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Abstract—Robotic systems are typically composed of vari-
ous subsystems, such as localization and navigation, each en-
compassing numerous configurable components (e.g., selecting
different planning algorithms). Once an algorithm has been
selected for a component, its associated configuration options
must be set to the appropriate values. Configuration options
across the system stack interact non-trivially. Finding optimal
configurations for highly configurable robots to achieve desired
performance poses a significant challenge due to the interactions
between configuration options across software and hardware
that result in an exponentially large and complex configuration
space. These challenges are further compounded by the need
for transferability between different environments and robotic
platforms. Data efficient optimization algorithms (e.g., Bayesian
optimization) have been increasingly employed to automate the
tuning of configurable parameters in cyber-physical systems.
However, such optimization algorithms converge at later stages,
often after exhausting the allocated budget (e.g., optimization
steps, allotted time) and lacking transferability. This paper
proposes CURE—a method that identifies causally relevant con-
figuration options, enabling the optimization process to operate
in a reduced search space, thereby enabling faster optimization
of robot performance. CURE abstracts the causal relationships
between various configuration options and robot performance
objectives by learning a causal model in the source (a low-cost
environment such as the Gazebo simulator) and applying the
learned knowledge to perform optimization in the target (e.g.,
Turtlebot 3 physical robot). We demonstrate the effectiveness and
transferability of CURE by conducting experiments that involve
varying degrees of deployment changes in both physical robots
and simulation.

Index Terms—robotics and cyberphysical systems, causal in-
ference, optimization, robot testing.

I. INTRODUCTION

Robotic system is composed of hardware and software

components that are integrated within a physical ma-
chine. These components interact to achieve specific goals
in a physical environment. Unfortunately, robots are prone to
a wide variety of faults [1]. Incorrect configurations (called
misconfigurations) in robotic algorithms are one of the most
prevalent causes of such faults [2]-[4]. Misconfigurations
can cause various bugs [5], [6] that lead to crashes, robots
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Fig. 1: Sim-to-real: applying the knowledge of the learned causal
model using Turtlebot 3 in simulation to the Turtlebot 3 physical
robot. Sim-to-real & Platform change: transferring the causal model
learned using Husky in simulation to the Turtlebot 3 physical robot.

becoming unstable, deviations from the planned trajectory,
controller faults, and non-responsiveness. Several studies have
reported that misconfigurations are one of the key reasons for
cyber-physical system failures. Such misconfigurations caused
19.6% of Unmanned Aerial Vehicle (UAV) bugs [7], 27.25%
of autonomous vehicle bugs [8] (a faulty configuration in the
actuation layer even caused the vehicle to collide with a static
object on the curb [9]) and 55% of traffic dispatch algorithm
bugs [10]. All of these issues were fixed by configuration
changes.

Most robotic algorithms require customization through con-
figuration parameters to suit certain tasks and situations. For
example, most UAV controllers include a wide range of config-
urable parameters that can be customized to different vehicles,
flight conditions, or even particular tasks (e.g., when speed
is more important than energy use). Finding configurations
that optimize performance on a given task is a challenging
problem for designers and end users [11]. A developer might
request a feature such as “Create a tool to automatically tune
navigation2 node parameters using state-of-the-art machine
learning techniques.” [12]. In another instance, a developer
encounters a planner performance issue [13] and asks “7
have tuned this for almost 5-6 hours. Sometimes it is go-
ing towards the goal but still failing in the middle of the
trajectory.” After several back-and-forth communications, the
algorithm designer concludes, “I cannot provide personalized
tuning assistance to every user.” Additionally, developers aim
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to maintain the performance of the tuned parameters when
deployment changes (e.g., from ROSI to ROS2) to avoid re-
tuning. Specifically, the optimal configuration determined in
one environment often becomes suboptimal in another, as
demonstrated in Fig. 2.

Our Solution. In this work, we propose CURE (Causal
Understanding and Remediation for Enhancing Robot Per-
formance), a multi-objective optimization method that finds
optimal configurations for robotic platforms, converges faster
than the state-of-the-art, and transfers well from simulation to
real robot and even to new untrained platforms. CURE has two
main phases. In Phase 1, CURE reduces the search space by
eliminating configuration options that do not affect the per-
formance objective causally. For this, we collect observational
data in a low-cost source environment, such as simulation.
Then, a causal model is learned on the basis of the data, repre-
senting the underlying causal mechanisms that influence robot
performance. We then estimate the causal effects of options on
performance objectives. Finally, we reduce the search space to
a subset of options that have non-negligible causal effects. In
Phase 2, CURE performs traditional Bayesian optimization in
the target environment, but only over the reduced search space,
to find the optimal configuration. We show that CURE not
only finds the optimal configuration faster than the state-of-
the-art, but the learned causal model in the simulation speeds
up optimization in the real robot. The results demonstrate
that the learned causal model is transferable across similar
but different settings, that is, environments, mission/tasks, and
for new robotic platforms. In other words, the existence of
a common abstract structure (the causal relations between
options, system-level variables, and performance objectives) is
invariant across domains, and the behavior of specific features
of the environment remains constant across domains.
Evaluations. We evaluated CURE in terms of its effectiveness
and transferability in two highly configurable robotic sys-
tems (Husky and Turtlebot 3) across varying degrees of deploy-
ment changes and compared it with traditional multi-objective
Bayesian optimization (MOBO) using the AX framework [14],
and RIDGECV [15], [16] when integrated with MOBO to
reduce the search space. Our results indicate that compared
to MOBO, CURE finds a configuration that improves perfor-
mance by 2x and achieves this improvement with gains in
efficiency of 4.6x when we transfer the knowledge learned
from Husky in simulation to the Turtlebot 3 physical robot.

Contributions. The contributions of our work are as follows:

o« We propose CURE, a multi-objective optimization
method that operates in the reduced search space involv-
ing causally relevant configuration options and allows
faster convergence.

o We conducted a comprehensive empirical study by com-
paring CURE with state-of-the-art optimization meth-
ods on multiple robotic platforms, including Husky and
Turtlebot 3 both in simulation and real robots with
different severity of deployment changes and studied
effectiveness and transferability.

o The code and data are available at: https://github.com/
softsys4ai/cure

II. RELATED WORK

In this work, we focus on performance optimization through
the lens of causality. Specifically, we learn a causal model
from a low-cost environment and utilize the causal knowl-
edge for performance optimization in the target system. This
section groups related works into four categories: optimiz-
ing robotic parameters, machine learning for performance
modeling, transfer learning strategies, and causal analysis in
configurable systems.

a) Optimization techniques in robotic configurations:
Researchers have considered robotic algorithms as a black
box, as the objective functions in most robotic problems can
only be accessible through empirical experiments. Evolution-
ary algorithms [17], [18] have been used to find optimal
configurations in Dynamic-Window Approach (DWA) [19]
algorithm. However, the application of evolutionary algorithms
in robotic systems is hindered by the limited availability of
observations and difficulty in extracting meaningful informa-
tion from these observations due to the presence of noise.
Approaches such as variational heteroscedastic Gaussian pro-
cess (VHGP) regression [20] and Bayesian optimization with
safety constraints [21] attempt to address these challenges
but struggle with high-dimensional search spaces, yield only
local, improvements and lack transferability across different
environments and platforms. Additionally, the complexity of
environmental dynamics models, coupled with biases intro-
duced by the optimization formulation, poses significant chal-
lenges. Moreover, formalizing safety constraints that allow
for computationally efficient solutions, specifically solutions
in polynomial time with closed-form expressions, is complex
if at all feasible.

