arXiv:2305.06677v2 [cs.CL] 19 Oct 2023

INGENIOUS: Using Informative Data Subsets for Efficient Pre-Training of
Language Models

H S V N S Kowndinya Renduchintala'; Krishnateja Killamsetty?, Sumit Bhatia®
Milan Aggarwal®, Ganesh Ramakrishnan', Rishabh Iyer?, Balaji Krishnamurthy?
! Indian Institute of Technology Bombay, India
2 University of Texas at Dallas, USA
3 Media and Data Science Research (MDSR) Lab, Adobe Inc., India

Abstract

A salient characteristic of pre-trained language
models (PTLMs) is a remarkable improve-
ment in their generalization capability and
emergence of new capabilities with increasing
model capacity and pre-training dataset size.
Consequently, we are witnessing the develop-
ment of enormous models pushing the state-
of-the-art. It is, however, imperative to realize
that this inevitably leads to prohibitively long
training times, extortionate computing costs,
and a detrimental environmental impact. Sig-
nificant efforts are underway to make PTLM
training more efficient through innovations in
model architectures, training pipelines, and
loss function design, with scant attention being
paid to optimizing the utility of training data.
The key question that we ask is whether it is
possible to train PTLMs by employing only
highly informative subsets of the training data
while maintaining downstream performance?
Building upon the recent progress in informa-
tive data subset selection, we show how we
can employ submodular optimization to se-
lect highly representative subsets of the train-
ing corpora and demonstrate that the proposed
framework can be applied to efficiently train
multiple PTLMs (BERT, BioBERT, GPT-2)
using only a fraction of data. Further, we per-
form a rigorous empirical evaluation to show
that the resulting models achieve up to ~ 99%
of the performance of the fully-trained models.
We made our framework publicly available at
https://github.com/Efficient- Al/ingenious.

1 Introduction

Pre-trained language models (PTLMs) (Devlin
etal., 2019; Radford et al., 2019; Yang et al., 2020;
Brown et al., 2020; Raffel et al., 2020) have rev-
olutionized the field of natural language process-
ing (NLP), becoming the default choice for a wide
array of NLP tasks. The versatility of PTLMs,
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however, is accompanied by significant costs. For
instance, it costs an estimated $12 million to
train GPT-3 (Brown et al., 2020) with roughly 1.2
million pounds of CO3 emissions (Kahn, 2021).
Megatron-Turing NLG (Smith et al., 2022) is a
530 billion parameter PTLM, which is thrice the
size of GPT-3 and is trained on 4480 A100 GPUs
and yields close to 1% performance improvements
over GPT-3. By continually increasing the size of
PTLMs and pre-training corpora to improve gen-
eralization ability, significant additional resources
and energy are consumed, resulting in dire envi-
ronmental consequences (Sharir et al., 2020). Fur-
ther, such large-scale resource utilization and the
costs associated with PTLMs create an uneven
playing field for small organizations and universi-
ties, which operate with significant resource con-
straints. Hence, a crucial step towards develop-
ing responsible, fair, and GreenAl (Schwartz et al.,
2020) involves minimizing inefficiencies and costs
of training these models.

Significant efforts toward improving the efficiency
of PTLMs have ventured in directions such as op-
timizing the model architecture (Chen et al., 2020;
Gordon et al., 2020; Zafrir et al., 2021), modifi-
cations to the training pipeline (Izsak et al., 2021;
Shen et al., 2022) and task (Schick and Schiitze,
2021), sample efficient masking techniques for
improved convergence (Bitton et al., 2021) and
leveraging contextual knowledge to reduce model
size (Kaur et al., 2022). In this work, driven by the
observation that the scale of the pre-training cor-
pus contributes significantly to the training costs
of PTLMs, we explore the feasibility of training
PTLMs using highly informative subsets of the
corpus. Recent studies have demonstrated the fea-
sibility of informative data subset selection for
efficient deep model training for images (Mirza-
soleiman et al., 2020; Killamsetty et al., 2021a,b,c;
Pooladzandi et al., 2022) in both supervised and
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semi-supervised settings. In light of this, the key
question we attempt to answer is: Can we effi-
ciently pre-train language models using highly in-
formative subsets of the training corpus without
compromising performance?

The first step in answering the above question
is identifying informative (or representative) sub-
sets of the underlying training corpus such that
they maximize the representation of the remain-
ing samples in the corpus. Intuitively, given a set
of sentences, the subsequent addition of sentences
similar to existing sentences in the set yields di-
minishing returns. More information gains can
be achieved by adding diverse, dissimilar sen-
tences. While the classical subset selection prob-
lem is NP-hard, we can leverage the diminish-
ing gains property of submodular functions (Fu-
jishige, 2005) and frame subset selection as a sub-
modular maximization problem. Several recent
works (Wei et al., 2015; Mirzasoleiman et al.,
2020; Kothawade et al., 2021; Karanam et al.,
2022; Maheshwari et al., 2020) have formulated
the subset selection problem as that of maximizing
a submodular objective. However, applying exist-
ing subset selection frameworks to PTLMs is non-
trivial given the scale of corpora typically used for
pre-training (e.g., Wikipedia and Common Crawl
consisting of hundreds of millions of sequences
and billions of tokens). Most of the existing meth-
ods rely on per-sample gradients, which are expen-
sive to compute, and to the best of our knowledge,
none of the previous works have considered subset
selection for such large datasets.

