Technical Challenges in Maintaining Tax Prep Software with
Large Language Models

Sina Gogani-Khiabani, UT El Paso, USA
Varsha Dewangan, CU Boulder, USA

Nina Olson, Center for Taxpayer Rights, USA
Ashutosh Trivedi, CU Boulder, USA

Saeid Tizpaz-Niari*, UT El Paso, USA

Abstract

As the US tax law evolves to adapt to ever-changing politico-economic realities, tax preparation software
plays a significant role in helping taxpayers navigate these complexities. The dynamic nature of tax
regulations poses a significant challenge to accurately and timely maintaining tax software artifacts. The
state-of-the-art in maintaining tax prep software is time-consuming and error-prone as it involves manual
code analysis combined with an expert interpretation of tax law amendments. We posit that the rigor and
formality of tax amendment language, as expressed in IRS publications, makes it amenable to automatic
translation to executable specifications (code). Our research efforts focus on identifying, understanding,
and tackling technical challenges in leveraging Large Language Models (LLMs), such as ChatGPT and
Llama, to faithfully extract code differentials from IRS publications and automatically integrate them with
the prior version of the code to automate tax prep software maintenance.

1 Introduction

The growing complexity of US income tax laws has made manual tax return preparation bur-
densome and susceptible to errors. According to the IRS, go percent of tax filers submitted their
taxes electronically in 2020 [19]. Additionally, the use of software for tax preparation is on the
rise, with more than 72 million individuals preparing their taxes independently, without tax pro-
fessionals, marking a 24 percent increase from 2019 [21]. As a result, the industry revenue for
tax preparation services has grown to an estimated $13.9 billion in 2023 [23]. Recently, the IRS
introduced Direct File, an online software tool that provides free online tax filing in 12 states [20].

The development of socio-legal critical software is known to be challenging [9], as it requires
combined expertise in mission-critical software development practices and legal framework in-
terpretation. The ever-changing nature of tax regulations further aggravates this challenge due
to the need to keep tax software artifacts accurate and up-to-date. These constant changes re-
quire continuous revisions and updates to ensure compliance and functionality. Consequently,
the current state-of-the-art remains time-consuming and susceptible to errors. The authors are
supported by an NSF program on Designing Accountable Software Systems (DASS) to develop
principled software engineering tools to improve the accountability of tax preparation software.
In this paper, we discuss key technical challenges in maintaining tax preparation software by
leveraging recent advances in Large Language Models (LLMs).

We posit that the precise and formal language used in tax amendments, as outlined in IRS
publications, is amenable to automatic translation into executable software code via LLMs. In

“Corresponding Author: saeid@utep.edu

addition to natural language processing, LLMs have demonstrated significant potential in gen-
erating code [11, 10, 13], thanks to the naturalness of software and the availability of extensive
training datasets from software repositories. Our work explores the opportunities and challenges
of leveraging LLMs to maintain tax preparation software as it responds to changes in tax laws.

Testing and Debugging of Tax Prep Software. The authors in their prior works [18, 17] focused
on the trustworthiness of tax prep software. One important obstacle to validate the correctness
of tax prep software against the tax code, as outlined in the various publications by the IRS, is
the oracle problem [5]: the class of correctness requirements for tax preparation systems are not
explicitly available since the correct tax-filing is highly subjective to individual taxpayers. Given
the relevant information about an individual, resolving the correct decision for that individual
requires accounting and legal expertise. The authors made a critical observations connecting the
principle of common law and stare decisis to the metamorphic specifications: the correctness of tax
preparation software must also be viewed in comparison with similarly situated taxpayers. One
key contribution of these prior works is to explicate formal representations of these properties
from the latest Internal Revenue System (IRS) documents (see [17] for more info). In addition,
we presented a framework, called TenForty [18] that automatically generate test cases from these
metamorphic specifications to ensure the trustworthiness of tax prep software.

LLMs for Maintainability. Following the new tax legislation and the IRS publications of new
regulations, the tax prep software needs to be updated to reflect the changes in the software
artifacts. However, as the tax law has evolved over different years, updating the corresponding
software manually is error-prone and tedious. We study the following research question:

Can we leverage recent breakthroughs in Al, in particular with pre-trained LLMs to assist software
developers in automatically updating the implementation of tax law in software artifacts?

LLMs produce a probability distribution over their outputs and thus, are able to generate
several candidate solutions with potentially widely differing characteristics. Our ability to rank
solutions based on their fitness is a key challenge in employing LLMs for correct software imple-
mentations of the tax code. Equipped with a reliable ranking mechanism, one can invoke LLMs
in what is known as chain-of-thought reasoning[22] to iteratively improve a candidate solution.
In this paper, we focus on the problem of ranking candidate solutions generated by the LLMs.

Experimental Setup and Results. For our experiments, we focus on generating functions to
compute three key tax calculations: 1) tax brackets, 2) tax deductions, and 3) Earned Income Tax
Credits (EITC) through LLMs for the tax year 2021. We use two variants of OpenAl’s LLM, Chat-
GPT (i.e., GPT-4.0 and GPT-3.5), and prompt them with descriptions from the tax publications
under two distinct scenarios: 1) with the reference implementation from tax year 2020, and 2)
without any reference implementations (direct prompting). In response to these prompts, the
LLMs generated 10 candidate code implementations. We first use well-established ranking met-
rics such as CodeBertScore [24] and compare their ranking outcomes to the ground truth imple-
mentations. We found that the existing metrics often fail to rank the candidate implementations
in a way that the highest-ranked candidates have the lowest errors compared to the ground truth
implementations. Then, we introduce a new metric, MajorityVote, where we take the majority
votes of candidates in ranking them (i.e.,, an implementation that agrees the most with other
candidates is considered a high-rank candidate). Our experiments show that a combination of

Tax Law and Policy Scenarios Metamorphic Specification Tax Preparation Software Explanatory Models
IRS 1040 1 (1) Eligibility for senior 2 VX, ¥ (X Zage ¥) A (x.0g€ > 65)A

e C8ls = WFS)
Extract and disability benefits; Specify (y.age<65) = (F(x) > F(y)) Test (e /v Passem Fisé—j,_ — True
Cases . &
& — . Vx(x.sts=MFJ) A (x.AGI>56,844) > Debugging @Gl < 56, Bn
(2) Eligibility for EITC — Vy(x=grrey Ax.EITC>0.0 A 8 / sl Sselier
— benefits; VEITCo00) — Fix)=F(3) \ x False = True
Related Publications l@
Failed

Figure 1: TENFORrTY: General Framework using Disability and EITC benefits as examples. Our
approach specifies the correctness requirements from relevant tax policies. Then, it generates
random test cases and infers decision trees to localize circumstances under which the software
fails to satisfy metamorphic requirements.