b) Learning based methods for performance model-
ing: Expanding on traditional optimization techniques, ma-
chine learning methods offer diverse approaches for improv-
ing robotic performance. Approaches such as learning from
demonstration [22], learning human-aware path planning [23],
and mapping sensory inputs to robot actions [24], [25] have
been widely applied to robot navigation beyond fine-tuning
configuration parameters, as opposed to heavily relying on
human expertise. These methods aim to replace classical
methods, casting doubt on the robustness, generality, and
safety of the systems. To provide a deeper understanding
of performance behavior in robotic algorithms, performance
influence models [26]-[28] can be used. These models pre-
dict system performance by capturing important options and
interactions that influence performance behavior using ma-
chine learning and sampling heuristics. However, performance
influence models face limitations in adapting to unexpected
environments due to not able to capture changes in the
performance distribution and often produce incorrect explana-
tions [4]. Additionally, the collection of training data for these
models is costly and requires extensive human supervision.

c) Transfer learning for performance modeling: Ad-
dressing the challenges of adapting to unexpected environ-
ments and costly data collection in learning-based meth-
ods, transfer learning accelerates optimization by selectively
reusing knowledge from previous tasks. Techniques such as
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sim-to-real learning [29], [30] and transferring Pareto frontiers
across different platforms [31] enhance sampling efficiency
and improve training datasets. Each of these techniques uses
the predicted transfer learning frameworks based on corre-
lational analysis. However, changes in the environment and
robotic platform can cause a distribution shift. The ML models
employed in these transfer learning approaches are vulnerable
to spurious correlations [32], [33].

d) Causal analysis in configurable systems: While ma-
chine learning techniques excel in uncovering correlations
between variables, their ability to identify causal links is
limited [34]. By leveraging the information encoded in causal
models, we can benefit from analyses that are only possible
when we explicitly employ causal models, such as interven-
tional and counterfactual analyses [34], [35]. Causal analysis
has been employed for various debugging and optimization
tasks in configurable systems, including finding the root cause
of intermittent failures in database applications [36], detecting
and understanding the root causes of the defect [37], [38],
and improving fault localization [39]. The causality analysis in
these studies is confined to a single environment and platform,
while our approach transfers causal knowledge across different
environments and platforms. In robotic systems, causal models
learned in simulation are used to find explanations for failures
in real robots [4], [40]. However, such methods are limited
to identifying root causes of failures, whereas our approach
extends beyond diagnosis to also prescribe remedies, new
configuration option values that rectify the failure.

III. PROBLEM FORMULATION AND CHALLENGES

In this section, we first motivate our work by illustrating
how an optimal configuration found in one environment often
becomes suboptimal in another. We then formally define the
problem and describe the challenges.

A. Motivating scenario

We motivate our work by demonstrating the non-
transferability of traditional Bayesian optimization through
a simple experiment for robot navigation. In particular, we
explore two deployment scenarios: (i) Sim2Real: transferring
the optimal configurations for energy consumption identified
from simulations to the Turtlebot 3 physical robot (Fig. 2a),
and (ii) Real2Real: transferring the optimal configurations for
position error! identified from Husky to Turtlebot 3 (Fig. 2b).
In both scenarios, we observe that the optimal configurations
identified by Bayesian optimization in the source environments
fail to retain their optimality in the target environment. We
observe that energy consumption is increased by 2.57x, and a
significant increase in position error by 8.64 x 10° times.

B. Problem formulation

Consider a highly configurable robot with d distinct config-
urations. Let X; indicate the configuration parameter ¢, which
can be assigned a value from a finite domain Dom/(X;).

!defined as the Euclidean distance between goal position and robot’s actual
position
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Fig. 2: Non-transferability of optimal configurations across different
environments/platforms: (a) optimal configuration for Turtlebot 3 in
simulation differs from its physical counterpart; and (b) optimal
configuration for Turtlebot 3 is not suitable in Husky.

In general, X; may be set to (i) a real number (e.g., the
number of iterative refinements in a localization algorithm,
frequency of the controller) within specified bounds, denoted
as X; € [X,, X;], where X, and X; are the lower and upper
bounds, respectively, (ii) binary (e.g., whether to enable the
recovery behaviors) or (iii) categorical (e.g., planner algorithm
names). The configuration space is mathematically a Cartesian
product of all the domains of the parameters of interest
X = Dom(X;) x --- x Dom(Xy4). Then, a configuration x,
which is in the configuration space € X, can be instan-
tiated by setting a specific value for each option within its
domain, * = (X7 = z1,Xo = x3,...,Xyg = x4). Finding
a configuration that uniformly optimizes all objectives is
typically not possible, rather there is a trade-off between them.
Pareto optimal solutions signify the prime balance among all
objectives. In the context of minimization, a configuration =
is said to dominate another configuration =’ if f(x) < f(').
A configuration € X is called Pareto-optimal if it is not
dominated by any other configurations x’ € X, where = # .
The goal is to find «*, a configuration that gives rise to Pareto-
optimal performance in the multi-objective space (e.g., fi :
failure rate, fo : mission time, f3 : energy consumption),
given some constraints (h : safety). Here, we assume that
the performance measure can be evaluated in experiments
for any configuration @, and we do not know the underlying
functional representation of the performance. The problem can
be generalized by defining an arbitrary number of performance
objectives (if they can be computed over a finite time horizon).
Mathematically, we represent performance objectives as black-
box functions that map from a configuration space to a real-
valued one: f(x) : X - R. In practice, we learn f by sam-
pling the configuration space and collecting the observations
data, ie., y; = f(x;) + €, x; € X where ¢; ~ N(0,0;). In
other words, we only partially know the response function
through observations D = {(x;,v;)}L,,|D| < |X|. We define
the problem formally as follows:

z* = argmin fi(x), f2(2),. .., fm(x),s.t.: h(x) 20, (1)
xeX

where * € X is a Pareto-optimal configuration and adhere to
the safety constraints.
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Fig. 3: CURE overview.

C. Challenges

In this article, our objective is to propose a solution to
address the following key challenges:

a) Software-hardware interactions and exponentially
growing configuration space: A robotic system consists of
software components (e.g., localization, navigation, and plan-
ning), hardware components (e.g., computer and sensors on-
board), and middleware components (e.g., ROS), with most
components being configurable. The configuration space of
just 100 parameters with only 10 possible values for each
comprises of 101°° possible configurations. (For comparison,
the number of atoms in the universe is estimated as only 10%2.)
Therefore, the task of finding Pareto-optimal configurations for
highly configurable robots and other cyberphysical systems
is orders of magnitude more difficult, because of software-
hardware interactions, compared with software systems.

b) Reality gap and negative transfer from sim to real:
Robot simulators have been extensively used in testing new
behaviors before the new component is being used in real
robots. However, the measurements from simulators typically
contain noise, and the observable effect for some configuration
options may not be the same in a real robot operating in a real
environment, and in some cases, such effect may even have the
opposite effect. Therefore, any reasoning based on the model
predictions learned based on simulation data may become
misleading. Such a reality gap between the sim and real exists
due to unobservable confounders as a result of simplifications
in the sim. Still, there exist stable relationships between
configuration options and performance objectives in the two
environments that can facilitate performance optimization of
real robots.

¢) Multiple objectives: It is common to find multiple
performance objectives in mission specifications (e.g., mission
time, energy, and safety). Typically, the objectives involved in
the specification are independent with each other [41], but
in some cases they may be correlated and conflicting; for
example, faster task completion could lead to higher energy
consumption. Therefore, finding the optimal configuration (for
a given robotic platform in a specific environment and for a

specific task) should be treated as a multi-objective optimiza-
tion problem.

d) Costly acquisition of training data and the safety
critical nature of robotic systems: Algorithm parameters can
be manually adjusted by experiments on real robots or by using
massive amounts of training data when the robotic system
contains elements that are difficult to hard-code (e.g., computer
vision components) [42]. However, collecting training data
from real robots is time-consuming and often requires constant
human supervision [43]. To guarantee the safe behavior of
the robot, the practitioner must either meticulously select
configurations that are safe or acquire an ample amount of
representative data that lead to safe behavior.

