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Abstract

The versatility of large language models (LLMs)

led to the creation of diverse benchmarks that thor-

oughly test a variety of language models’ abilities.

These benchmarks consist of tens of thousands

of examples making evaluation of LLMs very ex-

pensive. In this paper, we investigate strategies

to reduce the number of evaluations needed to

assess the performance of an LLM on several

key benchmarks. For example, we show that to

accurately estimate the performance of an LLM

on MMLU, a popular multiple-choice QA bench-

mark consisting of 14K examples, it is sufficient

to evaluate this LLM on 100 curated examples.

We release evaluation tools and tiny versions of

popular benchmarks: Open LLM Leaderboard,

MMLU, HELM, and AlpacaEval 2.0. Our em-

pirical analysis demonstrates that these tools and

tiny benchmarks are sufficient to reliably and effi-

ciently reproduce the original evaluation results1.

1. Introduction

Large Language Models (LLMs) have demonstrated remark-

able abilities to solve a diverse range of tasks (Brown et al.,

2020). Quantifying these abilities and comparing different

LLMs became a challenge that led to the development of sev-

eral key benchmarks, e.g., MMLU (Hendrycks et al., 2020),

Open LLM Leaderboard (Beeching et al., 2023), HELM
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2Department of Translation and Language Sciences, University
of Pompeu Fabra, Spain 3IBM Research 4MIT 5MIT-IBM Wat-
son AI Lab. Correspondence to: Felipe Maia Polo <felipema-
iapolo@gmail.com>.
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1To use our methods for efficient LLM evaluation,
please check https://github.com/felipemaiapolo/

tinyBenchmarks. This repository includes a Python package
for model evaluation and tutorials. Additionally, we have uploaded
tiny datasets on huggingface.co/tinyBenchmarks and
developed a Google Colab demo in which you can easily use our
tools to estimate LLM performances on MMLU. To reproduce the
results in this paper, please check this GitHub repository.

(Liang et al., 2022), and AlpacaEval (Li et al., 2023).

These benchmarks are comprised of hundreds or thousands

of examples, making the evaluation of modern LLMs with

billions of parameters computationally, environmentally,

and financially very costly. For example, Liang et al. (2022)

report that evaluating the performance of a single LLM

on HELM costs over 4K GPU hours (or over $10K for

APIs). Benchmarks like AlpacaEval (Li et al., 2023) also

require a commercial LLM as a judge to perform evaluation,

further increasing the costs. Furthermore, evaluation of

a single model is often performed many times to monitor

checkpoints during pre-training (Biderman et al., 2023a; Liu

et al., 2023) and to explore different prompting strategies

or a wider range of hyperparameters (Weber et al., 2023b;

Mizrahi et al., 2023; Sclar et al., 2023; Voronov et al., 2024).

Figure 1. Estimating accuracy on MMLU (true accuracy) using

100 curated examples (predicted accuracy). IRT++, our best-

performing evaluation strategy, predicts the accuracy of recent

LLMs released between December 30th and January 18th within

1.9% of their true accuracy on all of MMLU (14K examples).

Our work reassesses the need to evaluate LLMs on such

large benchmark datasets. In Figure 1 we demonstrate the

efficacy of our best evaluation strategy on MMLU, where

we compare accuracy estimates obtained from evaluating

LLMs on a curated subset of 100 examples (less than 1%

of the examples) to accuracy on all of MMLU, achieving

average estimation error under 2%.

We consider a range of evaluation strategies (§3):

1. Stratified random sampling as proposed by Perlitz et al.

1

ar
X

iv
:2

4
0
2
.1

4
9
9
2
v
2
  
[c

s.
C

L
] 

 2
6
 M

ay
 2

0
2
4



tinyBenchmarks: evaluating LLMs with fewer examples

(2023) for HELM. This approach is the simplest to use

but can result in a large estimation error.

2. Clustering examples based on LLMs that have already

been evaluated. The key idea is to find examples where

(in)correct prediction of an LLM implies that it will

also be (in)correct on a subset of other examples. This

method performs well in some settings but can be unre-

liable when such correctness patterns are spurious, e.g.,

when predicting the accuracy of an LLM specialized

to a domain. This strategy is inspired by the Anchor

Points method (Vivek et al., 2023) which clusters mod-

els’ confidence in the correct class for faster evaluation

on classification tasks.