Our contributions: We propose the informative
data subset selection task for efficient pre-training
of PTLMs and present INGENIOUS, a framework
for subset selection using submodular optimiza-
tion (Section 3). We show how to overcome the
scalability challenge for typical large-scale pre-
training corpora and employ scalable sentence fea-
ture encoders to obtain individual data sample fea-
tures relevant for subset selection. We also employ
various engineering techniques to scalably select
subsets from large-scale datasets (Section 3). We
use INGENIOUS to pre-train BERT and GPT-2 and
evaluate the performance of the resulting mod-
els on downstream tasks (Section 4). A rigor-
ous empirical evaluation reveals that the models
pre-trained with INGENTIOUS retain upto ~ 99%
performance of the models pre-trained using the
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Figure 1: Cost-savings vs Performance tradeoff

achieved by INGENIOUS for BERT pre-training: We
contrast the accuracy degradation with cost savings
compared to the vanilla BERT pre-training on entire
dataset. We observe 4.35x cost-savings with 2.1% ac-
curacy drop and 2.33x cost-savings with 0.67% accu-
racy drop.

full dataset. Figure 1 summarizes the cost-savings
vs performance trade-off achieved by INGENIOUS
for BERT pre-training. We also present thor-
ough ablation studies revealing the impact of var-
ious design choices and parameters involved. We
also evaluate the models trained by INGENIOUS in
terms of their knowledge retention capabilities and
show how INGENIOUS can be used to accelerate
pre-training of domain-specific language models
such as BioBERT (Section 4.4). Finally, we dis-
cuss the inferences that could be drawn from our
work, limitations of our proposed framework and
lay out directions for further improvement (Sec-
tion 5).

2 Related Work

Knowledge distillation and pruning based meth-
ods (Sanh et al., 2019; Jiao et al., 2020; Muhamed
et al., 2021) pre-train a smaller variant of PTLMs
(such as BERT) with lesser capacity using the full
model as teacher network. Even though lighter
versions such as DistilBERT (Sanh et al., 2019)
retain ~ 97% of the performance with up to
60% faster inference, the PTLM still needs to
be completely pre-trained initially to be able to
distill the lighter version. Thus, the efficiency
gains are restricted only to the fine-tuning and
inference. Other methods prune the architecture
through forcing the weights with lesser magni-
tude to zero value during pre-training (Chen et al.,
2020; Gordon et al., 2020) as well as during fine-
tuning (Zafrir et al., 2021).



Model architecture and training task optimiza-
tions: Schick and Schiitze (2021) have shown that
smaller PTLMs can achieve better performance by
formulating the task input in cloze style. Izsak
et al. (2021) proposed to optimize BERT pre-
training through multiple optimizations related to
data, model size, and optimizer choice. Shen
et al. (2022) proposed a staged training mecha-
nism where they start with training a relatively
smaller model, which is then used for initializing
the full capacity model at a later stage. Yao et al.
(2022) identify relevant samples from the pre-
training corpus based on their similarity with the
task-specific dataset to train task-specific PTLM
followed by fine-tuning, thus inherently suffering
from the limitation of pre-training separate models
for every downstream task.

Curriculum learning based methods employ the
sequence length of training samples as a proxy
for hardness.Typically, shorter (easier) sequences
are presented in the initial stages of pre-training
followed by longer (harder) sequences at later
stages (Nagatsuka et al., 2021; Li et al., 2022).
However, such methods have been shown to per-
form well only in limited configurations with re-
spect to the choice of language models, stage of
pre-training, etc..

Hardware optimizations for PTLM Training:
The suite of Open Pre-Trained Transformers
(OPT) (Zhang et al., 2022) require 1/7th of the
carbon footprint for pre-training when compared
to popular PTLMs such as GPT-3 (Brown et al.,
2020) while achieving comparable few-shot gen-
eralization. OPTs leverage extensive data and ten-
sor parallelism with high-memory GPUs (support-
ing large batch sizes), which are usually not easily
accessible and can lead to exorbitant costs.

Noticeably different from the aforementioned
works, we explore making PTLM training more
efficient by utilizing highly informative subsets of
the training data. Consequently, our proposal ef-
fectively complements other optimization meth-
ods that target aspects such as model architecture
and hardware enhancements.

3 The INGENIOUS Framework

We now present INGENIOUS - an informative
data subset selection framework for pre-training
language models. We summarize the training
pipeline in Figure 2. We first describe the nota-

tion to formulate the problem, followed by details
of different steps involved in the framework.

3.1 Notation

We denote the unlabeled dataset for pre-training
by U = {z;}’_,, consisting of n data points each
corresponding to a varying length of sequence of
symbols {s; }"; (these symbols could be words or
character sequences such as sub-words). Let S C
U be the subset of the unlabeled dataset on which
the language model is trained. Let the language
model be parameterized by 8. We subscript the
changing variables such as model parameters 0,
subset S with the timestep ¢ to denote their specific
values at that timestep.

3.2 Problem Formulation

In its most general form, subset selection is de-

fined as S; = argmax f(S) (1)
Scu

where the subset S; C U at step ¢ is selected such
that it maximizes the function f.