CodeBertScore and MajorityVote outperformed each metric in isolation.

Our results show that when the LLMs are prompted without the reference code of the prior
year, the top ranked candidates, generated by GPT-3.5, achieved an accuracy between 0% to
2% whereas those by GPT4.0 achieved an accuracy between 43%-100%. On the other, when
prompted with the implementation of tax prep software from the prior year (given as the context
to the LLMs), GPT3.5 and GPT4.0 achieved an accuracy between 21% to 100% and 48% to 100%,
respectively. Rather than considering the absolute accuracy, we also study the accuracy of our
ranking methods with some threshold where a solution within §% of ground truth is considered
correct. We observe that without the prior year code context, GPT3.0’s candidates are far off
and barely achieved 10% accuracy under an d=10%. GPT4.0’s candidates, on the other hand,
when prompted without the contexts from the prior years, achieved 100% accuracy in all cases
when the ¢ is at least 7%. Interestingly and somehow surprisingly, when prompted with the
code context, GPT3.5’s candidates achieved a similar or better accuracy, compared to GPT4.0’s
candidates, when 9 sets to at least 4%.

We share our best practices on prompting LLMs to generate implementations of a tax code,
giving a code context to the LLMs, and providing the implementations from the prior code.
While our current research focuses on a robust ranking system for identifying the most promis-
ing candidates from the LLM-generated tax prep software code, the next phase will focus on
validating and refinements of (top-ranked) candidates to understand the extend under which the
LLMs can be used to update tax prep software and maintain them automatically. For valida-
tion, we plan to integrate the ranking system with the metamorphic specifications and testing
framework to ensure the correctness of updated code. If the candidate failed over the correct-
ness requirements, Feedback Prompt Generator (FPG) will analyze the specific errors and create
targeted prompts to guide the LLM in generating more accurate code in the next iteration.

2 Maintainability Challenges in Tax Prep Software

In this section, we briefly review prior work [18] that leverages metamorphic relations to test the
functional correctness of tax preparation software. Using this approach, we have demonstrated
how an open-source tax preparation software project failed to correctly update the code to ac-
count for new tax legislation. This underscores the importance of automatic methodologies to
update tax preparation software. The key research question in approaching the trustworthiness
of tax prep software is the following:

How can one ensure that the tax prep software faithfully implements the tax law code as outlined by
various IRS publications such as Form 1040, Publication 596 (EITC), Schedule 8812 (Qualifying
Dependents), and Form 8863 (Education Credits)?

Challenges. Due to the lack of explicit correctness requirements, one can recourse to pre-existing
dataset to test and debug the software. Unfortunately, it is hard to obtain a meaningful labeled
dataset—individuals and their “optimal” tax returns—due to obvious privacy and legal concerns.
Even when one can learn a good generative model [14] to produce synthetic population, tax
software suffers from what is known as the oracle problem [5] in software engineering: determining
the correct output of an individual decision is time-consuming, expensive, and error-prone due
to its highly subjective nature as discussed next. A key observation made in this preliminary
work is that a number of compliance specifications can be expressed relating an individual with
a counterfactual one. We proposed a formal (first-order) logic (metamorphic relations) to express
such compliance properties.

Metamorphic Relations. We characterized 33 metamorphic specifications [17] from 5 domains
of the U.S. Individual Income Tax Return: (1) Credit for the Elderly or the Disabled [1], a credit
for taxpayers who are aged 65 or older or who are retired on permanent and total disability; (2)
Earned Income Tax Credit (EITC) [2], a refundable tax credits for lower-income households; (3)
Child Tax Credit (CTC), a nonrefundable credits to reduce the taxes owed based on the number of
qualifying children under the age of 17 [3]; (4) Educational Tax Credit (ETC) that help students
with the cost of higher education by lowering their owed taxes or increasing their refund [4];
and (5) Itemized Deduction (ID) that is an option for taxpayers with significant tax deductible
expenses [16]. Some examples are:

— A blind individual must receive similar or better tax benefits when compared to a person
without the disability. This is due to higher standard deductions for blind individuals. This
equity specification can be expressed as a metamorphic relation:

VX, y((X=p1ingy) A (x.blind A —y.blind)) = F(x) > F(y)

— An individual who qualifies for EITC (e.g., income below 56, 844) must receive a higher or
equal return than a similar unqualified one.

Vx(x.sts=MF]) = Vy(x=ac1y A x. AGI<56,844 N\ y.AGI>56,844) V (x=[27y N\
x.L27>0.0Ay.L27=0.0) V (x=qocy A x.QC>y.QC) = F(x)>F(y)

TenForty Framework. We develop an open-source software TENFORrTyY [18] (Figure 1) designed to
test and debug tax software. While it currently focuses on an open-source tax preparation soft-
ware OpenTaxSolver [15] for the accompanied case study, it can be readily extended to other tax
prep software. TENFoOrTY allowed us to study the compliance of OpenTaxSolver [15] (tax years of
2018, 2019, 2020, and 2021), a popular open-source tax preparation software [8, 7], in the domains
of disability, credits, and deductions that are known to be challenging and error-prone [12], lever-
aging the metamorphic relations. TENFORTY generates tens of thousands of random test cases
using a given compliance requirements as a metamorphic relation. Furthermore, it explains the

BRACKETS - {

3, (o525, 0.22), (1633, 0.24), (107358, 0.32),
), (@750, 9.12), (171050, 0.22), (326600, ©.24)
"
IS, 0.22), (163300, 0.24),
0, 0.
»

of e 0.223, (1638, 0.24),
(207350, 0.32), (510409, 0.35),

CodeBertScore :
0.871
MajorityVoteScore:
0.880

Validation Score:
45/100

o,

nd blindness for 2020
falsed: 13459, Cralse, Trued: 13650,

. False)i L8350, CTrue, Falscd: 20008, (Felsc, True): 20000,
Folse): 12200, (True, Folsed: 13889, Chalse, Trued; 13889,

| False): 24400, (False, Trus): 25709, (True, Falsed: 25700,

Prior code (used only as reference) m_ Correct Generation

Tax brackets for the year 2021 def calculate_tax(income, marital_status, age, blind):
10% Up 1o $9,950 Up to $19,900 Up to $14,200 # s diction

12% $9,951 t0 $40,525 §19,901 to $81,050 $14,201 to §54,200

12% $9,951 10 $40,525 §19,901 10 §81,050 §14,201 to $54,200

22% $40,526 to $86.375 581,051 to $172,750 554201 to $§86,350
24% $86,376 to $164,925 $172,751 to $329,850 $86,357 to §164,900
and so on...

