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ABSTRACT

Recent studies have shown that users of visual analytics tools can
have difficulty distinguishing robust findings in the data from sta-
tistical noise, but the true extent of this problem is likely dependent
on both the incentive structure motivating their decisions, and
the ways that uncertainty and variability are (or are not) repre-
sented in visualisations. In this work, we perform a crowd-sourced
study measuring decision-making quality in visual analytics, test-
ing both an explicit structure of incentives designed to reward
cautious decision-making as well as a variety of designs for com-
municating uncertainty. We find that, while participants are unable
to perfectly control for false discoveries as well as idealised sta-
tistical models such as the Benjamini-Hochberg, certain forms of
uncertainty visualisations can improve the quality of participants’
decisions and lead to fewer false discoveries than not correcting
for multiple comparisons. We conclude with a call for researchers
to further explore visual analytics decision quality under different
decision-making contexts, and for designers to directly present
uncertainty and reliability information to users of visual analytics
tools. This paper and the associated analysis materials are available
at: https://osf.io/xtsfz/
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1 INTRODUCTION

Imagine that you are an analyst charged with the responsibility
of identifying the profits of stores of a company. The company
operates in 10 different regions, each of which has 200 stores. The
company’s manager have recently implemented an ambitious new
store policy, and wants you to assess the impact of the new pol-
icy on the stores’ profitability. However, only 20 of the stores in
each region have provided you their financial reports. To assess
profitability, you use an exploratory data analysis (EDA) system to
create visualisations of the profits of the 20 stores in each of the
10 regions that you have data for; you then calculate the average
profit in each region and quickly identify the regions which are
likely to have been profitable on average.

Modern visual analytics systems such as Tableau and PowerBI
allow analysts of varying levels of expertise to quickly create and
modify such visualisations. With simple UI components, analysts
can easily sort, filter, and slice data. This encourages analysts to
rapidly explore the data, generate numerous charts, and, poten-
tially, a great number of insightful findings. In other words, these
tools enable EDA: an unconstrained and often visual search for
interesting and meaningful trends or patterns in a data set [68, 69].

Returning to our example, how can you, as the analyst in this
scenario, be sure if the insights you have generated are reliable and
accurate? By lowering the barrier to engage in EDA, and allowing
the analyst to rapidly and iteratively test multiple hypotheses, vi-
sual analytic systems may be susceptible to the multiple comparisons
problem [4, 49, 55, 75, 80]. Well-known in statistics, the multiple
comparisons problem can occur when a user tests multiple hypothe-
ses, sometimes even implicitly, increasing the likelihood of finding
a false positive. For instance, if an analyst applies a statistical test
at the 5% significance level to a dataset where the null hypothesis
is true, the probability of a false positive is, by definition, 5%. How-
ever, applying the same test on 10 null datasets will increase the
chance of finding at least one false positive to 1—(1-0.05)'° ~ 40%.
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Similarly, the more charts an analyst generates through an uncon-
strained search of possible combinations of data fields or subsets,
the higher the odds of encountering, just by chance, a finding that
appears insightful but which is merely statistical noise.

Recent literature suggests that multiple comparisons and false
discoveries could be a significant concern for EDA systems. In one
study, over 60% of “insights” found were false when participants
were asked to report “any reliable observations” in a synthetic
dataset [78]. In another study where participants were asked to
perform visual analysis on specific tasks with an EDA tool, ap-
proximately 20% of the answers provided by participants were
incorrect [4]. If these error rates generalise to EDA in practice,
the ease of discovery in current tools could lead to poor decision-
making. However, prior work falls short of a realistic evaluation of
decision-making quality in EDA in two crucial ways: (1) the lack of
uncertainty representations, and (2) the lack of incentives.

In prior work [78], participants were asked to generate insights—
an essentially inferential task, requiring participants to make gen-
eralisations based on a small data sample. A data analyst would
typically generate hypotheses and then use inferential statistical
methods to make generalised claims about the data. The visualisa-
tion analog of conducting such inferential statistical tests would
be to use uncertainty representations which visualise a summary
statistic, such as the mean or median, and the uncertainty associated
in estimating this statistic, such as the standard error [19]. Different
types of uncertainty visualisations have been found to improve
decision quality when users make decisions under risk [21, 41, 42].
An EDA system that fails to visualise uncertainty does not explicitly
provide the information analysts need to identify reliable insights,
control error rates, or potentially mitigate the multiple comparisons
problem.

In most decision-making scenarios, the consequences of such
“mistakes” can be determined. For instance, consider a scenario
where there exists a high cost for making an intervention, such as
flagging a potential finding for a full-scale, double-blind clinical
trial. An analyst cognisant of this cost might be unwilling to act
on an apparent finding unless they are very certain. Conversely,
as in many monitoring scenarios, the cost of investigating a few
false positives might be considerably lower than the cost of missing
an important event (a false negative). The commonly used value
for @ = 0.05 in null hypothesis statistical testing (NHST) is one
such acknowledgement of the cost of a false positive relative to the
reward of a true positive, albeit a completely arbitrary one. As such,
a realistic evaluation of participants’ decision making requires ex-
plicitly defining the rewards and penalties for correct and incorrect
decisions. In experiments, this can be achieved through the use
of incentives [74]. Failing to consider incentives in experimental
design can reduce validity—can we claim that a 60% false positive
rate is bad if participants may have falsely believed that the reward
for true positives is arbitrarily high? Without an explicit incentive
structure, participants in an EDA task might simply attempt to
maximise the quantity of insights identified and ignore the quality,
leading to a high false discovery rate.
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To understand the impact of uncertainty representations and
incentives, we conduct a pre-registered,1 crowd-sourced, incen-
tivised experiment where participants make decisions from mul-
tiple datasets visualised simultaneously, mimicking an EDA-like
multiple comparisons setting. We investigate (1) whether partici-
pants in a multiple comparisons scenario adjust for multiple
comparisons and (2) whether uncertainty representations af-
fect participants ability to correct for multiple comparisons.
Specifically, we present participants with 12, 16 or 20 graphs at the
same time, and ask them to make a decision for each graph. We
visualise the data in the graphs using a scatterplot ( ), 50%
confidence intervals (ci) or probability density functions (pdf).

We measure participants performance using three metrics: (1)
the probability of a false positive, (2) the false discovery rate, and
(3) points accumulated based on our incentive scheme. Compared
against two normative strategies as benchmarks—uncorrected (not
correcting for multiple comparisons) and Benjamini-Hochberg
(a multiple comparisons correction procedure which controls for
the false discovery rate)—we find that participants, in the ci and
pdf conditions, on average performed better than the uncorrected
benchmark, but worse than the Benjamini-Hochberg benchmark.
However, participants in the condition, who were shown
the data samples directly, perform worse than the uncorrected
benchmark. These results suggest that appropriate uncertainty rep-
resentations can improve participants’ decision quality, and when
provided with such information, participants may be able to control
for False Discoveries to a certain extent. Further, participants report
using heterogeneous strategies to complete the task, many employ-
ing the visual affordances of the displays they saw, suggesting that
different ways of conveying the same uncertainty information can
influence decision-making.

2 RELATED WORK

Visualisation researchers have long argued that the primary objec-
tive of visualisation is to help users gain insight and make data-
driven decisions [9, 12, 14, 16, 51, 76]. Several visual analytics sys-
tems are designed to achieve that objective, including Tableau, Mi-
crosoft PowerBI, TIBCO Spotfire, and Voyager [72, 73]. Although
the target is amorphous, some definitions of insight in the visualisa-
tion literature include, “an individual observation about the data by
the participant, a unit of discovery” [58] or “a non-trivial discovery
about the data” or “a complex, deep, qualitative, unexpected, and
relevant assertion” [51].

The goal of insight discovery in EDA can conflict with the goal
of validating and verifying patterns in confirmatory data analysis.
Designing for the detection or serendipitous discovery of insights
can require virtues like open-mindedness, perseverance, and a sys-
tem that supports fluid and extemporaneous exploration [66] that
matches the idiosyncratic ways that people can move through the
various states of EDA [57]. Such an EDA system might value the
speed or ease of constructing new views or queries (as with Time-
Searcher, which was designed to “provide analysts with the power
to construct queries quickly, [...] and examine results” [26]) but
lack a similar focus on tools for verifying or validating the pat-
terns seen. For instance, EDA system designers may refrain from
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including information about uncertainty (that can be crucial for de-
termining the robustness of a visual pattern) to avoid confusing or
overwhelming users, among other reasons [31]. On the flip side, the
focus on verification can cost the analyst opportunities for making
discoveries: e.g., an analyst approaching a dataset with a specific
set of hypotheses to validate can be biased or incurious concerning
otherwise obvious data quality concerns [75].

2.1 Pitfalls in Visual EDA

The freedom to create novel views in EDA without considerations
for robustness of insight can create two types of errors: errors due
to the multiple comparisons problem and errors due to overlooking
uncertainty in the visualised data.

Multiple Comparisons in the Garden of Forking Paths: During
an unconstrained exploration, an analyst makes many, often im-
plicit, decisions. These decisions create branches in the analysis
path, possibly affecting the subsequent exploratory steps. These
decisions occur at all stages of the sense-making process, and can
result in compounding levels of uncertainty and variability [40].
Gelman and Loken [22] describe this phenomenon as wandering in
the garden of forking paths. The large degrees of freedom in explo-
ration can result in problematic conclusions that fail to generalise
to the entire dataset or the population. In statistical testing, the
issue of finding non-generalisable insight can be framed as the mul-
tiple comparisons problem: the chance of making a false discovery
increases as the analyst tests more hypotheses on the same data or
tests the same hypothesis on multiple datasets [55].

