
This paper is included in the
Proceedings of the 21st USENIX Symposium on

Networked Systems Design and Implementation.

April 16–18, 2024 • Santa Clara, CA, USA

978-1-939133-39-7

Open access to the Proceedings of the

21st USENIX Symposium on Networked

Systems Design and Implementation

is sponsored by

NetVigil: Robust and Low-Cost Anomaly Detection
for East-West Data Center Security

Kevin Hsieh, Microsoft; Mike Wong, Princeton University and Microsoft;

Santiago Segarra, Microsoft and Rice University; Sathiya Kumaran Mani,

Trevor Eberl, and Anatoliy Panasyuk, Microsoft; Ravi Netravali, Princeton University;

Ranveer Chandra and Srikanth Kandula, Microsoft

https://www.usenix.org/conference/nsdi24/presentation/hsieh

NetVigil: Robust and Low-Cost Anomaly Detection for

East-West Data Center Security

Kevin Hsieh∗1 Mike Wong∗2,1 Santiago Segarra1,3 Sathiya Kumaran Mani1

Trevor Eberl1 Anatoliy Panasyuk1 Ravi Netravali2 Ranveer Chandra1 Srikanth Kandula1

1Microsoft 2Princeton University 3Rice University

Abstract– The growing number of breaches in data centers

underscores an urgent need for more effective security. Tra-

ditional perimeter defense measures and static zero-trust ap-

proaches are unable to address the unique challenges that arise

from the scale, complexity, and evolving nature of today’s

data center networks. To tackle these issues, we introduce

NetVigil, a robust and cost-efficient anomaly detection system

specifically designed for east-west traffic within data center

networks. NetVigil adeptly extracts security-focused, graph-

based features from network flow logs and employs domain-

specific graph neural networks (GNNs) and contrastive learn-

ing techniques to strengthen its resilience against normal

traffic variations and adversarial evasion strategies. Our evalu-

ation, over various attack scenarios and traces from real-world

production clusters, shows that NetVigil delivers significant

improvements in accuracy, cost, and detection latency com-

pared to state-of-the-art anomaly detection systems, providing

a practical, supplementary security mechanism to protect the

east-west traffic within data center networks.

1 Introduction

The modern era of digitalization has brought about unprece-

dented growth in data center networks, ushering in a period

where the need for robust security measures is more critical

than ever before. Recent high-profile breaches, such as the

Equifax breach [1] and the SolarWinds attack [3, 82] have

exposed vulnerabilities in data center network security and

demonstrate catastrophic consequences that can arise from

a lack of adequate protection. As cyber threats continue to

evolve and grow in sophistication, there is an urgent need to

develop innovative solutions to safeguard sensitive informa-

tion and ensure the integrity of data center networks.

One such area that warrants particular attention is the se-

curity of east-west traffic within data centers. Traditional

security measures have focused primarily on securing north-

south traffic at the network perimeter, which has left inter-

nal systems susceptible to lateral movements and persistent

threats from compromised nodes, SSH keys, or other creden-

tials [73, 75]. Zero-trust architecture [44, 66] aims to mitigate

these risks by securing east-west communication and data

* Equal contribution.

flows. However, current zero-trust solutions, such as micro-

segmentation [40,59,70,77], rely only on static access control

rules and are ill-equipped to detect dynamic and unusual be-

haviors, leaving networks exposed to potential attacks and

lateral movement.

Addressing the critical gap in data center network security

necessitates the development of an effective and always-on

network anomaly detector specifically tailored for east-west

traffic. Although existing network anomaly detection solu-

tions have achieved significant progress in handling north-

south traffic [32, 47], they struggle to overcome the unique

challenges associated with east-west traffic. First, the majority

of these solutions require capturing and analyzing network

packets, leading to a cost that becomes prohibitively high

when implemented across all nodes. For example, a recent

high-throughput malicious traffic detection system [31] de-

mands at least 17 cores and 10 GB of memory per node to

secure a 10 Gb NIC, resulting in an annual cost of six million

dollars for an application comprising 1,000 nodes. Second, ex-

isting solutions are known for generating false alarms [43,57],

an issue further amplified by the dynamic nature of east-west

traffic. Even a marginal false alarm rate can significantly es-

calate operational overhead at scale, causing security teams

to inadvertently neglect genuine threats. Third, a multitude of

solutions depend on labeled malicious datasets or signatures

for training their detectors [22,46,51,53], a strategy that is not

only impractical at scale but also renders systems susceptible

to novel zero-day attacks [23, 55].

Objectives and Techniques. We introduce NetVigil, a novel

anomaly detection system explicitly designed for securing

east-west traffic in large-scale networks. In light of the chal-

lenges and limitations associated with existing solutions,

NetVigil is designed to fulfill three primary objectives: (a)

guaranteeing cost-effectiveness when monitoring numerous

nodes, (b) precisely identifying anomalous behaviors while

emphasizing the reduction of false alarms, and (c) demonstrat-

ing robustness to normal traffic changes without depending

on prior knowledge of malicious attacks.

NetVigil achieves these objectives with three core ideas:

(1) Deriving security-focused graph features from flow sum-

maries. To ensure cost-efficiency, NetVigil leverages low-cost

flow summaries, available at both network level (e.g., VPC

Flow Logs [21] and NSG Flow Logs [54]) and service level

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1771

(e.g., Calico flow logs [6] and Cilium/Hubble [9]). These

loggers offer substantial cost savings over packet traces by

logging only aggregated statistics. NetVigil adeptly extracts

security-oriented graph features from these summaries, ef-

fectively compensating for the absence of packet-level infor-

mation. This approach enables scalable monitoring of large

networks without sacrificing anomaly detection accuracy.

(2) Leveraging graph neural networks (GNNs) and domain-

specialized contrastive learning for context-aware robust

anomaly detection. NetVigil employs GNNs to model com-

plex relationships between nodes in the network. The key

insight is that different nodes within a network (e.g., microser-

vices) carry diverse contextual information. By integrating

contextual information from adjacent nodes, GNNs can detect

anomalous behaviors that might be overlooked by traditional

solutions focusing on individual flows [31, 56]. To further

strengthen the model’s resilience against normal traffic fluc-

tuations, NetVigil adopts graph contrastive learning [85] with

domain-specialized data augmentation. This approach guides

the model toward capturing meaningful representations of

standard traffic patterns, enabling it to distinguish between

benign and malicious behaviors with greater precision.

(3) Adapting to temporal dynamics via smoothing and con-

tinuous retraining. NetVigil addresses the evolving nature of

network traffic by integrating a temporal loss that encourages

similarity between embeddings of temporally-adjacent graphs.

Moreover, NetVigil continuously retrains its model using re-

cent clean logs by excluding anomalous flows. This approach

keeps the model updated with network behavior, maintaining

high detection accuracy over time.

Implementation and Evaluation. We build NetVigil as an

end-to-end streaming data pipeline, continuously analyzing

network flow summaries and dynamically updating its model.

To evaluate its effectiveness, we design a new east-west se-

curity benchmark, Yatesbury, using a microservice demo ap-

plication [11], generating a diverse array of live traces and

simulating evasive attack scenarios. Our extensive evaluation,

including the benchmark and week-long to month-long traces

from production clusters, demonstrates that NetVigil signifi-

cantly outperforms existing malicious traffic detectors [31,56].

We achieve an average AUC (area under the ROC Curve) im-

provement of 0.22 (up to 0.62) and reduce operational costs

by 2.7 – 16.7× for our 16-VM deployment. We release our

benchmark Yatesbury 1 to enable researchers to explore novel

attack scenarios in a cloud environment and contribute inno-

vative solutions in this crucial domain.

Contributions. We make the following contributions:

• We introduce a novel network anomaly detection architec-

ture designed to secure east-west traffic within data cen-

ters. This architecture utilizes low-cost network flow logs,

security-oriented graph features, and graph neural networks

(GNNs) to achieve cost-effectiveness and robustness.

1https://github.com/microsoft/Yatesbury

Figure 1: Difference between perimeter defense and static micro-

segmentation

• We propose an innovative end-to-end training mechanism

that combines graph representation learning, graph con-

trastive learning, and temporal smoothing. This approach

enables the learning of east-west traffic dynamics for accu-

rate anomaly detection.

• We build our solution alongside an east-west security bench-

mark tailored for cloud deployment, validating the perfor-

mance of our proposed solution through various attack sce-

narios and long-term traces from two production clusters.

2 Background and Motivation

We briefly discuss key concepts and challenges in securing

east-west traffic in data center networks. We focus on the im-

portance of this task and the limitations of traditional security

measures, and we provide an overview of network anomaly

detection techniques specific to east-west traffic.

2.1 Securing East-West Traffic with Zero-

Trust Solutions

Traditional security measures, such as firewalls [69] and intru-

sion detection systems (IDSes) [43], have primarily focused

on securing north-south traffic (interactions between data cen-

ter nodes and external systems) at the network perimeter, as

illustrated in Figure 1. While these measures are essential,

they often do not protect east-west traffic (communication

between nodes within a data center). Traditional security

measures tend to rely on static access control rules or attack

signatures, which can be easily bypassed by attackers using

compromised credentials or exploiting network vulnerabili-

ties. Once inside the network, an attacker can perform lateral

movement with relative ease. The limited visibility into the

communication between nodes within the data center renders

traditional security measures less effective in detecting and

responding to emerging threats.

The zero-trust security model [44, 66] represents a

paradigm shift in network security, aiming to address the

limitations of traditional security measures and improve the

protection of east-west traffic within data center networks.

1772 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

IDS Low compute

overhead

Low network

overhead

Easy

management

Zero-day attack

protection

Computation cost (CPU

cores/100Gbps) or Licens-

ing cost (US dollars)

Zeek (formerly Bro) [61] : : 6 : 400 [2]

Snort [65] : : : : 250 [88]

Pigasus [88] 6 : : : 5 + 1 FPGA [88]

Suricata [15] : : : : 53 + 1 SmartNIC [14]

Whisper [31] : 6 6 6 170

VMware NSX [17] : 6 6 : $4,495/processor/yr [18]

Aviatrix DCF [5] : : 6 : [4] ∼$3,000/gateway/yr

Table 1: Characteristics of popular IDSes. The characteristics of commercial options are obtained from their websites, which are

subject to changes. The licensing costs associated with commercial solutions may not directly correspond to their computation costs.