CodeBertScore :
0852

eduction based on morital status ond oge | MajorityVoteScore:

003

Validation Score:

0/100

Deductions Logic: .
Deductions vary based on marital status, age, and blindness:

Single:

Younger than 65: §12,550

65 or Older: $14,250

Blind: additienal $1,700 (8.12, 48525),
(0.22, 86375)
(o.28, 164925,

Add additional deduction for blin
ax(®, income - deduction) # Calculate toxcble incose

Head of Household:
Younger than 65: $18,800 (8.32, 209425),

65 or Older: $20,500 (0.35, 523600),
Blind: additional §1,700 @37, FloatC'inf'))
and soon... 1

Context Faulty Generation

Figure 2: Updating tax brackets without prior software code. Prior code is listed only for clarity
to understand CodeBertScore calculation logic; it does not impact the code generation process.

circumstances under which the software has failed to comply using an explainable ML model
(based on CART decision tree algorithm [6]). Our tool has already revealed three types of failures
in OpenTaxSolver: missing some eligibility conditions (e.g., married people filing separately status
is not eligible to take earned income credits); software fails to satisfy the correctness requirements
when the computed tax returns get very close to zero (small non-zero values); and the updated
software (e.g., 2021 version updated from 2020 version) that allows users to explicitly opt for an
option does not satisfy some correctness requirements in the corner cases.

3 Overview: Generating Software Code from Tax Code via LLM

In this section, we overview the LLM-based code generation and our ranking system using some
intuitive examples. To illustrate the key concepts, we will use simplified examples focusing on
snippets of the generated code and the relevant portions of the input context. The full context
provided to the LLMs includes detailed instructions, tax policy updates, and, in some cases, the
previous year’s tax code. However, for brevity, the figures will only display the code snippets
and the contextual elements directly related to those snippets.

Updating Tax Brackets without Prior Software Code. Figure 2 presents a visual comparison
of two code snippets generated by an LLM when provided with the 2021 tax law updates and
a prompt, but without the context of the previous year’s code. The code snippet "Faulty Gen-
eration” exhibits several flaws, most notably the incomplete definition of the “TAX BRACKETS’
dictionary. This error results in a syntactically incorrect program and would likely lead to run-
time errors. The CodeBertScore for this snippet is 0.852, reflecting its lower semantic similarity
to the reference code and task instructions due to this significant structural error.

In contrast, the code snippet "Correct Generation" demonstrates a better understanding of
the task and the required code structure. The “TAX BRACKETS’ dictionary is defined correctly,
along with the ‘TDEDUCTIONS’ dictionary. This snippet is syntactically correct and closer to

a functional implementation. The CodeBertScore for this snippet is 0.871, indicating a much
stronger semantic alignment with the reference code and the instructions. The ground truth
score (or validation score) is 0.45, reflecting the need for further refinement of this candidate
solution.

def calculate_tax_alternativeCincome, status, brackets):
tox_due - 9.0

def calculate_tax(income, status, brackets)
tax_due - 0.8

previous_limit = &
for limit, rate in brackets[status]:
if income > previous_Limit:
taxable_amount
tax_due += taxable_amount * rate
previeus_limit - limit
else:
break
return tax_due

Function to get deduction based on filing status, age,

minCincome, limit) - previous_limit

ond blindness

previous_linit = @
for Llimit, rate in brackets[stotus]:
it

if income > previous_

e current bracket
revious_limit

tax_due +~ taxable_amount * rate
previous_limit = limit

return tax_due

CodeBertScore :
0977
MajorityVoteScore:
10

Validation Score:
51/100

def get_deduction_alternative(status, is_blind, is_older):
(is_blind, is_older)
DEOUCTIONS [status] [key]

def get_deduction(status, is_blind, is_older):
return DEDUCTIONS[status][(is_blind, is_older)] return

%

Deductions Logic: def colculate_tax(income, filing_status, age, is_blind):
Deductions vary based on marital status, age, and blindness deguction - deductions[filing_status] (age]

Single: if is_blind:

deduction

Prior code Correct Generation

Younger than 65: §12,550 deductions[filing_status]['Blind"]

65 or Older: §14,250
Blind: additional $1,700
Head of Household
Younger than 65: $18,800 CodeBertScore:

65 or Older: $20,500 13) — 0.972

Blind: additional $1,700 for 1 1 rangeClai(brkptCatabin inds5)s MajorityVoteScore:
Married Filing Separately. if taxable_income <- brkpt[status_index][i]: 0.420

Younger than 65: §12,550 tax += taxable_income * txrt[status_index][i] Validation Score:
65 or Older: $14,250 break 217100

Blind: addtional §1,700 else:
Married Filing Jointly: tax
Younger than 65: 25,100
65 or Older: $26,450
Blind: additional $1,350

xable_i ome
status_index - {'Single':

teduction
@, "Married Filing Jointly': 1, "Married Filing Separately': 2,
"Head of Household': 3}[Filing_status]

Coript[status_index] [i+1] - brkpt[status_index][i]) * txrt[status_index](i]

return tax

Context Faulty Generation

Figure 3: Updating Tax Brackets with Prior Software Code.

Updating Tax Brackets with Prior Software Code. Figure 3 displays two code snippets generated
by an LLM when provided with the 2021 tax law updates, the 2020 tax code, and a prompt
instructing the LLM to update the code. This scenario demonstrates that even with prior code
context, LLMs can generate code with logical errors that might not be immediately apparent.