While the above general subset selection problem
is NP-Hard, the problem becomes approximable
in case the function f is submodular in nature (Fu-
jishige, 2005). A set function f : 24 — R is
submodular if for x € U, f(AUz) — f(A) >
fBuz) — f(B),vA C B C U and z ¢
B. We pose the data subset selection problem as
a submodular maximization problem since it al-
lows for easier optimization by employing differ-
ent approximations (Nemhauser et al., 1978; Iyer
and Bilmes, 2019). In order to choose a suit-
able submodular function, one must understand
the characteristics of the subsets that are crucial
for the end-goal — efficient learning in our case.
Previous works in computer vision have demon-
strated that commonly used vision datasets con-
tain many redundancies, and eliminating such re-
dundant data samples does not affect the model’s
performance (Birodkar et al., 2019; Toneva et al.,
2019; Paul et al., 2021; Sorscher et al., 2022). Fur-
ther, one can achieve faster model training by us-
ing highly informative and representative data sub-
sets (Kaushal et al., 2019; Mirzasoleiman et al.,
2020; Sorscher et al., 2022). Please refer to Ap-
pendix B for more related work on submodularity
based subset selection. Building upon the learn-
ings from computer vision research, our primary
requirement for the selected subset is that it should
faithfully represent the training data and have min-
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Figure 2: INGENIOUS framework for informative data subset selection to pre-train language models. We warm-
start pre-training for W steps to enable it to learn useful representations (step A). Owing to the size of pre-training
data, we divide the total number of samples (n) into P partitions (step B;) followed by selecting instances according
to submodular gains (step Bs) through probabilistic sampling (step C'). We obtain a subset (of total size k) of
representative samples from each partition such that the subset is updated periodically (step D) after R steps of

training on selected subset.

imal redundancy within itself.

3.3 Opverview of Approach

In order to select a representative subset as dis-
cussed above, we use Facility Location (Salhi,
1991; Krause and Golovin, 2014), a commonly-
used submodular function closely related to k-
medoid clustering which is defined as

Z max KCi; 2)

fro(A

where A is the subset being evaluated, K is a pair-
wise similarity matrix and K;; is the similarity be-

tween the i*" and j** samples. Thus, our subset
selection problem can be represented as:
S; = argmax frr(S) 3)
SCU:|S|=k

Here, k represents the size of the subset S.
We would like to clarify that Equation (3) en-
ables us to choose diverse samples such that
each represents other samples in the corpus, in-
stead of selection of similar samples. The op-
timization problem in Equation (3) is an in-
stance of cardinality-constrained monotone sub-
modular maximization for which an approxi-
mate solution can be obtained by incrementally
building the subset from scratch using algo-
rithms such as Naive Greedy (Nemhauser et al.,
1978), Lazy Greedy (Minoux, 1978), Stochastic
Greedy (Mirzasoleiman et al., 2015), Lazier-than

Lazy-Greedy (Mirzasoleiman et al., 2015). We
use the Lazier-than-Lazy Greedy optimizer as it
is the most computationally efficient, along with
memoization (Iyer and Bilmes, 2019).

The facility location function utilizes a pairwise
similarity kernel K (of size |U/| x |U]) between the
data samples in U/ to select representative subsets.
To estimate the kernel values, we compute the co-
sine similarity between the feature representations
of data samples obtained using the LM itself. To
ensure that the extracted representations are mean-
ingful during the initial phase, we warm start the
model for W training steps as suggested by Kil-
lamsetty et al. (2021a,c) (step A in Figure 2). Fur-
ther, to ensure that LM sees diverse data samples,
we probabilistically sample data points based on
submodular ordering obtained from running the
greedy algorithm(steps B and C' in Figure 2) and
update the subset after every R'" iteration (step D
in Figure 2) .

This re-sampling procedure is repeated till the pre-
determined number of steps. Algorithm 1 sum-
marises the steps involved and in the following
section, we describe the details of each step.

3.4 Methodology Details

Feature Encoders for Similarity Computation:
The selection of optimal representative subsets re-
quires a similarity kernel that captures the intrin-
sic relationships between data samples. We ex-



Algorithm 1: Pre-Training using INGE-
NIOUS

Input: Training dataset: I, Initial model parameters: 6, Total no
of training steps: 7", Training steps interval for subset
selection: IR, Number of steps for warmstart phase: W, Size
of the subset: k, Learning rates: {c }5257 !

Sett =0

optimizer = AdamW()

#*F% Warmstart Phase *#*

repeat

Compute batches U, = ((zp, yp); b € (1 B)) fromU
forb =11t Bdo
if t > W then
| break

Compute mask m; on Uy,
0441 = optimizer.step()
t=t+1

until until t > W

*#*% Subset Selection ***

greedyldxs, gains = argmaz|s| <y frL(S,U, 04)

probabilities = TaylorSoftmax(gains)

S ~sample(greedyldxs, probabilities, k)

repeat

Compute batches S¢p, = ((zp,ysp); b € (1--- B)) from
St

forb = 110 Bdo

if t > T then
| break

Compute mask m; on Sy,

0i41 = optimizer.step()

t=t+1

if (t% R == 0) then
Si41 ~sample(greedyldxs, probabilities, k)
break

else
| Sit1=35:

until until t > T

##% HEvaluate trained model on validation set *#*
eval = evaluate (61,V)

return eval, O

plore dense and sparse feature encoders for obtain-
ing the feature representation of text samples in U/.
As a dense feature encoder for text samples, we
use the intermediate representations as obtained
from the LM that is currently being trained. We
compute the representations of an input sequence
by averaging the output embeddings of the con-
stituent tokens. A question then arises on which
layer of the underlying model should be used for
obtaining this representation since different lay-
ers encode different types of information (Rogers
et al., 2020). Another possibility is to use sparse
representations such as TF-IDF (Aizawa, 2003)
owing to its success at capturing statistically im-
portant lexical features (Robertson et al., 2009).
We study the effect of using sparse feature repre-
sentations (i.e., TF-IDF) and dense feature repre-
sentations obtained from different layers of LM in
Section 4.3. Our experiments revealed that dense
feature encoders yield the best results.

