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Abstract

State-of-the-art Automatic Speech Recognition
(ASR) systems are known to exhibit disparate
performance on varying speech accents. To im-
prove performance on a specific target accent,
a commonly adopted solution is to finetune
the ASR model using accent-specific labeled
speech. However, acquiring large amounts of
labeled speech for specific target accents is
challenging. Choosing an informative subset
of speech samples that are most representative
of the target accents becomes important for
effective ASR finetuning. To address this prob-
lem, we propose DITTO (Data-efficient and faIr
Targeted subseT selectiOn) that uses Submod-
ular Mutual Information (SMI) functions as ac-
quisition functions to find the most informa-
tive set of utterances matching a target accent
within a fixed budget. An important feature
of DITTO is that it supports fair targeting for
multiple accents, i.e. it can automatically se-
lect representative data points from multiple
accents when the ASR model needs to perform
well on more than one accent. We show that
DITTO is 3-5 times more label-efficient than
other speech selection methods on the Indic-
TTS and L2 datasets.

1 Introduction

State-of-the-art speech recognition systems have
seen tremendous progress in the last few years, with
end-to-end architectures becoming a default mod-
eling choice. While end-to-end models yield im-
pressive Word Error Rates (WERs) and work well
for certain user populations (Rao et al., 2017; Chiu
et al., 2018), they severely underperform when con-
fronted with out-of-domain test utterances in target
accents that are unseen or rarely seen during train-
ing (Feng et al., 2021; Koenecke et al., 2020).

A common solution (Shor et al., 2019; Sim et al.,
2019) to address such mismatched settings is to
adapt a well-trained, speaker-independent ASR
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model with a small amount of accent-specific target
data to adapt models to the target setting. While
these works propose different fine-tuning sched-
ules that would be most beneficial given the limited
amount of target data, the question of which utter-
ances should be chosen in order to be transcribed
and further used for fine-tuning has received far
less attention. This is extremely important, since
procuring and labeling accent-specific data is chal-
lenging and expensive. Awasthi et. al. (Awasthi
et al., 2021) present a method to select sentences
within a fixed budget that are most likely to induce
ASR errors to record accented audio on, resulting in
higher-quality personalized ASR models for target
accents compared to random selection. However,
they assume access to a small seed set of labeled
utterances from the target speaker. We address a
more realistic setting wherein we have access only
to a limited number of unlabeled utterances from
the target domain, and without access to accented
speakers to read out the selected texts.

1.1 Our Contributions

In this work, we propose DITTO a data-efficient
and fair targeted subset selection approach that
makes use of a suite of submodular mutual infor-
mation (SMI) functions (originally defined in (Iyer
et al., 2021)). For a specific target accent, we are
given access to a small number (20 in our experi-
ments) of unlabeled speech utterances, called the
target (or query) set. We aim at identifying the
most informative subset of speech utterances from
a large unlabeled pool of diverse accents that best
matches the target set. We procure the best match-
ing subset by maximizing an SMI function instan-
tiated using pairwise similarities between speech
representations. We find DITTO to be an effective
targeted subset selection technique for adapting
ASR models in accents at multiple granularities -
within Indian accents and accents around the world.
DITTO uses a limited transcription budget, i.e., just
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around 20-35% of that of random. Furthermore,
we show that DITTO can fairly select subsets that
can cover multiple target accents using a facility
location based SMI function.

2 Related Work

A number of works have studied subset selec-
tion for speech recognition. Wei et al. (2014a,b,
2013) use submodular function-based subset se-
lection on generated transcripts to find a minimal
set of ASR training data and Wu et al. (2007) use
an entropy measure for the same. Asami et al.
(2015) employ a joint Kullback-Leibler divergence-
based subset selection on out-of-domain samples
for ASR adaptation across acoustic characteristics
such as speaker, noise and recording devices. Sim-
ilarly, Liu et al. (2015) study subset selection to
obtain low-vocabulary speech corpora for ASR,
while Kirchhoff and Bilmes (2014) use a submod-
ular approach for data selection in machine trans-
lation. Many recent papers (Yuan et al., 2019;
Syed et al., 2017) have studied uncertainty and
gradient based approaches for active learning to re-
duce the transcription time for ASR models, while
Hamanaka et al. (2010) use a committee-based ac-
tive learning method to select speech utterances.