While both code snippets appear structurally similar to the reference code, the snippet "Faulty
Generation" contains several logical errors. For instance, there’s a potential misalignment be-
tween the tax brackets and their corresponding rates, leading to incorrect tax calculations. Ad-
ditionally, the code incorrectly calculates the blindness deduction by adding a constant value
to an already established deduction, potentially causing a double-counting error. These errors
would result in incorrect tax outputs for certain inputs, making the code functionally incorrect.
Despite these errors, this snippet achieves a CodeBertScore of 0.972, demonstrating that semantic
similarity alone is insufficient to guarantee code correctness.

The snippet "Correct Generation", on the other hand, accurately updates the tax calculation
logic. It aligns the tax brackets and rates correctly and avoids the double-counting error in the
blindness deduction. This snippet achieves a CodeBertScore of 0.977, slightly higher than the
faulty code due to its better semantic alignment.

These comparisons underscore the importance of our multi-faceted ranking approach, which
incorporates both CodeBertScore and MajorityVoteScore. CodeBertScore provides insights into
the semantic quality of the generated code, assessing its alignment with the task instructions and
reference code (if provided). However, as demonstrated in Figure 3, semantic similarity alone is
not always sufficient to guarantee functional correctness. MajorityVoteScore plays a crucial role
in detecting logical errors that might not be evident from the code’s structure or syntax. By com-
bining these metrics, our ranking system effectively distinguishes between code candidates with

Metamorphic
Testing

Previous Year's
Tax Software

_

LLM —> Updated Software ——> Ranking ——> Validation ? Yes——» Done

: |] No
Tax Law i

updates
Feedback Prompt
Generator

Y

Figure 4: Al-assisted framework to update tax software following the updated tax policies.

varying levels of quality and correctness, enabling us to select the most promising candidates for
further validation and refinement stages of our framework.

4 Methodology

Figure 4 illustrates our proposed framework for automatically updating tax preparation software
using Large Language Models (LLMs). This framework tackles the challenge of adapting soft-
ware to the annual revisions in IRS tax policies, aiming to reduce manual effort and increase the
trustworthiness. The framework operates as a cyclical process consisting of several key stages:

1. Input and Analysis: The process begins by providing the LLM with two essential inputs:

— Previous Year’s Tax Software Code: The source code of the existing tax software
serves as the base for the update. To understand its importance, we perform experi-
ments without including the previous year’s code.

— Latest Tax Policy Updates: The LLM receives the official IRS publications detailing
the changes in tax laws for the current year.

2. Code Generation: Leveraging the provided inputs, the LLM generates multiple candidate
versions of the updated tax software. The LLM is guided by a series of prompts that provide
context, instructions, and previous year’s tax calculation code to maximize the alignments
of generated code to the desired functionality. We experiment with two LLMs, ChatGPT3.5
and GPTj.0 to explore their effectiveness in this code generation task.

3. Ranking and Selection: Since the LLMs can generate a large number of candidate code,
the main focus of this paper is to come up with a ranking criteria to identify the most promising
candidates. We consider the following ranking mechanisms:

— CodeBertScore: We leverage CodeBERT [24], a pre-trained model specializing in un-
derstanding code, to assess the semantic similarity of the generated code. This metric
calculates the cosine similarity between the generated code and both the reference
code from the previous year and the IRS policy updates. A higher CodeBertScore in-
dicates a stronger alignment between the generated code and the intended meaning
and structure expressed in the reference code and the new tax regulations.

— MajorityVoteScore: We execute the each candidate code with a set of random inputs
to quantify the majority vote. These random input profiles cover a diverse range of
income levels, filing statuses, and other relevant parameters. For each input profile,
we run all generated code versions and record their outputs. We then determine the
most frequent output across all versions, assuming this "majority vote" output to be
the correct answer. The majority vote score of each code version is then calculated as
the percentage of inputs for which its output matches the majority vote output.

— WeightedScore: To determine the overall ranking of the generated code candidates, we
employ a weighted average that combines both CodeBertScore and Majority VoteScore.
This approach allows us to prioritize candidates that excel in two key aspects: semantic
similarity to the task instructions and reference code (CodeBertScore) and functional
correctness in producing accurate tax calculations (MajorityVoteScore). We perform
various experiments and found that assigning a weight of 0.6 to CodeBertScore and
0.4 to the MajorityVoteScore works well in practice. The setup also depends on the
capabilities of LLMs. More capable LLMs (like GPT-4) consistently generate high-
quality code, making the majority vote score a reliable indicator of correctness whereas
less capable LLMs (such as GPT-3.5) may exhibit greater inconsistency in code quality,
relying too heavily on the majority vote score could lead to misinterpretations.

4. Metamorphic Testing: To further validate the top-ranked code candidates, we employ
metamorphic testing [18, 17]. We previously leverage metamorphic specification and test-
ing to validate the correctness of tax prep software (see Background Section 2). After we
choose a top-ranked candidate, we use the metamorphic testing paradigm to validate its
correctness or obtain failed test-cases to guide a refinement process.

5. Feedback Loop:

— Success: If a code candidate successfully passes the metamorphic testing stage without
any failures, we deem it correct and return the solution to the tax software developers
as the correct updated software.

— Refinement: In cases where the code fails one or more metamorphic test cases, our
framework initiates a feedback loop for iterative refinement. The Feedback Prompt
Generator (FPG) analyzes the specific test failures and generates targeted prompts to
guide the LLM in rectifying the identified issues.

6. Iteration: The process of code generation, ranking, metamorphic testing, and feedback-
driven refinement may iterates multiple times. This process successes if the generated
software successfully passes all metamorphic tests, and we obtain some statistically or
formal guarantees on the correctness.

Overall, the framework 1 provides a means to update and maintain tax prep software auto-
matically via LLMs. This paper only focuses on the ranking systems for the LLM-generated code and
discuss the technical challenges in using LLMSs to update tax prep software as the tax law changes each
year. While our prior works used metamorphic testing [18, 17] to ensure the correctness of gen-
eral tax prep software, more work is needed to integrate it as the validation component in the

framework 1. Also, the feedback prompt generators may not be trivial and require extensive
future works to guide LLMs in generating candidate code.