The main principles of zero-trust include: (a) least privilege

access [68], where users and devices are granted the mini-

mum access rights necessary to perform their tasks; (b) micro-

segmentation [70,77], which divides the network into smaller

segments or zones to limit lateral movement (see Figure 1);

and (c) continuous monitoring and validation of user and

device behavior to ensure compliance with security policies.

Existing solutions [40, 59] primarily focus on micro-

segmentation to limit the attack surface and the potential

impact of a breach while preventing lateral movement of at-

tackers. However, continuous monitoring and validation of

user and device behavior remain a challenge due to the mas-

sive scale and dynamic nature of east-west traffic, requiring

advanced techniques and tools to effectively detect and re-

spond to anomalies in real time. Without this missing piece,

an attack can still find a way to propagate from one node to

another through permissible, micro-segmented paths, caus-

ing significant damage to critical infrastructure, data loss, or

unauthorized access to sensitive information.

2.2 Challenges of Network Intrusion Detection

Systems on East-West Traffic

A significant body of research [43, 48, 53] has been dedi-

cated to the study of network intrusion detection systems (ID-

Ses), which are tactically positioned at network choke points

(e.g., routers or gateways) to safeguard network perimeters.

Contemporary IDSes can be classified into signature-based

and anomaly-based systems, each offering unique advantages.

Signature-based systems efficiently detect known attack pat-

terns using their distinct signatures, while anomaly-based

systems focus on recognizing normal patterns to identify

novel attacks. Although signature-based systems are effective

for known attacks, the rise of zero-day attacks [23, 55] has

highlighted the importance of anomaly-based systems. By

employing deep learning techniques [32, 47], anomaly-based

systems serve as a valuable complement to signature-based

systems. Both systems have their merits, and a combination

of the two can offer a more robust security solution. Table 1

summarizes key attributes of popular IDSes. Although these

solutions work well for north-south traffic, their application

to east-west traffic presents fundamental challenges.

Challenge 1: Excessive Compute Overhead in Network

Packet Analysis. Past studies [16, 67] showed that only 17%

of data center traffic was attributed to north-south traffic. The

increasing adoption of micro-service architectures, cloud stor-

age, and software-defined networks has since exacerbated

the disparity between north-south and east-west traffic. Con-

sequently, applying existing security solutions to east-west

traffic would result in an unsustainable increase of already

considerable costs. For example, Pigasus [88] employs Field-

Programmable Gate Arrays (FPGAs) to substantially reduce

operational expenses for rule-based IDSes. Nevertheless, it

still requires five CPU cores and one FPGA to secure a 100

Gbps network. Commercial solutions like VMware NSX [17]

tackle this problem by operating IDSes on every hypervisor.

Although this method handles east-west traffic better, it re-

sults in substantial computational expenses for all data center

nodes. The situation is no better for anomaly-based IDSes.

Whisper [31], an efficient malicious traffic detection system,

surpasses its predecessor Kitsune [56] by achieving a 100-

fold increase in throughput. Despite this, securing a single 10

Gbps network necessitates 17 processing cores, potentially

doubling or even tripling the application’s operational costs.

The primary reason for the high overhead in existing solu-

tions is their dependence on capturing and analyzing network

packets, which offer rich and fine-grained information on net-

work traffic. Nevertheless, as Table 1 shows, this approach is

expensive and not scalable for large data center networks. A

cost-effective alternative involves using network or service

flow logs [6, 9, 21, 54], which utilize aggregation intervals to

condense network packet telemetry into periodic 5-tuples and

statistics. While service flow logs offer valuable application-

level data, such as service names and request types, they often

necessitate an agent in guest VMs or specialized environments

like Kubernetes [24]. In this study, we focus on network flow

logs due to their widespread availability in a cloud environ-

ment and consider integrating service flow logs in future work.

To evaluate this approach, we compare the effectiveness of

two contemporary solutions, Whisper [31] and Kitsune [56],

on network packet traces and network flow logs for similar

set of attacks. As Figures 2 and 3 illustrate, applying existing

solutions to network flow logs significantly compromises their

accuracy due to the absence of packet-level information.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1773

Fuzzing OS Scan SSL DoS SSDP Flood0.0
0.2
0.4
0.6
0.8
1.0

AU
C

Kitsune
Whisper

Figure 2: AUC scores with packet traces

UDP Scan SYN Scan UDP DDoS SYN Flood0.0
0.2
0.4
0.6
0.8
1.0

AU
C

Kitsune
Whisper

Figure 3: AUC scores with flow traces

Challenge 2: Complexity and Congestion in Networking.

Numerous popular IDSes [15, 65, 88] are implemented by

redirecting (or hair-pinning) traffic to IDS appliances. How-

ever, for east-west traffic, this method generates excessive

network overheads, as traffic between VMs on the same ma-

chine or within the same rack must be rerouted to another

cluster, potentially causing significant congestion in the net-

work. Moreover, this approach adds complexity to network

management, as hair-pinning must be executed for all commu-

nication paths within a data center, making routing substan-

tially more complicated. Thus, commercial offerings [5] that

adopt this approach primarily focus on egress traffic rather

than encompassing all east-west traffic.

Challenge 3: Elevated False Alarms During Prolonged

Deployment. Applying existing solutions to secure east-west

traffic presents another challenge: an increased false alarm

rate over extended deployment periods. As network traffic pat-

terns evolve, security solutions must adapt to these changes to

maintain high detection accuracy. However, many current net-

work security systems struggle to keep up with the dynamic

nature of network traffic, such as load variation and workload

migration. This results in a high rate of false alarms.

We conduct an evaluation of Whisper [31] using two long-

term traces from our first-party production clusters (see Sec-

tion 6.5 for more detailed information). We find that there is a

substantial increase in false alarms over time, while the contin-

uous daily retraining of these solutions yields only marginal

improvements (not shown in plot). These false alarms not

only utilize significant resources for investigation but also

undermine trust in the system, potentially resulting in the

disregard of authentic threats.

Summary. The absence of a cost-efficient, robust and effec-

tive intrusion detection solution is a crucial impediment in

securing east-west traffic. A comprehensive solution must: (a)

ensure processing efficiency by eliminating dependence on

all network packets, (b) avoid incurring network congestion

or routing complexity, (c) proactively adapt to normal traffic

fluctuations and (d) demonstrate high efficacy on previously

unknown but malicious occurrences. These considerations

are the foundation of our design requirements for NetVigil.

3 Overview of NetVigil

We present a novel anomaly-based intrusion detection sys-

tem, NetVigil, that is explicitly designed to secure east-west

data center networks with cost efficiency and robustness

against normal traffic fluctuations. NetVigil achieves low op-

erational costs by extracting security-oriented graph features

from network flow logs, effectively eliminating the need for

fine-grained yet costly network packet traces. The insight

of NetVigil lies in the fact that network nodes within a data

center typically provide specific functionalities (e.g., micro-

services, storage, databases, etc.), and by employing graph

neural networks (GNNs), we can learn contextual informa-

tion to enhance anomaly detection accuracy. Furthermore, our

system incorporates graph contrastive learning and tempo-

ral smoothing techniques to achieve high detection accuracy

while maintaining low false alarm rates. Figure 4 provides an

overview of the NetVigil architecture.

Inference Time. During the inference phase (depicted on the

left side of Figure 4), cloud resources such as virtual machines

(VMs) and compute clusters continuously generate network

flow logs [6, 9, 21, 54] at intervals ranging from tens of sec-

onds to minutes. These data streams are processed by our

security graph feature extractor (I1 in Figure 4, more details

in Section 4.1), which groups network flow logs based on

their IP addresses, extracts crucial features, and transforms

the results into a featurized communication graph. In this

graph, each node represents an IP address, and each edge

summarizes all flows between respective IP pairs. NetVigil

subsequently feeds this featurized communication graph into

the continuously trained GNN autoencoder (I2 in Figure 4) to

compute anomaly scores for each edge. Edges identified as

potentially anomalous, along with the corresponding commu-

nication graphs and network flow logs, are then forwarded to

the security team for further investigation.

Training Time. At each retraining interval, which typically

spans hours or days based on network dynamics, NetVigil

gathers clean communication graphs from the inference phase

(i.e., excluding anomalous nodes and edges detected by the

model) to retrain the GNN autoencoder (depicted on the right

side of Figure 4). The GNN encoder (T1 in Figure 4) learns to

compress the features of each edge and its incident nodes into

an embedding space, allowing the GNN decoder (T2 in Figure

4) to reconstruct these features with minimal reconstruction

loss (L1 in Figure 4). Section 4.2 provides more details.

1774 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 4: Overview of NetVigil

To enhance robustness, we design a graph data augmenta-

tion module (T3 in Figure 4) and train the system to encourage

similarity between the embeddings of original and augmented

graphs by minimizing the contrastive loss (L2, more details in

Section 4.3). Furthermore, we introduce a temporal loss (L3,

more details in Section 4.4) to promote embedding similarity

between temporally-adjacent graphs. The entire training pro-

cess is conducted end-to-end, resulting in an up-to-date GNN

autoencoder for the subsequent inference phase.

4 Design Details of NetVigil

We provide a comprehensive discussion of the key modules

within NetVigil and explain how these components collabo-

rate to fulfill our design objectives. We discuss the security-

oriented graph feature extractor (Section 4.1), graph repre-

sentation learning (Section 4.2), domain-specialized graph

contrastive learning (Section 4.3), and temporal smoothing

techniques (Section 4.4) employed by NetVigil to ensure a

cost-effective, accurate, and robust anomaly detection system

for east-west data center networks.

4.1 Security Graph Feature Extractor

Our security graph feature extractor aims to gather security-

oriented features from network flow logs, prioritizing cost

efficiency while maintaining essential information for down-

stream anomaly detection. Within each aggregation interval

(e.g., one minute), network flow logs typically contain the

following information: (a) 5-tuple data, encompassing pro-

tocol, source and destination IP addresses, and source and

destination ports, (b) the number of transmitted and received

packets, and (c) the volume of transmitted and received bytes.