Submodular Greedy Ordering based Data Se-
lection: After deciding on the choice of similarity

kernel, we now describe how to select the subsets
(steps B and C' in Figure 2) as defined by Equa-
tion (3). Approximate submodular maximization
algorithms such as LazierthanlLazy Greedy start
with an empty subset and incrementally add data
points one by one till the size of the subset equals
the budget k set by us. If S represents subset se-
lected so far, and e represents the next locally opti-
mal data sample to be added, the submodular gain
value of e is defined as f(S Ue) — f(S). While
running the algorithm, we initially set the budget
as the size of the entire data(say M) in order to
obtain and store the submodular gain (step Bz in
Figure 2) of each data sample at the time of their
addition.

The key idea here is to use the submodular gains
associated with each data sample as an importance
score; convert them to a probability distribution
by using the second order Taylor-softmax oper-
ation (de Brébisson and Vincent, 2016) (step C
in Figure 2) and then sample a subset of desired
size(say k) from the above distribution. Given
gains vector {g1,92, - ,9m}, Taylor-softmax

operation over the vector for converting it to prob-

ability distribution P can be specified as P def

{ 149:+0.5¢2 }M

Ly 149;40.59% J =1’

Using the probability distribution P for sampling
ensures that samples which have high impor-
tance score associated with them are selected with
greater probability. However, it also allows the
LM to explore the samples with low importance
score during training to prevent overfitting. We
reuse this probability distribution to sample new

subsets of size k every R steps by sampling k
points without replacement (step D in Figure 2).

Recall that we require a similarity kernel of size
|U| x |U|, hence the memory required for storing
the similarity kernels is practically infeasible. We
now describe how we scale INGENIOUS to handle
size of the pre-training datasets used for LMs.

Partitioning based Efficient Subset Selection:
To minimize the memory consumption, instead of
constructing a probability distribution over the en-
tire unlabeled set directly, we first partition (step
B in Figure 2) the unlabeled set into /Np random
blocks of equal sizes (i.e., partition size is %) and
construct a probability distribution P; over each
data block U : [UF'| = %. We then use the con-



structed probability distributions P; over each data
block U/ to sample a subset of size k/Np from the
data block without replacement. We compute the
final subset using subsets from each partition as
follows:

Np k
_ P .
S = _Ulsample 7 i ) (4)

The partitioning of the unlabeled set allows us to
get away with constructing similarity kernels of
nel memory usage by around Np? times. We dis-
cuss the effect of the partition size in Appendix K.
In order to maximize the utilization of available
resources, we can construct probability distribu-
tions over each block in the data partition in par-
allel. As in recent work (Mittal et al., 2022), par-
titioned facility location can be shown as a lower
bound of the original objective function,i.e., facil-
ity location that is being maximized. It should be
noted that memory utilization also increases with
the number of parallel processes. For example,
when Npp subsets are selected from partitions in
parallel, the memory usage due to similarity kernel

size thereby reducing the similarity ker-

2
is of the order O(Np p%). In our experiments,
P

we set Npp = 100 processes.

4 Experiments and Results

We use BERT (Devlin et al., 2019), GPT-2 (Rad-
ford et al., 2019) and a domain-specific version
of BERT - BioBERT (Lee et al., 2020) as the
underlying LMs. Specifically, we use BERT-
Base(110M) and GPT2-Small(124M). For BERT,
we use English Wikipedia in conjunction with
BooksCorpus as the pre-training corpora and em-
ploy MLM and NSP tasks for pre-training follow-
ing details in the work of Devlin et al. (2019). We
perform pre-training using a batch size of 1024 for
1,000,000 steps in the case of vanilla-BERT. We
perform ablations over data subset sizes and num-
ber of pre-training steps for INGENIOUS enabled
pre-training and find a subset size of 25% (Ap-
pendix J) with 250,000 pre-training steps (25%) as
an optimal choice. We set the value of R to 25000
steps. We refer the reader to Appendix G for fur-
ther implementation details. For INGENIOUS en-
abled pre-training of BioBERT and GPT-2, we dis-
cuss the implementation details and experimental
results in Sections 4.4 and 4.5, respectively.

Avg. GLUE CoLA
Score Score

Vanilla
(1M steps) 82.72 55.98
Random-Selection (B1) 80.67 51.2
(250K steps) (-2.05%) (-4.78%)
Early Stopping (B2) 81.23" 50.93
(250K steps) (-1.49%) (-5.05%)
Loss-based Sampling (B3) 81.25! 51.68
(250K steps) (-1.47%) (-4.3%)
INGENIOUS 81.57123%  54.61123
(250K steps) (-1.15%) (-1.37%)

Table 1: Comparison of INGENIOUS with vanilla pre-
training (full 1M steps) and other baselines for BERT.
We report fine-tuning performance on GLUE bench-
mark and CoLA task in GLUE averaged over 20 runs.
Statistically significant improvements(as measured by
one-tailed t-test with 99% significance level) over base-
lines B1, B2, B3 are indicated by superscripts 1,2,3
respectively. Numbers in brackets denote difference
relative to vanilla variant. We report metrics for IN-
GENIOUS and baselines after 250K pre-training steps.
Please refer to Appendix F for task-wise scores and Ap-
pendix E for validation set losses during the course of
pretraining

4.1 INGENIOUS for BERT Pre-training

We consider two leagues of pre-trained models,
viz., (i) BERT pre-trained on subsets selected
through INGENIOUS and (ii) vanilla BERT pre-
trained fully up to 1 million steps. We contrast
these by fine-tuning each on the commonly used
GLUE benchmark (Wang et al., 2019) and re-
port the performances of each. Further, we com-
pare INGENIOUS against three baselines - B1)
Random Selection: which is obtained by pre-
training BERT on a randomly sampled subset of
the same size as that selected by INGENIOUS; B2)
Early Stopping: BERT pre-training stopped at
250K steps as checkpoint for evaluation; B3) Loss
Based Sampling (Loshchilov and Hutter, 2016):
which is obtained by pre-training BERT on a sub-
set, of the same size as those selected by INGE-
NIOUS, sampled from a probability distribution
that is constructed by ranking the losses in de-
scending order and allocating the high rank (high
loss) samples greater probability than low rank
(low loss) samples. We would like to emphasise
that we choose the baselines B1 and B3 owing to
their relevance to making LM pre-training efficient
with respect to data optimization. Table 1 reports
the GLUE score averaged over 20 runs on the dev
sets obtained after 250K pre-training steps for the
pre-trained models obtained by different methods.
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Figure 3: Comparison of INGENIOUS with vanilla
BERT on GLUE performance vs. pre-training steps
(top) and cost (bottom) using checkpoints obtained at
intermediate pre-training stages.