5 Experiments and Results

5.1 Updating tax prep software without prior code context via LLMs

This section explores the performance of LLMs in updating tax preparation software when no
context about the previous year’s code is provided. This scenario examines whether the LLMs
are capable in generating tax prep software code from scratch.

Procedure. We follow the same general framework outlined in methodology section, but omit
the initial input of the previous year’s code. The LLM receives only the following:

— Tax Policy Updates: The official IRS publications describing the changes in tax laws for the
current year (2021 in our experiments).

— Prompt Engineering: A set of instructions guiding the LLM to generate the updated software.

The LLM then generates multiple candidate code versions. These versions are ranked us-
ing the CodeBertScore and majority vote accuracy metrics. The top-ranked candidates undergo
metamorphic testing to validate their correctness.

Prompt Engineering. Here’s a specific prompt used to guide the LLM in generating code for the
"Brackets Only" scenario:

Objective: Develop a Python script to calculate federal income tax for the year 2021.
The script should accurately compute tax based on the user’s annual income and
marital status, incorporating the 2021 tax brackets.

Data Structures:
— Use dictionaries to map tax brackets for different filing statuses (Single, Married
Filing Jointly, Married Filing Separately, Head of Household).
— Ensure keys are accurately used to prevent KeyError and validate their presence

before access.

User Inputs:

- ‘income‘: Collect as a float using input(), representing

the user’s annual income in USD.

- ‘marital_status‘: Integer (1-4); 1=Single, 2=Married Filing Jointly,
3=Married Filing Separately, 4=Head of Household.

Requirements:

— The script must compute the tax using the provided tax brackets.

— Output the tax amount in dollars formatted to two decimals (e.g., print(f'Tax
amount: $tax:.2f")).

Table 1: Results for top 4 ranked code generations out of 10 without prior code.ST:

Scenarios LLM Versions | CodeBertScore | Majority VoteScore | WeightedScore | Ground Truth Score
Version 7 0.9 1 0.935 | 100/100
GPT Version 2 0.899 1 0.934 | 100/100
4 Version 4 0.899 1 0.934 | 100/100
Brackets Version 5 0.899 1 0.934 | 100/100
Version 9 0.894 0.94 0.91 | 0/100
Version 2 0.892 0.94 0.909 | 0/100
GPT 3.5 Version 6 0.903 0.06 0.608 | 0/100
Version 8 0.894 0.06 0.602 | 0/100
Version 3 0.871 0.88 0.875 | 45/100
GPT Version 2 0.866 0.88 0.871 | 45/100
4 Version 5 0.861 0.88 0.869 | 45/100
Brackets + Deductions Vers?on 10 0.887 0.12 0.58 | 0/100
Version 2 0.859 1 0.916 | 1/100
Version 1 0.859 1 0.916 | 1/100
GPT 3.5 Version 6 0.858 1 0.915 | 1/100
Version 10 0.858 1 0.915 | 1/100
Version 7 0.883 0.79 0.827 | 43/100
GPT Version 1 0.863 0.7 0.765 | 25/100
4 Version 5 0.87 0.61 0.714 | 32/100
Version 6 0.857 0.61 0.709 | 32/100
Brackets+Ded+EITC Version 6 0.852 1 0.941 | 2/100
Version 2 0.851 0.98 0.929 | 0/100
GPT 35 Version 10 0.845 0.98 0.926 | 0/100
Version 3 0.845 0.5 0.638 | 0/100

— Include error handling for user inputs to ensure they are within valid ranges and
formats.

[2021 Tax Brackets (concrete numbers should be provided)]

General Prompt Template. We adapt the following template for different scenarios, modifying
the specific instructions and data as needed:

Objective: [Clearly state the task, e.g., "Develop a Python script to calculate federal

income tax for the year 2021."]

Data Structures: [Specify the expected data structures, e.g., dictionaries for tax brackets
and deductions.]

User Inputs: [List the required user inputs and their data types.]

Requirements: [Outline the functional requirements of the code, e.g., tax calculation
logic, output format, error handling.]

[Provide any relevant tax policy data, e.g., tax brackets, deduction amounts, EITC

rules.]

Results and Discussion. Table 1 presents the results for the top-performing code candidates
generated by GPT-4 and GPT-3.5 in each scenario without prior code context. As shown in
the table, LLMs demonstrate a varied level of performance depending on the complexity of the
scenario and the specific LLM model used.

Score (out of 100)
Score (out of 100)

jalidation £1% 2% 3% %4% 5% 6% %7% 8% 9% +10% Validation 1% #2% £3% 4% 5% 6% £7% £8% 9% £10% falidation +1% +2% +3% 4% 5% 6% +7% %8% 9% +10%
Data Points (Validation + Tolerance Levels) Data Points (Validation + Tolerance Levels) Data Points (Validation + Tolerance Levels)

(a) Brackets (b) Brackets+Deductions (c) Brackets+Deductions+EITC

Figure 5: Scenarios without prior code for 4 top ranked candidates per ChatGPT-3.5/4.0.

— Overall Lower Performance: We observe a general trend of lower performance across all
scenarios when the LLM is not provided with the previous year’s code. Both GPT-4 and
GPT-3.5 exhibit lower MajorityVoteScore and CodeBertScore compared to when they have
the reference code for guidance. Because the LLM has to come up with the logic of the
code itself as opposed to when they are presented with previous code and can use it as
guidance.

— GPT-4’s Continued Superiority: Despite the lack of prior code, GPT-4 consistently outper-
forms GPT-3.5. This suggests that GPT-4 possesses a stronger capacity for understanding
instructions and generating correct code from scratch.

— Accuracy Decline with Complexity: As the scenarios become more complex with the in-
clusion of deductions and EITC, the accuracy of both LLMs drops noticeably, particularly
for GPT-3.5. This underscores the challenges LLMs face in generating intricate tax logic
from scratch without the benefit of a reference code to guide the process.

— MajorityVoteScore vs. Ground Truth Discrepancies: A crucial observation is the occa-
sional disparity between high majority vote accuracy and significantly lower ground truth
matching scores. This discrepancy suggests that LLMs can sometimes generate code that
consistently produces the most common output, but still contains subtle errors that cause
deviations from the ideal calculation. This finding emphasizes the importance of consider-
ing other ranking metrics and their combinations.