Our graph feature extractor operates at the IP address level

instead of the network flow (IP and port) level for two primary

reasons. First, operating at the network flow level leads to

much larger graphs and increases the burden on both inference

and training processes. For instance, we observe orders of

Feature Statistics

Number of transmitted packets

min, max, mean, sum, std
Number of received packets

Total received bytes

Total transmitted bytes

Number of TCP flows

count

Number of UDP flows

Number of local unseen ports

Number of global unseen ports

Number of ports

Table 2: Features obtained for each distinct IP pair

magnitude increases in the number of nodes and edges in our

production traces when constructing communication graphs at

the network flow level (139k nodes and 115k edges) compared

to the IP level (300 nodes and 10-20k edges). Furthermore,

aggregating at the IP address level facilitates the identification

of correlations between flows associated with the same IP

address (e.g., a notable increase in the number of flows or

usage of different ports). This, in turn, simplifies the detection

of anomalous attacks, such as port scanning.

Our graph feature extractor offers additional operational

cost reductions through a tunable detection window (e.g., two

or three minutes). By generating a single communication

graph per detection window, the feature extractor effectively

balances detection latency with cost efficiency. Although a

larger detection window might marginally impact detection

accuracy for evasive attacks, this approach enables network

operators to harmonize the requirement for prompt detection

with limited resource constraints. Consequently, it becomes

a suitable solution for large-scale network monitoring and

security applications.

Table 2 summarizes the features we obtain for each distinct

IP pair. We exclude ephemeral ports from the port-related fea-

tures, as they do not provide learnable information. In addition

to common features like the number of packets and bytes, we

monitor critical security-oriented features such as the number

of flows and unseen ports, which strongly indicate unusual

occurrences. We maintain a record of globally observed ports

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1775

across all flows, as well as the locally observed ports for each

IP pair within the training dataset. By maintaining port in-

formation as statistics, our feature extractor can function at

the IP address level without sacrificing essential information.

This approach allows us to capture crucial correlations among

distinct flows associated with the same IP address while main-

taining scalability and facilitating the detection of anomalous

attacks involving multiple flows.

4.2 Graph Representation Learning

In order to discover relationships within the communication

graph, NetVigil employs Graph Neural Networks (GNNs).

These advanced machine learning models are specifically

designed to analyze and extract patterns from complex graph-

structured data. The key insight is that nodes within our com-

munication graph correspond to various roles in an appli-

cation and, as a result, each node and its neighbors exhibit

a particular pattern over time. This contextual information

enables NetVigil to identify anomalous behaviors that may

seem normal if analyzed individually (e.g., C&C communi-

cation patterns or DNS amplification) without requiring the

costly processing of granular packet-level information such as

packet sizes, arrival times, and payloads. The ability to forego

detailed packet-level data stems from the sufficiency of flow-

level information for communication graph construction, cap-

turing many key characteristics that distinguish a malicious

flow from a normal one, including traffic volume, flow count,

and interactions with various ports and IPs. Similar to prior

work, E-GraphSage [51], we first aggregate edge features on

each node as contextual information, and then concatenate the

original edge features with this contextual information as the

input to our edge encoder. Since E-GraphSage relies on su-

pervised training, which is not practical at scale, we build our

solution using an autoencoder by mapping each concatenated

edge feature into a compressed embedding space.

Algorithm 1 presents the pseudocode for our GNN autoen-

coder. Lines 1–3 aggregate edge features using an AGG func-

tion, which can be mean, median, or element-wise pooling.

Line 5 concatenates the aggregated contextual information

with the original edge features, and Lines 6–8 encode the

concatenated edge features into edge embeddings (Line 9).

Lines 11-19 decode the embeddings back to the original edge

features, and the reconstruction loss between euv and ẽuv cor-

responds to the L1 in Figure 4. Formally, for a (mini)batch

B(G) of graphs, we have that

L1 =
1

∑i|Gi∈B(G) |Ei|
∑

i|Gi∈B(G)
∑

(u,v)∈Ei

∥euv− ẽuv∥
2, (1)

where Ei corresponds to the edge set of Gi.

It is worth noting that although we employ simple graph

convolutional networks (GCNs) [45] in Algorithm 1, the GNN

architecture can be interchangeable, provided that the encoder

Algorithm 1 GNN Autoencoder for Edge Embedding

Input: Graph G(V,E)
Input: Edge features euv,∀uv ∈ E

Input: Number of autoencoder layers L

Input: Encoder/decoder weights W l
E ,W

l
D,∀l ∈ 1, ...,L

1: for v ∈ V do ▷ Aggregate neighboring edge features

2: hv← AGG(euv,∀u ∈ N(v),(u,v) ∈ E)
3: end for

4: for (u,v) ∈ E do

5: h0
uv← CONCAT(hu,euv)

6: for l ∈ 1, ...,L do ▷ Edge Encoder

7: hl
uv← σ(W l

E ·h
l−1
uv)

8: end for

9: zuv = hL
uv ▷ Edge embedding

10: end for

11: for v ∈ V do ▷ Broadcast edge embedding

12: hv← AGG(zuv,∀u ∈ N(v),(u,v) ∈ E)
13: end for

14: for (u,v) ∈ E do

15: h0
euv
← CONCAT(hu,euv)

16: for l ∈ 1, ...,L do ▷ Edge Decoder

17: hl
uv← σ(W l

D ·h
l−1
uv)

18: end for

19: ẽuv = hL
uv ▷ Reconstructed edge features

20: end for

takes into account both original edge features and aggregated

neighboring features. While our experiments do not show a

significant accuracy gain from using additional convolutional

layers or alternate GNN architectures, some domain-specific

GNN architectures may still perform better. We leave the

exploration of domain-specific architectures for future work.

4.3 Domain-Specific Contrastive Learning

One of the primary challenges faced by existing network

anomaly detectors is the generation of numerous false alarms

for normal changes that were not encountered during the

training process. A common approach to address this issue

involves curating an extensive long-term dataset for training,

with the expectation that all normal behaviors will be en-

compassed within this dataset. However, this approach is not

scalable for east-west traffic, as they frequently experience

normal changes, such as configuration updates, load varia-

tions, and node failures. To tackle this challenge, we employ

graph contrastive learning [50], which augments the training

data with general and domain-specific perturbations to en-

hance the model’s generality. This approach allows the model

to better accommodate and adapt to the dynamic nature of

network traffic, thereby reducing the incidence of false alarms

while accurately detecting genuine anomalies.

We find that most normal traffic fluctuations arise from (1)

not all edges appearing consistently, (2) traffic volume varying

over time, and (3) noisy behavior from non-application edges.

Based on these observations, we employ the following data

1776 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

augmentation strategies to enhance the model performance:

• Randomly removing edges and nodes: By presenting sub-

graphs to the model, the system gains the ability to more

effectively analyze network communication patterns, at-

tributable to the simplified structure and reduced noise.

• Adding noise to edge features: Edge features, such as the

number of packets and the volume of transmitted/received

bytes, are perturbed to test the model’s robustness against

variations in feature values.

• Removing non-application edges: It has been observed that

application traffic within the network exhibits greater pre-

dictability compared to inter-service communications. Con-

sequently, by removing nodes and edges unrelated to the

application running within the network, the model can bet-

ter learn and recognize application-level communication

patterns, thereby enhancing its robustness and reducing the

occurrence of false positives.

Formally, during training, a minibatch B(G) of graphs is

randomly sampled. For every graph G ∈ B(G), we generate

two augmented versions G (1) and G (2) by randomly selecting

two of the data augmentation strategies mentioned above. We

denote the corresponding embeddings of an edge uv ∈ E by

z
(1)
uv and z

(2)
uv ; see Line 9 in Algorithm 1. Recalling that the

cosine similarity between two vectors x and y is given by

cos(x,y) = x¦y/(∥x∥∥y∥), we define the contrastive loss of a

given edge uv as [85]

ℓuv =− log

(

exp(2cos(z
(1)
uv ,z

(2)
uv))

∑u′v′ exp(2cos(z
(1)
uv ,z

(2)
u′v′

))

)

, (2)

where the negative edges u′v′ are randomly selected from aug-

mented versions of other graphs in the minibatch. Notice that

minimizing ℓuv promotes z
(1)
uv and z

(2)
uv to be similar, i.e., the

embeddings corresponding to the same edge for two different

augmented versions should be close to each other. Moreover,

minimizing ℓuv also promotes z
(1)
uv and z

(2)
u′v′

(the embeddings

of different edges in augmented versions of different graphs)

to be different from each other. In this way, we avoid the col-

lapse of different embeddings into a common representation

and encourage the full utilization of the embedding space.

Our contrastive loss (L2 in Figure 4) is given by the average

value of ℓuv over all edges in the minibatch

L2 =
1

∑i|Gi∈B(G) |Ei|
∑

i|Gi∈B(G)
∑

uv∈Ei

ℓuv, (3)

where Ei corresponds to the edge set of Gi. As defined, the

loss L2 depends on the randomly selected augmentation strate-

gies to compute the contrastive pairs of every graph. During

training, we randomly choose new augmentation strategies

for each minibatch, ensuring every gradient step is based on

new contrastive pairs, thereby promoting generalization.

4.4 Temporal Smoothing and Continuous Re-

training

Another crucial aspect that our model seeks to capture is tem-

poral dynamics. Through our analysis of several traces from

production clusters, we observe that network traffic within a

short time window (e.g., minutes) tends to exhibit similarity,

while patterns can undergo significant changes over longer

periods (e.g., hours or days). This observation aligns with the

understanding that major network traffic changes are typically

driven by rare events (e.g., failures), periodicity (e.g., time of

day), or application changes (e.g., code updates), which do

not generally occur within short time frames.

We incorporate these temporal dynamics with a two-fold

strategy. First, we define a temporal loss (L3 in Figure 4)

during training to encourage embedding similarity between

temporal adjacent graphs. For every pair of temporally ad-

jacent graphs G t and G t+1, we minimize the norm of the

difference between consecutive embeddings of the same edge.