A number of approaches have studied adapta-
tion to atypical speech patterns like accented and
dysarthic speech, such as (Shor et al., 2019) and
(Tomanek et al., 2021) which fine-tune a subset
of layers using labeled data from targeted accents.
Sun et al. (2018) employ domain adversarial train-
ing to adapt across accents. Awasthi et al. (2021)
tries addressing a problem that corresponds exactly
to the reverse of our setting by trying to determine
the sentences a model is most error-prone to, and
recording utterances for them. While this can be ef-
fective for user-driven personalization, our method
is suited to settings in which we have fixed speech
utterances, and the only actionable item for us is to
transcribe a subset of them. All these approaches
need data specifically from the target domain to be
labeled toward use for training/fine-tuning.

Finally, a number of recent works on data selec-
tion have leveraged the submodular mutual infor-
mation functions used in this work for targeted sub-
set selection. Kaushal et al. (2020) employ the SMI
functions for query focused and privacy-preserving
summarization, while Kothawade et al. (2022) uti-
lize the SMI functions for improving the model per-
formance on targeted slices. Recently, Kothawade

et al. (2021) proposed an active learning approach
using the SMI functions for rare classes, redun-
dancy, and OOD data.

3 Submodular Mutual Information (SMI)
Functions

Submodular Functions: We let U denote the
ground-set of n data points U = {1, 2, 3, ..., n}
and a set function f : 2U −→ ℜ. The func-
tion f is submodular (Fujishige, 2005) if it sat-
isfies the diminishing marginal returns, namely
f(j|X ) = f(X ∪ j) − f(X ) ≥ f(j|Y) for all
X ⊆ Y ⊆ U , j /∈ Y . Submodularity ensures that a
greedy algorithm achieves bounded approximation
factor when maximized (Nemhauser et al., 1978).
Submodular Mutual Information (SMI): Given
a set of items S, T ⊆ U , the submodular mu-
tual information (SMI) (Gupta and Levin, 2020;
Iyer et al., 2021) is defined as If (S; T ) = f(S) +
f(T ) − f(S ∪ T ). Intuitively, this function mea-
sures the similarity between T and S and we refer
to T as the targeted set. In the setting considered
in this paper, the set T (target set, also called query
set) consists of a small set of unlabeled utterances
from an accent, and U is a large unlabeled set of
utterances from multiple accents. To find an op-
timal subset given a target set T , we can define
gT (S) = If (S; T ), S ⊆ U and maximize the
same. Using a greedy algorithm, these submodular
functions can be efficiently optimized within an ap-
proximation factor (1-1/e) of the global maximum.

3.1 SMI functions used in DITTO

We use the SMI functions recently introduced
in (Iyer et al., 2021) and their extensions intro-
duced in (Kaushal et al., 2020; Kothawade et al.,
2022). For any two data points i ∈ U and j ∈ T ,
let sij denote the similarity between them.

Graph Cut MI: The submodular mutual informa-
tion (SMI) instantiation of graph-cut (GCMI) is de-
fined as (Kothawade et al., 2022; Iyer et al., 2021):

If (S; T ) = 2
∑
i∈S

∑
j∈T

sij (1)

Since maximizing GCMI maximizes the joint
pairwise sum with the query set, it will lead to a
summary similar to the query set Q. GCMI models
only query-relevance and does not select based on
diversity (Kothawade et al., 2022).



Pre-trained ASR
Network

Underperforming
on Target
Accents




Improved 
Performance

on Target
Accents

Fine-Tuned ASR
Network

Target 

Accent-

Specific 


Utterances

Target Accent Exemplars

Unlabeled Set with All Accents

Figure 1: ASR Accent Adaptation using DITTO.

Facility Location MI: The Facility Location Mu-
tual Information (FLMI) function (Kothawade
et al., 2022) takes the expression:

If (S; T ) =
∑
i∈T

max
j∈S

sij +
∑
i∈S

max
j∈T

sij (2)

FLMI jointly models representation and query-
relevance. It measures a bidirectional similarity
between representation of data points that are the
most relevant to the query set, and vice versa.

4 DITTO: Our Data-efficient and Fair
Targeted Subset Selection Method

In this section, we discuss DITTO our data-efficient
and fair targeted subset selection method for ASR
accent adaptation. We show that DITTO can select
fair and target-relevant subsets, which is critical for
fine-tuning ASR models on one or more accents.
The main idea of our method is to instantiate a sub-
modular mutual information (SMI) function using
appropriate similarity kernels in order to jointly
optimize it for targeting and fairness. We summa-
rize our method in Algorithm 1 and illustrate it in
Fig. 1.

Concretely, we are provided a few unlabeled
utterances from the accent (a target set T ) which
we would like the ASR model M to be adapted to.
The goal is to select the most informative subset
S with respect to a target T from a large corpus
U of unlabeled data, called the ground set. We
are given a budget constraint, which is a constraint
on the total time of the selected utterances. This
corresponds to the transcription budget, since the
selected utterances need to be later transcribed by
a human.

