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Abstract—Cooperative Intelligent Transport Systems (C-ITS)
are of great importance in our daily lives. They offer additional
means for safer roads thanks to exchanged data between actors
(i.e., vehicles and Road Side Units (RSU)). Signatures (that
are computed using various Pseudonym Certificates (PC)) are
included in all the sent messages. Each vehicle periodically sends
application beacons (denoted by CAM (Cooperative Awareness
Message)). The integration of the signature and certificate in each
transmitted CAM could consume a considerable portion of the
communication channel bandwidth. In this study, we propose a
new lightweight authentication mechanism using an unsupervised
variational autoencoder. Instead of exhaustive authentication, our
approach allows vehicles to authenticate each other once and
then send only unsigned CAMs based on the trust established
during authentication. In order to check this trust level, we
proposed to use an unsupervised deep learning mechanism,
which continuously measures the variation of the neighbor’s
behavior. When this variation reaches an unacceptable level,
the vehicle assumes that the sender may be compromised.
As a result, it proceeds to the authentication of the sender.
We have implemented these mechanisms over the OMNET++
network simulation environment. Our simulation study shows
that the proposed approach reduces the overhead generated by
the authentication algorithms by around 48.9%.

Index Terms—Clustering, Security and privacy, Signature,
Authentication, Variational autoencoder, Deep learning, C-ITS.

I. INTRODUCTION

Cooperative Intelligent Transportation Systems (C-ITS) en-
able dynamic, real-time interaction between vehicles, drivers,
and infrastructure, representing a significant advance towards
greater road safety. Cooperative intelligent transportation sys-
tems have the potential to solve many problems including
accidents, traffic congestion, and environmental pollution by
alerting the driver about disturbing events. C-ITS provide
services that improve driving through cooperation between
road infrastructure, drivers, and vehicles. These services allow
vehicles to communicate with each others by exchanging
messages. Due to the sensitivity of these messages, they are
susceptible to manipulation in several types of cyber attacks.
Therefore, it is very important to ensure the integrity of these
messages and authenticate them.

In the Europe, the European Telecommunications Standards
Institute (ETSI) has proposed relevant protocols to ensure the
safe exchange of specific messages. These protocols define

policies for managing security certificates, signature and en-
cryption algorithms, and the structure of secure cooperative
awareness messages (CAMs). CAMs are a specific type of C-
ITS messages that are sent periodically to share vehicle status
information, such as GPS coordinates, heading, and speed.
Vehicles broadcast their CAMs, which consist of payload
data, a certificate, and a signature. Each vehicle must sign its
CAMs using its certificates. However, the integration of the
signature and certificate into each transmitted CAM will have
a significant impact on the load and bandwidth consumption
of the communication channel.

In this paper, we propose a novel lightweight authentication
mechanism using an unsupervised variational autoencoder.
This approach aims to reduce the amount of bandwidth con-
sumed by the signatures and certificates included in CAMs that
are exchanged between vehicles. This approach has several
advantages: it avoids the risk of high communication channel
overhead, and reduces the CAM latency while maintaining
security. Instead of exhaustive authentication, our approach
allows vehicles to authenticate each other once and then send
only unsigned CAMs based on the trust established after the
authentication phase. Then, each vehicle checks whether the
behavior of its neighboring vehicles is normal to ensure that
data is not manipulated and to maintain trust. For this purpose,
we proposed an unsupervised variational autoencoder mecha-
nism, which continuously measures the variation of neighbor’s
behavior. When this variation reaches an unacceptable level,
the vehicle assumes that the sender may be compromised and
relaunch the authentication process. We have implemented our
architecture on the Artery framework, using the OMNET++
network simulator and the SUMO road traffic simulator, in
order to demonstrate the efficiency of our proposal. Our
simulation study shows that the proposed approach reduces
the overhead generated by the authentication algorithms by
round 48.9%.