More precisely, we have that

L3 =
1

∑t |Et ∩Et+1|
∑

t
∑

uv |uv∈Et∩Et+1

∥zt
uv− zt+1

uv ∥
2, (4)

where Et denotes the edge set of G t . By minimizing L3, we

promote the embeddings of the same edge in two consecutive

time steps to be close to each other. Notice that, as a result of

the dynamic nature of our graph, it might be that an edge uv

that exists at time t is no longer present at time t +1. Hence,

in (4), we account for this by only considering edges that

belong to the intersection of two consecutive edge sets.

Second, we employ a periodic training procedure (e.g.,

hours or days) to update the model with the most recent traffic

patterns. In each retraining window, we compile clean com-

munication graphs (i.e., nodes and edges without any potential

anomalies) from the inference phase (left side of Figure 4),

as well as the false alarms cleared by the security team, to

form the training set. Subsequently, we retrain the model by

minimizing the composite loss, L , which combines the recon-

struction loss L1, contrastive loss L2, and temporal loss L3.

The composite loss is defined as L = L1 +αL2 +βL3, where

α and β are hyperparameters that trade off the relative impor-

tance of the different losses. This approach helps the model

stay up-to-date and can effectively detect genuine anomalies

and adapt to fluctuations in network traffic patterns.

5 Benchmarks and datasets

Datasets and network traces for intrusion and anomaly detec-

tion are available, but they primarily consist of packet traces.

As stated in Section 2.2, conducting inference for each packet

leads to considerable computational burdens, particularly in

east-west traffic where there is a larger volume of network traf-

fic. In light of this, we collect flow-level logs that summarize

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1777

network traffic. We deploy a 16-VM scale set on Microsoft

Azure, activate Azure Network Watcher, and enable network

security group (NSG) flow logging [54]. NSG logs record

essential flow-level information such as 5-tuple, timestamp,

number of bytes and packets transmitted, similar to other com-

mercial flow logging offerings (e.g., [21]). For our 16-VM

scale set, we deploy a web-based e-commerce app [11] that

allows users to browse clothing items, add them to the cart,

and complete purchases. Our application consists of 11 mi-

croservices for components such as ad generation, product

catalog, payment, and product cart, as well as a load generator

to send GET and POST requests, simulating user behavior

like viewing items, setting currency, adding items to the cart,

and submitting payment information.

On top of this setup, we develop and introduce a new bench-

mark, Yatesbury 1, designed to evaluate the performance and

efficiency of anomaly detectors in east-west network traffic.

We evaluate NetVigil with 13 distinct attacks that accurately

represent a variety of malicious behaviors. Table 3 enumerates

these attacks, each of which involves one or more compro-

mised malicious nodes. Each trace lasts for 1-2 hours, and we

label each trace for each 2-minute window and mark a connec-

tion as anomalous if any malicious traffic is sent or received

between the two nodes. Malicious nodes communicate with

each other and send malicious network traffic to the benign

nodes. We utilize traditional network attacks that encompass

various port scan methods, including traditional exhaustive

port scanning, distributed scanning of multiple targets, stealth

scanning using SYN packets to bypass firewalls, and acceler-

ated scanning using UDP packets. Other traditional attacks

we implement are DoS attacks, such as SYN flooding, which

inundate victims with SYN requests, DDoS attacks involving

multiple attackers, and DDoS attacks using UDP packets.

Furthermore, we incorporate attacks featuring more intri-

cate communication patterns, which better represent mali-

cious activity in east-west traffic. For these attacks, analyzing

each flow in isolation (as done in traditional IDSes) is less

effective, as it does not provide a holistic and comprehensive

view of the network. We first employ Infection Monkey [8], an

open-source breach and attack simulator for evaluating data

center resiliency to perimeter breaches and internal host infec-

tion. It supports a wide range of different features such as port

scanning, credential exploitation, and lateral movement to in-

fect hosts. We also incorporate C&C communication patterns,

which consist of a C&C server sending file updates, periodic

heartbeat messages, and commands to control compromised

hosts. These patterns are indicative of the communication ob-

served in high-profile data breaches [1,3]. Further, we employ

DNS amplification attacks, where multiple attackers send

DNS requests to a DNS server and direct the responses to the

victims. The DNS requests are crafted so that the responses

are much larger in size to overwhelm the target machine.

6 Evaluation

6.1 Methodology

Benchmarks and datasets. We evaluate NetVigil on Yates-

bury with our demo microservice application along with live

production traces from our two first-party compute clusters.

Implementation. We implement NetVigil as an end-to-end

data streaming pipeline using 1,400 lines of Python code. The

inference pipeline extracts featurized communication graphs

utilizing NetworkX [10] and pandas [12] libraries, while the

training pipeline is built on PyTorch [13] and the Deep Graph

Library (DGL) [7].

Baselines. We compare NetVigil against two state-of-the-art

anomaly-based IDSes: Kitsune [56] and Whisper [31]. To

evaluate Kitsune on our datasets, we modify its autoencoders

to ingest flow-level features. Due to Kitsune’s slow runtime,

we implement several optimizations to reduce unnecessary

computation that improves inference time by 5–10×; we refer

to this optimized version of Kitsune as Kitsune+. Whisper’s

frequency domain analysis necessitates packet-level traces.

Modifying it to utilize connection-level traces is challeng-

ing, as it performs frequency domain analysis on individual

packets within each flow. Using only a single data point (ag-

gregated flow-level statistics) would render it ineffective. To

make Whisper compatible with flow logs, we utilize aggre-

gated flow-level statistics to convert flow logs into packet

traces. To understand the difference between flow and packet

traces, we also carry out additional evaluations using packet

traces for both Kitsune+ and Whisper.

Metrics. To evaluate NetVigil, we use the area under the ROC

curve (AUC) as our primary metric, along with the true pos-

itive rate (TPR) and false positive rate (FPR). Importantly,

AUC provides a measure of how well the detector can dis-

tinguish between the positive and negative classes, across all

possible threshold settings. TPR and FPR are also crucial

because the goal is to detect as many anomalies as possible

while minimizing false alarms, which, as mentioned in Sec-

tion 2, can significantly lower trust in an anomaly detector

and is a fundamental challenge due to the dynamism of net-

work traffic. To get these numbers, we select the threshold that

maximizes (T PR−FPR). Additionally, we compare latencies

in running each anomaly detector. All latency experiments

were run on a single 36-core, 72-hyperthread, 256-GB RAM

machine (Intel(R) Xeon(R) Gold 5220).

6.2 Overall Results

We first compare the detection accuracy of NetVigil with our

baselines, Kitsune+ and Whisper. For all attacks except one,

NetVigil yields significantly higher performance over the base-

lines with AUC scores ranging from 0.6400 to 1.000, resulting

in AUC improvements of up to 0.6591 over Kitsune+ and up

1778 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Attack Description # flows Ratio malicious

Vertical Port Scan Run an exhaustive scan of open ports 1429 0.0265

SYN Flood DoS attack where connections are rapidly initialized but not completed 2817 0.0184

SYN Flood DDoS DoS attack where connections are rapidly initialized but not completed (multiple attackers) 2437 0.0439

UDP DDoS DoS attack with UDP packets (multiple attackers) 1473 0.0081

Distributed Stealth Port Scan Run a targeted stealth scan of several key ports across many nodes with SYN packets 4069 0.0058

Distributed Port Scan Run a targeted scan of several key ports across many nodes 4054 0.0051

Distributed UDP Port Scan Run a targeted stealth scan of several key across many nodes with UDP packets 4319 0.0050

Infection Monkey 1 Scans key ports and launches network exploits 2768 0.0122

Infection Monkey 2 Scans key ports and launches network exploits (target limited number of hosts) 1490 0.0107

Infection Monkey 3 Scans key ports and launches network exploits (mount limited number of exploits) 4677 0.0027

C&C communication Compromised nodes receive commands, heartbeats, and file updates from C&C server 2163 0.0254

DNS amplification Attackers send DNS requests and direct responses to victim 4410 0.0825

Table 3: Attack datasets

Kitsune+ Whisper NetVigil

AUC TPR FPR AUC TPR FPR AUC TPR FPR

Moderate

Vertical Port Scan 0.9300 0.8684 0.0057 0.9049 0.9736 0.1315 0.9843 0.9473 0.0000

SYN Flood 0.9322 0.8653 0.0014 0.7609 0.7307 0.1414 1.0000 1.0000 0.0000

Medium

SYN Flood DDoS 0.9455 0.8971 0.0141 0.9148 0.9719 0.1283 1.0000 1.0000 0.0000

UDP DDoS 0.9455 0.8971 0.0141 0.6403 0.4166 0.1457 0.9998 1.0000 0.0000

Distributed Port Scan 0.4059 0.0952 0.0300 0.3961 0.0476 0.0329 0.9968 0.9523 0.0000

Distributed Stealth Port Scan 0.7542 0.6666 0.0758 0.6186 0.4166 0.1070 0.9892 0.8333 0.0000

Distributed UDP Port Scan 0.3367 0.0000 0.0281 0.3732 0.0000 0.4449 0.9958 0.9545 0.0183

Difficult

Infection Monkey 1 0.5586 0.1176 0.0003 0.4395 0.0588 0.0190 0.9997 1.0000 0.0029

Infection Monkey 2 0.7497 0.5000 0.0006 0.4396 - - 0.9997 1.0000 0.0033

Infection Monkey 3 0.5000 - - 0.5000 - - 0.9998 1.0000 0.0006

C&C communication 0.6347 0.4727 0.1480 0.5000 - - 0.9301 0.7636 0.0896

DNS amplification 0.3962 0.0000 0.0244 0.8149 0.8928 0.2913 0.8915 0.3736 0.0692

SQL injection 0.8531 1.0000 0.2237 0.0900 - - 0.6400 0.6428 0.2648

Unauthorized DB access 0.5976 0.7500 0.4720 0.7214 0.5833 0.0275 0.8000 0.7083 0.1732

Table 4: Comparison of Kitsune+, Whisper, and NetVigil for various attacks.