3. New strategies built using Item Response Theory (IRT)

(Lord et al., 1968) for evaluating individuals through

standardized tests. Applying IRT to LLMs viewed as

testees and benchmarks as tests, we learn representa-

tions of examples encoding latent abilities required to

perform well on these examples. Clustering these repre-

sentations allows us to find a more robust evaluation set.

Furthermore, using the IRT model, we develop tools for

improving benchmark accuracy estimates obtained with

an arbitrary set of examples.

We present an extensive evaluation of these strategies on

four popular benchmarks (§5): Open LLM Leaderboard

(Beeching et al., 2023), MMLU (Hendrycks et al., 2020),

HELM (Liang et al., 2022), and AlpacaEval 2.0 (Li et al.,

2023). Our goal is to assess the effectiveness of estimat-

ing the performance of LLMs on these benchmarks using a

limited number of examples for evaluation. Overall, we con-

clude that 100 curated examples per scenario are enough to

reliably estimate the performance of various LLMs, within

about 2% error on average. Based on our findings we release

tiny (100 examples per scenario) versions of every consid-

ered benchmark and IRT-based tools for further improving

the performance estimation.

1.1. Related work

Efficient benchmarking of LLMs Multi-dataset bench-

marks were introduced to the field of NLP with the advent of

pre-trained models (e.g. Wang et al., 2018), and constantly

evolved in lockstep with language model capabilities (Sri-

vastava et al., 2022). The ever-increasing size of models

and datasets consequently led to high evaluation costs, trig-

gering changes in reported evaluation to accommodate the

costs (Biderman et al., 2023b). Ye et al. (2023) considered

reducing the number of tasks in Big-bench (Srivastava et al.,

2022). Perlitz et al. (2023) found that evaluation on HELM

(Liang et al., 2022) relies on diversity across datasets, but the

number of examples currently used is excessive. We adopt

their stratified sampling approach as one of the efficient

evaluation strategies. Vivek et al. (2023) proposed cluster-

ing evaluation examples based on models’ confidence in

the correct class for faster evaluation on classification tasks.

One of the approaches we consider is based on an adapta-

tion of their method to popular LLM benchmarks with more

diverse tasks.

Item response theory (IRT) IRT (Cai et al., 2016; Van der

Linden, 2018; Brzezińska, 2020; Lord et al., 1968) is a well-

established set of statistical models used in psychometrics

to measure the latent abilities of individuals through stan-

dardized testing (An & Yung, 2014; Kingston & Dorans,

1982; Petersen et al., 1982), e.g., in GRE, SAT, etc.. Even

though IRT methods have been traditionally used in psy-

chometrics, they are becoming increasingly popular among

researchers in the fields of artificial intelligence and natural

language processing (NLP). For instance, Lalor et al. (2016)

propose using IRT’s latent variables to measure language

model abilities, Vania et al. (2021) employs IRT models in

the context of language models benchmarking to study satu-

ration (un-discriminability) of commonly used benchmarks,

and Rodriguez et al. (2021) study several applications of

IRT in the context of language models, suggesting that IRT

models can be reliably used to: predict responses of LLMs

in unseen items, categorize items (e.g., according to their

difficulty/discriminability), and rank models. More recently,

Zhuang et al. (2023) used IRT for adaptive testing, making

testing more efficient. However, the authors do not propose

a performance estimator for LLMs but only rank models

based on their ability parameters. To the best of our knowl-

edge, IRT has not been used for performance estimation in

the context of efficient benchmarking of LLMs. We explore

this new path.

Active testing Another line of related work is related to

active learning (Ein-Dor et al., 2020) and especially active

testing. In such works, evaluation examples are chosen

dynamically using various criteria (Ji et al., 2021; Kossen

et al., 2021; Zhuang et al., 2023) to minimize annotation

costs. Those methods are somewhat similar to the adaptive

IRT which we discuss in §6.