While Table 1 presents the absolute accuracy of the generated code candidates, it doesn’t pro-
vide insights into how close their outputs are to the true tax calculations. To gain a more nuanced
understanding of the code’s correctness, we analyze the accuracy with respect to acceptable error
margins from the ground truth. Furthermore, the scatter plots in Figure 5 illustrate the accuracy
of generated code candidates (y-axis) based on an acceptable threshold of error margins from the
ground truth. The plots show the consistency of ChatGPT-4.0 compared to ChatGPT-3.5. Even if
the outputs of code is not the exact ground truth, the output from ChatGPT-4.0 generated codes
is almost always within the 10% error margins of ground truth values which suggests that the
logic of the code is sound but there might be some small problems. This also emphasizes that
the ranking part of our framework works well in finding codes that have the potential for fixing.
ChatGPT-3.5, on the other hand, shows that it cannot generate high quality and sounds codes
from scratch consistently. ChatGPT-3.5 is especially fragile when it does not generate at least

2 good codes that can have consensus on outputs. While Table presents the absolute accuracy
of the generated code candidates when LLMs are not provided with prior year code, it does
not reveal how close their outputs are to the true tax calculations. To understand the proximity
of generated outputs to the ground truth, we analyze the accuracy within an acceptable error
margins.

When prompted without the reference code, GPT-3.5’s top-ranked candidates struggle to
achieve high accuracy, even with a generous error margin. They barely reach 10% accuracy even
when allowing a é of 10%. This suggests that GPT-3.5, when generating code from scratch, often
produces codes that may have a wrong logic. Conversely, GPT-4.0’s top-ranked candidates, even
without prior code context, exhibit better performance. They consistently achieve 100% accuracy
when considering a § threshold of at least 7%. However, it’s important to note that achieving
perfect accuracy at a 7% error margin still indicates the presence of errors that require refinement.

5.2 Updating tax prep software with prior code context via LLMs

This section investigates the performance of LLMs in updating tax software when provided with
the previous year’s code as context. This scenario emulates a more realistic use case where the
LLM can leverage existing code structure and logic as a foundation for incorporating tax policy
changes.

Procedure. Following the framework outlined in the methodology section, the LLM receives the
following inputs:

— Previous Year’s Tax Software Code: The source code of the existing tax software (for 2020 in
our experiments) acts as a basis for the update.

— Tax Policy Updates: The official IRS publications detailing the changes in tax laws for the
current year (2021 in our case).

— Prompt: A set of instructions that guide the LLM in modifying the provided code to reflect
the new tax policy.

The LLM generates multiple updated code versions, which are then ranked using Code-
BertScore and Majority VoteScore.

Prompt Engineering. Here’s a specific prompt used to guide the LLM in generating code for the
"Brackets+Deductions" scenario:

Objective: Update the provided Python code to calculate federal income tax for the
year 2021. The updated script should accurately compute tax based on the user’s
annual income, marital status, age, and blindness status, incorporating the 2021 tax
brackets and standard deductions.

Reference Python Code (2020):

Constants for tax brackets and rates for 2020
BRACKETS = {
"single": [(9875, 0.1), (40125, 0.12), (85525, 0.22),
(163300, 0.24), (207350, 0.32), (518400, 0.35),

(float("inf"), 0.37)1],
... [Other filing statuses]

Deduction amounts based on filing status, age, and blindness for 2020
DEDUCTIONS = {
"single": {(False, False): 12200, (True, False): 13850,
(False, True): 13850, (True, True): 15500},
... [Other filing statuses]

... [Rest of the 2020 code]

Instructions (User Inputs + Requirements):

— Update the BRACKETS dictionary to reflect the 2021 tax brackets.
— Update the DEDUCTIONS dictionary to incorporate the 2021 standard deduction.

— Ensure the script accurately calculates tax based on income, filing status, age,
and blindness status.

— Maintain the same user input format (income, marital status, age, blindness).

— Output the tax amount in dollars formatted to two decimals.

[The 2021 tax brackets and deduction amounts.]

General Prompt Template with Code Context:

Objective: [Clearly state the task, including the year of the provided code and the
desired year for the updated code.]

Reference Python Code: [Previous year’s code.]

User Inputs: [Provide specific instructions on how to update the provided code, refer-
encing variable names or functions as needed.]

Requirements: [Specify any changes in user input format or output requirements.]

[Provide the necessary tax policy data for the target year.]

Results and Discussion Table 2 shows the results for the top-ranked code candidates generated
by ChatGPT-3.5 and ChatGPT-4.0 when provided with prior code context. Comparing Table 2
and Table 1, it is evident that providing prior code as a base significantly enhances the perfor-
mance of LLMs in updating tax software.

— Opverall Strong Performance: Both GPT-4 and GPT-3.5 exhibit good performance across all
scenarios when provided with the previous year’s code. The CodeBertScores are generally
high, and MajorityVoteScore is often near-perfect, particularly for GPT-4. This suggests
that LLMs can effectively leverage existing code structure to incorporate new tax policy
updates.

Table 2: Results for top 4 ranked code generations out of 10 with prior code.

Scenario LLM Versions | CodeBertScore | Majority VoteScore | WeightedScore | Ground Truth Score
Version 3 0.914 1 0.944 | 100/100
GPT Version 5 0.911 1 0.942 | 100/100
4 | Version 9 0.911 1 0.592 | 100/100
Version 4 0.91 1 0.941 | 100/100
Brackets Version 1 0.941 1 0.962 | 100/100
Version 2 0.939 1 0.96 | 100/100
GPT 3.5 Version 7 0.937 1 0.959 | 100/100
Version 8 0.936 0.59 0.815 | 59/100
Version 7 0.972 1 0.983 | 51/100
GPT Version 5 0.972 1 0.983 | 51/100
4 Version 3 0.972 1 0.983 | 51/100
Brackets + Deductions Vers%on 6 0972 L 0683 | 51/100
Version 4 0.976 1 0.99 | 21/100
Version 3 0.976 1 0.99 | 21/100
GPT 3.5 Version 6 0.975 1 0.99 | 21/100
Version 5 0.975 1 0.99 | 21/100
Version 6 0.978 1 0.991 | 48/100
GPT Version 8 0.978 1 0.991 | 48/100
4 Version 10 0.976 1 0.991 | 48/100
Brackets+Ded+EITC Vers%on 3 0-976 L 0.991 | 48/100
Version 1 0.986 1 0.994 | 56/100
GPT Version 2 0.977 0.92 0.943 | 56/100
35 Version 7 0.977 0.56 0.727 | 35/100
Version 3 0.977 0.56 0.727 | 35/100
(a) Brackets (b) Brackets+Deductions (c) Brackets+Deductions+EITC

Figure 6: Scenarios with prior code contexts for 4 top ranked candidates per ChatGPT-3.5/4.0.