Attack Kitsune+ Whisper NetVigil

Vertical Port Scan 0.9817 0.9876 0.9843

UDP DDoS 0.9974 0.6414 0.9998

Dist. Stealth Port Scan 0.7267 0.6487 0.9892

Infection Monkey 1 0.8100 0.6188 0.9997

DNS Amplification 0.6759 0.8247 0.8915

Table 5: AUC scores of Kitsune+ and Whisper using packet-level

traces and NetVigil with flow-level logs for various attacks.

to 0.6226 over Whisper. Table 4 presents the overall results for

AUC, TPR, and FPR. Crucially, we observe that NetVigil out-

performs the baselines because of two factors: (1) our novel

security-centric feature extractor that effectively identifies

lower-level malicious traffic characteristics in each connec-

tion that adversaries employ to fly under the radar, and (2) our

use of graphs and a GNN architecture to obtain a holistic and

comprehensive view of network behavioral patterns across

many nodes.

Illustrating the efficacy of our feature selection approach,

NetVigil exhibits strong performance in identifying DDoS at-

tacks and vertical port scanning, achieving an AUC greater

than 0.98 and an FPR approaching 0.0 for SYN Flood, SYN

Flood DDoS, UDP DDoS, and Vertical Port Scanning. The

extraction of packet- and connection-level statistics facili-

tates the detection of abnormal communications, such as sub-

stantial quantity of initiated connections in the SYN Flood

scenario and the packet volume in other DDoS attacks.

Our GNN architecture excels in detecting reconnaissance

patterns that span multiple nodes, an area where Kitsune+

and Whisper baselines demonstrate subpar performance. For

Distributed Port Scan, Distributed Stealth Port Scan, and Dis-

tributed UDP Port Scan, Kitsune+ and Whisper yield AUC

scores of 0.4059, 0.7542, 0.3367 and 0.3961, 0.6186, 0.3732,

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1779

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

NetVigil (AUC = 1.00)
Kitsune (AUC = 0.87)
Whisper (AUC = 0.64)

(a) UDP DDoS

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

NetVigil (AUC = 1.00)
Kitsune (AUC = 0.56)
Whisper (AUC = 0.44)

(b) Infection Monkey 1

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

NetVigil (AUC = 0.98)
Kitsune (AUC = 0.75)
Whisper (AUC = 0.62)

(c) Distributed Stealth Port Scan

Figure 5: Area under the ROC curve for 3 sample attack traces.

respectively. These scans involve an adversary probing a se-

lected number of ports across various victim machines. The

low traffic volume and variation from these network patterns

enable them to evade detection. Similarly, our baselines ex-

hibit inadequate performance in detecting infection monkey

attacks due to similar reasons.

In contrast to these efforts, NetVigil uses its feature extractor

in tandem with a graphical view of the network to success-

fully identify these scans and attacks. The features include

previously unseen ports, a key characteristic in many scans

and attacks. NetVigil also analyzes the number of ports as

well as statistics on the number of bytes and packets that are

sent/received. A large number of different ports with a com-

paratively small amount of traffic volume can be indicative of

port scanning or of an adversary attempting multiple differ-

ent exploits that target different ports/services. Furthermore,

our GNN architecture detects higher-level behavioral patterns

and relationships, rather than just relying on detecting each

connection in isolation, as traditional host-based IDSes do.

This is useful for detecting distributed port scanning and infec-

tion monkey attacks since, contrary to vertical port scanning

and DoS attacks, each individual connection exhibits little

abnormality in volume and variation, but each malicious actor

makes connections to many different hosts, deviating from

their typical communication patterns.

Although NetVigil performs well on detecting C&C com-

munication and DNS amplification, it struggles to achieve the

same performance as the other attacks. In addition to these

scenarios encompassing behavioral patterns of many different

nodes, each communication is more similar to traditional net-

work traffic due to the file transfers and DNS queries, making

them more difficult for our feature extractor to pick up.

Table 5 shows the results on several selected attacks in

which we evaluated Kitsune+ and Whisper in their intended

environment using packet-level traces. Overall, their AUC

scores are significantly higher when using packet-level traces

compared to flow-level traces, with Kitsune+ achieving near-

perfect AUC scores for vertical port scanning and UDP DDoS.

However, these approaches still fall short in matching NetVigil

for other attacks due to the limitations of their extracted fea-

tures and host-based detection models.

6.3 Efficiency Results

Figure 6 illustrate the wall clock and CPU times of NetVigil

compared to Kitsune+ [56] and Whisper [31] for five dif-

ferent attacks. Each experiment involved feature extraction,

training, and inference. NetVigil achieves key performance

improvements through the following features:

1. Using flow-based features instead of packet-level data,

reducing the amount of data significantly since only the

aggregated statistics for each flow need to be processed.

2. Using a graph representation that aggregates features

across multiple instances of the same connection.

3. An efficient GNN architecture with an autoencoder of two

fully-connected layers.

Due to these components, the majority of time is spent

during feature extraction. GNN inference takes only 2-3 sec-

onds on average for a network trace with 16 VMs. Across 5

different attack traces, NetVigil achieves significantly lower

execution times, yielding speedups of >= 37.59× and 2.87×
– 7.38× over Kitsune+ and Whisper, respectively, for wall

clock time, and speedups of >= 29.67× and 2.04× – 6.93×
for CPU time. Further latency experiments where we varied

the number of VMs and cores can be found in Appendix A.1.

6.4 System cost

When evaluating the system costs for Kitsune+ and Whis-

per, it is important to note that both of these tools necessitate

packet traces, which can result in significant CPU and storage

overheads to acquire. In addition, both baselines also incur

considerable compute overheads during inference, requiring

1780 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Vertical
Port Scan

UDP DDoS Dist Stealth
Port Scan

Infection
Monkey 1

DNS Amplif.

102

103

El
ap

se
d

Ti
m

e
(s

) Kitsune+
Whisper
NetVigil

Vertical
Port Scan

UDP DDoS Dist Stealth
Port Scan

Infection
Monkey 1

DNS Amplif.
102

103

CP
U

Ti
m

e
(s

)

Kitsune+
Whisper
NetVigil

Figure 6: Comparing detection latencies of Kitsune+, Whisper, and NetVigil in elapsed seconds and CPU time across several attacks.

The y-axes use a logarithmic scale.

Kitsune+
w/ Flow Logs

Kitsune+ w/
Packet Traces

Whisper w/
Flow Logs

Whisper w/
Packet Traces

NetVigil
0

10000

20000

30000

40000

50000

Co
st

 p
er

 y
ea

r (
$)

Logger
Compute
Storage

Figure 7: System cost breakdown for Kitsune+, Whisper, and

NetVigil for our 16-VM deployment

an 8 vCPU VM for Whisper and a 56 vCPU VM for Kitsune+

to match the performance of NetVigil. Thus, we estimate, for

our 16-VM deployment, a total system cost of $49159/year

with packet traces and $48428/year with flow traces for Kit-

sune+ and a cost of $8602/year with packet traces and $7871

with flow traces for Whisper. To put these costs into perspec-

tive, we also analyze NetVigil. Because of the low cost of

NetVigil, using a 2 vCPU VM is sufficient for performing all

inference with flow logs, resulting in a total system cost of

$2939/year. Figure 7 shows the system cost breakdown.

We perform a cost assessment of the system at larger

scales by analyzing the trace data from our production clus-

ter (see Section 6.5), which consists of 400 virtual machines

(VMs). The outcomes are depicted in Figure 8. In comparison

with Figure 7, it is clear that NetVigil exhibits superior cost-

efficiency than Whisper under this scenario. This observation

is primarily attributable to two factors. First, the network

throughput in this setting exceeds that of our 16-VM deploy-

ment. As a result, Whisper’s processing overhead, which is

directly proportional to the number of packets, is substan-

tially larger, while NetVigil’s overhead remains independent

of network throughput. Second, the production cluster pri-

marily utilizes TCP connections, leading to a significantly

reduced quantity of network flow records in contrast to the

predominantly employed UDP connections in our 16-VM

deployment.

0 50 100 150 200 250 300 350 400
Number of VMs

100

200

300

400

Co
st

 p
er

 y
ea

r
(in

 te
ns

 o
f t

ho
us

an
ds

 $
)

Whisper
NetVigil

Figure 8: Estimated monetary system cost for Whisper and

NetVigil for production cluster of 400 VMs.

6.5 Production Traces

We collect network flow records from two first-party com-

pute clusters. The first cluster, Service-Cluster, contains

approximately 400 VMs, and we gather traces for a week.

The second cluster, Compute-Cluster, consists of around

200 VMs, and we acquire traces for two months. We confirm

that no known attacks are present in these traces and use them

to evaluate the false alarm rate of NetVigil.

We assess the number of false alarms without model re-

training. For Service-Cluster, there are 4,356 false alarms

on the last day of the week if the model isn’t retrained,

while model retraining reduces false alarms to 10. For

Compute-Cluster, there are 1,231 false alarms without

model retraining at the end of the week, and the number in-

creases to 2,315 on the last day of the month. This cluster has

less activity than Service-Cluster, explaining the lower

dynamics. Model retraining reduces false alarms to fewer

than 5 per day. The results from both product traces validate

the importance of continuous retraining (Section 4.4).

Additionally, we inject attack traces into these production

records to examine the performance of NetVigil. We incorpo-

rate Infection Monkey 1, 2, and 3, and replace the IP addresses

and timestamps to blend the injected attack traces with nor-

mal ones. We observe that the detection accuracy of NetVigil

remains consistent (similar to Table 4).

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1781

Vertical
Port Scan

UDP DDoS Dist Stealth
Port Scan

Infection
Monkey 1

DNS Amplif.0.0

0.2

0.4

0.6

0.8

1.0

AU
C

NetVigil no mods
NetVigil

Figure 9: AUC on several attack traces with and without tempo-

ral smoothing and data augmentation

Vertical
Port Scan

UDP DDoS Dist Stealth
Port Scan

Infection
Monkey 1

DNS Amplif.0.0

0.2

0.4

0.6

0.8

1.0

AU
C NetVigil-FC

NetVigil-Conv1
NetVigil-Conv2
NetVigil-Conv3
NetVigil-Agg1
NetVigil-Agg2

Figure 10: AUC on several attack traces with different model

modifications

6.6 Ablation Study

We perform experiments to determine the importance of tem-

poral smoothing and data augmentation. Figure 9 shows the

AUC for NetVigil both with and without data augmentation and

temporal smoothing. Using both techniques yields 1-2% AUC

improvement for most baselines and 10% improvement for

DNS amplification. Crucially, data augmentations add more

heterogeneity to the dataset allowing it to become more robust

to the dynamism in network traffic patterns. Temporal smooth-

ing helps by ensuring that temporally similar graphs should

be similar in structure and composition. Further, NetVigil

no mods still performs highly, yielding over 0.95 AUC for

all but 1 attack trace showing the efficacy of our approach on

new network patterns even without any modifications.