2. Problem statement

In this section, we describe in detail the setup we work on

and what are our objectives. Consider that a benchmark

is composed of scenarios and possibly sub-scenarios. For

example, MMLU and HellaSwag are examples of scenar-

ios2 of both the Open LLM Leaderboard and HELM, while

MMLU has different sub-scenarios like “marketing”, “ele-

mentary mathematical”, and so on. Furthermore, each sce-

nario (or sub-scenario) is composed of examples (analogous

to “items” in the IRT literature) that are small tests to be

solved by the LLMs–these examples range from multiple-

2We consider MMLU and AlpacaEval as a single scenario each.
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choice questions to text summarization tasks. Our final

objective is to estimate the performance of LLMs in the

full benchmark, which is given by the average of the perfor-

mances in individual scenarios (Open LLM Leaderboard,

MMLU, AlpacaEval 2.0) or mean-win-rate (HELM). We

achieve this objective by first estimating the performance of

LLMs in individual scenarios and then aggregating scores.

When scenarios have sub-scenarios, it is usually the case

that the scenario performance is given by a simple aver-

age of sub-scenarios performances. The main concern is

that each scenario/sub-scenario is composed of hundreds or

thousands of examples, making model evaluation costly.

In this work, for a fixed benchmark, we denote the set of ex-

amples of each scenario j as Ij , implying that the totality of

examples in the benchmark is given by I = ∪jIj . When an

LLM l interacts with an example i ∈ Ij , the system behind

the benchmarks generates a score that we call “correctness”

and denote as Yil. In all the benchmarks we consider in

this work, the correctness is either binary, i.e., Yil ∈ {0, 1}
(incorrect/correct), or bounded, i.e., Yil ∈ [0, 1], denoting

a degree of correctness. The second case is applied in sit-

uations in which, for instance, there might not be just one

correct answer for example i. To simplify the exposition

in the text, we assume that the score for LLM l in scenario

j is just the simple average of the correctness of all items

in that scenario, that is, 1
|Ij |

∑
i∈Ij

Yil. That is not true

when different sub-scenarios have different numbers of ex-

amples; in that case, one would just have to use a weighted

average instead, to make sure every sub-scenario is equally

important (in the experiments, we consider this case).

Our objective is to choose a small fraction of examples

Îj ¢ Ij such that we can estimate score of a new LLM l,
i.e., 1

|Ij |

∑
i∈Ij

Yil, using its correctness evaluated only on

the examples in Îj ¢ Ij , i.e., {Yil}i∈Îj
. To intelligently

choose Îj we assume access to correctness evaluations for

a set of LLMs that have been previously evaluated on the

entirety of the benchmark. Such correctness data is freely

available for many popular benchmarks. In the next section,

we describe strategies on how Îj can be chosen and how the

LLMs performance on the full benchmark can be estimated.

3. Selecting evaluation examples

In this section, we describe strategies on how to select ex-

amples from a fixed scenario j, i.e., Ij , obtaining Îj ¢ Ij
described in Section 2. Ideally, the set of selected exam-

ples should be representative of the whole set of items in

scenario j, that is,

∑
i∈Îj

wiYil ≈
1

|Ij |

∑
i∈Ij

Yil, (3.1)

for nonnegative weights {wi}i∈Îj
such that

∑
i∈Îj

wi = 1.

In the next paragraphs, we describe two possible ways of

obtaining Îj and {wi}i∈Îj
.

3.1. Stratified random sampling

In some settings (e.g., classifiers Katariya et al., 2012), it is

useful to perform stratified random sampling – subsample

examples ensuring the representation of certain groups of

data. Using subscenarios as the strata for stratified random

sampling was proposed by Perlitz et al. (2023) when sub-

sampling examples from HELM scenarios. The authors

showed that this is an effective way of sampling examples

without too much loss on the ability to rank LLMs by per-

formance. Examples should be randomly selected from

sub-scenarios (with uniform probability) in a way such that

the difference in number of examples sampled for two dis-

tinct subscenarios is minimal (f 1). The rationale behind

this method is that, for an effective evaluation, sub-scenarios

should be equally represented. The weights are wi = 1/|Îj |

for all i ∈ Îj .