We begin with extracting accent feature
representations of the unlabeled set U and the
target set T ; we subsequently discuss the feature

Algorithm 1 DITTO for Adapting ASR model M
Require: Target T , Budget B, SMI function type

f , large unlabeled set U , Accent representation
model F , ASR model M with parameters θ

1: ET ←F(T ) {ET ∈ R|T |×D}
2: EU ←F(U ) {EU ∈ R|U|×D}
3: X ← SIMILARITY(ET , EU ) {X ∈ R|T |×|U|}
4: Define an SMI function gT (S) = If (S; T )

using X
5: S ← argmax

S⊆U ,c(S)≤B
gT (S)

{Greedy maximization of g to select a subset S}

6: D ← Transcribe utterances in S
7: θ̂ ← Fine-tune ASR model M on D
8: Return Fine-tuned model M with updated

parameters θ̂.

representation in Sec. 5. Next, we compute a
similarity matrix X , which is an RBF kernel
containing pairwise similarities Xij between all
data points in i ∈ T and j ∈ U . We use X to
instantiate one of the SMI functions If (S; T )
discussed in Sec. 3. Specifically, we optimize
gT (S) = If (S; T ) for S ⊆ U subject to the
cardinality constraint c(S) ≤ B, where c corre-
sponds to the duration (in seconds) of the specific
utterance and B is the time budget. We use the
greedy algorithm (Mirzasoleiman et al., 2015;
Nemhauser et al., 1978; Lin and Bilmes, 2010)
with memoization (Iyer and Bilmes, 2019) and
with a knapsack constraint on the optimization.
Specifically, given the current set S, we select
the item i = argmaxj∈U\S gT (j|S), with the
stopping criterion as c(S) ≤ B. Once, we obtain
the set S as the solution of this optimization prob-
lem, we obtain S’s transcriptions from a human,
and fine-tune the ASR model using S and its labels.

Scalability of DITTO: The selection time of



DITTO is dominated by the instantiation and maxi-
mization of the SMI function. Since all SMI func-
tions used in this work are graph based, they require
the computation of a similarity kernel. Hence, the
main components that contribute towards the time
complexity of DITTO are the similarity kernel com-
putation and the greedy maximization. The FLMI
and GCMI functions require a t× u similarity ma-
trix, where t = |T | is the number of points in the
target set and u = |U | is the number of points in the
unlabeled ground set. This leads to a O(tu) com-
plexity for computing the kernel. Given a selection
budget of B, the time complexity of the greedy
maximization for FLMI and GCMI is O(tuB),
which is linear in budget and ground set sizes.

5 Experimental Setup

5.1 Datasets

We experiment with adapting ASR models on two
public datasets, viz., IndicTTS and L2-Arctic, con-
taining English speech in various non-native ac-
cents. IndicTTS (Vignesh et al., 2016) consists
of 35K utterances from 8 Indian speakers, each
with a different accent depending on their native
language: Gujarati (GUJ) 9.2% of samples, Kan-
nada (KAN) 9.4%, Tamil (TAM) 15%, Malayalam
(MAL) 10.1%, Hindi (HIN) 10.1%, Rajasthani
(RAJ) 9.5%, Assamese (ASM) 16.7% and Ma-
nipuri (MAN) 20.1%. L2-Arctic (Zhao et al., 2018)
has 18K samples of accented English speech from
24 speakers spanning six non-native accents: Hindi
(HIN), Vietnamese (VTN), Chinese (CHN), Ko-
rean (KOR), Arabic (ARB) and Spanish (ESP). The
distribution among the accents is uniform for this
datasets, with all represented equally.
Feature representation: Each utterance is repre-
sented as a 39-dimensional vector of MFCC coeffi-
cients averaged over the duration of the utterance.

5.2 ASR Model Description and Fine-tuning
Details

Following (Awasthi et al., 2021), our pre-trained
model is based on the QuartzNet-15x5 (Kriman
et al., 2020) architecture. It is trained on Lib-
riSpeech (Panayotov et al., 2015) for 400 epochs
using the CTC-loss (Graves et al., 2006) and yields
a Word Error Rate (WER) of 3.90 on the test-clean
split of LibriSpeech. The QuartzNet-15x5 archi-
tecture is fully convolutional with residual connec-
tions. This model is fine-tuned with our selected
targeted subsets S of accented speech to minimize

CTC loss using the NovoGrad optimizer (Ginsburg
et al., 2019) for 100 epochs with a batch size of 16,
a linearly decaying learning rate of 10−5 and early
stopping based on the dev set. In all our experi-
ments, we report results averaged over three runs
using three different seeds and report error bars in
all plots. We used an NVIDIA GTX 1080 Ti GPU
for all runs.