We experiment further with different architectural modi-

fications. Figure 10 shows the AUC results across 5 differ-

ent attack traces with different model modifications. First

we use a simple GNN architecture with fully-connected lay-

ers that operate on the graph’s node and edge features (de-

noted by NetVigil-FC). We also used 3 different graph

convolutional architectures (denoted by NetVigil-Conv1,

NetVigil-Conv2, NetVigil-Conv3) that use graph atten-

tion layers [78], GraphSAGE layers [34], and EdgeConv

layers [81]. We also try different aggregations for our mes-

sage passing function using min() and max() instead of

mean(), denoted by NetVigil-Agg1 and NetVigil-Agg2,

respectively. In summary, while NetVigil-FC performs the

best overall due to its simpler architecture (and lower likeli-

hood of overfitting) compared to the other architectures that

use convolutional layers, all model variants perform similarly.

We highlight that our approach is not tied to a particular model

or architecture and that NetVigil is still able to reap significant

performance gains on many different model variants.

7 Related Work

Related work on data center network security is discussed in

Sections 1 and 2, and the advantages of NetVigil compared

with the most relevant baselines are demonstrated and dis-

cussed in detail in Section 6. In this section, we focus on work

related to GNNs, graph contrastive learning, and anomaly

detection in graphs.

Graph Neural Networks. GNNs have gained significant at-

tention in recent years as powerful tools for analyzing and

modeling structured data represented as graphs. A consider-

able amount of research has been conducted in this field, and

a variety of GNN architectures have been proposed. The most

common ones include graph convolutional networks [45],

graph attention networks [78], and GraphSAGE [34]. We

refer the reader to relevant surveys [83, 87, 91] for further

details on these and other related architectures. GNNs have

achieved state-of-the-art performance in a series of problems

in (wired and wireless) communication networks [28, 36, 41].

The NetVigil framework is agnostic to the specific GNN cho-

sen for the encoder and the decoder. Thus, practitioners can

seamlessly experiment with different architectures that might

better accommodate their data.

Graph Contrastive Learning. Graph contrastive learning has

emerged as a potential solution to several challenges faced by

GNNs, such as heavy label reliance and weak robustness [50].

The core idea behind graph contrastive learning is to em-

bed augmented versions of the same sample (node, edge, or

graph) close to each other while trying to push away embed-

dings from different samples. Generating these augmented

versions of a given sample can be challenging in a graph set-

ting. Unlike images for which different augmented versions

(contrastive pairs) can be generated by imposing different

color filters or rotation operations, designing contrastive pairs

can be challenging in graph settings. Some works use differ-

ent parts of a graph to build these contrastive pairs [62,71,79]

by comparing, e.g., nodes with subgraphs [38, 42]. Other

works adopt graph data augmentations to generate contrastive

pairs [35, 63, 72, 84, 86, 92]. Instead of relying on a generic

set of augmentations, in NetVigil we leverage domain-specific

knowledge to determine graph transformations that constitute

valid contrastive pairs.

Anomaly Detection in Graphs. Anomaly detection is the

data mining process that aims to identify patterns in data that

do not conform to expected behavior [26]. If we focus on

1782 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the graph context, the objective is to find the graph objects

(nodes, edges, or substructures) that are rare and that differ

significantly from the majority of the reference objects in

the given graph [20]. Graph anomaly detection has been ap-

plied to myriad settings, including telecom fraud [29], opinion

spam [30], and malware detection [64]. Graphs bring specific

challenges to the anomaly detection problem related to the

inter-dependency of objects (a node being anomalous is not

only a function of itself but also of its neighborhood) and the

size of the search space (the search space of complex anoma-

lies such as graph substructures is huge). Methods have been

derived for the unsupervised [33] and (semi-)supervised [27]

settings, for static [25] and dynamic [39] graphs, and for at-

tributed [58] and plain (no attributes) [19] graphs. Notice that

our problem falls in the most challenging category of unsu-

pervised learning for dynamic and attributed graphs. Over the

last five years, there has been an increasing interest in apply-

ing deep learning techniques to graph anomaly detection [52].

The idea is to depart from non-deep learning techniques with

limited (linear) representation power [60] and use deep graph

representation learning and GNNs to extract expressive repre-

sentations such that graph anomalies and normal objects can

be easily separated. Several methods have been developed for

the simpler cases of static or plain graphs [37, 49, 80]. For

the dynamic and attributed case, the existing techniques are

limited [74,89,90]. Moreover, real-world networks (including

our application) usually exhibit changes in both the network

structure and node attributes. However, most existing works

only consider changes in one of these aspects [74, 90]. To

the best of our knowledge, we are the first to consider an au-

toencoder architecture enhanced by contrastive learning and

temporal smoothing to tackle the challenging dynamic setting

where both the network structure and attributes are changing.

8 Discussion

Privacy Consideration. Network flow logs may contain per-

sonally identifiable information (PII), such as user IP ad-

dresses, which are subject to data privacy compliance require-

ments [22, 76]. To address these privacy concerns, NetVigil

employs two strategies. First, our model can be deployed

using the Software as a Service (SaaS) model, where users

continuously stream anonymized network flow logs to a server

running our system. Anonymization can be achieved through

encrypted IP addresses, as our model does not require plain-

text IP addresses for anomaly detection, and users can inter-

pret the encrypted results accordingly. Second, our model can

be deployed within a user’s cloud subscription as a standalone

service, ensuring that all network flow logs remain entirely

under the user’s control. By implementing these strategies, we

maintain a high level of privacy while still providing effective

anomaly detection in network traffic patterns.

Initial Clean Training Set. NetVigil requires at least one clean

dataset to train the initial model, with subsequent models ob-

tained as discussed in Section 4.4. As with all anomaly-based

intrusion detection systems, if a cloud deployment is already

compromised from the outset, some anomalous behaviors

might contaminate the model. Therefore, it is much safer to

obtain the initial training set in a secure environment (e.g., a

sandbox). This precautionary measure helps ensure that the

model’s foundation is built upon clean and reliable data, al-

lowing it to effectively detect and adapt to genuine anomalies

and fluctuations in network traffic patterns.

Applying to North-South Traffic. Although our primary

focus in this study is on east-west traffic, the principles of

NetVigil, such as employing GNNs for intrusion detection us-

ing flow-level logs, can potentially be extended to north-south

traffic. This method could further decrease the significant

computational costs of existing IDSes or create a compre-

hensive security solution for both east-west and north-south

traffic simultaneously. North-south traffic typically exhibits

increased node and contextual information variability, which

may necessitate specialized learning techniques. Exploring

this design would be an interesting future direction.

9 Conclusion

We present NetVigil, a novel network anomaly detection sys-

tem specifically designed for securing east-west traffic in

large-scale data center networks. Addressing the limitations

of existing solutions, our approach focuses on three key objec-

tives: (a) ensuring cost-effectiveness in monitoring numerous

nodes, (b) accurately identifying anomalous behaviors while

minimizing false alarms, and (c) exhibiting robustness against

normal traffic fluctuations without reliance on prior knowl-

edge of malicious attacks. By employing low-cost network

flow logs, security-oriented graph features, graph neural net-

works, and a novel end-to-end training mechanism, our system

achieves substantial improvements over existing malicious

traffic detectors. We hope that the insights gained from our

solution, along with the new east-west security benchmark,

Yatesbury, will facilitate the validation of our proposed archi-

tecture and foster future research and innovation in this vital

area of study.

Acknowledgments

We extend our gratitude to our shepherd, Bruce Davie, and

the anonymous reviewers for providing invaluable and con-

structive feedback. Our thanks also go to our engineering and

product collaborators, including Narayan Annamalai, Umair

Aftab, Eliran Azulai, Wyman Chong, Jamie Lee, Kiran Mutha-

batulla, Mariana Alanis Tamez, and Roger Wong, for their

contributions to production traces, data processing pipelines,

and system requirements.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1783

References

[1] 2017 Equifax data breach. https://en.wikipedia.

org/wiki/2017_Equifax_data_breach, Retrieved

on 2023-04.

[2] 2019 Zeek specs needed for 10gbps. http:

//mailman.icsi.berkeley.edu/pipermail/

zeek/2019-September/014574.html, Retrieved on

2023-09.

[3] 2020 United States federal government data breach.

https://en.wikipedia.org/wiki/2020_United_

States_federal_government_data_breach, Re-

trieved on 2023-04.

[4] A Deeper Look at the Distributed Cloud Firewall: A

Firewall for the Cloud Era. https://aviatrix.com/blog/a-

deeper-look-at-the-distributed-cloud-firewall-a-

firewall-for-the-cloud-era/, Retrieved on 2023-09.

[5] Aviatrix Distributed Cloud Firewall. https:

//aviatrix.com/distributed-cloud-firewall/,

Retrieved on 2023-09.

[6] Calico flow logs. https://docs.tigera.io/

calico-cloud/visibility/elastic/flow/, Re-

trieved on 2023-10.

[7] Deep Graph Library. https://www.dgl.ai/, Re-

trieved on 2022-11.

[8] Infection monkey. https://www.akamai.com/

infectionmonkey, Retrieved on 2023-03.

[9] Introduction to Cilium & Hubble. https:

//docs.cilium.io/en/stable/overview/intro/,

Retrieved on 2023-10.

[10] NetworkX: network analysis in python. https://

networkx.org/, Retrieved on 2023-01.

[11] Online boutique. https://github.com/

GoogleCloudPlatform/microservices-demo,

Retrieved on 2022-07.

[12] pandas - python data analysis library. https://pandas.

pydata.org/, Retrieved on 2023-01.

[13] PyTorch. https://pytorch.org/, Retrieved on 2022-

11.