IV. CURE: CAUSAL UNDERSTANDING AND REMEDIATION
FOR ENHANCING ROBOT PERFORMANCE

To solve the optimization problem described in §1II, we pro-
pose a novel approach, called CURE. The high-level overview
of CURE is shown in Fig. 3. CURE works in two phases. In
Phase I, CURE reduces the search space for the optimization
problem using data from the source environment, while in
Phase II, CURE performs a black-box optimization in the
reduced search space on the target platform. To elaborate
on the details, in Phase I, CURE learns a structural causal
model that enforces structural relationships and constraints
between variables using performance evaluations from the
source platform (e.g., Husky in simulation). Specifically, we
learn a causal model for a set of random samples® taken in
the source environment®. The configuration options are then
ranked by measuring their average causal effect on the per-
formance objectives through causal interventions. Options with
the largest causal effect are selected to reduce the search space.

2Instead of random samples, other partial designs (e.g., Latin Hypercube)
could have been used, however, we experimentally found that random samples
give rise to more reliable conditional independence tests in the structure
learning algorithm.

3Here the source environment could be a simulator like Gazebo or another
robotic platform. The assumption is that the source is an environment in which
we can intervene at a lower cost.



Next, in Phase II, CURE performs a black-box optimization in
the reduced search space given a fixed sampling budget in the
target platform (e.g., the physical Turtlebot 3). Specifically,
CURE searches for Pareto-optimal configurations in the target,
iteratively fits a surrogate model to the samples, and selects
the next sample based on an acquisition function until the
budget is exhausted. CURE’s high-level procedure is described
in Algorithm 1.

A. Phase I: Reducing the search space via causal inference

Phase I begins by recording performance metrics for m
initial configurations {(«1,y1),...,(Zm,ym)} in the source
environment (Algorithm 1: lines 1-2). We define three types
of variables to learn the causal structure: (i) software-level
configuration options (e.g., hyperparameters in different al-
gorithms [44]) and hardware-level options (e.g., sensor fre-
quency), (ii) intermediate performance metrics (e.g., different
system events in ROS) that map the influence of configura-
tion options on performance objectives, and (iii) end-to-end
performance objectives (e.g., task completion rate, mission
time). We also define structural constraints (e.g., X; + X;)
over the causal structure to incorporate domain knowledge that
facilitates learning with low sample sizes*.

To discover the causal structure, we use an existing structure
learning algorithm Fast causal inference (FCI). We select FCI
because (i) it can identify unobserved confounders [35], [45],
and (ii) it can handle variables of various typologies, such
as nominal, ordinal, and categorical given a valid conditional
independence test. Algorithm 2 describes the details of our
causal learning procedure. It starts by constructing an undi-
rected fully connected graph G, where the nodes represent
the variables (options, intermediate variables, performance
metrics). Next, we evaluate the independence of all pairs of
variables conditioned on all remaining variables using Fisher’s
7 test [46] to remove the edges between independent variables.
Finally, a partial ancestral graph (PAG) is generated (Algo-
rithm 2: line 2), orienting the undirected edges using the edge
orientation rules [35], [45], [47].

A PAG is composed of directed, undirected, and partially
directed edges. The partially directed edges must be fully
resolved to discover the true causal relationships. We employ
the information-theoretic LatentSearch algorithm [48] to ori-
ent partially directed edges in PAG through entropic causal
discovery (line 3). For each partially directed edge, we follow
two steps: (i) establish if we can generate a latent variable
(with low entropy) to serve as a common cause between two
vertices; (ii) if such a latent variable does not exist, then pick
the direction which has the lowest entropy. For the first step,
we assess whether there could be an unmeasured confounder
(say Z) that lies between two partially oriented nodes (say
X and Y). To do this, we use the LatentSearch algorithm
proposed by Kocaoglu [48]. LatentSearch outputs a joint
distribution ¢(X,Y,Z) of variables X, Y, and Z that can
be used to compute the entropy H(Z) of the unmeasured
confounder Z. Following the Kocaoglu guidelines, we set

“4e.g., there should not be any causal connections between configuration
options and their values are determined independently.

Algorithm 1: CURE

Input: Configuration space &X', Maximum budget
Nz, Response function f, Kernel function
Ky, Hyper-parameters 8, Design sample size
n, learning cycle N,
Output: Optimal configurations =* and learned model
M
Dimension Reduction Phase
1 Sample m < N,,4, random configurations from X
within the bounds X; € [ X, X;] to form the initial
design sample set DS = {x1,..., Ty}
2 Obtain performance measurements of the initial design
in the source environment, y; < fs(x;) +¢€;, Va; € Dg
3 Using the initial data Dg, learn a causal model:
CM <« Algorithm 2.
4 Estimate the average causal effects of the configuration
options by intervening in X;: cex, <
1N Y Elys | do (X =2;)] - E [y | do (X, = a)],
where a is the default value of option Xj.
5 Reduce the search space by selecting the top K
options with the largest causal effect: X c X
Configuration Optimization Phase
6 Choose an initial sparse design (Sobol sequences) in X
to find an initial design samples Dy = {x1, ..., &y}
7 Obtain performance measurements of the initial design
in the target environment, y; < fr(x;) + ¢;, Vo, € Dy
8 St < {(zi, yi) Hiigst < n+1
M(z|S1.p, 0) « fit a GP model to the design
10 while t < N,,,,, do
11 if (¢ mod N; =0) then
12 0 < Learn the kernel hyper-parameters by
maximizing the likelihood

o

13 else

14 Find next configuration x; by optimizing the
selection criteria over the estimated response
surface given the data,

x; < argmax, u(x|M,S14 1)

15 Obtain performance for the new configuration
xi, Y < fr(xe) + e

16 Add the newly measured configuration to the
measurement set: Sq.; = {S1.4-1, (@4, Y1) }

17 Re-fit a new GP model M(z[S;.:,6)

18 t<t+1

1 (x*,y*) =minSy.y

max

an entropy threshold 6, = 0.8 x min{H(X),H(Y)}. If the
entropy H(Z) of the unmeasured confounder falls below this
threshold, then we declare that there is a simple unmeasured
confounder Z (with a low enough entropy) to serve as a
common cause between X and Y and accordingly replace
the partial edge with a bidirected («—) edge. When there is
no latent variable with sufficiently low entropy, there are two
possibilities: (i) the variable X causes Y; then there is an
arbitrary function f(-) such that Y = f(X,E), where E is
an exogenous variable (independent of X) that accounts for
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Algorithm 2: Causal Model Learning

Input: Design samples D = {x1,...,@,,} from X
with outcomes y; = f(x;) + ¢;,Va; € D
Output: Acyclic-directed mixed graph Gapyc
1 Initialize a fully connected undirected graph G
2 Apply Fisher’s z test to remove the edges between
independent variables and then orient the edges to get
Gpag-
3 for each partial edge in Gpag do
4 L Resolve the partial edge using the LatentSearch
algorithm [48].
5 The resolved graph composed of directed and
bi-directed edges: Gapmc

system noise; or (ii) the variable Y causes X; then there is
an arbitrary function g(-) such that X = g(V, E), where E
is an exogenous variable (independent of Y') that accounts
for noise in the system. The distribution of F and E can be
inferred from the data. With these distributions, we measure
the entropies H(E) and H(E). If H(E) < H(E), then it
is simpler to explain X —» Y (that is, the entropy is lower
when Y = f(X, E)) and we choose X — Y. Otherwise, we
choose Y —» X.

The final causal model is an acyclic-directed mixed
graph (ADMG). When interpreting a causal model, we view
the nodes as variables and the arrows as the assumed direc-
tion of causality, whereas the absence of an arrow shows
the absence of direct causal influence between variables.
To quantify the influence of a configuration option on a
performance objective, we need to locate the causal paths. A
causal path Px,.,. is a directed path that originates from
a configuration option X; to a subsequent non-functional
property S (e.g. planner failed) and ends at a performance
objective y;. For example, X; ~ Sj, ~ y; denotes X; causes
y; through a subsequent node S; on the path. We discover
Px,~y,; by backtracking the nodes corresponding to each of
the performance objectives until we reach a node without a
parent. We then measure the average causal effect (ACE), by
measuring the causal effects of the configuration options on
the performance metrics and taking the average over the causal
paths. We then rank the configuration options according to
their ACE: {(X;,cex,)}L,, where cex, > cex,,, forall i < d.
Finally, we select a subset of configuration options with the
highest ACE: {X; | (X;,cex,),1<i< K}, K <d, and reduce
the search space to XcX (Algorithm 1: lines 4-5).