3.2. Clustering

Assessing the performance of LLM’s on a randomly sam-

pled subset of examples suffers from extra uncertainty in the

sampling process, especially when the number of sampled

examples is small. Instead, we consider selecting a subset of

representative examples using clustering. Vivek et al. (2023)

proposed to cluster examples based on the confidence of

models in the correct class corresponding to these examples.

Representative examples, from these clusters, which they

call “anchor points”, can then be used to evaluate models

on classification tasks more efficiently. We adapt their clus-

tering approach to a more general setting, allowing us to

extract such anchor points for MMLU, AlpacaEval 2.0, and

all scenarios of the Open LLM Leaderboard and HELM.

First, we propose to group examples by model correctness,

expecting some examples would represent the rest. Ideally,

if example i is an anchor point, then there will be a big set of

examples on which models are correct if and only if they get

example i correct. The same idea applies when correctness

is given by a number in [0, 1]. Assume that we want to

select K anchor points and have access to the training set

Dtr = {Yl}l∈Ltr
, where Yl is a vector in which each entry

is given by the correctness score Yil for all examples i ∈
Ij . We represent each example i ∈ Ij by the embedding

Ei ∈ R
|Ltr| which is a vector with entries given by Yil for

l ∈ Ltr, and then run K-Means (Hastie et al., 2009) with

the number of clusters being equal K. After the K centroids

are obtained, we find the closest example to each centroid,

and each of those points will compose Îj . For a new LLM

l ̸∈ Ltr to be evaluated, we can obtain an estimate for its

performance using the estimate in equation 3.1 by setting

wi as the fraction of points in Ij assigned to cluster/anchor

point i. This method is compelling and simple in detecting

3
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anchor points. Still, it can suffer from distribution shifts

since correctness patterns can vary, e.g., in time, and from

the curse of dimensionality when |Ltr| is big. Our second

approach is intended to be more robust to those problems.

The second approach we propose is using item response

theory (IRT) representation of examples, detailed in Sec-

tion 4, as our embeddings Ei. The IRT model creates a

meaningful representation for each example i based on their

difficulty and the abilities required to respond to those exam-

ples correctly. This approach immediately solves the dimen-

sionality problem, since Ei is relatively low-dimensional3,

and potentially alleviates the distribution shift problem if

the IRT model reasonably describes the reality and the ex-

ample representations are stable. As IRT should represent

which examples have similar difficulty and require similar

abilities, the anchors represent exactly what we looked for.

The weight wi is given by the fraction of examples in Ij
assigned to cluster/anchor point i.

4. Better performance estimation with IRT

In this section, we propose ways of enhancing performance

estimates by using IRT models. We start by discussing

the case where Yil ∈ {0, 1}, that is, the l responds to the

example i ∈ I correctly or not. We later also discuss the

case where Yil ∈ [0, 1].

4.1. The IRT model

The two-parameter multidimensional IRT model assumes

that the probability of the LLM j getting example i correctly

is given by

pil ≜ P(Yil = 1 | θl, αi, βi) =
1

1+exp(−α¦

i
θl+βi)

, (4.1)

where θl ∈ R
d denotes the unobserved abilities of LLM l,

while αi ∈ R
d dictates which dimensions of θl are required

from model l to respond to example i correctly. In this

formulation, βi ∈ R can be viewed as a bias term that

regulates the probability of correctness when θl = 0. We

use IRT parameter estimates as example representations

referred to in Section 3. Specifically, we take Ei = (α̂i, β̂i),

where α̂i and β̂i are point estimates for the parameters of

example i. In the next sections, we introduce two estimators

for the performance of an LLM, propose a simple solution

for the case Yil ̸∈ {0, 1}, and describe model fitting.