The remainder of this paper is structured as follows. Sec-
tion II introduces the related work. Section III describes the
proposed architecture within this study. Section IV outlines the
simulation tests, which includes the simulation settings and the
result analysis, before concluding this work in Section V.



II. RELATED WORK

This section presents some important works about the
security for connected vehicles.

In the context of connected vehicles, the authors of [3]
proposed an authentication protocol that did not use a central
authority. In order to authenticate vehicles, this protocol uses
only the message signatures to reduce the authentication time
and overhead. However, in case of an attack, the revocation
list may be expanded quickly, since each vehicle uses multiple
pseudonyms that need to be revoked as a whole if the vehicle
is compromised.

The study in [4] has proposed an alternative authentication
method, called Trust-Based Authentication Technique (TBAT).
TBAT uses trust degrees to choose the most convenient cluster-
heads. It ensures that all communications are securely signed
and encrypted by the sender using the public-private key
cryptography mechanism. However, in an open cooperative
environment, where messages need to be exchanged without
any delays or encryption, this technique could drastically
increase the latency.

On the other hand, an authentication scheme based on signa-
ture that preserves privacy was proposed in [5]. To address the
issue of managing certificates, the authors proposed to divide
the network into different domains. In addition, they used a
Hash Message Authentication Code (HMAC) to reduce the
time consumed when using a certificate revocation list. This
approach reduces both the time to verify the message integrity,
and the number of invalid messages, thereby lowering the cost
and overhead of authentication.

Further, the authors in [6] proposed an authentication
mechanism that used a clustering algorithm to overcome the
challenges of cryptography usage in VANETSs due to frequent
changes in the vehicles’ positions. The main objective here
is to create stable clusters and be trustworthy in all of the
network. They have also suggested ways to detect malicious
vehicles, and the cluster heads were chosen from the most
trusted vehicles. The routing efficiency was guaranteed by the
network stability and these trusted cluster heads. For enhanced
network security, few vehicles are selected to monitor their
neighbouring vehicles. In this work also, the signature and
asymmetric cryptography were used. Therefore, this work
suffers from the same drawbacks as the work in [4].

The authors in [8] put forward two proposals using cryp-
tography to ensure privacy. The first one aims to fight against
eavesdropping using zone-encryption, and it was combined
with a scheme that ensures anonymous authentication to
permit only non-malicious vehicles to send messages. The
primary disadvantage of this method is that it introduces an
overhead of 224 bytes for cryptography within each message,
thereby consuming large bandwidth and increasing latency.
The second proposal was better adapted to the vehicular
environment, enabling vehicles to distribute keys among them-
selves. This proposal uses compact group signatures, which
allows for reduced security overhead in bandwidth with a
minor impact on storage cost, while ensuring a high level of

privacy. However, in case of an attack, the revocation process
could be complex as it does not guarantee non-repudiation.

In [9], authors introduced a new authentication mechanism
called Certificate Less Aggregate scheme based on Traceable
Ring Signature (CLA-TRS). This innovative technique uses
a ring signature in conjunction with bi-linear matching on an
elliptic curve. Thus, it ensures privacy, while reducing the time
for signature verification. Meanwhile, authors in [10] proposed
an authentication message approach that merges identity-based
signatures with ring signatures. The low efficiency of this ap-
proach is due to the time that is consumed in message signing
and their verification. Finally, the authors in [11] also used
the ring signature and bi-linear matching in their approach.
In addition, they incorporated batch signatures to reduce the
verification overhead. However, it is still not sufficient in terms
of single signature and verification.

All the aforementioned approaches attempted to reduce
the security fingerprint by proposing lightweight securing
mechanisms. Yet, none of these methods has suggested an
intermittent activation or switch off of the security mechanism
as a means to save bandwidth.