GPT-4’s Consistent Excellence: GPT-4 consistently achieves higher CodeBertScores and
accuracy compared to GPT-3.5. In many cases, GPT-4 generates code that achieves both
perfect Majority VoteScore and a perfect match with the ground truth outcomes.

GPT-3.5's Stroke of Genius: Surprisingly, GPT 3.5 showed great performance for the most
complicated scenario given prior year’s code. We can see it has better top ranked codes
than GPT-4. Upon further investigation by looking at charts in Figure 6, we can see that
although GPT 3.5 has generated better performing top ranks, but it lacks consistency as it
also generated codes that have wrong logic as opposed to GPT-4.0 where if you only look
at the Ground Truth Score, it performs worse than GPT3.5 but by looking at charts we can
see that the logic of the generated codes via GPT-4.0 are more sound and robust.

Brackets Only - Near-Perfect Results: In the simplest "Brackets Only" scenario, both LLMs
excel, with GPT-4.0 consistently achieving perfect results. This indicates that LLMs can

easily adapt existing code to update tax brackets with high precision.

— Lower Ground Truth Matching: As scenarios become more complex, the ground truth
matching scores decrease, even when MajorityVoteScore remains high. This reveals the
presence of subtle errors that might not affect the most frequent output but still deviate
from the ideal tax calculation. This suggests that although LLM might be more confident
in its generation but that doesn’t mean it will generate a code that produces the exact tax
in each scenario, emphasizing the need for comprehensive testing methods to detect such
nuanced errors.

— EITC Complexity: The "Brackets + Deductions + EITC" scenario presents the most signif-
icant challenge. While GPT-4.0 maintains high MajorityVoteScore, the ground truth score
drops, indicating that EITC logic is still difficult for LLMs to implement accurately, even
with prior code context. This suggests that complex tax calculations might require more
sophisticated prompting strategies or the integration of additional knowledge sources to
guide the LLMs effectively.

Table 2 provides a snapshot of the absolute accuracy and ranking scores of the top code can-
didates. However, to assess the robustness of the generated code and its potential for refinement,
we analyze the accuracy across a range of error tolerance thresholds. The scatter plots in Figure 6
visualize the percentage of matching outputs for various tolerance levels when the LLMs are pro-
vided with prior year code. Once again, we observe a striking difference in the consistency of
GPT-4.0 compared to GPT-3.5. The generated code by GPT-4.0 consistently achieves near-perfect
or perfect accuracy even at stringent tolerance levels. In fact, as highlighted in the introduction,
GPT-4.0 achieves 100% accuracy when allowing an error margin () of at least 7%, demonstrating
its ability to produce code that aligns closely with the ground truth calculations.

However, a closer look at the scatter plots reveals a nuanced trend: while GPT-4.0 excels at
stricter tolerances, GPT-3.5 often exhibits better performance for some generations as the mar-
gin of error increases. For instance, at a tolerance level of 5% or higher, GPT-3.5 consistently
achieves the same or even better accuracy compared to GPT-4.0. Although it may not produce
good quality code as often as GPT-4.0, this suggests that GPT-3.5 can leverage the provided code
context to generate code that is more robust to larger error margins. This observation has impor-
tant implications for our framework. GPT-3.5, when guided by prior code, might be particularly
well-suited for scenarios where a higher tolerance for error is acceptable. Its ability to consis-
tently generate code within a broader acceptable range could be valuable in specific applications.
Conversely, GPT-4.0 remains the preferred choice when precision is paramount, as it consistently
produces outputs that closely match the ground truth, even at stringent tolerance levels.

These results further validate the effectiveness of our ranking approach. Even in scenarios
where the generated code is not perfectly accurate, the ranking system successfully identifies
candidates, especially those generated by GPT-4.0, that exhibit high potential for being refined
into fully correct implementations. The scatter plots, by visualizing the accuracy across different
error margins, provide insights into the robustness of the generated code and the need for the
validation and feedback prompts to achieve the desired level of accuracy.

6 Discussion

Since the completion of our initial study that conducted in Fall’23 and Spring’24, focused on
ranking code (primarily in C programming language), we have continued to refine our approach
to automating tax preparation software updates using Large Language Models (LLMs). A sig-
nificant advancement is the improvement in model capabilities; even smaller LLMs are now able
to accurately modify existing Python code by incorporating new values and adapting to recent
tax policy updates. Although this progress is not related to ranking code, it underscores the
potential of these models not only in replicating prior implementations but also in generating
reliable updates with minimal human intervention. In light of these advancements, we are de-
veloping a more robust framework aimed at improving the reliability of software updates for tax
calculations. This new framework is being tested via symbolic executions across a wider range
of LLMs and more complex tax scenarios to assess their ability to autonomously manage code
modifications and additions. Preliminary results indicate that even smaller LLMs can achieve
high accuracy in updating and extending Python code, which is promising for the future of au-
tomated tax software maintenance. The ongoing work is expected to significantly aid tax prep
software developers to update their code as the tax law evolves every year.

7 Conclusion

The ever-growing complexity of tax law and policies has significantly increased the role of tax
preparation software in navigating the intricacies of legal accountability and compliance. As the
tax law gets updated, maintaining the compliance and trustworthiness of tax prep software is
challenging. As part of a wider NSF-sponsored project, our goal is to develop principled tech-
niques and tools to support software programmers in maintaining tax preparation software. Our
framework combines best practices from formal methods (metamorphic specifications), software
engineering (automated testing and debugging), and Al (LLMs for code-generation) to ensure
that the software not only adheres to the latest tax regulations but also remains easy-to-maintain.
By leveraging this integrated approach, we aim to reduce the time and effort required for up-
dates, enhance the accuracy of tax calculations, and ultimately improve the reliability and user
trust in tax preparation software. This will enable programmers to more effectively respond to
legislative changes and meet the needs of taxpayers efficiently.

