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Abstract
Successful communication is thought to require members of a speech

community to learn common mappings between words and their referents.
But if one person’s concept of CAR is very different from another person’s,
successful communication might fail despite the common mappings because
different people would mean different things by the same word. Here
we investigate the possibility that one source of representational alignment
is language itself. We report a series of neural network simulations
investigating how representational alignment changes as a function of agents
having more or less similar visual experiences (overlap in “visual diet”)
and how it changes with exposure to category names. We find that agents
with more similar visual experiences have greater representational overlap.
However, the presence of category labels not only increases representational
overlap, but also greatly reduces the importance of having similar visual
experiences. The results suggest that ensuring representational alignment
may be one of language’s evolved functions.

1. Introduction

Imagine two learners of English trying to learn the meanings of ”car” and
”truck”. Some theoretical views describe this process as one of mapping:
a word-form is mapped onto the previously existing conceptual categories
of CAR and TRUCK (e.g., Fodor, 1975; Snedeker et al., 2004; Pinker,
1994; Bloom, 2002). Alternatively, encountering these labels can help people
discover that there is a distinction worth learning and privilege this distinction
because it is (apparently) useful in the speech community (Booth & Waxman,
2002; Waxman & Markow, 1995; Xu, 2002; Pomiechowska & Gliga, 2019;
Wojcik et al., 2022; Lupyan & Lewis, 2017). In either case, for people to
mean similar things by these words would seem to require that the words
activate roughly similar semantic representations. For example, if for one
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person a car is more similar to a truck than to a motorcycle, while for another
it is the reverse, we might expect rather severe confusion.

So how do our conceptual representations become aligned such that word
meanings can be (more or less) shared? One source of alignment is our
shared biology. For instance, the human ear is typically sensitive to a specific
range of frequencies and people have roughly similar profiles of sound
discrimination (Pumphrey, 1950). This biological commonality ensures that
when one person talks about a specific sound (e.g. a sound of a car honking)
or tone within this range, another person, barring auditory impairments,
will have a similar sensory experience of that sound. Another is shared
learning mechanisms - Humans have common cognitive constraints and
categorization tendencies that shape how we form concepts. For example,
there is little risk of someone’s meaning of a ’car’ being only blue cars viewed
from the side, as this would violate basic principles of human categorization
(Rosch & Lloyd, 1978; Shepard, 1994). Another is shared experiences–while
each individual’s life journey is unique, there are many experiences that are
broadly shared. Thus it is possible that human conceptual representations are
aligned throughout the process of learning language and it is this alignment
that makes linguistic communication possible in the first place. But another
possibility is that alignment is achieved—in part—through language itself
(Lupyan & Bergen, 2016; Casasanto, 2015; Dingemanse, 2017). On this
view, rather than being just a device for conveying our thoughts, language
provides an interface between minds (Clark, 1998; Gentner & Goldin-
Meadow, 2003; Gomila, Travieso, & Lobo, 2012; Lupyan & Bergen, 2016).

In a prior study, Suffill, van Paridon, and Lupyan (under review) tested
the role of language in the conceptual alignment of novel shapes, which
could be grouped into two categories based on visual features alone. To test
the contributions of verbal labels distinct from perceptual learning towards
conceptual alignment, they measured how similarly different participants
grouped the shapes in 3 conditions — a baseline condition that relied
on the similarity of participants’ visual perception, a no-label condition
where participants were first familiarized with the category structure of the
shapes without labels, and a language condition where they were exposed
to incidental nonsense labels for each category. Exposure to labels led to
more categorical representations of the concepts (shapes), which in turn led
to greater alignment between participants as indicated by more similar sorts.

Here, we build on these findings and prior computational simulations
that have hinted at the importance of language in aligning representations
of visual concepts (Roads & Love, 2020; Steels, Belpaeme, et al., 2005).
Similar to Roads and Love (2020), we explore how learning from multiple
signatures of categorical information, feedback from a labeling and a match-
to-sample task, affects how the stimuli are represented and the extent to
which the representations of different agents (neural networks) are aligned.