6 Experimental Procedure and Results

We use a transcription budget of 20.5 minutes for
single-accent targeting and 41 minutes when an
accent pair is targeted. The average uttterance dura-
tions are 4.92s in IndicTTS and 3.6s in L2-Arctic,
thus these budgets come out to 250 and 500 sam-
ples on IndicTTS and 340 and 780 samples on
L2-Arctic respectively.

In our proposed method, we use the approach
outlined in Algorithm 1, with the SMI function If
set as one of the FLMI or GCMI functions. We con-
sider them since they are computationally efficient
(see Sec. 4), and model different characteristics in
their selections. As discussed in Sec. 3.1, GCMI
models only query-relevance, while FLMI models
both query-relevance and diversity. As we shall see
in Sec. 6.2 and Sec. 6.3, GCMI is an apt choice for
targeting in some scenarios, whereas FLMI outper-
forms all methods when fairness and diversity are
to be jointly modeled with targeting.

6.1 Baseline selection approaches

We compare the performance of DITTO with
a wide-array of standard selection techniques
designed for subset selection in speech. In our
results, we track the improvements in WER over
the performance of the pretrained ASR model
(without any finetuning), denoted as “Pre". For all
single/multiple accent experiments, we compare
DITTO with the following selection approaches:

Random: Selecting utterances randomly from the
different accents of the ground set. The selection
distributions will roughly match the ground set.
phone-diverse (“PhoneDiv"): Following an ap-
proach from (Awasthi et al., 2021), we select a
phonetically rich set from the set of generated tran-
scripts of our baseline ASR model on the utterances.
We define a diminishing returns submodular set-
scoring function that penalizes over-represented
phones. Similar to optimizing SMI functions,
greedy optimization (Mirzasoleiman et al., 2015)



Eval Pre Random Entropy PhoneDiv FL LogDet GCMI FLMI
ASM (T%) 27.1 21.5 (16.7%) 26.4 (2.2%) 22.7 (9.3%) 21.7 (16.1%) 22.2 (13.6%) 18.1 (100%) 18.7 (100%)

GUJ (T%) 13.7 11.0 (15.6%) 11.2 (28.8%) 11.1 (1.5%) 10.9 (22.6%) 10.7 (24.6%) 9.7 (100%) 9.4 (100%)

HIN (T%) 11.1 9.7 (9.8%) 9.7 (11.0%) 10.4 (1.7%) 9.5 (10.1%) 9.7 (12.1%) 8.5 (100%) 9.2 (100%)

KAN (T%) 18.7 15.3 (9.8%) 15.4 (14.4%) 17.8 (2.3%) 15.7 (7.1%) 16.0 (2.5%) 12.8 (100%) 13.1 (100%)

MAL (T%) 19.5 16.8 (12.2%) 16.9 (8.7%) 18.8 (1.7%) 18.6 (8.6%) 18.3 (4.1%) 13.9 (100%) 13.6 (98.6%)

MAN (T%) 53.1 44.8 (13.3%) 48.4 (5.3%) 42.5 (79.9%) 44.5 (10.8%) 43.3 (20.6%) 39.8 (100%) 39.9 (100%)

RAJ (T%) 21.9 16.9 (7.5%) 16.3 (11.5%) 18.2 (1.9%) 16.9 (9.4%) 16.4 (9.4%) 14.3 (100%) 14.4 (100%)

TAM (T%) 12.5 11.9 (15.1%) 11.7 (18.0%) 12.2 (1.6%) 11.9 (15.3%) 11.9 (13.0%) 11.1 (100%) 11.5 (100%)

Table 1: Single-target accent adaptation in IndicTTS on a 1230s budget.

Eval Pre Random Entropy PhoneDiv FL LogDet GCMI FLMI
ARB (T%) 24.3 23.1 (14.7%) 23.7 (16.6%) 23.3 (15.2%) 23.4 (15.1%) 23.4 (8.1%) 22.8 (58.6%) 20.8 (98.7%)

CHN (T%) 30.7 28.3 (19.4%) 28.5 (18.1%) 28.3 (20.4%) 28.2 (16.8%) 28.3 (14.9%) 25.8 (70.4%) 25.1 (99.6%)

HIN (T%) 18.1 17.1 (15.2%) 18.6 (7.7%) 16.4 (14.1%) 17.3 (14.2%) 16.5 (28.7%) 15.5 (48.0%) 15.4 (92.9%)