B. Phase II: Performance optimization through black-box op-
timization with limited budget

In the configuration optimization phase (lines 6-18), we
search for Pareto optimal configurations using an active learn-
ing approach that operates in the reduced search space in the
target environment. Here the target environment is typically
the target robotic platform that we want to optimize. The
assumption is that any intervention in the target environment is
costly and that we typically assume a small sampling budget.

In some situations, we could assume that the cost of mea-
suring configurations varies. For example, if the likelihood of
violating safety confidence is high for a specific configuration,
we could assign a higher cost to that configuration because it
may damage the robot. We leave this assumption for future
work. Specifically, we start by bootstrapping optimization
by randomly sampling the reduced configuration space to
produce an initial design D = {x1,...,x,}, where x; € X.
After obtaining the measurements regarding the initial design,
CURE then fits a GP model to the design points D to form our
belief about the underlying response function. The while loop
in Algorithm 1 iteratively updates the belief until the budget
runs out: As we accumulate the data Si; = {(x;,y:)}.;,
where y; = fr(x;) +¢; with e ~ N'(0,0?), a prior distribution
Pr(fr) and the likelihood function Pr(S;.|fr) form the
posterior distribution: Pr(f7|S1:t) o< Pr(Sy¢|f7) Pr(fr). We
describe the steps of Phase II as follows:

a) Bayesian optimization with GP: Bayesian optimiza-
tion is a sequential design strategy that allows us to perform
global optimization of black-box functions [49]. The main idea
of this method is to treat the black-box objective function
f(x) as a random variable with a given prior distribution
and then optimize the posterior distribution of f(x), given
experimental data. In this work, we use GPs to model this
black-box objective function at each point x € X. That is, let
S1:+ be the experimental data collected in the first ¢ iterations,
and let x;+; be a candidate configuration that we can select
to run the next experiment. Then the probability that this
new experiment could find an optimal configuration using the
posterior distribution will be assessed:

Pr(ft+1|Slzt7mt+1) ~ N(Mt(%ﬂ), Uf(ﬂ3t+1)),

where ji¢(2:41) and 07(x441) are suitable estimators of the
mean and standard deviation of a normal distribution used to
model this posterior. The main motivation behind the choice
of GPs as prior here is that it offers a framework in which
reasoning can be based not only on mean estimates, but also
on variance, providing more informative decision making. The
other reason is that all the computations in this framework are
based on a solid foundation of linear algebra. Fig 4 illustrates
Bayesian optimization based on GP using a one-dimensional
response surface. The blue curve represents the unknown true
posterior distribution, while the mean is shown in green,
and the confidence interval 95% is shaded. Stars indicate
measurements carried out in the past and recorded in Sy
(i.e., observations). The configuration corresponding to x; has
a large confidence interval due to the lack of observations in
its neighborhood. On the contrary, 4 has a narrow confidence
since neighboring configurations have been experimented with.
The confidence interval in the neighborhood of z» and x3
is not large, and correctly our approach does not decide to
explore these zones. The next configuration .1, indicated
by a small circle on the right side of x4, is selected based on
a criterion that will be defined later. A GP is a distribution
over functions, specified by its mean and covariance:

Y= f(:B) ~ QP(M(w),k(w,w'))7 2
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where k(x,x") defines the distance between « and x’. Assume
Sit = {(z14,91:4)|yi = f(x;)} to be the collection of
observations ¢. The function values are drawn from a multi-
variate Gaussian distribution N'(u, K), where p = u(x1;),

k(whwl) k(whwt)
Ke=| : 3)

k(x:, 1) k(xy,xy)

In the while loop in CURE, given the observations we accu-
mulated so far, we intend to fit a new GP model:

|:f1:t:|NN([.L, [K+021 k ), @

ft+1 k' k(il?t+1,$t+1)

where k(x)" = [k(x,z1) k(x,x2) k(x,x:)] and I
is identity matrix. Given Eq. (4), the new GP model can be
drawn from this new Gaussian distribution:

Pl"(ft+1|51:t7 SCt+1) = N(Mt(wﬂl)a Uf($t+1))7 @)

where

pe(x) = (@) + k(2) (K +0°I) ™ (y - ) (6)
o2(x) = k(z,x) + o’ I - k(z) (K + o*I) k() (7

These posterior functions are used to select the next point
L4l

b) Configuration selection criteria: The selection criteria
is defined as u : X — R that selects @1 € X, should f(-) be
evaluated next (step 7):

Tyy1 = argmaxu(x|M,Sy4) (8)
xeX

Although there are several different criteria in the literature for
multiobjective optimization [50]-[52], CURE utilizes Expected
Hypervolume Improvement (EHVI). EHVI has demonstrated
its strength in balancing exploration and exploitation, and in
producing Pareto fronts with excellent coverage and faster
optimization [53]. EHVI operates by assessing the expected
improvement of a given point in the solution space in terms
of the hypervolume measure—a widely accepted metric for
comparing the quality of solutions in multi-objective opti-
mization. EHVI is particularly useful in robotic applications,
where the solution landscape can be highly complex and
multi-dimensional. The steps of Algorithm 1 are illustrated
in Fig 5. First, an initial design based on random sampling

vii
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)
Fig. 5: Illustration of configuration parameter optimization: (a)

initial observations; (b) a GP model fit; (c) choosing the next
point; (d) refitting a new GP model.

is produced (Fig 5a). Second, a GP model is fitted to the
initial design (Fig 5b). The model is then used to calculate
the selection criteria (Fig 5c). Finally, the configuration that
maximizes the selection criteria is used to run the next
experiment and provide data to reconstruct a more accurate
model (Fig 5d).

¢) Model fitting: Here, we provide some practical con-
siderations to make GPs applicable for configuration opti-
mization. In CURE, as shown in Algorithm 1, the covariance
function k: X x X - R dictates the structure of the response
function that we fit to the observed data. For integer variables,
we implemented the Matérn kernel [54]. The main reason
behind this choice is that along each dimension of the con-
figuration response functions a different level of smoothness
can be observed. Matérn kernels incorporate a smoothness
parameter v > 0 that allows greater flexibility in modeling
such functions. The following is a variation of the Matérn
kernel for v =1/2:

kyo1jo(zi, @) = 03 exp(-1), 9)

where r?(z;,x;) = (z; — ;)" A(z; — x;) for some positive
semidefinite matrix A. For categorical variables, we implement
the following [55]:

kg (i, ;) = exp(S(, (00 (z; # x;))),

where d is the number of dimensions (i.e., the number of con-
figuration parameters), 6, adjust the scales along the function
dimensions and ¢ is a function gives the distance between two
categorical variables using Kronecker delta [55], [56]. TL4CO
uses different scales {0y,¢ = 1...d} on different dimensions
as suggested in [54], [56], this technique is called Automatic
Relevance Determination (ARD). After learning the hyper-
parameters (step 6), if the ¢-th dimension turns out to be
irrelevant, then 6, will be a small value, and therefore will
be discarded. This is particularly helpful in high-dimensional
spaces where it is difficult to find the optimal configuration.
Although the kernel controls the structure of the estimated

(10)
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function, the prior mean u(x) : X — R provides a possible
offset for our estimate. By default, this function is set to a
constant p(x) := pu, which is inferred from observations [56].
However, the prior mean function is a way of incorporat-
ing expert knowledge, and if it is available, then we can
use this knowledge. Fortunately, we have collected extensive
experimental measurements and based on our datasets, we
observed that, for robotic systems, there is typically a sig-
nificant distance between the minimum and the maximum of
each function (Fig. 17, 18). Therefore, a linear mean function
w(x) := ax+b allows for more flexible structures and provides
a better fit for the data than a constant mean. We only need
to learn the slope for each dimension and the offset (denoted
e = (a,b)). Due to the heavy learning computation (step
12 in Algorithm 1), this process is computed only for every
N, l“’ iteration. To learn the hyperparameters of the kernel and
also the prior mean functions, we maximize the marginal
likelihood [56] of the observations S;.;. To do that, we train the
GP model (6) with S;.;. We optimize the marginal likelihood
using multi-started quasi-Newton hill climbers [54]. For this
purpose, we used the Ax + BoTorch library. Using the kernel
defined in (10), we learn 6 := (6o.q, 0.4, 02) which comprises
the hyperparameters of the kernel and the mean functions. The
learning is performed iteratively, resulting in a sequence of 6,

forizl...[N%;“ﬂJ.