Machine learning approaches have been intensively studied
in recent years. An effective anomaly detection concept is
required to represent the anomalous behavior of processes.
Several works have already proposed LSTM methods to detect
various types of anomalies. For instance, authors in [14] used
a recurrent variational autoencoder to model breathing and
Kullback-Leibler (KL) divergence to compare the output with
the input, acting as a sleep apnea detector. This model detects
sleep apnea using the amplitude of a breathing signal and a
threshold. On the other hand, clustering was utilized in [17]
to choose a single layer of sparsely placed promiscuous mon-
itors. These monitors leverage statistical anomaly detection to
evaluate any routing misbehavior.

III. OUR PROPOSED APPROACH

In the C-ITS context, each vehicle periodically broadcasts,
within a 100 ms window, its CAM message to neighbors to
indicate its current status. The CAM messages are mainly
composed of a data payload, a certificate, and a signature hash.
It is important to notice that the size of the security overhead
is three times larger than the data payload. At the same time,
the broadcast CAMs significantly increase the load of the
communication channel and consume considerable bandwidth.
In [15] and [16], we proposed two approaches that aim to
reduce the security information based on the trust established
during the first authentication phase within a cluster. However,
to ensure that vehicle communications are highly secured, we
propose, in the current work to combine the aforementioned
approaches with an unsupervised deep learning mechanism
to detect anomalies in vehicle behavior, and thus to verify
the trust established during the authentication phase. The
procedure of the overall approach will be described in the
remainder of this section.



A. Cluster Dynamics in Trust-Based Approach

1) Cluster Construction: In our study, we assume that
a set of vehicles drive near each other while broadcasting
signed CAMs. A random vehicle then decides to initiate an
authentication phase to form a trusted cluster among them.
Therefore, it broadcasts a CAM with a request of certificate,
containing a hash ID of all its neighbors as shown in Fig. 1.
Upon receiving this CAM, the vehicles participate in the
authentication process by sending their signed CAMs. During
this phase, each vehicle maintains a list of its authenticated
neighbors, and it will react as a cluster head to make sure that
all its neighbors are authenticated. This allows us to manage
the authentication phase in a dynamic environment such as
vehicular networks.

2) Cluster Update: When vehicles form clusters, it means
that they trust each other and the communication between them
is done using unsigned CAM messages. In order to ensure
that no data manipulation can be done and to guarantee a
trusted environment among all neighbors during this phase,
the vehicles periodically check the behavior of their neighbors
using a deep learning model to detect anomalies. This model
will be detailed later in this section. If an anomaly is detected,
the vehicles send a certificate request to re-authenticate the
vehicle. If a new vehicle enters the cluster, the first vehicle
that detects it requests its certificate. If a vehicle leaves the
cluster, the vehicles update their list of authenticated neighbors
by removing it from the list.

B. Trust Management

In this section, we describe how our approach maintains a
high level of security, while reducing the security overhead.
As mentioned in Section III-A, the dynamics of a cluster is
related to managing the trust of each vehicle towards all other
cluster members. During this phase, each vehicle frequently
checks the behaviors and the trajectories of its neighbors. To
do so, each vehicle uses the content of the CAMs that are
received from its neighbors as parameters to detect unsound
CAMs. The key idea here is that the vehicle maintains its trust
in the sender and still accepts its unsigned CAMs, when the
vehicle considers that the CAMs sender is consistent.

In order to measure the soundness of a vehicle’s behavior,
we introduce a recognition model. This model is used as
an approximation process to a more complex estimation that
cannot be easily computed. Instead of relying on a predefined
mathematical expression to define the thresholds for detecting
unsound CAMs, as we have proposed in [16], the model in
this approach is trained with calibrated data to learn how to
determine these parameters and to achieve higher accuracy. We
therefore propose an unsupervised deep learning mechanism,
which continuously measures the variation of the neighbor’s
behavior. When this deviation reaches an unacceptable level,
the vehicle assumes that the sender may be compromised, and
then requests its certificate to authenticate it once again. This
mechanism is detailed in the following.