KOR (T%) 19.1 17.7 (17.5%) 18.4 (15.7%) 18.2 (16.0%) 18.2 (17.3%) 17.6 (23.5%) 17.0 (84.3%) 16.5 (98.9%)

ESP (T%) 23.4 22.2 (16.6%) 22.5 (23.5%) 22.4 (17.2%) 23.3 (17.9%) 22.4 (7.0%) 21.3 (89.2%) 20.8 (99.6%)

VTN (T%) 37 33.7 (16.6%) 35.5 (18.4%) 34.5 (17.1%) 34.2 (18.6%) 34.9 (17.7%) 31.2 (97.1%) 31.6 (100%)

Table 2: Single-target accent adaptation in L2-Arctic on a 1230s budget.

of this function gives us our selected subset. The
function score(S) is defined as follows, with S de-
noting a set of sentences, P denoting the set of
phones, τ a hyperparameter for the penalization
(set to 500 in our experiments), nπ(S) denoting the
number of utterances of phone π in S:

score(S) =
∑
π

(1− exp(−nπ(S)/τ)) (3)

Maximum ASR entropy (“Entropy"): This
method is from Riccardi and Hakkani-Tur (2005)
and focuses on selecting utterances that the baseline
ASR model is most uncertain about. We score each
utterance by finding the entropy across frame-level
phone predictions and averaging across frames. We
then pick the highest scoring utterances within our
budget duration. The score of an utterance C is
defined as follows, with F denoting the frames of
the utterance C, pf (π) denoting the ASR model’s
softmax value on phone-π of frame-f .

score(C) = 1

|F|
∑

framef∈F

∑
π

−pf (π)log(pf (π))

(4)

We also use two submodular functions that are well-
known for subset selection tasks. Namely, Facility
Location and Log Determinant functions.
Facility Location (“FL"): The facility location
function is known to select a representative subset

and has been extensively used for speech data sub-
set selection tasks (Wei et al., 2014a, 2013). Using
the same notation as in Sec. 4, where S denotes
the subset of utterances to be selected from the
unlabeled set U , the FL function is defined as:

f(S) =
∑
i∈U

max
j∈S
Xij (5)

Log Determinant (“LogDet"): The log determi-
nant function models diversity and is crucial for
determinantal point processes (DPPs). The LogDet
function is defined as follows:

f(S) = Log Det(XS) (6)

where, Det(.) is the determinant, and XS denotes
the rows and columns of the similarity matrix in-
stantiated with elements in S .

For fair evaluation, the FL and LogDet func-
tions are optimized using the same greedy strategy
(Mirzasoleiman et al., 2015) as the SMI functions
used in DITTO. Note that FL and LogDet functions
are computationally expensive since they require
the computation of a O(n2) similarity matrix, as
opposed to the SMI functions, which can be opti-
mized in linear time.

6.2 Targeted Subset Selection for
Single-accents

In this section, we analyze the performance of
DITTO for procuring a subset that is targeted for
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Figure 2: WER reductions across a range of budgets,
targeting Assamese (from IndicTTS) and Chinese (from
L2-Arctic) accents.

a single accent, followed by fine-tuning an ASR
model using the selected targeted subset. For evalu-
ation, we study the Word Error Rate (WER) of the
targeted accent by evaluating the fine-tuned model
on a held-out test set containing utterances of the
targeted accent. Along with the WER, we also re-
port a Targeted percentage (T%) that denotes the
ratio of utterances selected from the targeted accent
given the total budget.

We conduct extensive experiments on IndicTTS
(Vignesh et al., 2016) and L2-Arctic (Zhao et al.,
2018) datasets (see Sec. 5.1 for details) by targeting
all accents in both datasets, one accent at a time.
For each accent (around 4.3K samples in IndicTTS
and 3K samples in L2-Arctic), we create data splits
by partitioning 70% of the data for the unlabeled
set (U) and a small target set T of size 20. Of the
remaining 30%, we create a test set from 27% and
use 50 samples from the 3% as the finetuning dev
set. In L2 Arctic, which has equal samples from
each speaker of an accent, we ensure an equal split
across the speakers in our accent-specific query,
test and dev sets.

We present the targeted subset selection and fine-
tuning results for the IndicTTS dataset in Tab. 1
and for L2-Arctic in Tab. 2. We observe that the
SMI functions, GCMI and FLMI outperform other
methods in terms of WER for all target accents.