There are many approaches in EDA for addressing the garden
of forking paths problem in general and the multiple comparisons
problem in particular. Multiverse visualisations can show that a par-
ticular conclusion is robust (or not) across a set of reasonable anal-
yses applied to a dataset [20, 60, 61]. Visual analytics systems may
also calculate and display metrics of “insight quality” [8, 15, 62, 80].
In statistical testing, multiple comparisons correction methods ad-
just p-values to control different error rates in multiple testing
scenarios. The Bonferroni correction is a common method that con-
trols the family-wise error rate [64], and the Benjamini-Hochberg
procedure controls the false discovery rate [6].

For our study, we want to realistically evaluate whether EDA
users implicitly correct for the multiple comparisons problem by
assessing their false discovery rates in data decision-making. We use
statistical testing (¢-tests) and the Benjamini-Hochberg procedure
as baselines to interpret participant performance.

Missing Uncertainty Information: The absence of uncertainty in-
formation in a chart prevents users from easily judging the reli-
ability of an effect, either through heuristics linked to statistical
tests (“inference by eye” [19]) or through more holistic estimations
involving both mean and error [17, 41]. At best, this uncertainty
information can be recovered implicitly [18], either through estima-
tion of spread based on underlying values, or through “graphical
inference” [10, 29, 70], where a particular visual pattern’s robustness
is evaluated by contrasting it with visualisations of data generated
under some null hypothesis. Despite the value of uncertainty in-
formation, per a survey by Hullman [31], visualisation designers
often intentionally omit this information. Common reasons for this
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omission include the cost in additional visual and cognitive com-
plexity incurred by including uncertainty, the perceived inability of
audiences to correctly interpret the uncertainty information, and
the difficulty in quantifying this uncertainty in a useful way.

Even if uncertainty is directly visualised, different methods of
conveying uncertainty can impact decision quality. Traditional
forms of communicating uncertainty, such as error bars or box
plots, express distributional information by encoding summary
statistics as marks. These contain some amount of uncertainty
information and are consistent with the design goal of cognitive
efficiency [13, 32, 46, 67]. However, they may not be ideal for many
decision-making tasks, as they are subject to biases or non-ideal
heuristics [17, 41], may require the reader to have a baseline under-
standing of statistics [5], or may simply be subject to inconsistencies
in what is being encoded (e.g., confidence intervals v.s. standard
errors, etc.) [17, 27].

While there are many more uncertainty visualisation techniques
for various data types [36, 38, 47, 54, 63], the ones most relevant
for our study visualise univariate distributions. They include prob-
ability density function (PDF) plots, with variants such as violin
plots [25] and gradient plots [17, 37]. In theory these convey com-
plete information about the underlying probability distribution.
Uncertainty visualisations have been shown to improve accuracy in
statistical reasoning in certain tasks [23, 34, 41-43, 59]. Therefore,
we postulate that uncertainty visualisations can improve the qual-
ity of decisions and help users reduce excessive error rates from
the multiple comparisons problem. In our study, we compare two
types of uncertainty visualisations and a baseline to cover a range
of previously-evaluated techniques.

2.2 Assessing Insight Reliability and
Robustness in EDA

Faced with the issue of analysts discovering insights during EDA
that may fail to generalise, a small but growing body of visual
analytics research attempts to quantify the reliability of insights.
Zgraggen et al. [78] ran an experiment where participants were free
to explore datasets in an exploratory visual analysis tool, asking par-
ticipants to report “any reliable observations.” These observations
were then manually coded into testable hypotheses. For example,
one such insight could be “the average age is 50.” Zgraggen et al.
found that the false discovery rate among those insights was over
60%. On the other hand, Battle and Heer [4] had participants com-
plete “goal-oriented” tasks in Tableau. These participants answered
questions that can be judged correct or incorrect, like “which [one
of the four] parts of the aircraft appear to get damaged the most.”
Correspondingly, Battle and Heer report the error rate (not false
discovery rate) to be at most 25% in participants’ responses to these
focused-task questions, and conclude that “participants were cau-
tious analysts” [4]. Comparing their results against the False Discov-
ery Rate reported in Zgraggen et al. [78], Battle and Heer speculate
that their lower error rate may be due to more data-proficient par-
ticipants and more “focused” tasks [4]. That is, if participants have
to choose from a small set of answers, they can be more deliberate
or cautious, therefore getting more answers correct (true positives);
by contrast, if they write down however many insights they may
find, participants might make more false positives.
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These recent studies of insight quality in EDA may be limited
by the lack of incentives for decision quality. Without appropriate
incentives—such as penalising false positives and rewarding true
positives in some proportion to each other—it is difficult to say what
the optimal False Discovery Rate should be. Further, the decisions
that participants make are less likely to reflect the way that ana-
lysts would trade off risks and benefits in a real-world, data-driven
decision-making task; instead, participants might be motivated to
maximise the total number of insights generated regardless of relia-
bility. Our experimental task is closer to the goal-oriented approach
of Battle and Heer (we ask participants to make decisions about
a given hypotheses), with the addition of incentives for decision
quality.

2.3 Incentivising Decision-Making in Human
Subjects Studies

Previous studies in Psychology and HCI have adopted financial
incentives to motivate participants in decision-making tasks under
uncertainty [21, 39, 50], with incentives determined by maximising
a utility function. Many regard incentivised experiments as a more
realistic way to study decision quality [30, 33, 44, 45, 56]. Though
these studies usually have repeated decision trials, they do not
study multiple-comparison scenarios: each trial consists of only
one decision, and the participant does not make decisions at the
same time or make them on the same dataset. Since one decision
does not impact the quality of the next, participants do not have to
control for error rates across multiple comparisons. However, dur-
ing EDA, an analyst may test multiple hypotheses at once or make
multiple decisions from the same dataset, increasing their error
rates overall due to the multiple comparisons problem [1, 78]. Our
incentivised study evaluates decision quality in a multiple-testing
scenario, requiring the participant to test multiple hypotheses in
each trial.

3 EXPERIMENT DESIGN

The primary goals of this study were to investigate (1) whether
users’ decisions reflect implicit multiple comparisons correction
when users perform EDA under a specific incentive structure, and
(2) whether the type of uncertainty visualisations affects users’ deci-
sion quality. To that end, we designed an online experiment where
participants made decisions in an EDA-like setting with multiple
comparisons and were compensated based on their decision qual-
ity. Study materials, data, and analyses are in the Supplementary
Material and available on OSF?.

3.1 Task Description and Experimental
Apparatus

In our study, we asked participants to play the role of a business
analyst who decides which sales regions are likely to have made
a profit on average. This task did not assume extensive domain
knowledge. In each trial, participants selected the profitable regions
from a panel of sales data visualisations. As shown in Figure 1, the
task contains a multiple comparisons problem: the participant tests
one hypothesis (“Is the average profit in this region greater than
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zero?”) on multiple datasets from different sales regions. We use the
task of identifying profitable (significantly different from zero in
the positive direction) regions as a reasonable proxy for real-world
analytical tasks: in EDA, data analysts often explore many facets
of their data and report on only the subsets that appear important.
Participants saw the following prompt:

You are a manager supervising the sales of stores. In
each region there are 200 stores. Your task will be to
guess whether the average profit of the stores in a
region is greater than zero. However, you only receive
the sales data for 20 stores, and you have to make the
decision based on this limited information.

There are two experimental variables in this study: (1) the num-
ber of sales regions, i.e., the number of possible comparisons in
each trial (m), a within-subjects variable with three levels: 12, 16
and 20; and (2) the type of uncertainty visualisation representation
(vis), a between-subjects variable with three levels: scat-
terplot, ci and pdf. Each experiment consisted of 30 trials broken
into three blocks. Within each block, there were ten trials of the
same m (number of graphs shown). The order of the blocks, and the
order in which the trials were presented within each block were
randomised.

In the beginning, participants went through a training which
consisted of three parts. First, participants were presented with an
onboarding page introducing them to the background story for the

Trial Number: 1/5
Which of the regions are profitable?

Region(s) selected in the last trial: NA; Total Poins: 0

10 10 10 10

Profit
o
S

-10 -10 -10 -10

3 Not 3 Not 3 Not 3 Not
Profitable pyofitable Profitable pyofitable Profitable pofitable Profitable pyofitable

Profit
o

-10 -10 -10 -10

3 Not 8 Not X Not 3 Not
Profitable pyofitable ~ Profitable profitable Profitable pyofitable Profitable pyofitable

Figure 1: Experimental interface: participants are asked to
indicate each region (individual graphs) as profitable or not
profitable, based on data shown. In the training phase, par-
ticipants are presented with 8 graphs (as shown here). In the
test phase, participants are either presented with 12, 16, or
20 graphs.
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task and an explanation of how to interpret the visual represen-
tations used (see supplement » survey » survey-example.pdf).
This was followed by an introduction to the incentives and an expla-
nations of how participants’ job performance would be evaluated
(Figure 2). Finally, participants were presented with five training
trials with eight graphs (Figure 1). After each training trial, partici-
pants were informed of their cumulative points, and given detailed
feedback regarding which graphs were correctly selected, which
were actually positive and which were actually negative. The points
were reset to zero after the training phase ended. In the test phase,
participants were only informed of their cumulative points after
each trial; feeedback regarding the quality of their decisions were
not provided. After completing all trials, participants were asked
to report their strategy for completing the task in a free text field.