1) Background of Variational Autoencoder: An autoen-
coder is an unsupervised neural network that attempts to learn
the optimum encoding-decoding technique from data [13],
while a Variational autoencoder (VAE) is a probabilistic model
which combines Bayesian inference with the autoencoder
framework [18]. VAE models the relationship between the
observed variables x, latent random variables z, and a set of
parameters, represented by 6. These elements are combined in
a probability model, where the prior on z is represented by
p(z), and py(x|z) is the probability of an observation. This is
given by the following equation:

plz) = / po(e|2)p(2)dz. M)

However, the integral operation py(x) is computationally in-
tractable. Therefore, the VAE uses a variational approximation
¢s(z|z) in stead of the true posterior pg(z|z). Here, ¢y (2|z)
with parameters ¢ serves as the encoder, and pg(x|z) with
parameters 6 serves as the decoder. According to Jensen’s
inequality, this VAE model is able to find optimal values for
the parameter sets ¢ and 6 by maximizing a lower bound on
the log-likelihood given by [19]:

max £ = —Dxr(gs(2[2)[[P(2)) + Bzng, (212 [Po(2]2)], (2)

where D, stands for the Kullback-Leibler divergence, which
regularizes the latent z variables, and the second term is the
autoencoder. VAE uses a technique called re-parameterization
to simplify the learning process. It calculates the latent vector
z from the mean vector ji4(x) and the variance vector o (),
as follows:

z = po() + 0y ()e, 3)

where ¢ follows the standard Gaussian distribution A(0, 1),
adding a randomness factor to the latent space.

The lower bound of the log-likelihood, denoted by L, can
then be approximated as:

L=0.5x Z(l +log((07)(2)) = (45)(2) = (o)(x))

J

1
+a7 ¥ Eljlog(pa(xla)), 4)

where M is the total number of samples in z, and J is the size
of z. The VAE loss function is often formed from the mean
square error (MSE), which serves as the reconstruction loss,
and the K L divergence to evaluate performance, as:

Loss = MSE + KL. 5)
MSE is calculated as follows:
1 \2
MSEZNZ(x—x), (6)

where z, 2/, and N represent the original input, the recon-
structed data, and the total number of samples, respectively.



< Signed CAMs
“= Unsigned CAMs

<> Request for certificate

Authentication phase

Trusted cluster

Fig. 1. The procedure for cluster construction.

2) Offline Variational Autoencoder Training Phase: The
variational autoencoder is based on unsupervised learning.
This means that there is no need to collect labeled data
for normal and abnormal vehicle behavior, which is very
interesting in our case since labeled data could be complex
and expensive to obtain. In the context of C-ITS, we have
generated a data-set of 40 million CAM messages generated by
simulating a thousand of vehicles driving on the A4 highway
between Reims and Paris in France. A vehicle broadcasts
a CAM every 100 ms. We have then pre-processed these
CAMs to extract 6 important parameters that allow us to
observe vehicle behaviors. In this part of the pre-processing
phase, we have used Vincenty’s formula to compute the
three-dimensional geodesic distance (latitude, longitude, and
altitude) between the steps taken by each vehicle indicated in
its CAM. Our input dataset is structured with the following
variables: Heading, Speed, YawRate (rate of rotation compared
to the vertical axis), curvature, longitudinal acceleration, and
distance.

We have considered our data input in a time window of 10
steps, which is equivalent to 1s, to represent the data from 10
consecutive CAMs. These time windows will be processed
by a long short-term memory network (LSTM). First, the
LSTM encodes the vehicle data sequence in the time window.
Then, the generated outputs are used to derive estimations
for the mean vector fi4(x) and the variance vector o (x)
using two linear modules. At the end, the sampled z is fed
to another LSTM network to decode the estimated mean and
variance vectors. Finally, we obtain a reconstruction of our
input data for the same time window. Using reconstruction
loss (MSE) and K L divergence, VAE trains to produce similar
reconstructions. Once the reconstructed input data is obtained,
we calculate the maximum mean absolute error loss value on
the training samples. This will be the threshold to determine
whether the vehicle CAMs’ data in this time window are
coherent or not.