V. EXPERIMENTS AND RESULTS

We evaluate CURE on two different tasks: (i) robot naviga-
tion, and (ii) robot manipulation. In the robot navigation task,
we use Husky and Turtlebot 3 platforms. For robot manipu-
lation, we use Franka Emika Panda platform in Gazebo. We
answer the following research questions (RQs):

o RQI (Effectiveness): How effective is CURE in (i) ensur-

ing optimal performance; (ii) utilizing the budget; and
(iii) respecting the safety constraints compared to the
baselines?

o RQ2 (Transferability): How does the effectiveness of

CURE change when the severity of deployment changes
varies (e.g., environment and platform change)?

A. Experimental setup

a) Robot navigation: We simulate Husky and Turtlebot
3 in Gazebo to collect the observational data by measuring
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Fig. 7: Correlation between different performance objectives derived
from observational data.

the performance metrics (e.g., planner failed) and perfor-
mance objectives (e.g., energy consumption) under different
configuration settings to train the causal model. Note that
we use simulator data to evaluate the transferability of the
causal model to physical robots, but CURE also works with
data from physical robots. We deploy the robot in a con-
trolled indoor environment and direct the robot to navigate
autonomously to the target locations (Fig. 6a). The robot
was expected to encounter obstacles and narrow passageways,
where the locations of the obstacles were unknown prior to
deployment. The mission was considered successful if the
robot reached each of the target locations. We fixed the
goal tolerance parameters (xy_goal_tolerance=0.2, and
yaw_goal_tolerance=0.1) to determine whether a target
was reached. We defined the following properties for the
ROS Navigation Stack [44]: (i) Task completion rate: T, =
%; (i1) Traveled distance: Distance traveled from
start to destination; (iii) Mission time: Total time to complete
a mission (iv) Position error: Euclidean distance between the
actual target position and the position reached by the robot,
Egist = \/Xiei(t; —r;)2, where t and r denote the target
and position reached by the robot, respectively; (v) Recovery
executed: Number of rotate recovery and clear costmap
recovery executed per mission; and (vi) Planner failed:
Number of times the planner failed to produce a path during
a mission.

b) Robot manipulation: We simulate the Franka Emika
Panda in Gazebo and perform a pick-and-place task using
the Moveit [57] motion planning framework. To learn a
causal model, we measure the following performance ob-
jectives under different configuration settings: (i) Average
tranjectory jerk: Rate of change of acceleration, averaged
across all joints and time steps, we define average jerk =

2
% IR \/ Z;:l (%’;(Fl)) , where N is the total number
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of time steps, a;(t) is the acceleration of joint j at time ¢, and
At is the time interval between consecutive time steps; and
(i) Task execution time: The total execution time from picking
up an object to placing.

B. Evaluation

To learn a causal model from the source (a low-cost
environment), we generated the values for the configurable
parameters using random sampling and recorded the perfor-
mance metrics (the intermediate layer of the causal model
that maps the influence of the configuration options to the
performance objective) for different values of the configurable
parameters. We use a budget of 200 iterations for each method.
When running each method for the same budget, we compare
the Pareto front (PF) and Pareto hypervolume (HV'). The
Pareto front is the set of objective vectors corresponding to
all Pareto-optimal configurations in the configuration space
X. The Pareto hypervolume is commonly used to measure the
quality of an estimated Pareto front [58], [59]. We define the
Pareto front and hypervolume as follows:

PF={(fj(z))j%, | x € X is Pareto-optimal}, (11)

HV($*,fref):A ref]

ﬁ [f;(z7,) 12)

em]

where HV (z*, f¢/) resolves the size of the dominated space
covered by a non-dominated set x*, fref refers to a user-
defined reference point in the objective space, and A(.) refers
to the Lebesgue measure. In our experiments, we fixed the
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Fig. 9: Effectiveness of CURE and baseline methods for manipula-
tion task: (a) Hypervolume; and (b) Efficiency.

f7¢f points to the maximum observed values of each objective
among all the methods.

To compare the efficiency (1) of each method, we define an
efficiency metric as follows.

— ZZ=1 7;kuccess
Y1k

where Tgyccess 1S @ binary variable taking values 0 or 1,
denoting the success of a task during the k' iteration. We
also compare the number of unsuccessful execution (e.g.,
when the robot failed to complete a task) and the number
of constraint violations (e.g., when the robot completed the
task but violated a constraint). We compared CURE with the
following baselines:

; (13)

« MOBO: We implement multiobjective Bayesian op-
timization (MOBO) using AX [l4]—an optimization
framework that can optimize discrete and continuous
configurations.

« RIDGECV [15], [16]: A feature extraction method that
selects the important features based on the highest abso-
lute coefficient. We use RidgeCV to determine the impor-
tant configuration options and generate a reduced search
space which consists of only the important configuration
options. We then perform an optimization using MOBO
on the reduced search space.

C. RQI: Effectiveness

We evaluated the effectiveness of CURE in finding an
optimal configuration compared to the baselines. We collect
observational data by running a mission 1000 times from
Husky in simulation under different configuration settings and
recorded the performance objectives. In Fig. 7, the histograms
of performance objectives are depicted along the diagonal line,
while scatter plots illustrating pairs of performance objectives
are displayed outside the diagonal. The histograms of perfor-
mance objectives, namely planner failed, recovery executed,
obstacle distance, and energy, have shapes similar to one half
of a Gaussian distribution. Scatter plots depicting different
pairs of performance objectives, such as mission time, distance
traveled, and energy, exhibit positive linear relationships. We
selected energy and position error as the two performance
objectives given the imperative to incorporate uncorrelated
objectives in the multi-objective optimization framework, un-
derscored by their lowest correlation coefficient, ensuring the
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diversity of the optimization criteria. We then learn a causal
model using observational data. The search space was reduced
according to the estimated causal effects on performance
objectives and constraints by selecting top K configuration op-
tions (e.g., {Energy,,,x } U{PoseError;,x } u{Safety,,, })
and performed optimization using Algorithm 1.

a) Setting: For the Husky robot, we set the objec-
tive thresholds Energyrty, = 40 Wh and PoseErrory, =
0.18 m. We compute the hypervolume using Eq. (12)
by setting the f"¢/ points at 400 for energy and
35 for position error within the coordinate system.
We incorporate the safety con-
straint h(ax) by defining a
test case, where the robot
must maintain a minimum dis-
tance from obstacles to avoid
collisions. We incorporate a
user defined penalty func-
tion (Fig. 11) for each instance
0 < ah(x) < 1 that penal-
izes T, if h(x) is violated. In
Fig. 11, T'h; is a soft constraint
threshold and Tho is a hard
constraint threshold. That is, we penalize 7., gradually if
Thy > h(x) > Thy and give the maximum penalty if
h(z) < Tho to ensure safety. In our experiments, we set
Thy =0.25 and The = 0.18. We defined the safety constraint
as follows:

Penalty

Soft
‘constraint

Thy Thy hx)

Hard constraint

(=]

Fig. 11: Penalty function.