Unlike studies with human participants, simulating learning in artificial
agents allows us to keep all the learning parameters constant while
manipulating the prior perceptual experiences of each agent. Thus, unlike



in human behavioral experiments, using neural network model-based agents
allows us to examine representational alignment between agents that vary in
the overlap of their ‘perceptual diets’ and who are trained with or without
category labels.
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Figure 1. Overview of the 3 task conditions each pre-trained model was fine-tuned on.

1.1. Dataset

We leveraged two image databases for out tasks. The first was the CIFAR10
dataset consisting of 60,000 images belonging to 10 object categories.
These data was used to pre-train each neural network using the SimCLR
unsupervised learning framework (Chen, Kornblith, Norouzi, & Hinton,
2020) so that the networks had some prior visual knowledge (just as human
participants do) before being fine-tuned on our experimental dataset and
training conditions.

For our main experimental manipulations, we used the Deepmind 3D
Shapes dataset (Kim & Mnih, 2018). This dataset consists of 480,000
rendered images of spheres, cubes, cylinders, and capsules varying in size,
orientation, and color of the target image and background elements. In
our experiments, we kept the color of the background elements constant to
simplify learning.

We sampled from this subset of images to create 3 datasets with varying
degrees of overlap with each other. Each dataset had 120 images in total with
30 images per shape category randomly sampled from the set of all possible
images. We refer to the 3 datasets as dataset A, dataset B, and dataset C.
Datasets A and B had 50% overlap in their data, datasets B and C had 33%
overlap in their data, and datasets A and C had 0% overlap in their data.

2. Methods

We used PyTorch to train neural network models to perform three tasks
on the 3D shapes dataset. The three tasks were: (1) labeling the shapes
of objects (spheres, cubes, cylinders, or capsules), (2) a match-to-sample
triplet similarity judgement task analogous to that used by Suffill et al. (2022)



and (3) a combination of (1) and (2). Models were first pre-trained on
the CIFAR10 dataset and were then ‘fine-tuned’ on the 3D Shapes dataset.
Models were trained on one of the three different 3D shape datasets, each of
which overlapped with the remaining two to varying degrees. For example,
50% of the images in the first dataset were also present in the second dataset.
This allowed us to measure alignment between two models as a function of
the overlap in their training as well as whether the training included labels.

2.1. Model Architecture and Pre-training

Each model consisted of a simple convolutional encoder consisting of 3
convolutional layers followed by 3 linear ‘dense’ layers that projected to a 64-
dimensional hidden layer. We pre-trained 10 variants of this encoder using
the CIFAR10 dataset. Pre-training continued until the validation accuracy
was greater than 85% and the mean change in accuracy across epochs was
less than 2%. This ensured that all models were trained to a similar criterion
before fine-tuning on the 3 task conditions.

2.2. Training on the Experimental Materials

We fine-tuned each of the 10 pre-trained models on the 3 tasks below using
each of our training datasets — A, B, and C. For each pre-trained model we
also fine-tuned a second model on dataset A so as to have 2 models that had
100% overlap in training data but different fine-tuning initializations. Thus
each of the 10 pretrained models was used to further train 12 models (3 tasks
× 4 datasets). 20 images were held out of each training set and used as a
validation set to track network training.
Label condition. In this condition, a 3-layer decoder network took the
latent representations from the pre-trained CIFAR10 encoder as input and
was tasked with predicting the correct shape label for a given input image.
This model was trained on a binary cross-entropy loss on the class logits.
Each model was fine-tuned for 1000 epochs, which allowed the validation
loss to stabilize.
Triplet Judgement condition. In this condition, the hidden layer of the pre-
trained encoder projected to a single linear layer with ReLU activation. We
trained the model with a triplet loss objective using the outputs from this
layer in the following way. On each iteration, 3 images would be provided
to the model — a ‘target’ image and two ‘choice’ images. One of the choice
images would be exactly identical to the anchor and the other option image
would be a random image from one of the three other shape categories. The
model’s task was to guess which image matched the target image based on
the cosine similarities of the latent representations. This model was trained
for 1000 epochs, allowing the validation loss to stabilize.
Label and Triplet condition. In this condition, the pre-trained models
were tasked with both providing the label for the ‘anchor’ image as well
as performing the triplet judgement task. Both losses were equally weighted
and once again the models were trained for 1000 epochs until the validation
losses stabilized.