3) Processing Phase: During the dynamic clustering phase,
vehicles periodically activate the VAE model in a time slot
to check the CAM messages received from their neighbors,
as shown in Fig. 2. First, each vehicle processes the last 10
CAM messages that are received from each neighbor. This
pre-processing step is performed in the same way as in the

“\l\{CAMn -CAMIn 10} === > [

— 0 |{CAM'1 ...CAM"10}

— Request for certificate
The vehicle checked

= Signed CAMs
“= Unsigned CAMs

Fig. 2. Architecture of the proposed variational autoencoder-based process
for unsupervised inconsistency detection.

learning phase. Then, the vehicle reconstructs the time window
input and compares the reconstruction loss with the threshold
set in the learning phase. If the reconstruction loss for a
sample exceeds this threshold, the vehicle labels these samples
as inconsistent. After detecting an inconsistency, the vehicle
sends a request of certificate to the suspected vehicle. If there
is no answer, the vehicles leave the cluster and start to build
a new cluster.

IV. PERFORMANCE EVALUATION

To ensure an accurate evaluation of the proposed approach
in a realistic simulation environment, we used several sim-
ulators and frameworks in this study. Firstly, we used the
OMNET++ network simulator [21], which is developed in
the form of independent modules, which can be combined
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Fig. 3. The cumulative number of inconsistencies every 10s in the three
scenarios.

to form complex systems. Designed to model communication
systems, networks, multiprocessors and other distributed sys-
tems. Omnet++ is based on the C++ language and also has
its language NED (Network Description language) to define
the network topology. It is based on discrete event scheduling
rather than continuous-time scheduling. We also used Artery
framework [20], a simulation framework dedicated to V2X
(Vehicles to Everything) communication. Artery is based on
Omnet++, and takes advantage of its modularity and ability
to simulate discrete events. It is an open-source simulation
framework, that allows for real-time communication of road
traffic data throughout the simulation process. We used a traffic
simulator, Simulation of Urban Mobility (SUMO), which will
be used to generate the road traffic mobility [22]

Artery provides each vehicle with the standard C-ITS pro-
tocol stack with its security mechanisms. To exchange CAMs
over networks, Artery uses the IEEE 802.11p physical layer
implemented by the framework VEINS. In the first scenario,
we introduced a batch of 10 vehicles all at once into the
highway. Moving on to the second and third scenarios, we
increased the complexity by launching 20 and 30 vehicles,
respectively. Please note that we have configured the SUMO
module to make vehicles moving using a sigma value of 0.5,
which indicates a moderate level of random variation in each
vehicle’s speed.

We configured the vehicles to check their neighbors every
5 seconds, and then we captured CAM inconsistencies during
the simulations. Fig. 3 shows the cumulative number of
inconsistencies every 10 seconds of the three scenarios. We
find that our VAE considers several cases of anomalies as
CAMs inconsistencies as time elapses. This is initially due to
variations in the speed of vehicles as they enter the highway
and adjust their speeds to the speed limit. We also noticed that
the number of inconsistencies decreases quickly in scenarios
1 and 2 compared to scenarios 3. This is due to the fact that
in scenario 1, vehicles have the ability to distance themselves
more quickly compared to scenario 2 and 3, due to a lower
total number of vehicles.

Table I presents the percentage of inconsistencies detected

TABLE I
THE PERCENTAGE OF INCONSISTENCIES DETECTED BY THE VEHICLES
AND THE NUMBER OF INCONSISTENT EVENTS COMPARED TO THE

NORMAL CAM
S | Real Anomaly | Anomaly Detected | Sound Cams
| Number [ % | Number [ % | Number | %
1 1940 0.41% 2187 0.46% 470227 9%99.59
2 6199 0.42% 7741 0.51% 1495743 | 9%99.58
3 12018 0.45% 15531 0.58% 2662441 %99.55
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Fig. 4. The size of the data exchanged in Scenario 3 every Is.

by the vehicles and the number of inconsistent events com-
pared to the total number of CAM messages exchanged during
the simulation. In all scenarios, more than 99.5% of the CAM
messages were consistent. Our model was able to detect fewer
anomalies in vehicle behavior. These results demonstrate the
effectiveness of our model in understanding and detecting
real-time anomalies in the CAM data exchanged between
vehicles. Data never seen during training were detected as
inconsistencies. This observation can be explained by the use
of the MAE, which measures the discrepancy between the
original data and the reconstructed data; a large difference
means an anomaly.