We observe that despite using only a subset of
training data and being trained only for 250K
steps, INGENIOUS achieves 98.6% performance of
the vanilla fully pre-trained BERT. Further, INGE-
NIOUS achieves statistically significant improve-
ments over the three baselines (B1, B2, and B3).
INGENIOUS also outperforms baseline B3, which
prioritizes training the BERT model on samples
with a high loss rate. Prioritizing high-loss sam-
ples may likely result in overfitting, which may
explain the poor fine-tuning performance of base-
line B3 on GLUE tasks compared to baseline
B2. Therefore, INGENIOUS selects informative
subsets that not only help improve BERT pre-
training convergence but also help retain its gen-
eralization capabilities. Further, we observe that
extended training of INGENIOUS till 400K steps
yields 99.1% performance of the vanilla BERT.
We would like to highlight that most of the down-
stream task performance achieved by an PTLM is
due to the initial stages of pre-training with most
of the later pre-training resulting in up to ~ 1%
improvement (Smith et al., 2022). In this con-
text, INGENIOUS helps in achieving later-stage
performance gains relatively earlier. Finally, we
would like to highlight that INGENIOUS performs
significantly better compared to the baselines on
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Figure 4: INGENIOUS is found to outperform the base-
lines even on extended training till 1M steps

the CoLA task (in Table 1) which is deemed to
be most difficult (Geiping and Goldstein, 2022) in
the GLUE benchmark. This implies that the sub-
sets selected by INGENIOUS are able to capture the
important and highly informative signals from the
underlying data resulting in robust performance on
challenging tasks as well.

Further, to compare different methods at differ-
ent stages of pre-training, we obtain correspond-
ing checkpoints and fine-tune on GLUE tasks. For
this particular setting, we present a comparison of
vanilla BERT pre-training against INGENIOUS in
Figure 3. We plot the downstream performance for
all the methods and it can be seen that INGENIOUS
shows better performance than all the baselines
at 250K steps of pre-training and thereafter, be-
yond 250K steps, the trend continues consistently
(Figure 3 - top). Also, pre-training through infor-
mative subsets enables BERT to achieve a perfor-
mance level at 250K steps which the vanilla pre-
training achieves only after over 350K iterations.
Similarly, for any given pre-training cost, INGE-
NIOUS vyields a better GLUE score than the base-
lines (Figure 3 - bottom). Further we observe that
INGENIOUS consistenly outperforms the baselines
even when extended to 1 million steps(maximum
number of training steps prescribed by Devlin
et al. (2019) for vanilla BERT pre-training) as
shown in Figure 4.

Effectiveness of Importance Sampling: We also
evaluated a variant where the samples are selected
greedily based on submodular ranking instead of
importance sampling over submodular gains. In
contrast to the 81.57 achieved by INGENIOUS, it
achieved an Avg. GLUE score of 80.5 after 250K
pre-training steps, highlighting the effectiveness



Method Google-RE  T-REx ConceptNet SQuAD
fﬁlge’ps 399 2576 1148 1477
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f;lgs;i:ﬂy Stopping 553 2428 951 1241
52’3%‘2?5;3 Sampling 232 2166 787 11.76
;25;2:;? 339 2408 1115 13.71

Table 2: Knowledge retention of different models as
measured by LAMA probe. We report P@1 scores for
all the four different subtasks in LAMA.

of importance sampling.

4.2 Knowledge Retention with INGENIOUS

Large PTLMs, when trained on a sufficiently large
corpus, stores various types of knowledge im-
plicitly in their parameters (AlKhamissi et al.,
2022). Since INGENIOUS uses only a subset of
the whole data for pre-training, it is natural for it
to contain lesser knowledge in its parameters but
how does it compare with vanilla BERT pretrain-
ing and other baseline when it comes to knowl-
edge retention? To answer this question, we use
LAMA benchmark (Petroni et al., 2019), a probe
designed to analyze factual knowledge present in
PTLMs. LAMA is derived from four distinct types
of knowledge sources - Google-RE, T-REx, Con-
ceptNet, and SQuAD - from which cloze sen-
tences are created using facts contained in the re-
spective knowledge sources. The PTLM has to
predict the fact tokens in place of the mask tokens
in cloze sentences. In Table 2, we summarize the
results. We note that INGENIOUS suffers minimal
loss in knowledge retention with respect to fully
pre-trained vanilla BERT on all tasks. Further, the
decrease in performance is less as compared to the
baselines (for most tasks) which suffer a more se-
vere decrease in performance. Intuitively, we at-
tribute this to the ability of INGENIOUS to select
highly informative subsets from the corpus while
excluding the redundant information.

