (e.g., SOS,

MIP or SMT) to generate counterexamples during train-

ing, we incorporate cost-effective adversarial attacks that

notably enhance training efficiency. Post-training, the Lya-

punov conditions undergo a rigorous verification procedure

tailored for NN verification using α,β-CROWN.

Limitations

While our method improves scalability for neural certifi-

cates by avoiding resource-intensive solvers for SOS, MIP,

or SMT, the system dimensionality still poses a challenge

for rigorous certification. Previous methods relying on ex-

pensive complete solvers were only able to handle state feed-

back systems with lower dimensions: (Zhou et al., 2022)

only dealt with 2-dimensional systems, (Chang et al., 2019)

also suffered beyond 2 dimensions (errors and reproducibil-

ity issues are reported here), and (Wu et al., 2023) scaled

up to a 4-dimensional cartpole system (as noted in Ap-

pendix B.6, their corrected implementation failed for the

6-dimensional PVTOL). Although our approach extends

neural certificates from state feedback to output feedback

control with 8 dimensions, the dimensions of the addressed

systems remain moderate. We are interested in exploring

the framework’s potential in higher dimensional systems

with more complicated observation functions beyond the

truncated lidar readings, such as images or point clouds.
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System Feedback Lyapunov function controller observer Region-of-interest (upper limit)

Pendulum State (16, 16, 8) (8, 8, 8, 8) — [12, 12]
Path tracking State (16, 16, 8) (8, 8, 8, 8) — [3, 3]
Quadrotor State Quadratic (8, 8) — [0.75, 0.75, π

2 , 4, 4, 3]
Pendulum Output Quadratic (8, 8, 8) (8, 8) [0.4π, 0.4π, 0.1π, 0.1π]
Quadrotor Output Quadratic (8, 8) (8, 8) [0.1, 0.2π, 0.2, 0.2π, 0.05, 0.1π, 0.1, 0.1π]

Table 3: Neural network size and region-of-interest for each task. The tuples denote the number of neurons in each layer of

the neural network. All the networks use the leaky ReLU activation function.

A. Proofs

A.1. Proof of Theorem 3.3

Proof.

(−F (ξt) ≥ 0 ∧ ξt+1 ∈ B) ∨ (V (ξt) ≥ ρ), ∀ξt ∈ B (22a)

⇔(−F (ξt) ≥ 0 ∧ ξt+1 ∈ B), ∀(ξt ∈ B ∧ V (ξt) < ρ) (22b)

⇔(V (ξt+1)− V (ξt) ≤ −κV (ξt) ∧ ξt+1 ∈ B), ∀ξt ∈ S (22c)

⇔(V (ξt+1)− V (ξt) ≤ −κV (ξt) ∧ ξt+1 ∈ B ∧ V (ξt+1) < ρ), ∀ξt ∈ S (22d)

⇔(V (ξt+1)− V (ξt) ≤ −κV (ξt) ∧ ξt+1 ∈ S), ∀ξt ∈ S (22e)

Hence S is an invariant set and the function V decreases exponentially within this invariant set, which proves stability, and S
as an inner approximation of the ROA. The appearance of V (ξt+1) < ρ in (22d) arises from the fact that V (ξt) < ρ, ∀ξt ∈ S
and V (ξt+1) ≤ V (ξt) < ρ by (8c).

A.2. Proof of Theorem 3.4

Proof.

min(ReLU (F (ξt)) + c0H(ξt+1), ρ− V (ξt)) ≤ 0 ∀ξt ∈ B (23a)

⇔(ReLU (F (ξt)) + c0H(ξt+1) ≤ 0) ∨ (ρ− V (ξt) ≤ 0) ∀ξt ∈ B (23b)

⇔(ReLU (F (ξt)) ≤ 0 ∧ c0H(ξt+1) ≤ 0) ∨ (ρ− V (ξt) ≤ 0) ∀ξt ∈ B (23c)

⇔(F (ξt) ≤ 0 ∧H(ξt+1) ≤ 0) ∨ (ρ− V (ξt) ≤ 0) ∀ξt ∈ B (23d)

⇔(F (ξt) ≤ 0 ∧H(ξt+1) ≤ 0), ∀(ξt ∈ B ∧ V (ξt) < ρ) (23e)

⇔(F (ξt) ≤ 0 ∧H(ξt+1) ≤ 0), ∀ξt ∈ S (23f)

(23c) follows from the fact that both ReLU (F (ξt)) and H(ξt+1) are nonnegative.

B. Experiment Details

B.1. Candidate State Selection for Growing ROA

On the one hand, the candidate states that we hope to be covered in the invariant set S should be diverse enough to encourage

the ROA to grow in all directions; on the other hand, they should not be irregularly spread across the entire state space

because such candidates might shape the ROA in conflicting directions and deteriorate the satisfaction of the Lyapunov

derivative condition (8c). We require the candidate states to have the same distance from the goal state in the metric of the

Lyapunov function value and start by sampling states on the 1-level set of a reference Lyapunov function Vref. For state

feedback, we choose Vref to be the LQR Lyapunov function xTSx (S is the solution to the Riccati equation); for output

feedback, we select Vref = xTSx+ eTP−1e (P is the asymptotic state variance at the goal state obtained by solving the

discrete Riccati equation). After the NN Lyapunov function is trained to achieve a reasonable ROA, we can sample states

slightly outside the current ROA as candidates.
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