[14] Scaling Suricata performance to

100 Gbps with Napatech SmartNICs.

https://www.napatech.com/support/resources/solution-

descriptions/scaling-suricata-performance-to-100-

gbps-with-napatech-smartnics/, Retrieved on 2023-09.

[15] Suricata. https://suricata.io/, Retrieved on 2023-

09.

[16] Trends in data center security: Part 1 – traffic

trends. https://blogs.cisco.com/security/trends-in-data-

center-security-part-1-traffic-trends, Retrieved on 2023-

09.

[17] VMware NSX. https://www.vmware.com/

products/nsx.html, Retrieved on 2023-09.

[18] VMware NSX: The platform for network virtual-

ization. https://www.virtualizationworks.com/

NSX.asp, Retrieved on 2023-09.

[19] Leman Akoglu, Mary McGlohon, and Christos Falout-

sos. Oddball: Spotting anomalies in weighted graphs.

In Advances in Knowledge Discovery and Data Mining:

14th Pacific-Asia Conference, PAKDD 2010, Hyderabad,

India, June 21-24, 2010. Proceedings. Part II 14, pages

410–421. Springer, 2010.

[20] Leman Akoglu, Hanghang Tong, and Danai Koutra.

Graph based anomaly detection and description: a sur-

vey. Data mining and knowledge discovery, 29:626–688,

2015.

[21] Amazon. Logging IP traffic using VPC Flow Logs.

https://docs.aws.amazon.com/vpc/latest/

userguide/flow-logs.html, Retrieved on 2023-04.

[22] Behnaz Arzani, Selim Ciraci, Stefan Saroiu, Alec Wol-

man, Jack W Stokes, Geoff Outhred, and Lechao Diwu.

PrivateEye: Scalable and privacy-preserving compro-

mise detection in the cloud. In 17th USENIX Sympo-

sium on Networked Systems Design and Implementation

(NSDI), 2020.

[23] Leyla Bilge and Tudor Dumitraş. Before we knew it: an

empirical study of zero-day attacks in the real world. In

Proceedings of the ACM conference on Computer and

communications security (CCS), 2012.

[24] Brendan Burns, Brian Grant, David Oppenheimer, Eric

Brewer, and John Wilkes. Borg, Omega, and Kubernetes.

Communications of the ACM, 59(5), 2016.

[25] Deepayan Chakrabarti. Autopart: Parameter-free graph

partitioning and outlier detection. In Knowledge Dis-

covery in Databases: PKDD 2004: 8th European Con-

ference on Principles and Practice of Knowledge Dis-

covery in Databases, Pisa, Italy, September 20-24, 2004.

Proceedings 8, pages 112–124. Springer, 2004.

[26] Varun Chandola, Arindam Banerjee, and Vipin Kumar.

Anomaly detection: A survey. ACM Comput. Surv.,

41(3), jul 2009.

[27] Duen Horng Chau, Shashank Pandit, and Christos

Faloutsos. Detecting fraudulent personalities in net-

works of online auctioneers. In Knowledge Discovery

1784 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

in Databases: PKDD 2006: 10th European Conference

on Principles and Practice of Knowledge Discovery

in Databases Berlin, Germany, September 18-22, 2006

Proceedings 10, pages 103–114. Springer, 2006.

[28] Arindam Chowdhury, Gunjan Verma, Chirag Rao, Anan-

thram Swami, and Santiago Segarra. Unfolding

WMMSE using graph neural networks for efficient

power allocation. IEEE Transactions on Wireless Com-

munications, 20(9):6004–6017, 2021.

[29] Corinna Cortes, Daryl Pregibon, and Chris Volinsky.

Communities of interest. In Advances in Intelligent

Data Analysis: 4th International Conference, IDA 2001

Cascais, Portugal, September 13–15, 2001 Proceedings

4, pages 105–114. Springer, 2001.

[30] Hanbo Dai, Feida Zhu, Ee-Peng Lim, and HweeHwa

Pang. Detecting anomalies in bipartite graphs with

mutual dependency principles. In 2012 IEEE 12th Inter-

national Conference on Data Mining, pages 171–180,

2012.

[31] Chuanpu Fu, Qi Li, Meng Shen, and Ke Xu. Realtime

robust malicious traffic detection via frequency domain

analysis. In Proceedings of the ACM SIGSAC Confer-

ence on Computer and Communications Security (CCS),

2021.

[32] Sunanda Gamage and Jagath Samarabandu. Deep learn-

ing methods in network intrusion detection: A survey

and an objective comparison. Journal of Network and

Computer Applications, 169, 2020.

[33] Jing Gao, Feng Liang, Wei Fan, Chi Wang, Yizhou Sun,

and Jiawei Han. On community outliers and their effi-

cient detection in information networks. In Proceedings

of the 16th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 813–822,

2010.

[34] Will Hamilton, Zhitao Ying, and Jure Leskovec. Induc-

tive representation learning on large graphs. In I. Guyon,

U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus,

S. Vishwanathan, and R. Garnett, editors, Advances in

Neural Information Processing Systems, volume 30. Cur-

ran Associates, Inc., 2017.

[35] Kaveh Hassani and Amir Hosein Khasahmadi. Con-

trastive multi-view representation learning on graphs.

In Hal Daumé III and Aarti Singh, editors, 37th Inter-

national Conference on Machine Learning, volume 119

of Proceedings of Machine Learning Research, pages

4116–4126. PMLR, 13–18 Jul 2020.

[36] Shiwen He, Shaowen Xiong, Yeyu Ou, Jian Zhang, Jia-

heng Wang, Yongming Huang, and Yaoxue Zhang. An

overview on the application of graph neural networks in

wireless networks. IEEE Open Journal of the Commu-

nications Society, 2:2547–2565, 2021.

[37] Renjun Hu, Charu C. Aggarwal, Shuai Ma, and Jinpeng

Huai. An embedding approach to anomaly detection. In

IEEE 32nd International Conference on Data Engineer-

ing (ICDE), pages 385–396, 2016.

[38] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik,

Percy Liang, Vijay Pande, and Jure Leskovec. Strategies

for pre-training graph neural networks. In International

Conference on Learning Representations, 2020.

[39] Tsuyoshi Idé and Hisashi Kashima. Eigenspace-based

anomaly detection in computer systems. In Proceedings

of the tenth ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 440–449,

2004.

[40] Illumio. Zero trust: the security paradigm for the

modern organization. https://www.illumio.com/

solutions/zero-trust, Retrieved on 2023-04.

[41] Weiwei Jiang. Graph-based deep learning for communi-

cation networks: A survey. Computer Communications,

185:40–54, 2022.

[42] Yizhu Jiao, Yun Xiong, Jiawei Zhang, Yao Zhang, Tianqi

Zhang, and Yangyong Zhu. Sub-graph contrast for

scalable self-supervised graph representation learning.

In IEEE International Conference on Data Mining

(ICDM), pages 222–231, 2020.

[43] Ansam Khraisat, Iqbal Gondal, Peter Vamplew, and

Joarder Kamruzzaman. Survey of intrusion detection

systems: techniques, datasets and challenges. Cyberse-

curity, 2(1), 2019.

[44] John Kindervag, Stephanie Balaouras, and Lindsey Coit.

Build security into your network’s DNA: The zero trust

network architecture. Forrester Research Inc, 27, 2010.

[45] Thomas N. Kipf and Max Welling. Semi-supervised

classification with graph convolutional networks. In

International Conference on Learning Representations,

2017.

[46] Vinod Kumar and Om Prakash Sangwan. Signature

based intrusion detection system using SNORT. Interna-

tional Journal of Computer Applications & Information

Technology, 1(3), 2012.

[47] Donghwoon Kwon, Hyunjoo Kim, Jinoh Kim, Sang C

Suh, Ikkyun Kim, and Kuinam J Kim. A survey of

deep learning-based network anomaly detection. Cluster

Computing, 22, 2019.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1785

[48] Hung-Jen Liao, Chun-Hung Richard Lin, Ying-Chih Lin,

and Kuang-Yuan Tung. Intrusion detection system: A

comprehensive review. Journal of Network and Com-

puter Applications, 36(1), 2013.

[49] Ninghao Liu, Xiao Huang, and Xia Hu. Accelerated lo-

cal anomaly detection via resolving attributed networks.

In 26th International Joint Conference on Artificial Intel-

ligence, IJCAI’17, page 2337–2343. AAAI Press, 2017.

[50] Yixin Liu, Ming Jin, Shirui Pan, Chuan Zhou, Yu Zheng,

Feng Xia, and Philip S. Yu. Graph self-supervised learn-

ing: A survey. IEEE Transactions on Knowledge and

Data Engineering, 35(6):5879–5900, 2023.

[51] Wai Weng Lo, Siamak Layeghy, Mohanad Sarhan, Mar-

cus Gallagher, and Marius Portmann. E-graphsage: A

graph neural network based intrusion detection system

for IOT. In IEEE/IFIP Network Operations and Man-

agement Symposium (NOMS), 2022.

[52] Xiaoxiao Ma, Jia Wu, Shan Xue, Jian Yang, Chuan Zhou,

Quan Z. Sheng, Hui Xiong, and Leman Akoglu. A

comprehensive survey on graph anomaly detection with

deep learning. IEEE Transactions on Knowledge and

Data Engineering, pages 1–1, 2021.

[53] Mohammad Masdari and Hemn Khezri. A survey and

taxonomy of the fuzzy signature-based intrusion detec-

tion systems. Applied Soft Computing, 92, 2020.

[54] Microsoft. Flow logs for network secu-

rity groups. https://learn.microsoft.

com/en-us/azure/network-watcher/

network-watcher-nsg-flow-logging-overview,

Retrieved on 2023-04.

[55] Microsoft. Microsoft digital de-

fense report 2022. https://www.

microsoft.com/en-us/security/business/

microsoft-digital-defense-report-2022,

Retrieved on 2023-04.

[56] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and

Asaf Shabtai. Kitsune: An ensemble of autoencoders

for online network intrusion detection. In 25th Annual

Network and Distributed System Security Symposium

(NDSS), 2018.