This is due to the fact that the SMI functions are
able to identify utterances from the target accent
almost to perfection in most cases. Interestingly,
GCMI performs better than FLMI on IndicTTS in
6 out of 8 accents due to its high predilection to-
wards query-relevance. On the other hand, GCMI
performs worse than FLMI (although better than
other methods) in terms of WER on the L2-Arctic
dataset. This is because FLMI is significantly bet-
ter in terms of targeting in comparison to GCMI
and other methods. Note that IndicTTS is simpler
since it contains data from only one speaker per
accent, whereas L2-Arctic has comparatively more
complex acoustics as it contains data from multiple
speakers for each accent. We believe that the rep-
resentation modeling capability and bidirectional
similarity of FLMI allows for a better targeting
ability on complex datasets like L2-Arctic. On
the other hand, for datasets with lower acoustic
complexity like IndicTTS: GCMI, which performs
query-relevance, works well. We also present the
variation in WER improvements across a range
of budgets in Fig. 2 for accents picked from each
dataset. The horizontal lines marked indicate the
how much budget each method needed for the
same WER gain. For Assamese (ASM) we see
that Random needs 80 minutes to improve by 8,
while FLMI and GCMI do it in 18 and 19.5 mins
respectively. For Chinese (CHN) we observe: for
5.1 gain, Random needs 80 minutes, while FLMI
and GCMI need only 17 and 27 minutes respec-
tively. The SMI functions are thus 3-5 times as
label efficient than random.

6.3 Fair Targeted Subset Selection for
Multiple-accents

Another important setting of high practical value
is that of adapting an ASR model for multiple tar-
geted accents. In a real-world scenario, practition-
ers may want to improve the performance of the
ASR model on accents that are under-performing.
In another deployment scenario, one may need to
fine-tune the ASR model on multiple accents in
order to deploy it in a region where the population
speaks in more than one accent. To tackle such
scenarios, an ideal selection function would model
fairness and select approximately equal number
of utterances from each accent. To study this, we
evaluate the performance of DITTO for targeting
pairs of accents, followed by fine-tuning the ASR
model on the selected targeted subset. For evalua-



Eval Pre Random Entropy PhoneDiv FL LogDet GCMI FLMI
ASM-WER (T%) 27.1 20.4 (17.8%) 24.8 (1.9%) 20.7 (17.7%) 20.1 (16.2%) 21.0 (15.1%) 21.1 (24.7%) 19.7 (50.6%)

MAL-WER (T%) 19.5 16.2 (10.9%) 16.8 (8.6%) 18.4 (3.8%) 18.7 (8.7%) 17.5 (4.4%) 14.0 (75.3%) 14.7 (49.4%)

Targeted Fairness (TF) - 0.08 0.01 0.03 0.06 0.03 0.74 1
Avg. WER 23.3 18.3 20.8 19.5 19.4 19.2 17.6 17.2

MAL-WER (T%) 19.5 16.2 (10.9%) 16.8 (8.6%) 18.4 (3.8%) 18.7 (8.7%) 17.5 (4.4%) 15.7 (7.6%) 15.0 (21.9%)

RAJ-WER (T%) 21.9 16.2 (8.5%) 15.8 (12.4%) 17.2 (4.0%) 15.9 (8.9%) 16.1 (7.5%) 13.3 (92.4%) 14.3 (78.1%)

Targeted Fairness (TF) - 0.04 0.04 0.01 0.03 0.01 0.28 0.68
Avg. WER 20.7 16.2 16.3 17.8 17.3 16.8 14.5 14.6

ASM-WER (T%) 27.1 20.4 (17.8%) 24.8 (1.9%) 20.7 (17.7%) 20.1 (16.2%) 21.0 (15.1%) 25.6 (0.0%) 21.2 (25.5%)

RAJ-WER (T%) 21.9 16.2 (8.5%) 15.8 (12.4%) 17.2 (4.0%) 15.9 (8.9%) 16.1 (7.5%) 13.3 (100%) 14.3 (74.5%)

Targeted Fairness (TF) - 0.06 0.01 0.03 0.06 0.05 0 0.76
Avg. WER 24.5 18.3 20.3 19 18 18.6 19.5 17.8

Table 3: Targeting Assamese, Rajasthani and Malayalam accents in pairs on a 2460s budget (IndicTTS). For
definitions of T% and Targeted Fairness (TF), please refer to Sec. 6.2 and Sec. 6.3.
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(a)IndicTTS: ASM accent Sel.
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(c)IndicTTS: Avg. WER reduction

Figure 3: Variation in selections and average WER across a range of budgets, targeting ASM and MAL together.