Acknowledgements

This project has been supported by the NSF under grants CCF-2317206 and CCF-2317207.

References

[1] IRS 524. Credit for the elderly or disabled. https://www.irs.gov/publications/p524, 2021.
Online.

[2] IRS 596. Earned income credit (eic). https://www.irs.gov/pub/irs-pdf/p596.pdf, 2021.
Online.

https://www.irs.gov/publications/p524
https://www.irs.gov/pub/irs-pdf/p596.pdf

[3] IRS 8812. Credits for qualifying children and other dependents. https://www.irs.gov/
forms-pubs/about-schedule-8812-form-1040, 2021. Online.

[4] IRS 8863. Education credits. https://www.irs.gov/pub/irs-pdf/£8863.pdf, 2021. Online.

[5] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. The oracle
problem in software testing: A survey. IEEE Transactions on Software Engineering, 41(5):507—

525, 2015.

[6] L. Breiman, J.H. Friedman, R.A. Olshen, and C.I. Stone. Classification and regression trees.
Wadsworth: Belmont, CA, 1984.

[7] Jessica Cherry. Use opentaxsolver as an open source alternative to turbotax. https://
opensource.com/article/20/2/open-source-taxes, 2020. Online.

[8] Reddit Linux Community. Open source alternative to turbotax called open-source tax
solver. https://www.reddit.com/r/linux/comments/bhp3cq/open_source_alternative_
to_turbotax_called/, 2019. Online.

[0] Nel Escher and Nikola Banovic. Exposing error in poverty management technology: A
method for auditing government benefits screening tools. Proc. ACM Hum. Comput. Interact.,
4(CSCW):064:1-064:20, 2020.

[10] Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sengupta, Shin Yoo,
and Jie M Zhang. Large language models for software engineering: Survey and open prob-
lems. arXiv preprint arXiv:2310.03533, 2023.

[11] Abram Hindle, Earl T Barr, Mark Gabel, Zhendong Su, and Premkumar Devanbu. On the
naturalness of software. Communications of the ACM, 59(5):122-131, 2016.

[12] USIRS. Filing taxes 101: Common errors taxpayers should avoid. https://www.irs.gov/
newsroom/filing-taxes-101-common-errors-taxpayers-should-avoid, 2020. Online.

[13] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Cheng-
hao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the
source be with you! arXiv preprint arXiv:2305.06161, 2023.

[14] Priya Mehta, Sandeep Kumar, Ravi Kumar, Ch Babu, et al. Enhancement to training of
bidirectional gan: An approach to demystify tax fraud. arXiv preprint arXiv:2208.07675,
2022.

[15] Aston Roberts. Open tax solver. https://sourceforge.net/projects/opentaxsolver/,
2021. Online.

[16] IRS Schedule-A. Itemized deductions. https://www.irs.gov/pub/irs-pdf/f1040sa.pdf,
2021. Online.

[17] Dananjay Srinivas, Rohan Das, Saeid Tizpaz-Niari, Ashutosh Trivedi, and Maria Leonor
Pacheco. On the potential and limitations of few-shot in-context learning to generate meta-
morphic specifications for tax preparation software, 2023. The Proceedings of the Natural
Legal Language Processing Workshop, EMNLP 2023.

https://www.irs.gov/forms-pubs/about-schedule-8812-form-1040
https://www.irs.gov/forms-pubs/about-schedule-8812-form-1040
https://www.irs.gov/pub/irs-pdf/f8863.pdf
https://opensource.com/article/20/2/open-source-taxes
https://opensource.com/article/20/2/open-source-taxes
https://www.reddit.com/r/linux/comments/bhp3cq/open_source_alternative_to_turbotax_called/
https://www.reddit.com/r/linux/comments/bhp3cq/open_source_alternative_to_turbotax_called/
https://www.irs.gov/newsroom/filing-taxes-101-common-errors-taxpayers-should-avoid
https://www.irs.gov/newsroom/filing-taxes-101-common-errors-taxpayers-should-avoid
https://sourceforge.net/projects/opentaxsolver/
https://www.irs.gov/pub/irs-pdf/f1040sa.pdf

[18] Saeid Tizpaz-Niari, Verya Monjezi, Morgan Wagner, Shiva Darian, Krystia Reed, and
Ashutosh Trivedi. Metamorphic testing and debugging of tax preparation software. In
2023 IEEE/ACM 45th International Conference on Software Engineering: Software Engineering in
Society (ICSE-SEIS), pages 138-149, 2023.

[19] US-IRS. Six reasons 9o percent of people will e-file their tax returns. https://www.irs.gov/
pub/irs-utl/oc-e-file.pdf/, 2020. online.

[20] US-IRS. Direct file, a free online tool for tax filing by the irs. https://directfile.irs.gov/,
2024. online.

[21] US.IRS. Filing statistics for week ending december 11 2020. filing-season-statistics-for-week-
ending-december-11-2020. online.

[22] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824-24837, 2022.

[23] IBIS World. Tax preparation services in the us — market size, industry analysis, trends
and forecasts. https://www.ibisworld.com/united-states/market-research-reports/
tax-preparation-services-industry/, 2023. Online.

[24] Shuyan Zhou, Uri Alon, Sumit Agarwal, and Graham Neubig. CodeBERTScore: Evaluating
code generation with pretrained models of code. In Houda Bouamor, Juan Pino, and Ka-
lika Bali, editors, Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pages 13921-13937, Singapore, December 2023. Association for Computational
Linguistics.

https://www.irs.gov/pub/irs-utl/oc-e-file.pdf%20/
https://www.irs.gov/pub/irs-utl/oc-e-file.pdf%20/
https://directfile.irs.gov/
https://www.ibisworld.com/united-states/market-research-reports/tax-preparation-services-industry/
https://www.ibisworld.com/united-states/market-research-reports/tax-preparation-services-industry/

	Introduction
	Maintainability Challenges in Tax Prep Software
	Overview: Generating Software Code from Tax Code via LLM
	Methodology
	Experiments and Results
	Updating tax prep software without prior code context via LLMs
	Updating tax prep software with prior code context via LLMs

	Discussion
	Conclusion