N

Tor -+ Y arh(z) > 6 (14)
N %

where 6 is a user-defined threshold. In our experiments, we

set § = 0.8. For the manipulation task, we set the f™¢f points

at 16 for task execution time and 113 for average trajectory

jerk.

b) Results: CURE performed better than MOBO and
RidgeCV-MOBO in finding a Pareto front with a higher hyper-
volume, as shown in Fig. 8. In our experiments, we observed a
comparable Pareto front between CURE and MOBO (Fig. 8a),
which can be attributed to MOBO’s exploration of an extensive
search space that includes all possible configuration options.
On the contrary, CURE confines its exploration to a reduced
search space, composing only configuration options with a

greater causal effect on performance objectives. Although
CURE and MOBO have a similar Pareto front, CURE achieved
a higher hypervolume with a less amount of budget (Fig. 8b).
Fig. 10 illustrates the budget utilization of CURE and the
baseline methods. CURE demonstrated better budget utiliza-
tion, as reflected in the increased density of purple-colored
data points surrounding the Pareto front and the achievement
of a higher 7. in fewer iterations compared to the base-
line methods. When comparing the penalty response given
in Eq. (14), we observed CURE selected configuration options
that achieved the lower penalty, as shown in Fig. 8d. Further-
more, CURE outperformed the baselines in terms of efficiency,
achieving a 1.3x improvement over MOBO and achieved this
improvement 2x faster compared to MOBO (as shown in
Fig. 8c). RidgeCV-MOBO, however, underperformed, mainly
because it was unable to identify the core configuration options
influencing the performance objectives (Fig. 8b, 8c, 10b).
Moreover, CURE continuously outperformed the baselines in
the manipulation task (Fig. 9). Therefore, CURE is more
effective in finding optimal configurations compared to the
baselines.

D. RQ2: Transferability

Understanding CURE sensitivity to different degrees of
deployment changes, such as transfer of the causal model
learned from a source platform (e.g., Gazebo simulation) to a
target platform (e.g., real robot), is critical. Sensitivity anal-
ysis is especially crucial for such scenarios, considering that
distribution shifts can occur during deployment changes. We
answer RQ2 through an empirical study. We examine different
levels of severity in deployment changes, where severity is
determined by the number of changes involved. For example,
a deployment change is considered more severe when both
the robotic platform and the operating environment change, as
opposed to changes limited solely to the environment.

a) Setting: We consider Husky and Turltebot 3 in sim-
ulation as the source and Turtlebot 3 physical robot as the
target. We evaluate two deployment scenarios (Fig. 1): (i) Sim-
to-real: We trained the causal model using Algorithm 2 on
observational data obtained by conducting a mission 1000
times using Turtlebot 3 in Gazebo environment (Fig. 6b).
The robot was expected to encounter dynamic obstacles (the
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trajectories of the obstacles are shown in Fig. 6b). The mission
was considered successful if Turtlebot 3 reached each of
the target locations. Subsequently, we used the causal model
learned from simulation (environment A) to the Turtlebot 3
physical robot for performance optimization in two distinct
environments (environment B and C). (ii) Sim-to-real (STR)
& Platform change (PC): We consider the change of two
categories, the Sim-to-real and robotic platform change. In
particular, we applied the causal model used in RQ1 (learned
using Husky in simulation) to the Turtlebot 3 physical robot in
a real environment, as shown in Fig. 1. We use the identical
experimental setting for the Husky as described in §V-C. For
Turtlebot 3, we set the objective thresholds, Energyry, = 2 Wh
and PoseErrormy, = 0.1 m. We compute the hypervolume us-
ing Eq. (12) by setting the "¢/ points at 19.98 for energy and
3 for position error within the coordinate system. We also set
Thy =0.25 and Tho = 0.15 in the penalty function (Fig. 11).

b) Results: As shown in Fig. 12, CURE continuously
outperforms the baselines in terms of hypervolume (Fig. 12a),
Pareto front (Fig. 12b), efficiency (Fig. 12c), penalty re-
sponse (Fig. 12d), and violations and failures (Fig. 12e)
for each severity changes. Specifically, compared to MOBO,
CURE finds a configuration with 1.5x higher hypervolume in
Sim-to-real setting (low severity), and 2x higher hypervolume
when we change the platform in addition to sim-to-real (high
severity). Moreover, CURE achieved efficiency gains of 2.2x,
and 4.6x over MOBO with low and high severity of deploy-
ment changes, respectively. To provide insights into the factors
contributing to CURE’s enhanced performance, we compared
constraint violation #y and task failure 7, revealing reduc-
tions of 48% in 6y, while also demonstrating 28% lower T
under high severity changes compared to RidgeCV-MOBO.
Therefore, we conclude that CURE performs better compared
to the baseline methods as the deployment changes become
more severe.

VI. PERFORMANCE AND SENSITIVITY ANALYSIS OF CURE

To explain CURE’s advantages over other methods, we
conducted a case study employing the same experimental setup
described in §V-C. We also demonstrate CURE’s sensitivity by
varying the top K values. Our key ffinding are discussed in
the following.

a) CURE'’s efficient budget utilization is attributed to a
comprehensive evaluation of the core configuration options:
For a more comprehensive understanding of the optimiza-
tion process, we visually illustrate the response surfaces of
three pairs of options, each with varying degrees of ACE
in energy. Fig. 13b contains options with high ACE values,
while Fig. 13d contains only options with lower ACE values.
Options with ACE values close to the median are presented in
Fig. 13c. We observe that response surfaces with higher ACE
values are more complex compared to those with lower ACE
values. Figs. 13b-13d also show that CURE explored a range
of configurations within the range by systematically varying
configurations associated with higher ACE values than those
associated with lower ones. In particular, because they have the
lowest ACE, the pair of options involving trans_stopped_vel
and max_scaling_factor was not considered by CURE in the
optimization process, avoiding allocating the budget to less ef-
fective options. In contrast, both MOBO and RidgeCV-MOBO
wasted the budget exploring less effective options (Fig. 13d).
Note that the option pair involving Min_vel_x and scall-
ing_speed in Fig. 13b, which exhibits the highest ACE, was
not identified by RidgeCV-MOBO. We also observe that due
to having a larger search space (entire configuration space),
MOBO struggled to explore regions effectively (exhibits a
more denser data distribution) compared to CURE . In our
previous study [4], we evaluated the accuracy of the key
configuration options identified using causal inference through
a comprehensive empirical study. Therefore, CURE strate-



e MOBOm RidgeCV# CURE

B ¢, nG 3 3¢ 1 G

0.35 112
104
% 0.30 96
88
» &
4 | 80
=} = 0.2
o =] 72
z 5 v 64
Q Tk 56
j‘ C 48
LiXx
. 40
-0.2  -0.1 .
Nodes min_vel x
(b) High ACE
8
8 g
g 8 72
= o 66
2 £ 60
= I 54
19)
& 3, 48
= < 42
A g 36

%50 0.075 0.100 0.125 0.150
trans_stopped_vel

(d) Low ACE

05 1.0 15 20
transform tolerance

(c) Median ACE

Fig. 13: (a) Significant overlap between causal structures (common
edges are represented as purple squares) developed in Husky (Gs) and
Turtlebot 3 (G:). Unique edges are represented as green and yellow
squares in G5 and G, respectively. (b) (c) and (d) represents contour
plot with options of different causal effects. The color bar indicates
the energy values, where lower values indicate better performance.

gically prioritize core configuration options with high ACE
values, ensuring efficient budget utilization and demonstrating
a better understanding of such complex behavior (Fig. 15),
while bypassing less effective options.

b) CURE leverages the knowledge derived from the
causal model learned on the source platform: In Fig. 13a, we
compare the adjacency matrix between causal graphs learned
from the source and target platforms, respectively. We compute
the adjacency matrix A from a causal graph G = (V, E), where
V' is the set of vertices and F is the set of edges, as follows:

1, if (i,j) e E

: 15)
0, otherwise

where (i,7) represents the edge from vertex i to vertex j.
In particular, both causal graphs share a significant overlap,
providing a rationale for CURE’s enhance performance when
transferring the causal model learned from a source (e.g, Husky
in simulation) to a target (e.g., Turtlebot 3 physical platform).
Therefore, a causal model developed on one platform or
environment can be leveraged as prior knowledge on another,
demonstrating the cross-platform applicability and usefulness
of the acquired causal understanding.

c) How sensitive is CURE when the value of top K
varies?: We investigate CURE’s performance with different K
values and how it affects the optimization process. We conduct
a single-objective optimization on the Turtlebot 3 platform to
demonstrate the sensitivity of CURE . As shown in Fig 14,
there is a trade-off between the top K values and the iterations
required to achieve high-quality solutions. Smaller K values
allow the optimization process to quickly find low energy
values but may limit exploration, leading to early plateauing.
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Fig. 14: Sensitivity of CURE under different top K values.