Eval Pre Random Entropy PhoneDiv FL LogDet GCMI FLMI
ARB-WER (T%) 24.3 22.9 (15.4%) 23.4 (17.2%) 22.5 (14.1%) 23.4 (15.2%) 22.9 (9.9%) 21.0 (44.3%) 20.3 (63.5%)

CHN-WER (T%) 30.7 27.1 (17.5%) 28.3 (19.0%) 27.7 (19.6%) 27.5 (17.2%) 27.8 (13.9%) 26.3 (31.5%) 26.1 (32.7%)

Targeted Fairness (TF) - 0.11 0.13 0.11 0.1 0.06 0.56 0.83
Avg. WER 27.5 25 25.8 25.1 25.4 25.4 23.6 23.2

CHN-WER (T%) 30.7 27.1 (17.5%) 28.3 (19.0%) 27.7 (19.6%) 27.5 (17.2%) 27.8 (13.9%) 25.9 (30.3%) 25.3 (67.3%)

VTN-WER (T%) 37 32.8 (16.8%) 34.4 (16.2%) 33.6 (17.3%) 33.2 (17.5%) 33.7 (15.5%) 33.9 (15.5%) 32.2 (31.2%)

Targeted Fairness (TF) - 0.12 0.12 0.14 0.12 0.09 0.19 0.84
Avg. WER 33.8 30 31.4 30.6 30.4 30.8 29.9 28.8

ARB-WER (T%) 24.3 22.9 (15.4%) 23.4 (17.2%) 22.5 (14.1%) 23.4 (15.2%) 22.9 (9.9%) 21.3 (40.8%) 20.3 (74.2%)

VTN-WER (T%) 37 32.8 (16.8%) 34.4 (16.2%) 33.6 (17.3%) 33.2 (17.5%) 33.7 (15.5%) 33.8 (20.8%) 34.1 (19.9%)

Targeted Fairness (TF) - 0.1 0.11 0.1 0.11 0.06 0.34 0.59
Avg. WER 30.6 27.8 28.9 28 28.3 28.3 27.6 27.2

Table 4: Targeting Vietnamese, Arabic and Chinese accents in pairs on a 2460s budget (L2-Arctic).
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Figure 4: Variation in selections and average WER across a range of budgets, targeting CHN and VTN together.



Figure 5: t-SNE visualising MFCC features of selections on the full IndicTTS dataset: comparing FLMI and GCMI.
FLMI’s selections are representative of the query and spread over all clusters A, B, C and D. GCMI is biased
towards the bigger cluster centers: it does not select from clusters B and C at all (thus selecting a lower Assamese
fraction) and selects dense, unrepresentative clusters from the centers of A and D.

tion, we study the WER and average WER for both
the targeted accents by evaluating the fine-tuned
ASR model on separate individual held-out test sets
containing utterances from each of the targeted ac-
cents. Similar to the single accent experiments, we
also report the Targeted percentage (T%) for each
targeted accent. In addition, we report a Targeted
Fairness (TF) score for the accent-pair, which is
computed as a product of the targeted percentages
of both the targeted accents. We multiply the fi-
nal score by 4 to obtain a TF score of 1 when the
selected subset perfectly targets both accents, i.e.
it achieves 50% targeted percentage for both the
targeted accents.

For our experiments, we consider pairs of the
three worst-performing accents as target accent
pairs from IndicTTS and L2-Arctic datasets. We
present results for three target accent pairs from In-
dicTTS in Tab. 3: i) Assamese and Malayalam, ii)
Malayalam and Rajasthani, and iii) Assamese and
Rajasthani. We use data splits created in Sec. 6.2:
ground and test sets remain the same, whereas
query sets for the accent pairs here are made by
taking 10 from each accent from the accent-specific
query sets of Sec. 6.2.

We observe that the SMI functions (GCMI and
FLMI) outperform other methods in terms of the
Avg. WER and the TF score. Interestingly, we also
observe that GCMI often favors targeting a single
accent: MAL when MAL and ASM are targeted,
RAJ when RAJ and MAL are targeted and RAJ
from RAJ and ASM. Due to this, GCMI obtains

a lower TF score than FLMI. It is worth noting
that FLMI achieves a TF score of as high as 1
(see Tab. 3’s Asm-Mal section) due to its ability to
jointly model representation. We find that GCMI
tends to favor a particular accent A due to higher
pairwise similarity values XA between utterances
belonging to accent A in comparison to accent B.
In Fig. 3, for the ASM-MAL accent pair, we illus-
trate the Avg. WER improvement and duration of
utterances selected from both the accents across a
wide range of budgets. Notably, we observe that
FLMI continues to select fairly for both accents,
while GCMI favors MAL accent over ASM.