3.2 Simulating the Stimuli for a Multiple
Comparisons Task

An important consideration in designing an experiment for investi-
gating the multiple comparisons problem is the value of adjusting
for multiple comparisons. Consider two statistical golems—one
which makes statistical decisions without adjusting for multiple
comparisons (uncorrected) and the other which makes statistical
decisions while controlling for the false discovery rate at a partic-
ular « level (Benjamini-Hochberg). In our desired experiment,
the performance of these two golems represent two benchmarks,
against which we can compare participants’ performance. This re-
quires the difference between these two benchmarks to be larger
than the measurement and estimation error in our experiment.
Ensuring this difference can be challenging. For example, in a
previous iteration of this experiment, we generated stimuli such
that the number of possible comparisons (m) varied between 8 and
12, the probability the null hypothesis is true (po) i.e. that the region
shown in the graph was not profitable was set to 0.5, and partici-
pants were incentivised to control for false discovery rate at a = 0.05.
In this scenario, the maximum possible number of false positive is
given by pom = 6, when m = 12. The p-value is known to be uni-
formly distributed when the null hypothesis is true [35]. Thus, the
expected number of false positives was E(FP) = apom = 0.3. Thus
the uncorrected statistical golem would be expected to make 0.3
false positives on average, while the Benjamini-Hochberg golem
would be expected to make somewhere between 0 and 0.3 false
positives® on average. The magnitude of the difference between the
two benchmarks was too small to determine whether participants
were performing any form of multiple comparisons correction.
However, by manipulating the values of py, m and ¢ we can
design an experiment with a greater difference between the uncor-
rected and Benjamini-Hochberg benchmarks. We can then use
these benchmarks to investigate people’s performance on a multi-
ple comparisons problem. Another variable which impacts the false
discovery rate is the (standardised) effect size (§)—larger effect sizes
are more easily “discoverable” (more true positives and less false
negatives), whereas smaller effect sizes have the opposite effect.
We conducted a grid search, varying po € {0.5,0.6,0.7,0.8,0.9},
m € {10,15,20,30,50,100}, § € {0.1,0.2,0.3,0.4,0.5} and a €

3Because the BH procedure is dependent on the actual distribution of the p-value, we
cannot provide a theoretical estimate of E(FP|strategy = BH)
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{0.2,0.25,0.3}, to determine a combination of py, m, § and a that
ensures a measurable difference between the uncorrected and
Benjamini-Hochberg benchmarks. We also preferred smaller val-
ues of m (to better fit on participants’ screens), smaller « (to more
closely align with the typical & = 0.05 used most commonly in
NHST), and py close to 0.5.

For each combination of variables, we ran 1,000 simulations, esti-
mated the false discovery rate using uncorrected and Benjamini-
Hochberg strategies, and calculated the mean and standard de-
viation of the false discovery rate from each strategy. Based on
the results of our simulations, we selected values for the variables
such that the estimated difference in the mean of the false discov-
ery rate between the uncorrected and Benjamini-Hochberg (A)
was at least twice as large as the relative standard deviation. More
precisely, we determined the following values for the parameters:
m € {12,16,20},pp = 0.7,8 = 0.4 and ¢ = 0.25 to be reasonable
for our experiment. We use these values to simulate the datasets
used as stimuli for the participants which consisted of 10 trials for
each value of m, resulting in 30 total trials. Due to variance, it is
still possible that the difference in false discovery rate between the
two normative strategies in our sample of 30 trials is smaller than
the average difference across 1,000 simulations. As such, we use
rejection sampling to ensure a minimum average difference, for
each value of m, of at least the estimated average difference (A) from
our simulations. Further details, including the code used for our
simulation and the generated stimuli, can be found in supplement
» R » 01-experiment-design.Rmd.

3.3 Incentives

We want an incentive structure which encourages participants to
control the false discovery rate at the determined « level of 0.25
across multiple comparisons. This means that for every 100 discov-
eries, at least 75 of them should be true discoveries and less than
25 should be false discoveries on average [35]. Therefore we want
25 false discoveries to be as expensive as 75 true discoveries: the
ratio between the false positive penalty and true positive reward is
75 : 25 = 3 : 1. Since statistical tests are typically conducted with a
power of 0.8, we similarly adjust the ratio between false negative
and true negative rewards to be 4 : 1. Moreover, we want to ensure
our incentive structure does not encourage participants from adopt-
ing a trivial strategy where marking all of the regions are as not
profitable (a reject none strategy). To make such a trivial strategy

If you think a region is profitable on average region region
and mark it as profitable it (based on the data profit>0 profit <0
from the 20 stores), and that region does have

an average profit greater than zero based on "
all 200 stores, you will receive 50 points. ° 2‘3; Win Lose
. . 5 & 50 150

If you mark a region as not profitable, and s 0% int int

that region does not have a profit greater than g5 | points BEEILS

zero on average, you will receive 10 points.

X If you mark a region as profitable, and that o

region does not have a profit greater than % 2 )

zero, on average, you will lose 150 points. ~ g% LZ(S)e V¥E)n

5.

X If you mark a region as not profitable, and = g’:‘:’- points | points

that region does have a profit greater than e

zero, on average, you will lose 40 points.

Figure 2: Incentive structure as shown to participants
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non-viable, we again rely on simulations to test various incentive
structures and determine an appropriate reward ratio between a
true positive and true negative. Based on our simulation results,
we find a ratio of 5 : 1 between the rewards for true positives and
true negatives to result in measurable differences between the pay-
outs from using Benjamini-Hochberg and the trivial reject none
strategies. The complete incentive matrix presented to participants
is shown in Figure 2.

3.4 Uncertainty Displays

We varied the type of uncertainty visualisations (vis) between sub-
jects to investigate whether visualisation type can improve the
quality of participant decisions. In addition to a baseline which
represents the data directly, we included two types of uncertainty
visualisations, varying in amount of information (interval vs. den-
sity). While there are many other strategies for visualising uncer-
tainty [34, 36, 38, 43, 47, 54, 63], we chose these types because they
are either common in visual analytics tools or have been shown to
improve decision-making under risk.

To decide whether a region is profitable, the participant needs
to estimate arbitrary one-sided confidence intervals using each
type of visualisation. For example, if the participant wants to con-
trol the false discovery rate to be under 0.25 for a single deci-
sion, they should decide that a region is profitable on average
when the confidence mass below the zero line is less than 0.25, i.e.,
P(X < 0) < 0.25.

Baseline: scatterplot

Displays of raw data without explicitly encoded

uncertainty (such as scatterplots and strip plots)
1K are easy to understand and commonly used in
. exploratory data analysis systems, making them
a good baseline for comparison. These plots pre-
sent the intrinsic uncertainty contained in raw
data. An alternative baseline is to show only the
mean, which hides all uncertainty information.
However, showing no uncertainty is known to
lead to bad performance [39] and can be unfair to the participant,
whose pay depends on their decision-making quality.

-10 .

Cl: Mean Point Estimate and 50% Confidence Intervals

Point estimates of the mean with 95% confidence
intervals are perhaps the most commonly used
graphical plot for communicating uncertainty.
Our task is designed such that, in the absence of
multiple comparisons, participants should per-
form a one-tailed t-test and reject the null hy-
pothesis at @ = 0.25. Hence, we visualise the 50%
~10 confidence interval, which is the equivalent of
showing a 95% interval when rejecting the null
hypothesis at & = 0.05. We included these plots due to their famil-
iarity and ubiquity. While the interval does not directly encode the
confidence mass that a given region is profitable, it does provide
some information on how reliable the estimate of the mean is for
the broader population.
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PDF: Probability Density Plot

Probability density plots use height to represent
the probability density function (PDF) of the con-
fidence distribution of the mean. This approach
is similar to eyeball plots proposed by Spiegel-
halter [65], which use width instead of height to
encode density (similar variations are also called
raindrop plots [2] or violin plots [17]). Density
~10 plots are a common uncertainty representation
that shows information about the shape of the
entire distribution. To make judgements about the confidence an
estimate is greater than a particular value, the viewer must com-
pare ratios of areas, which may be a difficult task and lead to lower
accuracy [21, 36, 43].
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3.5 Participant Information

For our pre-registered (https://aspredicted.org/2fw4r.pdf) study, we
deployed the experiment on the Prolific crowd-sourcing research
platform [52]. We recruited participants who were on desktop de-
vices and fluent in English. We collected responses from 182 partic-
ipants in total. Per our preregistration, participants who failed any
of the three attention checks were not allowed to finish the study
and therefore not included in the N = 182 sample. Two participants
appeared to have retaken the survey after they were disqualified
for failing the attention check, and were excluded from the analy-
sis. This resulted in 180 participants for our final analysis, with 60
participants in each vis (between-subjects) condition. The median
completion time was approximately 26 minutes, and the average
wage was $11.44/hr ($14.40/hr including bonuses). All participants
who performed better than the uncorrected strategy i.e. had accured
greater than -7650 cumulative points (60%; 108 / 180) received a
bonus which was awarded in stepwise increments of $0.5 up to a
maximum of $4.5

4 STATISTICAL MODELING AND ANALYSIS

We describe the methods involved in our pre-registered quantitative
and qualitative analyses.

4.1 Quantitative Analysis

Our Bayesian hierarchical model is specified in the Wilkinson-
Rogers-Pinheiro-Bates syntax [3, 53, 71] as:

1: outcome | trials(m) ~ multinomial(p)

2: softmax(py) = wis X trial X block X m +

3 (trial X block X m | participant)

Line 1: decision outcomes modeled as a multinomial distri-
bution. There are four possible outcomes for each decision: true
positive (TP), true negative (TN), false positive (FP), and false negative
(FN), and we use a multinomial distribution for the likelihood to
estimate the mean probability for each outcome. The multinomial
distribution estimates the probability of each outcome as a vector,
p = {p1, p2. p3. pa}. trials() is a brms* keyword that specifies how

4More explanation on trials(): https://cran.r-project.org/web/packages/brms/vigne
ttes/brms_customfamilies.html
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many decisions (“trials”) are in each observation, and the m inte-
ger variable indicates that the participant performed 12, 16 or 20
comparisons in a particular trial.

Line 2: population-level effects. In our experiment, vis is a bet-
ween-subjects variable for different uncertainty displays; trial, which
indicates the trial number within each block (1-10), captures any po-
tential learning or fatigue effects over the course of the experiment;
m encodes the number of graphs presented in the trial; and block
captures potential order and learning effects. We encode vis, m and
block as discrete variables, and trial as a continuous variable (i.e.,
with a linear effect). Since we want to compare decision outcomes
across these variables, they are specified as population-level effects
(predictors) with interactions.