4.3 Effect of Embedding Representations

Different BERT layers have been shown to cap-
ture different information - lower layers capture
word order (Rogers et al., 2020), middle capture
syntactic information (Hewitt and Manning, 2019;
Jawahar et al., 2019) and the later layers capture
task-specific information (Kovaleva et al., 2019;
Hao et al., 2019). We vary the layers - (3, 6, 9
and 12) used to obtain features for subset selection

Embeddings Avg. GLUE
Representation Score
Layer 3 81.03
Layer 6 80.88
Layer 9 81.57
Layer 12 80.93
TF-IDF 81.16

Table 3: Ablation study by varying embedding repre-
sentation for selecting subsets. We report mean GLUE
score to compare INGENIOUS variants.
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Figure 5: Plots (a) and (b) are the convergence results
comparing Avg. FI1 score (over three runs) with the
Wall clock time for Vanilla BioBERT and BioBERT
using INGENIOUS with 25% subset. We observe that
INGENIOUS achieves much faster convergence than
vanilla BioBERT(i.e., Full Training).

and report the performance on GLUE in Table 3.
We observe that layer 9 features yield the best re-
sults. Further, in Table 3, we compare the effect of
using TF-IDF as sample representations and con-
trast them against dense features (BERT Layer-9).
We observe that dense embeddings perform bet-
ter than shallow TF-IDF features. We also report
effect of subset size and number of partitions in
Appendices J and K.

4.4 INGENIOUS for Domain-Specific PTLM -
BioBERT

We evaluate the performance of Bio-BERT (Lee
et al., 2020) pre-trained on subsets selected
through INGENIOUS and compare it with vanilla
Bio-BERT by fine-tuning it on biomedical datasets
for the Named Entity Recognition (NER) and Re-
lation Extraction (RE) tasks. For vanilla Bio-
BERT, we start with a pre-trained BERT model
and further pre-train it on the PubMed abstracts
dataset for 200,000 steps(as recommended by the
original study). Please refer to Appendix I for fur-
ther implementation details. We present the per-
formance convergence plots of vanilla Bio-BERT
vs. training time using INGENIOUS with a subset
size of 25% in Figure 5. It shows that during initial
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Figure 6: Comparison of INGENIOUS with vanilla
GPT-2 pre-training at different pre-training stages.
Pre-training on INGENIOUS subsets enables GPT-2 to
achieve better GLUE score consistently.

stages of pre-training, INGENIOUS performs sim-
ilar to vanilla since the LM is still learning repre-
sentations, however once better representations for
subset selection are learned, INGENIOUS achieves
faster convergence than vanilla w.r.¢ pre-training
time and achieves the best accuracy around 1.4x
faster.

4.5 INGENIOUS for GPT-2 Pre-training

We also pre-train GPT-2 (Radford et al., 2019) us-
ing INGENIOUS. We estimate the mean accuracy
for GLUE fine-tuning (averaged over 20 runs) and
zero-shot accuracy on BBQ Lite generative task.
Please refer to Appendix H for implementation
details. We plot the performance (see Figure 6)
obtained for the above benchmarks against check-
points at different pre-training stages (steps). Fig-
ure 6 - left and right shows that INGENTOUS per-
forms consistently better than vanilla GPT-2 pre-
training on GLUE and BBQ Lite respectively at
different stages of pre-training indicating better
convergence.

5 Conclusions

We presented INGENIOUS, a framework for effi-
cient pre-training of language models using highly
informative data subsets, and presented a submod-
ular optimization based algorithm. We described
how it can be scaled for language models and
showed its effectiveness using rigorous empiri-
cal evaluation. Our future work will explore ex-
ploiting external knowledge bases to identify and
reduce redundancies in the corpus and to study
multi-modal training where redundant information
can be spread across different modalities.

6 Limitations

In terms of limitations, the submodular maximiza-
tion based on estimation of pairwise sample sim-

ilarity can be potentially constrained by memory
limitations and might require high CPU RAM ca-
pacity. Further, we do acknowledge that our exper-
iments are performed on relatively smaller PTLMs
compared to GPT-3, OPT or PaLM owing to re-
source limitations. We have tried our best to per-
form extensive experiments and perform ablation
studies to inform our design choices within our re-
source constraints.

7 Ethical Considerations

We believe that INGENIOUS has a significant pos-
itive impact on society since it makes pre-training
of LMs compute efficient, thereby reducing CO2
emissions and energy costs. Nonetheless, the IN-
GENIOUS framework is susceptible to biases and
toxic words within the pre-training corpora as it
relies on standard pre-training datasets. An excit-
ing future direction of this research is to investi-
gate whether we could use targeted subset selec-
tion to filter out toxic words, as well as phrases
that promote cultural stereotypes and biases from
the pre-training corpora before LM pre-training.
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APPENDIX
A Code, Software, and Licenses

The data and code for INGENIOUS is available at
the following url: https://github.com/Efficient- Al/
ingenious. We release the code repositories of IN-
GENIOUS with an MIT license, which is available
for everybody to use freely.

All the code is developed using open-source Hug-
gingFace for training LMs with PyTorch as the
underlying framework. PyTorch is available un-
der the BSD license. HuggingFace is available
under Apache 2.0 license. For submodular opti-
mization, we use a library called SUBMODLIB
(Kaushal et al., 2022), which is freely available at
https://github.com/decile-team/submodlib which
is available under the MIT license.