[57] Chirag Modi, Dhiren Patel, Bhavesh Borisaniya, Hiren

Patel, Avi Patel, and Muttukrishnan Rajarajan. A survey

of intrusion detection techniques in cloud. Journal of

network and computer applications, 36(1), 2013.

[58] Caleb C Noble and Diane J Cook. Graph-based anomaly

detection. In Proceedings of the ninth ACM SIGKDD

international conference on Knowledge discovery and

data mining, pages 631–636, 2003.

[59] Palo Alto Networks. Prisma cloud: Cloud net-

work security. https://www.paloaltonetworks.

com/prisma/cloud/cloud-network-security, Re-

trieved on 2023-04.

[60] Guansong Pang, Chunhua Shen, Longbing Cao, and An-

ton Van Den Hengel. Deep learning for anomaly detec-

tion: A review. ACM Comput. Surv., 54(2), mar 2021.

[61] Vern Paxson. Bro: A system for detecting net-

work intruders in real-time. Comput. Netw.,

31(23–24):2435–2463, dec 1999.

[62] Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua

Zheng, Yu Rong, Tingyang Xu, and Junzhou Huang.

Graph representation learning via graphical mutual in-

formation maximization. In Proceedings of The Web

Conference 2020, WWW ’20, page 259–270. Associa-

tion for Computing Machinery, 2020.

[63] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang,

Hongxia Yang, Ming Ding, Kuansan Wang, and Jie Tang.

GCC: Graph contrastive coding for graph neural net-

work pre-training. In 26th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining,

KDD ’20, page 1150–1160. Association for Computing

Machinery, 2020.

[64] Md Sazzadur Rahman, Ting-Kai Huang, Harsha V Mad-

hyastha, and Michalis Faloutsos. Efficient and scalable

socware detection in online social networks. In USENIX

Security Symposium, pages 663–678, 2012.

[65] Martin Roesch. Snort - lightweight intrusion detec-

tion for networks. In Proceedings of the 13th USENIX

Conference on System Administration, LISA ’99, page

229–238, USA, 1999. USENIX Association.

[66] Scott Rose, Oliver Borchert, Stu Mitchell, and Sean Con-

nelly. Zero trust architecture. Technical report, National

Institute of Standards and Technology, 2020.

[67] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter,

and Alex C. Snoeren. Inside the social network’s (data-

center) network. In Proceedings of the ACM Conference

on Special Interest Group on Data Communication (SIG-

COMM), 2015.

[68] Fred B Schneider. Least privilege and more computer

security. IEEE Security & Privacy, 1(5), 2003.

[69] Rupam Kumar Sharma, Hemanta Kumar Kalita, and

Biju Issac. Different firewall techniques: A survey. In

Fifth International Conference on Computing, Communi-

cations and Networking Technologies (ICCCNT), 2014.

[70] Nitin Singh Sikarwar and Dinesh Verma. Micro segmen-

tation: today’s success formulae. International Journal

of Operations Management and Services, 2(1), 2012.

1786 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[71] Fan-Yun Sun, Jordan Hoffman, Vikas Verma, and Jian

Tang. InfoGraph: Unsupervised and semi-supervised

graph-level representation learning via mutual infor-

mation maximization. In International Conference on

Learning Representations, 2020.

[72] Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville.

Adversarial graph augmentation to improve graph con-

trastive learning. In M. Ranzato, A. Beygelzimer,

Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, edi-

tors, Advances in Neural Information Processing Sys-

tems, volume 34, pages 15920–15933, 2021.

[73] Colin Tankard. Advanced persistent threats and how

to monitor and deter them. Network security, 2011(8),

2011.

[74] Xian Teng, Yu-Ru Lin, and Xidao Wen. Anomaly detec-

tion in dynamic networks using multi-view time-series

hypersphere learning. In 2017 ACM on Conference on

Information and Knowledge Management, pages 827–

836, 2017.

[75] Zhihong Tian, Wei Shi, Yuhang Wang, Chunsheng Zhu,

Xiaojiang Du, Shen Su, Yanbin Sun, and Nadra Guizani.

Real-time lateral movement detection based on evi-

dence reasoning network for edge computing environ-

ment. IEEE Transactions on Industrial Informatics,

15(7), 2019.

[76] European Union. General data protection regula-

tion (GDPR). https://commission.europa.eu/

law/law-topic/data-protection_en, Retrieved on

2023-04.

[77] Romans Vanickis, Paul Jacob, Sohelia Dehghanzadeh,

and Brian Lee. Access control policy enforcement for

zero-trust-networking. In 29th Irish Signals and Systems

Conference (ISSC), 2018.

[78] Petar Velickovic, Guillem Cucurull, Arantxa Casanova,

Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph

attention networks. In International Conference on

Learning Representations, 2018.

[79] Petar Velickovic, William Fedus, William L. Hamilton,

Pietro Liò, Yoshua Bengio, and R Devon Hjelm. Deep

graph infomax. In International Conference on Learn-

ing Representations, 2019.

[80] Yanling Wang, Jing Zhang, Shasha Guo, Hongzhi Yin,

Cuiping Li, and Hong Chen. Decoupling representation

learning and classification for GNN-based anomaly de-

tection. In 44th international ACM SIGIR conference

on research and development in information retrieval,

pages 1239–1248, 2021.

[81] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,

Michael M. Bronstein, and Justin M. Solomon. Dy-

namic graph cnn for learning on point clouds. ACM

Trans. Graph., 38(5), oct 2019.

[82] Marcus Willett. Lessons of the SolarWinds hack. Sur-

vival, 63(2), 2021.

[83] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong

Long, Chengqi Zhang, and Philip S. Yu. A compre-

hensive survey on graph neural networks. IEEE Trans-

actions on Neural Networks and Learning Systems,

32(1):4–24, 2021.

[84] Yuning You, Tianlong Chen, Yang Shen, and Zhangyang

Wang. Graph contrastive learning automated. In Ma-

rina Meila and Tong Zhang, editors, 38th International

Conference on Machine Learning, volume 139 of Pro-

ceedings of Machine Learning Research, pages 12121–

12132. PMLR, 18–24 Jul 2021.

[85] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen,

Zhangyang Wang, and Yang Shen. Graph contrastive

learning with augmentations. Advances in neural infor-

mation processing systems (NeurIPS), 33, 2020.

[86] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen,

Zhangyang Wang, and Yang Shen. Graph contrastive

learning with augmentations. In H. Larochelle, M. Ran-

zato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Ad-

vances in Neural Information Processing Systems, vol-

ume 33, pages 5812–5823, 2020.

[87] Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning

on graphs: A survey. IEEE Transactions on Knowledge

and Data Engineering, 34(1):249–270, 2022.

[88] Zhipeng Zhao, Hugo Sadok, Nirav Atre, James C Hoe,

Vyas Sekar, and Justine Sherry. Achieving 100gbps

intrusion prevention on a single server. In Proceedings

of the 14th USENIX Conference on Operating Systems

Design and Implementation (OSDI), 2020.

[89] Li Zheng, Zhenpeng Li, Jian Li, Zhao Li, and Jun Gao.

Addgraph: Anomaly detection in dynamic graph using

attention-based temporal gcn. In 28th International

Joint Conference on Artificial Intelligence, IJCAI’19,

page 4419–4425, 2019.

[90] Panpan Zheng, Shuhan Yuan, Xintao Wu, Jun Li, and

Aidong Lu. One-class adversarial nets for fraud de-

tection. In AAAI Conference on Artificial Intelligence,

volume 33, pages 1286–1293, 2019.

[91] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang,

Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng

Li, and Maosong Sun. Graph neural networks: A review

of methods and applications. AI Open, 1:57–81, 2020.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1787

[92] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu,

and Liang Wang. Graph contrastive learning with adap-

tive augmentation. In Proceedings of the Web Confer-

ence, WWW ’21, page 2069–2080, 2021.

A Appendix

A.1 Additional efficiency results

We demonstrate the scalability of our approach to larger net-

work log sizes. With a trace of 4 VMs, it takes 123 seconds

for Whisper and 96 seconds for NetVigil. As the trace size

increases, the execution time of Whisper also increases, re-

sulting in 373 seconds to process a trace with 16 VMs. Mean-

while, the execution time of NetVigil only increases slightly to

140 seconds. Furthermore, as Whisper is allocated more cores,

the CPU time increases from 508 seconds for 4 cores to 1520

seconds for 16 cores, while the wall clock time decreases

marginally from 173 seconds with 4 cores to 164 seconds

with 8 cores. In contrast, the runtime of NetVigil remains rel-

atively stable when changing the number of allocated cores

since it does not rely on parallelism for efficiency.

1788 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

4 VMs 8 VMs 12 VMs 16 VMs1

10

Ti
m

e
(s

)

Kitsune
Whisper
NetVigil

4 cores 8 cores 12 cores 16 cores

101

Ti
m

e
(s

)

Kitsune
Whisper
NetVigil

Figure 11: Comparing detection latencies of Kitsune+, Whisper, and NetVigil in elapsed seconds while varying number of VMs in the

network trace (left), number of cores used for processing each trace (middle), and attack traces (right).

4 VMs 8 VMs 12 VMs 16 VMs1

10

CP
U

Ti
m

e
(s

)

Kitsune
Whisper
NetVigil

4 cores 8 cores 12 cores 16 cores

101

102

CP
U

Ti
m

e
(s

)

Kitsune
Whisper
NetVigil

Figure 12: Comparing detection latencies of Kitsune+, Whisper, and NetVigil in CPU seconds while varying number of VMs in the

network trace (left), number of cores used for processing each trace (middle), and attack traces (right).

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1789

	Introduction
	Background and Motivation
	Securing East-West Traffic with Zero-Trust Solutions

	Challenges of Network Intrusion Detection Systems on East-West Traffic
	Overview of NetVigil
	Design Details of NetVigil
	Security Graph Feature Extractor

	Graph Representation Learning
	Domain-Specific Contrastive Learning
	Temporal Smoothing and Continuous Retraining
	Benchmarks and datasets
	Evaluation
	Methodology

	Overall Results
	Efficiency Results
	System cost
	Production Traces
	Ablation Study
	Related Work
	Discussion
	Conclusion
	Appendix
	Additional efficiency results