Line 3: group-level effects to account for individual differences
and repeated trials. Different participants can have different deci-
sion capacities, and the effects of trial and block (learning and order
effects as a participant goes through the trials) and m variables can
be different for each participant. To account for these individual
differences, we use a multilevel model, including varying slopes and
intercepts for the effect of trial and m within each participant (the
grouping variable). In addition, participants completed repeated
trials within each condition. Using multilevel models and grouping
by participants or other clusters often gives improved estimates for
repeated trials [48].

higher is better —m—>

True Positives True Negatives
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Model Run and Validation

We fit the model with the brms R package [11] and used weakly-
informed priors. The model ran four chains with 5,000 warmup
samples and 5,000 post-warmup samples each, thinned by 5 for
a final total sample size of 4,000. We assessed convergence using
the Gelman-Rubin diagnostic (R = 1.00 for all population-level
parameters, correlations and standard deviations) and the (bulk and
tail) effective sample sizes (Tail_ESSmin = 3, 000). One method for
model validation is with posterior retrodictive checks. Instead of
predicting responses for an average participant as results, here our
model retrodicts existing participant responses [7]. Figure 3 shows
the -@ posterior retrodictives (mean and 95% credible interval)
alongside with the participant response averages. In this visual
comparison, the means of the posterior retrodictives are close to
the average responses in most cases. The retrodictive checks do
not show any signs of consistent model bias, and indicates a good
model fit.

4.2 Qualitative Analysis

We preregistered an exploratory qualitative analysis of the partici-
pants’ self-reported free text responses for the strategies they used
to complete the main experimental task. We employed a hybrid
coding approach on these responses. In line with our research aims,
we coded whether participants reported a sensitivity to the incentive
structure we presented (i.e., expressing caution over the cost of false

False Positives

lower is better

False Negatives False Discovery Rates

_':;_ baseline - - oS
o ci —_—
]
N —_
- pdf -o-
%— baseline -o- -o-
g ci - —
2 pdf - ==
) .
_g_ baseline - -0 ——
o ci o- =
)]
o - —
Q pdf o~ <
0 02 04 0 02 04 06 T 0.4 0 To.z 0.4 0 04 06
Participants’ shown on top of -@ posterior Uncorrected and Benjamini- False discovery

retrodictive (mean and 95% credible interval) from the model

Hochberg benchmarks rate = 0.25

Figure 3: Average participant response and validation of the model by recovering the participant response means from the
model fit. The columns show average predicted and observed probabilities of true positive, true negative, false positive and
false negative for a given trial. The false discovery rate is computed as FDR = FP/(TP + FP). The tapered ends of each gray
bar represents the complementary cumulative distribution function (CCDF) of the posteriors of the average probability. As
indication for a good model fit, the means of posteriors are close to the means of participant response in most cases, without

consistent bias.
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positives). We also coded whether participants self-reported em-
ploying a correction strategy: that is, incorporating the number of
comparisons into their decision making, or changing their decision-
making strategy in response to past performance on previous trials.
We were also interested in whether different uncertainty visualisa-
tions would promote different strategies for task completion, but
given the expected diversity of strategies we relied on emergent
rather than pre-defined codes. A paper author acted as initial coder
employing our two closed codes and then performed open cod-
ing to generate initial codes representing categories of strategies.
A second paper author then independently coded the responses;
the two coders then met to discuss mismatches and ambiguities
to generate a final consensus codebook and consensus labels for
use in our thematic analysis. The full codebook, per-rate responses,
and analysis of inter-rater reliability are included in supplement
» qualitative-analysis » qual-responses.xlsx.

5 RESULTS

Our model estimates the number of true positive, true negative, false
positive and false negative for a particular trial, for each vis and
m condition. We can divide these estimates by m to obtain the
probability of making a true positive, true negative, false positive
and false negative. Figure 3 reports participants’ and
-®- posterior retrodictive estimates of the probability of true pos-
itives, true negatives, false positives and false negatives, reflecting
participants’ overall decision quality. Since our research questions
are not concerned with other potential factors such as learning or
order effects, we marginalise over the trial and block variables (see
Appendix A).

5.1 Do Participants’ Decisions Reflect Implicit
Multiple Comparisons Correction?

Our first research question concerns whether participants’ decisions

reflect multiple comparisons correction. We compare the estimated

probability of a false positive (Figure 4) by an average participant,

for each vis and m conditions, averaged over trial and block, against
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the normative uncorrected benchmark—the expected number of
false positive and false discovery rate from using an uncorrected
strategy. If we find participants having lower probability of a false
positive when compared to the uncorrected benchmark it would
suggest that participants may be performing some form of multiple
comparisons corrections.

Overall, we find that the average participant in the ci condition
is expected to make 0.148 (95% credible interval (CI): [0.124, 0.175]),
0.142 (95% CI: [0.118, 0.167]) and 0.142 (95% CI: [0.120, 0.167]) false
positives on average, when the number of possible comparisons
(m) is 12, 16 and 20 respectively; the average participant in the
pdf condition is estimated to make 0.104 (95% CI: [0.086, 0.123]),
0.124 (95% CI: [0.103, 0.147]) and 0.132 (95% CI: [0.111, 0.158]) false
positives. As shown in Figure 4, this is lower than the normative
benchmark of using an uncorrected strategy but greater than the
Benjamini-Hochberg benchmark. On the other hand, the average
participant in the scatterplots condition is expected to
make more false positives than the uncorrected benchmark. This
suggest that participants, on average, are likely performing some
form of multiple comparisons to be making fewer false positives
than the uncorrected strategy. However, a typical participant is
likely not able to exactly control for false discoveries at the desired
a-level, as incentivised, as the false discovery rate across all vis
conditions exceeds a = 0.25 (Figure 5). Additionally, this falls short
of the performance achieved by procedures which can guarantee
false discovery rate control at any pre-determined a-level such as
Benjamini-Hochberg.

As the number of comparisons, m, changes, the criterion for
rejecting the null hypotheses in normative procedures such as
Benjamini-Hochberg or Bonferroni becomes stricter. In our results,
we observe that the probability of a false positive remains compara-
ble. This likely suggests that, while some participants may be per-
forming some form of multiple comparisons correction, they may
not be adjusting their strategy as the number of possible compar-
isons changes. Additionally, in an (not pre-registered) exploratory

Probability of FP || benchmark using... Benjamini-Hochberg Uncorrected
strategy strategy N Compared to an
. . — uncorrected
Model estimates (posteriors) of - strategy, the
the probability of False Positives £ 0.03 0.22 -0.19 probabiiity ofaFPis
(left) and the difference in @ 20 | | | lower in the
bability of False Positi 9 vy
probability of False Positives 2 and pdf A
from the uncc?rrected . e conditions, across all
benchmark (right) per trial for £
L 0.04 0.19 -0.15 m
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marginalised over trials and 5 v
block, for the , 5
,and -g
Probability Density Function S 0.01 0.2 -0.19
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conditions
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Figure 4: Estimated posterior probability of a false positive when the number of possible comparisons, m, is 12, 16 and 20
graphs, represented as densities (left). The corresponding differences in the estimated posterior probability of a false positive
from the uncorrected benchmark, represented as densities (right).
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analysis we examine the probability of rejecting the null hypothe-
sis, and find that the average participant in the CI and PDF condi-
tions are likely to reject the null hypothesis (that the region is not
profitable) less frequently than the uncorrected strategy, lending
further evidence to suggest that participants are likely performing
some form of multiple comparisons correction (see supplement »
R » 04-modeling_and_analysis.Rmd).

From the self-reported strategy data from our 180 participants,
while 37/180 reported making adjustments to their strategy, only
two reported doing so in an a priori-way, based on the number of
comparisons. One participant reported that they “[h]ad a look at
the graphs overall and see how all stores looked before making a
decision”, indicating at least an awareness of potential issues in
multiple comparisons, while another indicated that they “[a]dded
50% to length of bars to see if it still indicated a profit (mad I know!)”
which is somewhat analogous to an increased level of significance
produced by something like a Bonferroni correction. More common
was reporting an adaptive or reactive strategy based on feedback
from the trials, in which participants became more conservative in
reaction to a low score. E.g., “[i]nitially I was very risky and went
with all stores with over 50% chance of being profitable. I changed
to very conservatively picking only sure bets as my score was very
low” Or, from another participant, “[i]nitially I largely trusted the
distribution and if less than about 25% of the bell curve was below
the profit line then I would mark it as profitable. But this didn’t
work very well and gradually I began only marking as profitable if
about 90% was above the line and the middle of the bell curve was
at around about 4 or higher”

An interesting reaction was a (mal-)adaptive strategy in response
to negative feedback, which was reporting adding randomness or
otherwise giving up. E.g., “Tried to play it safe and go for ’prof-
itable/not profitable’ when it looked like a sure thing, but that didn’t
go too well for me! Started taking more risks/gambles as my points
spiralled and by the end, there wasn’t really too much of a strategy”
from one participant, or “If the [business analyst] put the dot above
the profit line, generally I said it would be profitable. However
when I kept accruing negative points, I did try and throw some
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Figure 5: Posterior estimates of the false discovery rate
points per trial, based on our incentive structure, for each
visualisation (vis) and number of possible comparisons (m)
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random ones in there to see if it helped but unfortunately it did not
and I kept getting further into the negative numbers.” In all, nine
participants indicated employing some degree of randomness in
their guesses, from giving up or “spiralling” as mentioned above, to
those who reported trying to “...throw some random ones in there
to see if it helped”

5.2 Do Uncertainty Visualisations Affect
Decision Quality?

Our second research question is concerned with the impact of dif-
ferent uncertainty representations on participants’ decision quality,
and more specifically, in their ability to correct for multiple compar-
isons. As a between-subjects condition, we tested three uncertainty
visualisations—a ( ) scatterplot of the data with no sum-
mary or uncertainty information, a discrete interval representation
of a summary statistic (mean) and the associated uncertainty using
a point estimate and 50% confidence intervals (ci), and a continuous
uncertainty representation of the mean using a probability density
function (pdf).