4.2. IRT-based LLM performance estimation

The performance-IRT (p-IRT) estimator. Assume that

we are interested in estimating the performance of a model

l ̸∈ Ltr on scenario j and that point estimates of example

parameters, (α̂i, β̂i), have been computed, using a training

3In our experiments, the dimension of Ei is ≤ 16.

set, for all examples in all scenarios, including examples

i ∈ Ij . Formally, we are interested in approximating

Zjl ≜
1

|Ij |

∑
i∈Ij

Yil (4.2)

Now, assume that we have run model l on a subset of exam-

ples from scenario j, obtaining responses {Yi0l, · · · , Yikl}

for the examples Îj = {i0, · · · , ik}. Let θ̂l denote the

estimate for θl after observing Îj and possibly a bigger

set of examples coming from different scenarios. To ob-

tain that estimate, we maximize the log-likelihood of the

freshly observed data with respect to θl, fixing examples’

parameters. This procedure is equivalent to fitting a logistic

regression model, which is an instance of the well-studied

M -estimation procedure.

Because Zjl is a random variable, we approximate it by

estimating the conditional expectation

E[Zjl | Yi0l, · · · , Yikl] =

= 1
|Ij |

∑
i∈Ij

E[Yil | Yi0l, · · · , Yikl]

= 1
|Ij |

(∑
i∈Îj

Yil +
∑

i∈Ij\Îj
pil

)

= λ̂

|Îj |

∑
i∈Îj

Yil +
1−λ̂

|Ij\Îj |

∑
i∈Ij\Îj

pil

which is the best approximation for Zjl in the mean-squared-

error sense. Here, λ̂ = |Îj |/|Ij | ∈ [0, 1] is a weight that

gives more or less importance to the observed set Îj in the

performance computation depending on how big that set

is. The probability pil = P(Yil = 1 | θl, αi, βi) is given

by the IRT model in Equation 4.1. The estimator for the

conditional expectation is then given by

Ẑp-IRT
jl ≜ Ê[Zjl | Yi0l, · · · , Yikl] (4.3)

= λ̂

|Îj |

∑
i∈Îj

Yil +
1−λ̂

|Ij\Îj |

∑
i∈Ij\Îj

p̂il

where p̂il ≜ P(Yil = 1 | θ̂l, α̂i, β̂i). We call the estimator

in 4.3 by Performance-IRT (p-IRT) estimator.

The idea behind p-IRT is that we can estimate the perfor-

mance of a model on unseen data making use of the IRT

model. This is especially useful if we can fit θ̂l using data

from many scenarios: even though we observe just a few

samples per scenario, p-IRT will leverage the whole avail-

able data, permitting better estimates for the performance of

the LLM for all scenarios. Conditional on the training set,

the estimator p-IRT has low variance when θ̂l is obtained

from a large dataset and a small bias if the IRT model is

reasonably specified. Given that θ̂l is potentially estimated

using a large sample, it is worth understanding what that im-

plies about our estimates Ẑp-IRT
jl ’s in the asymptotic regime.

To facilitate our analysis, assume for a moment that the

true values of (αi, βi)’s for all i ∈ I are known. As pre-

viously commented, estimating θl is equivalent to fitting a

4
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logistic regression and, under mild conditions, we should

have θ̂l → θl in probability as |Î| → ∞ (Fahrmeir & Kauf-

mann, 1985). We depart from this condition and show that

|Ê[Zjl | Yi0l, · · · , Yikl] − E[Zjl | Yi0l, · · · , Yikl]| → 0 in

probability as |Î| → ∞; that is, p-IRT converges in probabil-

ity to the best approximation of Zjl, E[Zjl | Yi0l, · · · , Yikl].

Proposition 4.1. Assuming that (i) θ̂l → θl in probability

as |Î| → ∞ and that (ii) the true values of (αi, βi)’s for

all i ∈ I are known and supi∈I ∥αi∥2 f c for a universal

constant c, we have that

|Ê[Zjl | Yi0l, · · · , Yikl]− E[Zjl | Yi0l, · · · , Yikl]| → 0

in probability as |Î| → ∞.

We note two limitations of p-IRT that can hinder its effec-

tiveness in practice. First, it does not promptly allow sample

weighting, limiting its use of anchor points; second, if the

predicted probabilities p̂il’s are inaccurate, e.g., because of

model misspecification, then the performance of p-IRT will

deteriorate.