During the simulation, we recorded the number of signed
and unsigned CAMs received by each vehicle. Then we
calculated the size of these messages exchanged every second.
According to the C-ITS standard, the signed CAM size is
around 300 bytes, while the unsigned CAM size is around
100 bytes. Fig. 4 shows a comparison of the size of CAMs
exchanged during the simulation of our proposal and the
standard C-ITS architecture. In fact, our proposed scheme is
able to reduce the volume by 48.9%, compared to the standard
C-ITS protocol. This percentage is quite interesting and will
contribute to effectively reducing the consumed bandwidth.
This is due to our strategy of reducing the security information
by using the trust cluster, which is monitored by our VAE for
vehicle behavior to detect inconsistent CAMS.

V. CONCLUSIONS

In this paper, we proposed a solution to avoid the risk of
communication channel overload in C-ITS, which consists of



reducing the security information and allowing vehicles to
authenticate each other using a trust cluster-based strategy.
This strategy allows the vehicle to authenticate only once
compared to usual standards, which use an exhaustive strategy.
To maintain a high level of security between vehicles, we
proposed a variational autoencoder to detect anomalies in
vehicle behavior. We evaluated our proposed approach on
three scenarios and have then compared it to the standard C-
ITS scheme. Our approach reduced the amount of exchanged
messages by 48.9%, which plays an important role in reducing
the communication load. Our approach is a robust solution
that provides a high level of security through unsupervised
real-time detection to exploit these standards in a selective
protocol. For future work, we shall evaluate the robustness of
our proposal in respect to various types of cyber attacks. ”

ACKNOWLEDGMENT

This work was supported in part by EC Grant No. 2018-
FR-TM-0097-S from the INEA Agency for the InDiD project.
The statements made herein are solely the responsibility of the
authors. S. Mao’s work is supported in part by the NSF under
Grant ECCS-1923717 and CNS-2107190.

REFERENCES

[1] International Energy Agency, “How Many Cars Will Be on the Planet
in the Future?” [online] Available: http://www.iea.org/aboutus/faqs/
transport/ (accessed on Nov. 15, 2022)

[2] World Health Organization (WHO), “Global Status Report on Road
Safety 2013,” WHO Technical Report, Geneva, Switzerland, 2013.

[3] X. Lin and X. Li, “Achieving efficient cooperative message authenti-
cation in vehicular ad hoc networks,” IEEE Transactions on Vehicular
Technology, vol.62, no.7, pp.3339-3348, Sept. 2013.

[4] R. Sugumar, A. Rengarajan, and C. Jayakumar, “Trust based authentica-
tion technique for cluster based vehicular ad hoc networks (VANET),”
Springer Wireless Networks, vol.24, pp.373-382, Feb. 2018.

[5] X. Zhu, S. Jiang, L. Wang, and H. Li, “Efficient privacy-preserving
authentication for vehicular ad hoc networks,” IEEE Transactions on
Vehicular Technology, vol.63, no.2, pp.907-919, Feb. 2013.

[6] F. Mirsadeghi, M. K. Rafsanjani, and B. B. Gupta, “A trust infrastructure
based authentication method for clustered vehicular ad hoc networks,”
Springer Peer-to-Peer Networking and Applications, vol.14, pp.2537-
2553, July 2021.