Figure 6A shows the estimated probability of false positive, for
the average participant, marginalised across all trial, block and m
variables. Compared to the baseline, the average participant in both
uncertainty representations is likely to have a lower probability
of a false positive with pdf showing marginally greater reduction
(mean: -0.13; 95% CI: [-0.18, -0.10]) compared to the ci (mean: -0.11;
95% CI: [-0.15, -0.07]). As seen in Figure 4, these differences are
consistent across all levels of m.

In addition to comparing false positive, we can also compare par-
ticipants’ performance by calculating false discovery rate and points,
using the estimated quantities of true positive, true negative, false
positive and false negative. Figure 6B shows the estimated false dis-
covery rate marginalised across all trial, block and m variables. Here,
we observe that the average participant in the condition
has a higher false discovery rate than the uncorrected benchmark.
However, while the typical participant in the pdf and ci conditions
are not able to control for False Discoveries at the desired a-level
of 0.25, these uncertainty representations nevertheless may lead to
a lower false discovery rate when compared to both an uncorrected
strategy, in addition to the . Figure 6C shows the points,
estimated to be accumulated by a typical participant, marginalised
across all trial, block and m variables. Like the previous metrics, we
again observe that the average participant in the condi-
tion performs worse than the uncorrected benchmark, while the
typical participant in the pdf and ci conditions outperform both
the uncorrected strategy and the

Our qualitative responses indicate that one potential factor in
the differences in performance observed in the different visualisa-
tion types may be a result of the strategies that a reader can adopt
based on the affordances of those charts. 28/60 participants in the
pdf condition report using the proportion of the visualised density
that overlaps 0 (or some other value of profit) to help them make a
decision. For instance, a participant reported that “anything with
25% or more of the distribution below the red line went immedi-
ately to ‘unprofitable” and another that “I eventually realised that
only tasks where <5% of the bell curve fell below the profit line
were worth recommending as profitable” This density information
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Figure 6: Posterior estimates of: (A) the probability of mak-
ing a false positive, (B) the false discovery rate, and (C) the
average accumulated points per trial, based on our incentive
structure (left) as well as the difference in the posterior esti-
mates, for each of these metrics, from the baseline (right)

was not directly available in the other charts, and so participants
reported other strategies.

In keeping with prior work that reports that confidence intervals
encourage dichotomous thinking [17, 24], 8/60 participants in the
ci condition reported using whether or not the confidence interval
overlapped 0 (or some other threshold) to make their decision. E.g.,
“I simply selected profitable for the the ones where the whole range
was above 0” or selecting unprofitable “[i]f the bar dropped below
the red line at all”. As with the density overlap strategy above, this
information was only directly available in the ci condition.

For the condition, where no data about mean or vari-
ability was directly presented, participants often used other strate-
gies. The majority of participants (39/60) would count the number
of points above and/or below zero, and use the resulting total to
either make a decision directly, or as part of a process of estimating
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the mean in order to make a final decision. E.g., “I figured the more
dots above the red line there were, the more profitable the store
was”. We note that this sort of counting is a not a true calculation
of mean value and, in keeping with the other perceptual proxies
that have been shown to factor into the extraction of mean values
from graphs [77], can produce incorrect or biased results. 12/39
participants who reported employing dot counting strategies coun-
teracted for this fact by giving outliers special treatment, e.g. “I
looked at how dense the clusters were on either side of the 0 mark
to decide whether or not they were profitable or not then looked for
any outliers like a lone sample or two that were above or below the
average and decided if [I] thought they were high or low enough to
counteract my initial assumption” from one participant, and “first
[I’d] see which side had most points, but then if it was close or if
sides had a noticeable quantity of points further from 0 [I'd] weigh
them higher, as 1 point at lets say 25 is worth 10x points around
the 2.5 mark”

6 DISCUSSION

6.1 The Potential Promise of Uncertainty
Representations

The visual representations used in prior work did not directly visu-
alise the mean and the associated uncertainty in the mean (standard
error) that is necessary for the inferential tasks that participants in
prior work [78] were asked to perform. Instead, this information
was left implicit—participants could get a sense of the mean and
the standard error based on the visualised data sample, and the
spread of the data sample. The average participant in our

condition performed poorly across all metrics, suggesting that par-
ticipants may be struggling to recover such inferential statistical
estimates from a plot which does not visualise it directly.

On the other hand, we find that the average participant, in the ci
and pdf conditions, makes fewer false discoveries than the golem
using an uncorrected strategy. Along with the qualitative descrip-
tions of the strategies used in performing this task, this result
indicates that participants in these two conditions are potentially
making some adjustments for multiple comparisons. As partici-
pants’ false discovery rates are still greater than the incentivised
a = 0.25 level (Figure 6), and falls far short of the false discov-
ery rates achieved by the golem using the Benjamini-Hochberg
strategy, it appears that the result of this adjustment is perhaps an
imperfect multiple comparisons correction.

However, the estimated averages hide a great degree of variabil-
ity [28, 79], both in participants’ performance and their reported
strategies. From Figure 7, we observe that approximately 23% and
32% of the participants in the ci and pdf conditions respectively (0%
in the condition) have a positive points on average across
the trials, which is close to the Benjamini-Hochberg benchmark
(96 points on average). This suggests that a subset of participants
are in fact able to optimise for the incentives and perform almost as
well as the best statistical golem. Conversely, 80%, 48% and 35% of
the participants in the , ci and pdf conditions respectively
perform worse than uncorrected golem, with some performing
considerably worse. We conduct an exploratory analysis to help us
understand what strategies might participants be using. We believe
that a small subset of the participants may be employing a mix of a
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mean strategy (considering only the mean of the visualised data,
and indicating that a “region is profitable” if this mean is greater
than zero) and answering at random (not responding to the stim-
ulus). This is supported by some the qualitative responses as well
(e.g., a participant in the pdf condition who claimed “if the middle
of the shape was above zero [I] said profitable, if not then I said not
profitable”), and suggests that there exists a subset of people who,
even when presented with uncertainty information, are likely to
use sub-optimal strategies to perform this task.

We recommend that designers of EDA systems should explic-
itly visualise uncertainty, if they expect the user to be perform-
ing inferential tasks. However, this may not be sufficient. Certain
forms of uncertainty visualisations have different affordances, and
may promote certain decision-making strategies that rely on these
affordances. For instance, a proportion of participants reported
employing binary decision criteria in the ci condition (which has
been criticised in the past for presenting uncertainty information
in a dichotomous way), and a proportion of participants counted
the number of dots above and below zero as a perceptual proxy
for estimating mean and/or variability. However, the wide variety
of reported strategies both within and across conditions points to
differing levels of expertise and experience with uncertainty visual-
isation: designs could therefore draw from the strategies used by
participants who excel at this task in order to help those who may
struggle with it.

6.2 The Precarious Entanglement of Incentives
and Evaluation

The expected proportion of false discoveries, for the average partic-
ipant in the ci and pdf conditions, was 39% and 34% respectively.
In contrast, prior work found false discovery rates of 60% [78]. This
raises the question: is a false discovery rate of 34% good? Or con-
versely, is a false discovery rate of 60% bad? The answer surely varies
depending on the data analysis and decision-making context. This
decision-making context can and should be translated into incen-
tive structures. When analysts decide which data patterns may be
real, or perhaps “statistically significant”, they usually consider the

T
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context. For example, there might be a budget constraint against
taking action on too many discoveries, or false discoveries might
lead to adding an ineffective new product feature that loses users
and revenue. As we demonstrate in this paper, we can encode a false
discovery rate threshold, such as a = 0.25, through experimental
incentives. Only when this additional context is provided can we
evaluate participants’ decision-making quality and performance.
In the absence of such explicit incentives, it is impossible to deter-
mine whether the 60% false discoveries reported in prior work is
excessive. Rather, a number of alternative, plausible explanation
may explain participants behavior in the study. For instance, par-
ticipants in the study may have deemed the value of true positive
to be arbitrarily high, and have attempted to maximise this implicit
incentive structure even though they were actually evaluated on
minimising false positive.

The participants in our study were unable to control their false
discovery rate at the incentivised o = 0.25 level. Even in the ci and
pdf conditions, participants’ false discovery rates were 10-15 per-
centage points greater than the desired false discovery rate, based
on our incentives. However, they did, on average, adjust their be-
haviour in light of the incentives, as evidenced by the lower false
discovery rate when compared to the uncorrected benchmark as
well as from their qualitative descriptions. This suggests that well-
designed and explicit incentive structures may encourage better
decisions and more realistically reflect the quality of the EDA sys-
tem in terms of the multiple-comparison problem.

6.3 Should We Care About False Discoveries
Only?

We note that the potential improvements in false positive and false

discovery rate come at the cost of lower true positive and higher false

negative. This is the case for both the statistical golems (Benjamini-

Hochberg v.s. uncorrected) and the uncertainty displays (

v.s. ci or pdf). This is to be expected, as our incentives penalised
false positives most strongly. However, depending on the decision
context other incentive structures besides the one we tested may
be valid. For instance, it is possible that the cost of false negatives is
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much greater than the rewards from true positives or true negatives
in certain scenarios.

Due to our experimental design, we are unable to disentangle
the effects of the incentive structure presented to participants and
the uncertainty representations used on participants’ performance.
While it may be possible that such uncertainty representations
provide participants with a holistic representation of the informa-
tion required to perform the task, such that they still may perform
better even under different evaluation metrics, further research
is necessary. Designers of EDA systems should carefully choose
uncertainty visualisations that best suit their evaluation metrics.