Conversely, larger K values enable more extensive explo-
ration, leading to more gradual improvements and potentially
better solutions, but requiring more iterations. This is because,
when the search space is smaller, the optimization process
can exploit known good areas more effectively. In contrast, a
larger search space requires more exploration, which extends
the optimization process. One approach for selecting K is to
define a threshold on the ACE values and select options that
exceed this threshold. This can be done by using a threshold
defined as {X | XacE > HACE + OACE}, Where pacg is the
mean and oacg is the standard deviation of the ACE values.
Alternatively, a threshold based on the percentile of ACE
values can be employed, such as selecting options with ACE
values greater than the 75" percentile. We leave this selection
up to practitioner as user preferences may vary depending on
the task, environment, and robotic system.

VII. DISCUSSION
A. Usability of CURE

The design we have proposed is general and extendable
to other robotic systems but would require some engineering
effort. In particular, to apply CURE to a novel problem, the
practitioner must identify (i) configuration options, (ii) perfor-
mance metrics, and (iii) key performance indicators (KPIs).
Note that the abstraction level of the variables in the causal
model depends on the practitioner and can go all the way
down to the hardware level. In defining the metrics and KPIs,
guidelines provided by the National Institute of Standards and
Technology (NIST) can be used [60], [61]. These guidelines
help classify variables as non-manipulable in the three-layer
causal model design [4], which simplifies the performance
modeling process by allowing a clear distinction between
configurable and performance variables. Moreover, we provide
various performance metrics and performance objectives for
mobile robot navigation and robot manipulation tasks in §V.

B. Limitations

a) Causal model error: The NP-hard complexity of
causal discovery introduces a challenge [62], implying that
the identified causal model may not always represent the
ground-truth causal relationships among variables. It is cru-
cial to recognize the potential for discrepancies between the
causal structure discovered and the actual structures. However,
such causal models can still be employed to achieve better



performance compared to ML-based approaches in systems
optimization [63] and debugging tasks [64], because causal
models avoid capturing spurious correlations [45].

b) Potential biases when transferring the causal model:
Caution must be exercised when reusing the entire causal
graph learned from the source platform, as differences between
causal graphs in the two platforms (as indicated by the green
and yellow squares in Fig. 13a, representing edges unique
to the source and target, respectively) can induce bias. It
is crucial to discover new causal connections (indicated by
the yellow squares in Fig. 13a) on the target platform based
on observations. Given the small number of edges to be
discovered, this task can easily be accomplished with a limited
number of observational samples from the target platform.

C. Future directions

a) Incorporating Causal Gaussian Process (CGP):
Using CGP in the optimization process has the potential
to capture the behavior of the performance objective better
compared to traditional GP [65]. Unlike GP, CGP represents
the mean using interventional estimates via do-calculus. This
characteristic renders CGP particularly useful in scenarios with
a limited amount of observational data or in areas where
observational data is not available.

b) Updating the causal model at run-time: There is
potential in employing an active learning mechanism that
combines the source causal model G, with a new causal model
G learned from a small number of samples from the target
platform. This approach is particularly promising considering
the limitations discussed in §VII-B.

¢) Dynamically selecting top K at run-time: In our
framework, K is a hyperparameter and its value is defined
by the practitioner. Motivated by Fig 14, there is potential for
implementing a dynamic selection approach. This approach
would start with a lower K and progressively increase the K
if the objective reaches a plateau.

VIII. CONCLUSION

We presented CURE , a multi-objective optimization method
that identified optimal configurations for robotic systems.
CURE converged faster than the baseline methods and demon-
strated effective transferability from simulation to real robots,
and even to new untrained platforms. CURE constructs a
causal model based on observational data collected from a
source environment, typically a low-cost setting such as the
Gazebo simulator. We then estimate the causal effects of
configuration options on performance objectives, reducing the
search space by eliminating configuration options that have
negligible causal effects. Finally, CURE employs traditional
Bayesian optimization in the target environment, but confines
it to the reduced search space, thus efficiently identifying
the optimal configuration. Empirically, we have demonstrated
that CURE not only finds the optimal configuration faster
than the baseline methods, but the causal models learned in
simulation accelerate optimization in real robots. Moreover,
our evaluation shows the learned causal model is transferable
across similar but different settings, encompassing different
environments, mission/tasks, and new robotic systems.

xiii

APPENDIX A
ADDITIONAL DETAILS

A. Background and definitions

1) Configuration space X: Consider X; as the i'" con-
figuration option of a robot, which can be assigned a range
of values (e.g., categorical, boolean, and numerical). The
configuration space X is a Cartesian product of all options
and a configuration x € X in which all options are assigned
specific values within the permitted range for each option.
Formally, we define:

«» Configuration option: X1, Xo, -, Xy

« Option value: x1,...,x4

« Configuration: x = (X7 = x1,..., X4 =24)

« Configuration space: X = Dom/(X1) x -+ x Dom(X4)

2) Partial Ancestral Graph (PAG): Each edge in the PAG
denotes the ancestral connections between the vertices. A PAG
is composed of the following types of edges:

e A —» B: The vertex A causes B.

e A «— B: There are unmeasured confounders between
vertices A and B.

e A o B: A causes B, or there are unmeasured con-
founders that cause both A and B.

e A oo B: A causes B, or B causes A, or there are
unmeasured confounders that cause both A and B.

For a comprehensive theoretical foundation on these ideas, we
refer the reader to [47], [66], [67]

3) Causal model G: A causal model is an acyclic-directed
mixed graph (ADMG) [68], [69] which encodes performance
variables, functional nodes (which defines functional depen-
dencies between performance variables such as how variations
in one or multiple variables determine variations in other
variables), causal links that interconnect performance nodes
with each other via functional nodes. An ADMG is defined
as a finite collection of vertices, denoted by V, and directed
edges F, (ordered pairs E; ¢ V x V, such that (v,v) ¢ E
for any vertex v), together with bidirected edges, denoted by
E; (unordered pairs of elements of V). If (v,w) € E; then
v < w, and if in addition (v,w) € E, then v & w.

4) Causal paths Px,.,,: We define P = (vo,v1,..
such that the following conditions hold:

M 7vn>

e ¥, is the root cause of the functional fault and v,, = yp.
e VO0<i<n, v;eVandV 0<i<n, (v,v41) €
(E a4V E 5).

o V 0<i<j<n, v;is a counterfactual cause of v;.

o |P| is maximized.

5) Why do robotic systems fail?: A robotic system may
fail to perform a specific task or deteriorate from the desired
performance due to (i) Hardware faults: physical faults of the
robot’s equipment (e.g., faulty controller), (ii) Software faults:
faulty algorithms and/or faulty implementations of correct
algorithms (e.g., incorrect cognitive behavior of the robot),
(ii1) interaction faults: failures that result from uncertainties in
their environments. The software stack is typically composed
of multiple components (e.g., localization, navigation), each
with a plethora of configuration options (different planner
algorithms and/or parameters in the same planner algorithm).
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TABLE I: Configuration options in move base.

Option Values/Range

Configuration Options

Husky Turtlebot 3
controller_frequency 30-70 5.0-15.0
planner_patience 30-70 3.0-7.0
controller_patience 3.0-7.0 10.0-20.0
conservative_reset dist 1.0-50 1.0-5.0
planner_frequency 0.0 5.0
oscillation_timeout 5.0 3.0
oscillation_distance 0.5 0.2

TABLE II: Configuration options in costmap common.