B Additional Background and Related
Work

Submodular Functions: Let &/ denote the unla-
beled set of n data points i/ = {1,2,3,...,n} and
a set function f : 2 — R. Formally, a function f
is submodular (Fujishige, 2005; Bilmes, 2022) if
forx eU, f(AUx) — f(A) > f(BUx) — f(B),
VACBCUandzx ¢ B. Foraset A CU, f(A)
provides a real-valued score for A. A function f
is said to be monotone if f(A) < f(B) whenever
A C B. Further, f is supermodular if — f is sub-
modular, modular if it is both, and normalized if
f(#) = 0. Submodularity occurs naturally in var-
ious real-world applications (Tohidi et al., 2020;
Bach, 2013, 2019; Iyer, 2015) and a number of
combinatorial functions, such as facility location,
set cover, log determinant, graph cut, efc. (lyer
et al., 2021; Iyer and Bilmes, 2019; Kothawade
et al., 2020, 2021; Karanam et al., 2022) are in-
herently submodular in nature. Submodularity
is particularly attractive due to the constant fac-
tor 1 — % (Nemhauser et al., 1978) approxima-
tion for cardinality-constrained submodular max-
imization, allowing us to solve various combina-
torial optimization problems, which are often NP-
Hard in nature. Several recent works (Wei et al.,
2014a, 2015; Mirzasoleiman et al., 2020; Killam-
setty et al., 2021b,a,c, 2022; Kothawade et al.,
2021; Karanam et al., 2022) have formulated the
subset selection objective as a submodular max-
imization problem. Furthermore, variants of the
greedy algorithm (Mirzasoleiman et al., 2015; Iyer
and Bilmes, 2019) that can maximize a submod-
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ular function in near-linear time have been pro-
posed.

Submodular Data Subset Selection: Submodu-
lar optimization has been successfully employed
for data subset selection in various applications
such as speech recognition (Wei et al., 2014b,a;
Mittal et al., 2022), machine translation (Kirch-
hoff and Bilmes, 2014), active-learning (Wei et al.,
2015; Kothawade et al., 2021), efficient deep
learning (Kaushal et al., 2019; Killamsetty et al.,
2022; Pooladzandi et al., 2022). Another active
area of research is selecting representative subsets
of data, also known as coresets (Feldman, 2020).
A coreset is a weighted subset of data closely
approximating certain desirable properties of the
entire dataset (e.g., the loss function) (Feldman,
2020). Coreset selection has been shown to bene-
fit a host of geometric problems such as k-means
and k-median clustering (Har-Peled and Mazum-
dar, 2004) and, in recent times, has been used suc-
cessfully for efficient bayesian inference (Camp-
bell and Broderick, 2018) and improving train-
ing efficiency (Mirzasoleiman et al., 2020; Killam-
setty et al., 2021a). Such informative data subset
selection has shown remarkable promise for effi-
cient and robust training of deep models (Killam-
setty et al., 2021b,c). We direct the reader to a
survey by Bilmes (2022) for a detailed review of
submodularity and subset selection for ML.

C Datasets

For pre-training BERT, we use English Wikipedia,
BooksCorpus datasets.  English Wikipedia is
~20GiB of text containing 6,458,670 articles
and BooksCorpus is ~5GiB of text containing
74,004,228 lines of text. For GPT-2, we use Open-
WebText which is an open source replication of
WebText dataset from OpenAl. OpenWebtext is
around ~40GiB of text around 8,013,769 articles.

D Compute Infrastructure

All our pre-trainings were done on Google
Cloud Platform (GCP) instances comprising
of 8 NVIDIA A100-SXM4-40GB GPUs for
BERT (bert-base-uncased: 110M parameters) and
16 NVIDIA A100-SXM4-40GB GPUs for GPT-
2(gpt2-small: 124M parameters). In each in-
stance, there are 96 CPU cores with a total RAM
of 680GiB. The costs are estimated using https:
/Icloud.google.com/products/calculator based on
the time taken for training.

E Pre-Training performance of
INGENIOUS for BERT

In Table 7, we show how validation-set losses
change for vanilla BERT and INGENTIOUS BERT
over the course of pretraining.

F GLUE Task wise performance of
INGENIOUS for BERT

We show task-wise performance on GLUE for
BERT trained through INGENTOUS in Table 4. We
compare against vanilla LM pre-training and base-
lines. We also report the standard deviation for
each task along with the mean glue score.

G Further implementation details of
pre-training BERT through
INGENIOUS

We use Adam optimizer (Kingma and Ba, 2014)
with learning rate of le-4, 51 = 0.9, B2 = 0.99,
L2 weight decay of 0.01. We warmstart the model
for the first 80K training steps and subsequently
train only on selected subsets. Training of all the
models is performed on 8 NVIDIA A100-SXM4-
40GB GPUs.

H Implementation details of pre-training
GPT-2 through INGENIOUS

For GPT-2, we use OpenWebtext(An open-source
replication of WebText dataset from OpenAl) as
the pre-training corpus and employ CLM task for
pre-training following details in the work of Rad-
ford et al. (2019). We perform pre-training using
a batch size of 256 (achieved using gradient accu-
mulation of 2 steps) for 1,000,000 steps in case of
vanilla GPT-2. With INGENIOUS, we pre-train
GPT-2 for 250,000 steps. We set the value of R as
25K steps. We use Adam Optimizer (Kingma and
Ba, 2014) with learning rate of le-4, 81 = 0.9, B
= 0.99, L2 weight decay of 0.01. We warmstart
the model the first 65K training steps and subse-
quently train only on selected subsets. Training of
all the models is performed on 16 NVIDIA A100-
SXM4-40GB GPUs.