6.4 Limitations and Future Work

Impact of immediate feedback. In our experiment, we decided
to provide participants with immediate feedback regarding their
performance on both the previous trial, and their performance over-
all, in the form of “points” This design choice had some impact
on participants’ behavior in the experiment, and even across dif-
ferent trials. A handful of participants described using a reactive
strategy—they became more conservative about rejecting the null if
they scored a lot of negative points in a previous trial. In real world
decision-making contexts, however, the feedback may not always
be immediate, but may be delayed, or even ambiguous. In the ab-
sence of immediate feedback, we speculate that participants may be
less reactive; it is also possible this may increase the likelihood of
users failing to account for multiple comparisons when performing
exploratory data analysis. In scenarios where immediate feedback
may not be feasible, a possible solution could be to proactively train
participants on the need to account for multiple comparisons. We
hope to explore the impact of feedback presentation in future work.

Impact of the magnitude of incentives. One design choice we
made in our experiment was to use comparatively large values
for the incentives. While this was intended to make sure that par-
ticipants did not perceive the difference between a correct and
incorrect decision in the task as trivial, it also meant that partic-
ipants could potentially end up with a large, negative number of
points. Figure 7 shows that there were indeed some participants
who accrued very large, negative points, raising the question of
how our specific incentive structure impacted performance. A small
number of participants (9/180) reported adopting risky strategies
or randomly guessing due to poor performance in a previous trial
and/or an accumulation of negative points (see §5.1). We speculate
that a different incentive structure (e.g., if the rewards are scaled
down by a factor of 10) may have reduced the number of partici-
pants adopting such mal-adaptive strategies. In general, we believe
that the psychological and statistical impact of differing incentive
structures in visual analytics (both in experimental settings and in
practice) is understudied.

The broader space of uncertainty representations. Recent work
on uncertainty visualisations have recommended many other forms
of representations such as dotplots [21, 41, 43], hypothetical out-
come plots [34, 42], gradient plots [17] etc. As a preliminary ex-
ploration of the impact of uncertainty representations, we decided
to focus on two uncertainty representations which are commonly
used and which provide successively greater degree of uncertainty
information. We hope to explore the impact of these alternative
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uncertainty representations, all of which, like the pdf, convey com-
plete distributional information, in future work.

7 CONCLUSION

We set out to improve the evaluation of multiple comparison prob-
lems in EDA systems in two ways: using realistic decision incen-
tives and uncertainty visualisations. We conduct an experiment
to investigate the impact of providing explicit incentives and us-
ing uncertainty representations on participants decision-making
quality. We found that, for an average participant, uncertainty rep-
resentations such as confidence intervals or probability density
functions may lead to false discovery rates which are lower than the
uncorrected (no corrections for multiple comparisons) benchmark,
but higher than the Benjamini-Hochberg (a multiple comparisons
correction procedure) benchmark. However, in the absence of un-
certainty information, participants perform worse than the uncor-
rected benchmark. In a qualitative analysis of users’ strategies, we
find that some participants may be adapting to the information pre-
sented to them and employing strategies which produce a similar
effect to an imperfect multiple comparisons correction procedure.

ACKNOWLEDGMENTS

We would like to thank Fumeng Yang and Ziyang Guo for their
thoughtful feedback on this research. We also thank the anonymous
reviewers for their valuable comments.

REFERENCES

[1] Sara Alspaugh, Nava Zokaei, Andrea Liu, Cindy Jin, and Marti A. Hearst. 2019.

Futzing and Moseying: Interviews with Professional Data Analysts on Exploration

Practices. IEEE Transactions on Visualization and Computer Graphics 25, 1 (2019),

22-31. https://doi.org/10.1109/TVCG.2018.2865040

Nicholas J Barrowman and Ransom A Myers. 2003. Raindrop plots: a new way

to display collections of likelihoods and distributions. The American Statistician

57, 4 (2003), 268-274.

[3] Douglas Bates, Martin Méchler, Ben Bolker, and Steve Walker. 2015. Fitting
Linear Mixed-Effects Models Using Ime4. Journal of Statistical Software 67 (Oct.
2015), 1-48. https://doi.org/10.18637/jss.v067.i01

[4] Leilani Battle and Jeffrey Heer. 2019. Characterizing Exploratory Visual Analysis:
A Literature Review and Evaluation of Analytic Provenance in Tableau. Computer
Graphics Forum 38, 3 (June 2019), 145-159. https://doi.org/10.1111/cgf.13678

[5] Sarah Belia, Fiona Fidler, Jennifer Williams, and Geoff Cumming. 2005. Re-
searchers misunderstand confidence intervals and standard error bars. Psycho-
logical methods 10, 4 (2005), 389.

[6] Yoav Benjamini and Yosef Hochberg. 1995. Controlling the false discovery rate: a
practical and powerful approach to multiple testing. Journal of the Royal statistical
society: series B (Methodological) 57, 1 (1995), 289-300.

[7] Michael Betancourt. 2020. Towards A Principled Bayesian Workflow. https:
//betanalpha.github.io/assets/case_studies/principled_bayesian_workflow.html

[8] Carsten Binnig, Lorenzo De Stefani, Tim Kraska, Eli Upfal, Emanuel Zgraggen,

and Zheguang Zhao. 2017. Toward Sustainable Insights, or Why Polygamy is

Bad for You. In Conference on Innovative Data Systems Research. https://api.sema

nticscholar.org/CorpusID:15852012

Jeremy Boy, Francoise Detienne, and Jean-Daniel Fekete. 2015. Storytelling in

Information Visualizations: Does It Engage Users to Explore Data?. In Proceedings

of the 33rd Annual ACM Conference on Human Factors in Computing Systems
(Seoul, Republic of Korea) (CHI ’15). Association for Computing Machinery, New
York, NY, USA, 1449-1458. https://doi.org/10.1145/2702123.2702452
[10] Andreas Buja, Dianne Cook, Heike Hofmann, Michael Lawrence, Eun-Kyung
Lee, Deborah F Swayne, and Hadley Wickham. 2009. Statistical inference for
exploratory data analysis and model diagnostics. Philosophical Transactions of
the Royal Society A: Mathematical, Physical and Engineering Sciences 367, 1906
(2009), 4361-4383.

[11] Paul-Christian Biirkner. 2017. Advanced Bayesian Multilevel Modeling with the
R Package brms. R 7. 10 (2017), 395. https://api.semanticscholar.org/CorpusID:
54534499

—_
&,

[


https://doi.org/10.1109/TVCG.2018.2865040
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1111/cgf.13678
https://betanalpha.github.io/assets/case_studies/principled_bayesian_workflow.html
https://betanalpha.github.io/assets/case_studies/principled_bayesian_workflow.html
https://api.semanticscholar.org/CorpusID:15852012
https://api.semanticscholar.org/CorpusID:15852012
https://doi.org/10.1145/2702123.2702452
https://api.semanticscholar.org/CorpusID:54534499
https://api.semanticscholar.org/CorpusID:54534499

Odds and Insights: Decision Quality in Exploratory Data Analysis Under Uncertainty

[12

[13

[14]

[15

=
&

[17]

[18

[19]

[20

[21]

[22]

[23

[24

[25]

[26]

[27]

[28

[29]

[30

[31

[32]

[33]

[34]

Stuart K Card, Jock D Mackinlay, and Ben Shneiderman. 1999. Using vision to
think. In Readings in information visualization: using vision to think. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 579-581.

Stephen Casner and Jill H Larkin. 1989. Cognitive efficiency considerations for good
graphic design. Technical Report. CARNEGIE-MELLON UNIV PITTSBURGH PA
ARTIFICIAL INTELLIGENCE AND PSYCHOLOGY ....

Remco Chang, Caroline Ziemkiewicz, Tera Marie Green, and William Ribarsky.
2009. Defining insight for visual analytics. IEEE Computer Graphics and Applica-
tions 29, 2 (2009), 14-17.

Yeounoh Chung, Sacha Servan-Schreiber, Emanuel Zgraggen, and Tim Kraska.
2018. Towards Quantifying Uncertainty in Data Analysis & Exploration. IEEE
Data Eng. Bull. 41, 3 (2018), 15-27.

Kristin A Cook and James J Thomas. 2005. Illuminating the path: The research
and development agenda for visual analytics. Technical Report. Pacific Northwest
National Lab.(PNNL), Richland, WA (United States).

Michael Correll and Michael Gleicher. 2014. Error bars considered harmful: Ex-
ploring alternate encodings for mean and error. IEEE transactions on visualization
and computer graphics 20, 12 (2014), 2142-2151.

Michael Correll and Michael Gleicher. 2015. Implicit Uncertainty Visualization:
Aligning Perception and Statistics. In Workshop on Visualization for Decision
Making under Uncertainty. https://api.semanticscholar.org/CorpusID:16691049
Geoff Cumming and Sue Finch. 2005. Inference by eye: confidence intervals and
how to read pictures of data. American psychologist 60, 2 (2005), 170.

Pierre Dragicevic, Yvonne Jansen, Abhraneel Sarma, Matthew Kay, and Fanny
Chevalier. 2019. Increasing the Transparency of Research Papers with Explorable
Multiverse Analyses. In Proceedings of the 2019 CHI Conference on Human Factors
in Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Comput-
ing Machinery, New York, NY, USA, 1-15. https://doi.org/10.1145/3290605.3300
295

Michael Fernandes, Logan Walls, Sean Munson, Jessica Hullman, and Matthew
Kay. 2018. Uncertainty Displays Using Quantile Dotplots or CDFs Improve Transit
Decision-Making. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems (Montreal QC, Canada) (CHI ’18). Association for Computing
Machinery, New York, NY, USA, 1-12. https://doi.org/10.1145/3173574.3173718
Andrew Gelman and Eric Loken. 2013. The garden of forking paths: Why multiple
comparisons can be a problem, even when there is no “fishing expedition” or
“p-hacking” and the research hypothesis was posited ahead of time. Department
of Statistics, Columbia University 348 (2013), 1-17.