Option Values/Range

Configuration Options

Husky Turtlebot 3
publish_frequency 1.0 - 6.0 5.0 - 20.0
resolution 0.02-0.15 0.02-0.15
transform_tolerance 0.2 - 2.0 02-2.0
update_frequency 1.0 - 6.0 5.0 - 20.0

TABLE III: Configuration options in costmap common infla-
tion.

Option Values/Range

Configuration Options

Husky Turtlebot 3
cost_scaling_factor 1.0 - 20.0 3.0 - 20.0
inflation_radius 03-1.5 0.3-20

Similarly to software components, hardware components also
have numerous configuration options. Incorrect configurations
can cause a functional fault (the robot cannot perform a task
successfully) or a non-functional fault (the robot may be able
to finish tasks, but with undesired performance).

TABLE IV: Configuration options in DWAPIlannerROS.

. . Option Values/Range
Configuration Options

Husky Turtlebot 3
acc_lim_theta 15-52 20-45
acc_lim_trans 0.1-0.5 0.05-0.3
acc_lim_x 1.0-5.0 1.5-40
acc_lim_y 0.0 0.0
angular_sim_granularity 0.1 0.1
forward_point_distance 0.225 - 0.725  0.225 - 0.525
goal_distance_bias 5.0 - 40.0 10.0 - 40.0
max_scaling_factor 0.1 -0.5 0.1 -04
max_vel_theta 05-20 1.5-40
max_vel_trans 0.3 -0.75 0.15-04
max_vel_x 0.3 -0.75 0.15-04
max_vel_y 0.0 0.0
min_vel_theta 1.5-3.0 05-25
min_vel_trans 0.1 -0.2 0.08 - 0.22
min_vel_x -0.3-0.0 -0.3-0.0
min_vel_y 0.0 0.0
occdist_scale 0.05 - 0.5 0.01 - 0.15
oscillation_reset_angle 0.1 -0.5 0.1-0.5
oscillation_reset_dist 0.25 0.25
path_distance_bias 10.0 - 50.0 20.0 - 45.0
scaling_speed 0.15-0.35 0.15 - 0.35
sim_granularity 0.015 - 0.045  0.015 - 0.045
sim_time 0.5-35 0.5-25
stop_time_buffer 0.1-1.5 0.1-1.5
theta_stopped_vel 0.05 - 0.15 0.05 - 0.15
trans_stopped_vel 0.05 - 0.15 0.05 - 0.15
twirling_scale 0.0 0.0
vth_samples 10 - 30 20 - 50
vx_samples 3-10 10 - 30
vy_samples 0-15 0-5
xy_goal_tolerance 0.2 0.08
yaw_goal_tolerance 0.1 0.17

6) Non-functional fault: The non-functional faults (inter-
changeably used as performance faults) refer to cases where
the robot can perform the specified task but cannot meet the
specified performance requirements of the task specification.
For example, the robot reached the target location(s); however,
it consumed more energy. We define the non-functional prop-
erty N = {p1,...,pn}, Where p1,...,p, represents different
non-functional properties of the robotic system (e.g., energy,
mission time) and p; is the value of jth N. The specified
performance goal is denoted as p;,. Performance failure occurs
when p; # p;s. Extending the previous scenario, let E' be the
energy consumption during task i and let 7 be the mission
completion time. The specified performance goals for the task
are indicated as F;_.; <= en, Ts_4 <= tt respectively. A non-
functional fault can be defined using the following inequalities:

Ng = (E">en) v (T > tt) (16)



TABLE V: Configuration options in moveit chmop planning.

Configuration options Option Values/Range

planning_time_limit 1.0 - 10.0
max_iterations 1-500
max_iterations_after_collision_free 1 - 10
smoothness_cost_weight 0.05-5.0
obstacle_cost_weight 0.0-1.0
learning_rate 0.001 - 0.5
smoothness_cost_velocity 0.0 - 10.0
smoothness_cost_acceleration 0.0 - 10.0
smoothness_cost_jerk 0.0 - 10.0
ridge_factor 0.0 - 0.01
use_pseudo_inverse True, False
pseudo_inverse_ridge_factor 0.00001 - 0.001
joint_update_limit 0.05 - 5.0
collision_clearance 0.05 - 2.0
collision_threshold 0.01 - 0.15
use_stochastic_descent True, False
enable_failure_recovery True, False
max_recovery_attempts 0-10
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Fig. 17: Pairwise interactions between high ACE configuration
options, performance objectives, and constraints, derived from ob-
servational data.

B. Additional details about experimental setup

1) Configuration Options in ROS nav core and Moveit:
Table I-IV shows the configuration space for each component
in the ROS navigation stack and Table V shows the configura-
tion space in Moveit chomp planning used in our experiments.
We fixed the goal tolerance parameters (xy_goal_tolerance,
and yaw_goal_tolerance) to determine if a target was
reached. Complex interactions between options (intra or inter
components) give rise to a combinatorially large configuration
space.
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Fig. 18: Pairwise interactions between low ACE configuration
options, performance objectives, and constraints, derived from ob-
servational data.

TABLE VI: ACE values of the configuration options.

ACE

Configuration Options Energy zgii:ional T Safety
scaling_speed 199.349  65.980 0.454  0.633
min_vel_x 115496 18.764 0.566 0.217
controller_frequency 25.370 3.695 0.050 0.019
publish_frequency 19.598 6.026 0.223 0.016
sim_time 15.570 4.680 0.110 = 0.062
acc_lim_x 12.589 3.050 0.013 0.016
stop_time_buffer 12.130 3.292 0.069 0.011
inflation_radius 11.267 3.663 0.049  0.017
path_distance_bias 10.550 2.559 0.033  0.021
max_vel_theta 10.507 0.394 0.026  0.062
update_frequency 9.250 3.362 0.118 0.019
vth_samples 8.599 2.083 0.028  0.021
cost_scaling_factor 8.565 1.092 0.014  0.021
min_vel_theta 8.152 0.049 0.027 0.016
conservative_reset_dist  7.693 2.808 0.025 0.014
planner_patience 7.532 2.656 0.022  0.069
transform_tolerance 7.103 3.892 0.148 0.038
vy_samples 5.614 2.107 0.021 0.017
goal_distance_bias 5.159 1.365 0.028 0.013
vx_samples 4.901 0.847 0.088 0.014
forward_point_distance = 4.877 1.100 0.032  0.006
controller_patience 4.116 4.613 0.031 0.016
acc_lim_theta 4.101 1.835 0.043  0.006
occdist_scale 2.803 0.804 0.035  0.000
acc_lim_trans 2.349 0.818 0.015 0.003
max_vel_trans 2.080 0.307 0.007  0.000
oscillation_reset_angle 1.791 0.715 0.028  0.007
max_vel_x 1.150 0.057 0.000 0.003
min_vel_trans 0.948 0.146 0.002  0.000
resolution 0.188 0.266 0.010  0.001
sim_granularity 0.114 0.000 0.001  0.000
trans_stopped_vel 0.106 0.042 0.002  0.000
max_scaling_factor 0.059 0.062 0.021  0.005
theta_stopped_vel 0.000 0.000 0.000  0.002

C. Additional details for evaluation

1) RQI additional details: We also compared 6y and Tp,
revealing reductions of 8.5% in 6y, while also demonstrating
lower 13.5% Tr compared to MOBO as shown in Fig. 16.



2) ACE values of configuration options: Table VI shows the
corresponding ACE values of the configuration options on the
performance objectives and constraints. We set the top K =5,
represented by blue. Note that CURE reduces the search space
from 34 configuration options to 10 by eliminating config-
uration options that do not affect the performance objective
causally.

3) Observational data additional details: In Fig. 17 and
Fig. 18, we visualize the interactions between core config-
uration options (pairwise) and their influence on the energy,
position error, task success rate, and the safety constraint from
the observational data. We observe that the surface response
of configuration options with higher ACE values is complex
than those with lower ACE values.
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