I Implementation details of pre-training
BioBERT through INGENIOUS

We use Adam optimizer (Kingma and Ba, 2014)
with learning rate of le-4, 51 = 0.9, 82 = 0.99,
L2 weight decay of 0.01. For Bio-BERT training
using INGENIOUS, we use a subset size of 25% ,
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Method

(USD) Avg. GLUE Score
Yﬁ“;::;:p‘m’ $2,300.53 82.72:05 5598110
Random-Selection, $578.44 80.67+0.27 512
250K steps (-74.95%) (-2.05) olZerm
Vanilla BERT $578.44 8123401 -
Early stopping, 250K steps (-74.95%) (-1.49) OS-So0123
Loss-Based Sampling, $578.44 81.2540.96 51.86
250K steps (-74.95%) (-1.47) 21-00+1.99
INGENIOUS, $647.56 81.574037 -
250K steps (71.96%) ¢1.15) 54611100 89681083

Pre-Training Cost

Mean

CoLA

RIE  STSB  ssT2 (Mo e QNI QP
69.314905 89.251024 92.081052 83.894027 84.26.40.22 91.264024 87.910.14
6542117 87.571032 90.68:061 82.051023 82761017  89.69+027 87.3710.15
66.2641.47 88.894031 9094046 82.56.40.26 83. 14018 90.23102  87.5840.13
66.824155 88.51025 90.631053 82.574017 83.2140.19 90.174025 87.654013
671641614 88941021 91.01:95 82.154022 82.8440.23 90.25402 87.53+0.15

Table 4: Comparison of pre-training cost and fine-tuning performance on GLUE tasks (averaged over 20 runs) for
BERT. We report difference relative to full pre-training of vanilla BERT in brackets for cost and avg. GLUE score.
INGENIOUS achieves 98.6% of fully pre-trained BERT performance, reducing pre-training cost to ~ 28%.

Subset Size Avg. GLUE
(% of full dataset) Score
10% 81.18
15% 81.24
20% 81.10
25% 81.57
30% 81.17

Table 5: Ablation study by varying subset size of se-
lected subsets. We report mean GLUE score to com-

pare INGENIOUS variants.

Number of Avg. GLUE

partitions Score
1500 81.57
2000 81.19
2500 81.37
3000 81.34

Table 6: Ablation study by varying partition size used
during pre-training. We report mean GLUE score to
compare INGENIOUS variants.

R value of 5000, no model warm-start, i.e., W =
0, and trained the Bio-BERT model for 200,000
steps.

J Subset size for efficiency gains

We study the effect of the size of the subset se-
lected through INGENIOUS that is used for pre-
training BERT. In Table 5, we analyse using the
following values of subset sizes, viz., 10%, 15%,
20%, 25% and 30% and evaluate the fine-tuning
performance on GLUE. While lower subset sizes
(10-20%) result in inferior performance owing to
the fact that the LM is shown less information, op-
timal performance is observed when 25% of the
pre-training corpus is used, hence, we report cor-
responding results in Table 1.

K Partitions for efficient subset selection

As discussed in approach, we divide the pre-
training dataset into partitions. In Table 6, we
analyse the impact of performance on GLUE as
the number of partitions is varied. Using fewest
partitions (1500) is found to yield optimal perfor-
mance. This aligns with the intuition that fewest
partitions enable better subset selection since more
samples are present in a single partition, allowing
to select more representative samples overall.

L Few Examples of informative texts
sampled by INGENIOUS

We summarize the three types of redundancies that
we found in our analysis of selected subsets. More
examples can be found at https://github.com/Effic
ient-Al/ingenious.

* Type 1: Same information conveyed by
multiple sentences in different documents.

— Sentence 1: "separate sovereign coun-
tries but acted as a single bloc in for-
eign policy and security issues. the pro-
posed union was being discussed by a
joint scandinavian committee during the
winter of 1948 — 1949, but the cold war
tension between the united states and
the soviet union, and preparations for a
western alliance that would result in the
north atlantic treaty overshadowed the
effort. when it became"

— Sentence 2: "they would remain sep-
arate sovereign countries but act as a
single block in foreign policy and secu-
rity issues. the proposed union was dis-
cussed by a joint scandinavian commit-
tee during the winter of 1948 — 1949, but
in the end the cold war tension between
the united states and the soviet union
and preparations for a western alliance
that would result in"
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Pre-Training g0 150k 200K 250K 300K 350K 400K 450K 500K 550K 600K 650K 700K 750K 800K 850K 900K 950K 1000K

Steps
Vanilla
BoRT 229 207 199 192 188 186 183 18 179 178 176 174 173 173 171 17 169 169 1.68
L}‘iff”o“ 229 209 201 195 191 188 185 185 1.8 18 179 178 176 176 174 174 172 171 17

Table 7: Comparison of validation set losses during pre-training. INGENIOUS achieves almost similar validation
set loss as compared to vanilla BERT

* Type 2: Duplicates in the corpus.

— Sentence 1: "after we’d been handed
our menus. i always get the frozen hot
chocolate.” frozen hot chocolate? it’s
really a thing? i thought they just made
that up.” no,” i said, pointing to the
spot on her menu. see? it’s right there.”
so, do you order anything else?” cake.”
she looked at my deadpanned face and
laughed. so, we’re"

— Sentence 2: "what’s good here?” mia
asked me after we’d been handed our
menus. 1 always get the frozen hot
chocolate.” frozen hot chocolate? it’s
really a thing? i thought they just made
that up.” no,” i said, pointing to the spot
on her menu. see? it’s right there."

» Type 3: Recurring patterns of text.

— Sentence 1: "according to the united
states census bureau, the village has a
total area of, all land. demographics
2010 census as of the census of 2010,
there were 377 people, 159 households,
and 101 families residing in the village.
the population density was. there were
176 housing units at"

— Sentence 2: "according to the united
states census bureau, the village has a
total area of, all land. demographics
2010 census as of the census of 2010,
there were 801 people, 323 households,
and 225 families living in the village.
the population density was. there were
358 housing units at"
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