Miriam Greis, Aditi Joshi, Ken Singer, Albrecht Schmidt, and Tonja Machulla.
2018. Uncertainty Visualization Influences How Humans Aggregate Discrepant
Information. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems (Montreal QC, Canada) (CHI ’18). Association for Computing
Machinery, New York, NY, USA, 1-12. https://doi.org/10.1145/3173574.3174079
Jouni Helske, Satu Helske, Matthew Cooper, Anders Ynnerman, and Lonni Be-
sancon. 2021. Can visualization alleviate dichotomous thinking? Effects of visual
representations on the cliff effect. IEEE Transactions on Visualization and Com-
puter Graphics 27, 8 (2021), 3397-3409.

Jerry L Hintze and Ray D Nelson. 1998. Violin plots: a box plot-density trace
synergism. The American Statistician 52, 2 (1998), 181-184.

Harry Hochheiser and Ben Shneiderman. 2004. Dynamic query tools for time
series data sets: timebox widgets for interactive exploration. Information Visual-
ization 3, 1 (2004), 1-18.

Rink Hoekstra, Richard D Morey, Jeffrey N Rouder, and Eric-Jan Wagenmakers.
2014. Robust misinterpretation of confidence intervals. Psychonomic bulletin &
review 21, 5 (2014), 1157-1164.

Jake M. Hofman, Daniel G. Goldstein, and Jessica Hullman. 2020. How Visualizing
Inferential Uncertainty Can Mislead Readers About Treatment Effects in Scientific
Results. In Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems. ACM, Honolulu HI USA, 1-12. https://doi.org/10.1145/3313831.3376454
Heike Hofmann, Lendie Follett, Mahbubul Majumder, and Dianne Cook. 2012.
Graphical tests for power comparison of competing designs. IEEE Transactions
on Visualization and Computer Graphics 18, 12 (2012), 2441-2448.

Jessica Hullman. 2016. Why Evaluating Uncertainty Visualization is Error Prone.
In Proceedings of the Sixth Workshop on Beyond Time and Errors on Novel Evaluation
Methods for Visualization (Baltimore, MD, USA) (BELIV ’16). Association for
Computing Machinery, New York, NY, USA, 143-151. https://doi.org/10.1145/29
93901.2993919

Jessica Hullman. 2019. Why authors don’t visualize uncertainty. IEEE transactions
on visualization and computer graphics 26, 1 (2019), 130-139.

Jessica Hullman, Eytan Adar, and Priti Shah. 2011. Benefitting infovis with visual
difficulties. IEEE Transactions on Visualization and Computer Graphics 17, 12
(2011), 2213-2222.

Jessica Hullman, Xiaoli Qiao, Michael Correll, Alex Kale, and Matthew Kay.
2018. In pursuit of error: A survey of uncertainty visualization evaluation. [EEE
transactions on visualization and computer graphics 25, 1 (2018), 903-913.
Jessica Hullman, Paul Resnick, and Eytan Adar. 2015. Hypothetical Outcome
Plots Outperform Error Bars and Violin Plots for Inferences about Reliability of
Variable Ordering. PLOS ONE 10, 11 (11 2015), 1-25. https://doi.org/10.1371/jour

(35]

[36

[37

(38]

@
20,

[40

[41

[42

=
&

(44

[45

=
&

[47]

[48

[49]

[50

v
ey

[52

[53

(54

[55

o
2

[57

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

nal.pone.0142444

H. M. James Hung, Robert T. O’Neill, Peter Bauer, and Karl Kohne. 1997. The
Behavior of the P-Value When the Alternative Hypothesis is True. Biometrics 53,
1(1997), 11-22. http://www.jstor.org/stable/2533093

Harald Ibrekk and M Granger Morgan. 1987. Graphical communication of uncer-
tain quantities to nontechnical people. Risk analysis 7, 4 (1987), 519-529.
Christopher H Jackson. 2008. Displaying uncertainty with shading. The American
Statistician 62, 4 (2008), 340-347.

Amit Jena, Ulrich Engelke, Tim Dwyer, Venkatesh Raiamanickam, and Cecile
Paris. 2020. Uncertainty visualisation: An interactive visual survey. In 2020 IEEE
Pacific Visualization Symposium (PacificVis). IEEE, 201-205.

Susan L Joslyn and Jared E LeClerc. 2012. Uncertainty forecasts improve weather-
related decisions and attenuate the effects of forecast error. Journal of experimen-
tal psychology: applied 18, 1 (2012), 126.

Alex Kale, Matthew Kay, and Jessica Hullman. 2019. Decision-Making Under
Uncertainty in Research Synthesis: Designing for the Garden of Forking Paths. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems
(Glasgow, Scotland Uk) (CHI ’19). ACM, New York, NY, USA, Article 202, 14 pages.
https://doi.org/10.1145/3290605.3300432

Alex Kale, Matthew Kay, and Jessica Hullman. 2021. Visual Reasoning Strategies
for Effect Size Judgments and Decisions. IEEE Transactions on Visualization and
Computer Graphics 27, 2 (2021), 272-282. https://doi.org/10.1109/TVCG.2020.30
30335

Alex Kale, Francis Nguyen, Matthew Kay, and Jessica Hullman. 2018. Hypothetical
Outcome Plots Help Untrained Observers Judge Trends in Ambiguous Data. IEEE
transactions on visualization and computer graphics 25, 1 (2018), 892-902.
Matthew Kay, Tara Kola, Jessica R. Hullman, and Sean A. Munson. 2016. When
(Ish) is My Bus? User-Centered Visualizations of Uncertainty in Everyday, Mobile
Predictive Systems. In Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems (San Jose, California, USA) (CHI ’16). Association for
Computing Machinery, New York, NY, USA, 5092-5103. https://doi.org/10.1145/
2858036.2858558

Christoph Kinkeldey, Alan M MacEachren, Maria Riveiro, and Jochen Schiewe.
2017. Evaluating the effect of visually represented geodata uncertainty on
decision-making: systematic review, lessons learned, and recommendations. Car-
tography and Geographic Information Science 44, 1 (2017), 1-21.

Christoph Kinkeldey, Alan M MacEachren, and Jochen Schiewe. 2014. How to
assess visual communication of uncertainty? A systematic review of geospatial
uncertainty visualisation user studies. The Cartographic Journal 51, 4 (2014),
372-386.

Jill H Larkin and Herbert A Simon. 1987. Why a diagram is (sometimes) worth
ten thousand words. Cognitive science 11, 1 (1987), 65-100.

Alan M. MacEachren. 1992. Visualizing Uncertain Information. Cartographic
Perspectives 13 (Jun. 1992), 10-19. https://doi.org/10.14714/CP13.1000

Richard McElreath. 2020. Statistical rethinking: A Bayesian course with examples
in R and Stan (2nd ed.). CRC.

Andrew McNutt, Gordon Kindlmann, and Michael Correll. 2020. Surfacing
Visualization Mirages. In Proceedings of the 2020 CHI Conference on Human Factors
in Computing Systems (Honolulu, HI, USA) (CHI °20). Association for Computing
Machinery, New York, NY, USA, 1-16. https://doi.org/10.1145/3313831.3376420
Limor Nadav-Greenberg and Susan L Joslyn. 2009. Uncertainty forecasts improve
decision making among nonexperts. Journal of Cognitive Engineering and Decision
Making 3, 3 (2009), 209-227.

Chris North. 2006. Toward measuring visualization insight. IEEE computer
graphics and applications 26, 3 (2006), 6-9.

Stefan Palan and Christian Schitter. 2018. Prolific.ac — A subject pool for online
experiments. Journal of Behavioral and Experimental Finance 17 (2018), 22-27.
José Pinheiro, Douglas Bates, Saikat DebRoy, Deepayan Sarkar, Siem Heis-
terkamp, Bert Van Willigen, and R Maintainer. 2017. nlme : Linear and
nonlinear mixed effects models. R package version 3.1-103.  http://cran.r-
project.org/web/packages/nlme/index.html (2017). https://cir.nii.ac.jp/crid/1
570854174288831360

Kristin Potter, Paul Rosen, and Chris R. Johnson. 2012. From Quantification
to Visualization: A Taxonomy of Uncertainty Visualization Approaches. In
Uncertainty Quantification in Scientific Computing, Andrew M. Dienstfrey and
Ronald F. Boisvert (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 226-249.
Xiaoying Pu and Matthew Kay. 2018. The Garden of Forking Paths in Visualiza-
tion: A Design Space for Reliable Exploratory Visual Analytics : Position Paper.
In 2018 IEEE Evaluation and Beyond - Methodological Approaches for Visualization
(BELIV). 37-45. https://doi.org/10.1109/BELIV.2018.8634103

P Samuel Quinan, Lace M Padilla, Sarah H Creem-Regehr, and Miriah Meyer. 2015.
Towards ecological validity in evaluating uncertainty. In Proceedings of Workshop
on Visualization for Decision Making Under Uncertainty (VIS’15). http://vdl. sci.
utah. edu/publications/2015_vdmu_ecologicalvalidity.