To compare the Targeted Fairness between FLMI
and GCMI, we visualize a t-SNE plot of the In-
dicTTS dataset embedded using MFCC features
in Fig. 5. As shown in the legend of Fig. 5, each
color represents a particular accent and the selected
data points are denoted in black. The query data
points from ASM and MAL accents are shown by
yellow stars. We observe that the data points se-
lected by FLMI are representative of the query, as
they are spread well across MAL (cluster A) and
ASM (clusters B, C and D). On the other hand, data
points selected by GCMI are mainly concentrated
in the bigger cluster centers of MAL (cluster A)
and ASM (cluster D), while completely missing
clusters B and C. This is again a consequence of
the fact that FLMI jointly models representation
and query-relevance whereas GCMI focuses only
on query-relevance.

We conduct a similar analysis for the L2-Arctic



Eval Pre Random Entropy PhoneDiv FL LogDet GCMI FLMI
ASM-WER (T%) 27.1 20.4 (17.8%) 24.8 (1.9%) 20.7 (17.7%) 20.1 (16.2%) 21.0 (15.1%) 17.1 (97.8%) 17.0 (92.6%)

MAN-WER (T%) 53.1 42.5 (13.6%) 47.2 (3.8%) 40.7 (59.0%) 42.4 (12.9%) 40.7 (23.9%) 44.6 (2.2%) 42.9 (7.4%)

Targeted Fairness (TF) - 0.1 0 0.42 0.08 0.14 0.09 0.27
Avg. WER 40.1 31.4 36 30.7 31.2 30.8 30.8 30

MAN-WER (T%) 53.1 42.5 (13.6%) 47.2 (3.8%) 40.7 (59.0%) 42.4 (12.9%) 40.7 (23.9%) 48.9 (0.0%) 47.2 (2.7%)
RAJ-WER (T%) 21.9 16.2 (8.5%) 15.8 (12.4%) 17.2 (4.0%) 15.9 (8.9%) 16.1 (7.5%) 13.2 (100%) 13.7 (97.3%)

Targeted Fairness (TF) - 0.05 0.02 0.09 0.05 0.07 0 0.11
Avg. WER 37.5 29.4 31.5 29 29.2 28.4 31 30.4

Table 5: Targeting Assamese, Rajasthani and Manipuri accents in pairs on a 2460s budget (IndicTTS)

dataset. We present the results for pairs from three
bottom performing target accents from L2-Arctic
in Tab. 4: i) Arabic and Chinese, ii) Arabic and
Vietnamese, and iii) Chinese and Vietnamese. Con-
sistently, the SMI functions outperform other meth-
ods in terms of Avg. WER and TF score. Evidently,
FLMI performs the best across all accent pairs. In
Fig. 4, for the CHN-VTN accent pair, we demon-
strate the Avg. WER improvement and duration
of utterances selected from both the accents across
a wide range of budgets. We observe that FLMI
achieves the highest Avg. WER and selects the
most number of utterances from both target ac-
cents, proving it can achieve robust targeting and
fairness.

7 Conclusion

In this work, we propose DITTO, a data efficient
and fair targeted subset selection method for ASR
accent adaptation. DITTO utilizes submodular mu-
tual information (SMI) functions to find represen-
tative speech utterances that belong to the target
accent within a limit budget. We show that SMI
functions consistently outperform other methods
for targeting. We also demonstrate that DITTO is
capable of targeting multiple accents fairly, which
can be beneficial for deploying ASR models in re-
gions with populations that speak in more than one
accent.

8 Limitations

Similar to the limitations of existing selection meth-
ods, our method needs a reasonable feature embed-
ding for accent representation in order to effec-
tively target accents. MFCC features are not the
best choice to represent accent information. Some
accents may be more difficult to represent than
others. This also lowers fairness scores for such
accents. For instance, in one of our experiments
where Manipuri accent was paired with Rajasthani

or Assamese accents, we observe that acquiring
a fair subset using any selection strategy is chal-
lenging (see Tab. 5). Although, FLMI was able
to achieve a higher TF score than others, it was
relatively lower than other accent pairs (see Tab. 3
and Tab. 4). This is due to the fact that the pairwise
similarity scores of utterances within the Manipuri
accent are lower than other accents. The lower
pairwise similarity scores lead to lower marginal
gains during greedy maximization and are a con-
sequence of poor feature representations due to
insufficient information being encoded about the
Manipuri accent. On another note, a risk associated
with the targeting ability of DITTO is that it could
be misused to create models that are unfair to cer-
tain populations. For future work, evaluating the
performance of DITTO on larger datasets and other
diverse settings (e.g. out-of-distribution accents)
will be interesting.
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