[7]1 The European Telecommunications Standards Institute (ETSI), “E.N.
302 637-2 v1. 3.1-intelligent transport systems (its); Vehicular commu-
nications; Basic set of applications; part 2: Specification of cooperative
awareness basic service,” European Standard, Sept. 2014.

[8] J. Camenisch, M. Drijvers, A. Lehmann, G. Neven, and P. Towa, “Zone
encryption with anonymous authentication for V2V communication,”
in Proc. 2020 IEEE European Symposium on Security and Privacy
(EuroS&P), Virtual Conference, Sept. 2020, pp.405-424.

[9] S. Bouakkaz and F. Semchedine, “New efficient certificateless scheme-

based conditional privacy preservation authentication for applications in

VANET,” Elsevier Vehicular Communications, vol.34, pp.100414, Apr.

2022,

J. Li, Y. Liu, Z. Zhang, B. Li, H, Liu, and J. Cheng, “Efficient ID-

based message authentication with enhanced privacy in wireless ad-

hoc networks,” in Proc. 2018 International Conference on Computing,

Networking and Communications (ICNC), Maui, HI, Mar. 2018, pp.322—

326.

F. Liu and Q. Wang, “IBRS: An efficient identity-based batch verification

scheme for VANETSs based on ring signature,” in Proc. 2019 IEEE

Vehicular Networking Conference (VNC), Los Angeles, CA, Dec. 2019,

pp.-1-8.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

H.D. Nguyen, K.P. Tran, S. Thomassey, and M. Hamad, “Forecasting
and anomaly detection approaches using LSTM and LSTM autoencoder
techniques with the applications in supply chain management,” Elsevier
International Journal of Information Management, vol.57, pp.102282,
Apr. 2021.

D.P. Kingma, and M. Welling, “Auto-encoding variational bayes,”
arXiv:1312.6114, May 2014. [Online]. Available: https://arxiv.org/abs/
1312.6114.

C. Yang, X. Wang, and S. Mao, “Unsupervised detection of apnea using
commodity RFID tags with a recurrent variational autoencoder,” IEEE
Access Journal, vol.7, pp.67526-67538, May 2019.

R. Boutahala, M. Ayaida, and H. Fouchal, “Reducing security overhead
in the context of connected Vehicles,” in Proc. IEEE GLOBECOM 2022,
Rio de Janeiro, Brazil, Dec. 2022, pp. 1-6.

R. Boutahala, H. Fouchal, and M. Ayaida, “An efficient approach to
reduce the security messages overload on C-ITS,” in Proc. IEEE ICC
2022, Seoul, South Korea, May 2022, pp.1500-1505.

Y. Huang and W. Lee, “A cooperative intrusion detection system for ad
hoc networks,” in Proc. 1st ACM workshop on Security of Ad Hoc and
Sensor Networks, Fairfax, VA, Oct. 2003, pp.135-147.

Y. Guo, W. Liao, Q. Wang, et al., “Multidimensional time series anomaly
detection: A GRU-based Gaussian mixture variational autoencoder ap-
proach,” in Proc. Asian Conference on Machine Learning, Beijing,
China, Nov. 2018, pp.97-112.

D.P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, Dec. 2013, [online] Available: https://arxiv.
org/abs/1312.6114.

R. Riebl, H. Giinther, C. Facchi, and L. Wolf, “Artery: Extending veins
for VANET applications,” in Proc. 2015 International Conference on
Models and Technologies for Intelligent Transportation Systems (MT-
ITS), Budapest, Hungary, June 2015, pp.450-456.

A. Varga, “The omnet++ discrete event simulation system,” in Proc. the
European Simulation Multiconference, Prague, Czech Republic, June
2001, pp.319-324, 2001.

D. Krajzewicz, G. Hertkorn, C. Rossel, and P. Wagner, “Sumo (simu-
lation of urban mobility) - An open-source traffic simulation,” in Proc.
4th Middle East Symposium on Simulation and Modelling, Dubai, UAE,
Sept. 2002, pp.183-187.