The generalized p-IRT (gp-IRT) estimator. Our final

estimator builds upon p-IRT to overcome its limitations.

Assume that the estimators in equations 3.1 and 4.3 are

obtained as a first step after the collection of examples in Îj .

The idea is to compute a third estimator Ẑgp-IRT
jl given by a

convex combination of the first two

Ẑgp-IRT
jl ≜ λ

∑
i∈Îj

wiYil + (1− λ)Ẑp-IRT
jl (4.4)

where λ is a number in [0, 1] that is chosen to optimize the

performance of that estimator. To choose λ, we first note

that using random sampling (or anchor points) implies low

bias but potentially high variance (when Îj is small) for∑
i∈Îj

wiYil. As Îj grows, its variance decreases. On the

other hand, conditional on the training set, the variance of

Ẑp-IRT
jl is small, especially when θ̂l is fitted with data from

many scenarios, but its bias can be high when the IRT model

is misspecified and does not vanish with the growing sample

size. Thus, good choice of λ increases with Îj .

We choose λ based on a heuristic derived from Song

(1988)’s Corollary 2. It tells us that the optimal linear com-

bination of any two estimators T̂1 and T̂2 (when the sum of

the weights is one) depends on the biases, variances, and

covariance of the two estimators. If the first estimator is

unbiased and the variance of the second is zero, we can

show that the optimal estimator is λT̂1 + (1− λ)T̂2, where

λ = b22/(b
2
2+ v1), b2 denotes T̂2’s bias, and v1 denotes T̂1’s

variance. To apply this result, we assume that the main fac-

tors that might prevent gp-IRT from being a good estimator

are the variance of the first estimator and the bias of the

second one. Then we approximate the first estimator’s bias

and the second estimator’s variance by zero. When our first

estimator is obtained by random sampling we take

λ =
b̂2

σ̂2/|Îj |+ b̂2

for two constants σ̂2 and b̂2. The first constant, σ̂2, is ob-

tained by computing the average sample variance of Yil,

i ∈ Ij , across LLMs in the training set. The second con-

stant, b̂2, is obtained by approximating the IRT bias. We (i)

split the training set into two subsets of LLMs; (ii) fit an

IRT model in the first part using data from all scenarios; (iii)

fit the ability parameter for all the LLMs in the second part

using half of the examples of all scenarios; (iv) use that IRT

model to predict the correctness (using predicted probabil-

ities) of the unseen examples of scenario j for the models

in the second split; (v) average predictions and actual cor-

rectness within models, obtaining predicted/actual scenarios

scores; (vi) compute their absolute differences, obtaining

individual error estimates for models; (vii) average between

models, obtaining a final bias estimate, and then square the

final number. To give some intuition on how λ is assigned,

Figure 2 depicts λ as a function of b̂ and |Îj | when σ̂2 = .01.

From that figure, we see that if the IRT model bias is small,

more weight will be given to p-IRT. The curves are steeper

when |Îj | is small because the variance of the first estimator

decreases faster when |Îj | is small. When the first estima-

Figure 2. Understanding the effect of IRT bias and sample size |Îj |
in the gp-IRT construction: both quantities are positively related

to the weight we give to the raw data in performance estimation.

tor is obtained by a method that implies an estimator with

smaller variance, e.g., anchor points, we apply the same

formula but divide σ̂2 by a constant > 1. By default, we

divide σ̂2 by 4 which is equivalent to halving the standard

deviation of the first estimator.

4.3. Using IRT when Yil is not binary

There are situations in which Yil /∈ {0, 1} but Yil ∈ [0, 1].
For example, in AlpacaEval 2.0, the response variable is

bounded and can be translated to the interval [0, 1]. Also,

some scenarios of HELM and the Open LLM Leaderboard

have scores in [0, 1]. We propose a simple and effective fix.

The idea behind our method is to binarize Yil by defining a

5
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second variable Ỹil = 1[Yil g c], for a scenario-dependent

constant c. More concretely, for each scenario j, we choose

c such that

∑
i∈Ij ,l∈Ltr

Yil ≈
∑

i∈Ij ,l∈Ltr
1[Yil g c].