3. Results
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Figure 2. (A) Mean categoricality of learned representations, (B) mean conceptual alignment
between pairs of models in each training condition, and (C) mean labeling accuracy in each training
condition.(D) The effect of data overlap and task on representational alignment.

All results were computed with respect to a set of 480 validation images
that were not shown to the networks during training. The validation set
consisted of 120 images belonging to each of the 4 shape categories.
Categoricality. The categoricality of the learned representations is the
extent to which the networks learned to represent each kind of shape as
a distinct category. We quantify categoricality using the activation pattern
of the encoder’s final hidden layer. Categoricality is defined as follows:
Categoricality = log(

distancebetween−category

distancewithin−category
), where distance refers to

the cosine distance between the activation vectors, and a category consists of,
e.g., all the spheres included in the validation set.

Networks trained on only the labeling task showed the greatest of
categoricality (M=2.11, sd=.08) followed by networks trained on both
labeling and the triplet task (M=1.87, sd=.10). The models trained on only
the triplet task showed the least amount of categoricality (M=1.20, sd=.03),
all p′s < .001.
Alignment Alignment is a measure of how similar the representational
geometry of a common set of items is across pairs of agents, i.e.,
neural networks. We operationalized alignment as the log-transformed
multiplicative inverse of the Procrustes disparity between the activation
vectors from the final encoder layer for the validation images between any
given pair of networks. The more similar the representational geometry
between the networks the higher this alignment value. Pairs of models that



were trained on only labeling showed the highest alignment (M= 3.05, sd
= .73). Models trained on both tasks showed an intermediate amount of
alignment (M= 2.58, sd=.79). Finally, models trained on only the triplet
judgement task, i.e., with no category labels, showed the least alignment
(M= 1.67, sd=.55), all p′s < .001. As in the experiment reported by Suffill
et al. (under review), categoricality completely mediated the effect of task on
alignment. When included as a predictor, the task-associated differences in
alignment disappeared (t′s < 1).
Classification Accuracy We also tested each model on how accurately it
could classify the validation images with the correct category label. The
triplet-condition models, never trained with labels, could not be expected to
produce correct labels and indeed were at chance. To give these models the
best possible opportunity to map their learned representations to the correct
labels, we fit logistic classifiers using their activation vectors as input and
the category labels as output and evaluated using 5-fold cross-validation.
We took the mean accuracy on the held-out folds as the labeling accuracy.
Networks trained on labels only (M = .93, sd = .01) and labeling and
triplet judgements (M = .94, sd = .02) had similarly high performance.
Performance of the models trained on only the triplet judgement task was
much lower (M = .70, sd = .05), p < .001, but well above chance (p < .001)
showing that it is possible to learn a mapping function from the network’s
latent states to the labels, albeit not nearly to the same level of accuracy as
when the training included labels.
Overlap in ‘perceptual diets’ To test whether greater amounts of overlap
in the training data led to more aligned representations and if this effect
varied as function of training task, we fit a linear regression model predicting
alignment from the proportion of overlap in training data, the training task,
and their interaction. As clearly shown in Figure 2 D., increasing overlap led
to greater alignment (p < .001). Even with complete overlap in perceptual
experience, however, the use of labels continued to have greater alignment.
Moreover, decreased overlap impacted alignment between models trained
without labels significantly more than either label or label-and-triplet models
(p’s < .01).

4. General Discussion

In a series of simulations we found that training artificial agents on a category
learning task with labels led to more categorical representations of concepts
relative to a condition with no labels. Additionally, pairs of agents trained
with labels showed more conceptual overlap relative to pairs trained without
labels. We found that the effect of task on alignment was mediated by the
effect of categoricality, which suggests that training with labels induced more
categorical representations, which in turn led to greater alignment of agents’
representations. In summary, our results highlight the role language might
play in aligning our representations of the world so as to facilitate effective
communication despite sometimes vast differences in individual experiences
(Enfield & Kockelman, 2017).
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