Khairi Reda, Andrew E Johnson, Michael E Papka, and Jason Leigh. 2016. Mod-
eling and evaluating user behavior in exploratory visual analysis. Information
Visualization 15, 4 (2016), 325-339.


https://api.semanticscholar.org/CorpusID:16691049
https://doi.org/10.1145/3290605.3300295
https://doi.org/10.1145/3290605.3300295
https://doi.org/10.1145/3173574.3173718
https://doi.org/10.1145/3173574.3174079
https://doi.org/10.1145/3313831.3376454
https://doi.org/10.1145/2993901.2993919
https://doi.org/10.1145/2993901.2993919
https://doi.org/10.1371/journal.pone.0142444
https://doi.org/10.1371/journal.pone.0142444
http://www.jstor.org/stable/2533093
https://doi.org/10.1145/3290605.3300432
https://doi.org/10.1109/TVCG.2020.3030335
https://doi.org/10.1109/TVCG.2020.3030335
https://doi.org/10.1145/2858036.2858558
https://doi.org/10.1145/2858036.2858558
https://doi.org/10.14714/CP13.1000
https://doi.org/10.1145/3313831.3376420
https://cir.nii.ac.jp/crid/1570854174288831360
https://cir.nii.ac.jp/crid/1570854174288831360
https://doi.org/10.1109/BELIV.2018.8634103

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

[58] Purvi Saraiya, Chris North, Vy Lam, and Karen A Duca. 2006. An insight-based
longitudinal study of visual analytics. IEEE Transactions on Visualization and
Computer Graphics 12, 6 (2006), 1511-1522.
Abhraneel Sarma, Shunan Guo, Jane Hoffswell, Ryan Rossi, Fan Du, Eunyee Koh,
and Matthew Kay. 2023. Evaluating the Use of Uncertainty Visualisations for
Imputations of Data Missing At Random in Scatterplots. IEEE Transactions on
Visualization and Computer Graphics 29, 1 (2023), 602-612. https://doi.org/10.1
109/TVCG.2022.3209348
Abhraneel Sarma, Kyle Hwang, Jessica Hullman, and Matthew Kay. 2024. Milli-
ways: Taming Multiverses through Principled Evaluation of Data Analysis Paths.
In Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems
(Honolulu, USA) (CHI "24). Association for Computing Machinery, New York, NY,
USA. https://doi.org/10.1145/3613904.3642375
Abhraneel Sarma, Alex Kale, Michael Jongho Moon, Nathan Taback, Fanny
Chevalier, Jessica Hullman, and Matthew Kay. 2023. Multiverse: Multiplexing
Alternative Data Analyses in R Notebooks. In Proceedings of the 2023 CHI Con-
ference on Human Factors in Computing Systems (Hamburg, Germany) (CHI "23).
Association for Computing Machinery, New York, NY, USA, Article 148, 15 pages.
https://doi.org/10.1145/3544548.3580726
Sacha Servan-Schreiber, Olga Ohrimenko, Tim Kraska, and Emanuel Zgraggen.
2019. STAR: Statistical Tests with Auditable Results. arXiv:1901.10875 [cs, stat]
(2019). http://arxiv.org/abs/1901.10875 arXiv: 1901.10875.
Meredith Skeels, Bongshin Lee, Greg Smith, and George Robertson. 2008. Re-
vealing Uncertainty for Information Visualization. (2008), 376-379. https:
//doi.org/10.1145/1385569.1385637
[64] Rachel A Smith, Timothy R Levine, Kenneth A Lachlan, and Thomas A Fediuk.
2002. The high cost of complexity in experimental design and data analysis: Type
T and type II error rates in multiway ANOVA. Human Communication Research
28, 4 (2002), 515-530.
[65] David J Spiegelhalter. 1999. Surgical audit: statistical lessons from Nightingale
and Codman. Journal of the Royal Statistical Society: Series A (Statistics in Society)
162, 1 (1999), 45-58.
Alice Thudt, Uta Hinrichs, and Sheelagh Carpendale. 2012. The Bohemian Book-
shelf: Supporting Serendipitous Book Discoveries through Information Visual-
ization. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (Austin, Texas, USA) (CHI ’12). Association for Computing Machinery,
New York, NY, USA, 1461-1470. https://doi.org/10.1145/2207676.2208607
[67] Edward R Tufte. 2001. The visual display of quantitative information. Vol. 2.
Graphics press Cheshire, CT.
[68] John W Tukey. 1965. The technical tools of statistics. The American Statistician
19, 2 (1965), 23-28.
[69] John W Tukey. 1977. Exploratory data analysis. Vol. 2. Addison-Wesley Pub. Co.
[70] H. Wickham, D. Cook, H. Hofmann, and A. Buja. 2010. Graphical inference for
infovis. IEEE Transactions on Visualization and Computer Graphics 16, 6 (Nov
2010), 973-979. https://doi.org/10.1109/TVCG.2010.161
[71] GN Wilkinson and CE Rogers. 1973. Symbolic description of factorial models
for analysis of variance. Journal of the Royal Statistical Society: Series C (Applied
Statistics) 22, 3 (1973), 392-399. https://doi.org/10.2307/2346786
[72] Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay, Bill
Howe, and Jeffrey Heer. 2015. Voyager: Exploratory analysis via faceted browsing
of visualization recommendations. IEEE transactions on visualization and computer
graphics 22, 1 (2015), 649-658.
Kanit Wongsuphasawat, Zening Qu, Dominik Moritz, Riley Chang, Felix Ouk,
Anushka Anand, Jock Mackinlay, Bill Howe, and Jeffrey Heer. 2017. Voyager
2: Augmenting Visual Analysis with Partial View Specifications. In Proceedings
of the 2017 CHI Conference on Human Factors in Computing Systems (Denver,
Colorado, USA) (CHI ’17). Association for Computing Machinery, New York, NY,
USA, 2648-2659. https://doi.org/10.1145/3025453.3025768
[74] Yifan Wu, Ziyang Guo, Michails Mamakos, Jason Hartline, and Jessica Hullman.
2023. The Rational Agent Benchmark for Data Visualization. IEEE transactions
on visualization and computer graphics 22, 1 (2023), 649-658.
Itai Yanai and Martin Lercher. 2020. A hypothesis is a liability. Genome Biology
21, 1 (Dec. 2020), 231, s13059-020-02133-w. https://doi.org/10.1186/s13059-020
-02133-w
[76] Ji Soo Yi, Youn-ah Kang, John T. Stasko, and Julie A. Jacko. 2008. Understanding
and Characterizing Insights: How Do People Gain Insights Using Information
Visualization?. In Proceedings of the 2008 Workshop on BEyond Time and Errors:
Novel EvaLuation Methods for Information Visualization (Florence, Italy) (BELIV
’08). Association for Computing Machinery, New York, NY, USA, Article 4, 6 pages.
https://doi.org/10.1145/1377966.1377971
Lei Yuan, Steve Haroz, and Steven Franconeri. 2019. Perceptual proxies for
extracting averages in data visualizations. Psychonomic bulletin & review 26
(2019), 669-676.
[78] Emanuel Zgraggen, Zheguang Zhao, Robert Zeleznik, and Tim Kraska. 2018.
Investigating the Effect of the Multiple Comparisons Problem in Visual Analysis.
In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
(Montreal QC, Canada) (CHI ’18). ACM, New York, NY, USA, Article 479, 12 pages.
https://doi.org/10.1145/3173574.3174053

[59

[60

(61

(62

[63

[66

[73

[75

3
=

Sarma et al.

[79] Sam Zhang, Patrick R. Heck, Michelle N. Meyer, Christopher F. Chabris,
Daniel G. Goldstein, and Jake M. Hofman. 2023. An illusion of predictabil-
ity in scientific results: Even experts confuse inferential uncertainty and
outcome variability. Proceedings of the National Academy of Sciences 120,
33 (2023), €2302491120. https://doi.org/10.1073/pnas.2302491120
arXiv:https://www.pnas.org/doi/pdf/10.1073/pnas.2302491120

Zheguang Zhao, Lorenzo De Stefani, Emanuel Zgraggen, Carsten Binnig, Eli
Upfal, and Tim Kraska. 2017. Controlling False Discoveries During Interactive
Data Exploration. In Proceedings of the 2017 ACM International Conference on
Management of Data (Chicago, Illinois, USA) (SIGMOD °’17). Association for
Computing Machinery, New York, NY, USA, 527-540. https://doi.org/10.1145/30
35918.3064019

[80

A MARGINALISATION OF POSTERIOR
ESTIMATES

To answer our research questions, we need to estimate the marginal
effect of vis and m on the posterior probability of the four decision
outcomes for an average participant. However, because trial and
block were included population-level effects in our regression model,
we need to average out the effects of these two variables on our
parameters of interest. For instance, if we want to show the effect
of vis on participants’ decisions, we would need to marginalise over
the predictors trial, block and m. Figure 8 describes the process
of computing the average marginal effect® by marginalising over
the predictor trial. This can then be repeated for other the other
predictors.

Marginalising over trial is justified because the learning effects
captured by trial do not alter our main results (section 5). With
exploratory comparisons, we find that as participants progress and
potentially improve through the trials, vis affects FDRs in similar
patterns when we look at m = 12, m = 16 and m = 20 separately. If we
compare the FDRs in the last trial of the first experiment block and
that of the second block, and do the same comparison for the last
five trials of each block, we see similar differences in FDR among
visualization types, even though participants might have gotten
better at the task by the end of the second block of the experiment.
Details of this exploratory comparison are in supplement» R »
04-modeling_and_analysis.Rmd.

Example calculation of marginalised density estimates (used in Figures 4-6)
How we estimate the probability of a FP, marginalised over trial number, in
the ci condition when m = 12. In Figures 4 - 6, we flip the x- and y-axes.

0.3

For each
Sample draw, take Estimate
0.2 draws from average of density
the model . FP (y) over based »
posterior all trials (x), on these
0.1 distribution and project draws
onto y-axis

Trial number Trial number

Figure 8: How we estimate the probability of a decision out-
come (FP) for an average participant, with a given visand m
condition, marginalising over trial.

5 An article on model interpretation using average marginal effects: https://cran.r-pro
ject.org/web/packages/margins/vignettes/TechnicalDetails.pdf
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