In that way, approximating the average of Ỹil and Yil should

be more or less equivalent. Given that Ỹil ∈ {0, 1}, we can

use the standard IRT tools to model it.

4.4. Fitting the IRT model

For the estimation procedure, we resort to variational infer-

ence. In particular, we assume that θl ∼ N(µθ1d, 1/uθId),
αi ∼ N(µα1d, 1/uαId), and βi ∼ N(µβ , 1/uβ). To take

advantage of software for fitting hierarchical Bayesian mod-

els (Lalor & Rodriguez, 2023), we introduce (hyper)priors

for the prior parameters µθ ∼ N(0, 10), uθ ∼ Γ(1, 1),
µα ∼ N(0, 10), uα ∼ Γ(1, 1), µβ ∼ N(0, 10), and

uβ ∼ Γ(1, 1). Finally, to obtain point estimates for the

model and example-specific parameters θl, αi, and βi, we

use the means of their variational distributions. To select

the dimension of the IRT model during the fitting procedure,

we run a simple validation strategy in the training set and

choose the dimension that maximizes the prediction power

of the IRT model in the validation split–we consider the

dimensions in {2, 5, 10, 15}.

5. Assessing evaluation strategies

We assess the ability of the considered evaluation strategies

to estimate the performance of LLMs on four popular bench-

marks. For a given LLM and a benchmark, each evaluation

strategy estimates the performance using evaluation results

of this LLM on a given number of examples. We then com-

pare this estimate to the true value, i.e., the performance of

this LLM on the complete benchmark.

Evaluation pipeline For each benchmark, we first collect

publicly available correctness data (Yil’s) for a set of LLMs

L that have been previously evaluated on this benchmark.

Recall that the benchmark is a set of examples I consisting

of J disjoint scenarios examples Ij such that I = ∪j∈[J]Ij .

We use correctness data corresponding to a subset of LLMs

Ltr, i.e., Dtr = {Yil}l∈Ltr,i∈I to (i) find anchor points

Îj for each one of the scenarios j ∈ [J ] as described in

Section 3 and (ii) to obtain estimates for the IRT parameters

{(αi, βi)}i∈I as described in Section 4. We call this “train”

set of models as their correctness data is used to identify

anchor points and fit the parameters associated with our

evaluation strategies. The remaining set of “test” models

Lte is used to quantify the error of our evaluation strategies

in practice. For each LLM in the test set, l ∈ Lte, we

observe its correctness on the anchor points, i.e., {Yil}i∈Îj
,

and use it to obtain benchmark performance estimates as

described in Sections 3 and 4. The estimate is then compared

to the ground truth, i.e., performance of this LLM on the

entirety of the benchmark.

We consider two train-test model split scenarios: (i) random

split and (ii) by date, i.e., using the most recent models for

testing. The latter split better represents practical use cases,

while also being more challenging as it is likely to result in

a distribution shift between the train and test models due to

improving model capabilities over time that might affect the

effectiveness of anchor points and the IRT model.

Benchmarks and models We describe the size and com-

position of the four benchmarks, as well as the correspond-

ing LLMs (see Appendix D for additional details):

• HuggingFace’s Open LLM Leaderboard (Beeching et al.,

2023) consists of 6 scenarios, approx. 29K examples in

total. Performance on each of the scenarios is measured

with accuracy and the overall benchmark performance is

equal to the average of scenario accuracies. We collect

evaluation results for 395 LLMs from the Leaderboard’s

website and use 75% for training and 25% for testing

(split either randomly or by date as described above).

• MMLU (Hendrycks et al., 2020) is a multiple choice QA

scenario consisting of 57 subjects (subscenarios) compris-

ing approx. 14K examples. Performance on MMLU is

measured by averaging the accuracies on each of the cate-

gories. MMLU is one of the 6 scenarios of the Open LLM

Leaderboard and we consider the same set of 395 LLMs

and train-test splits. The reason to consider it separately is

its immense popularity when comparing LLMs (Touvron

et al., 2023; Achiam et al., 2023; Team et al., 2023) and

inclusion into several other benchmarks.

• For HELM (Liang et al., 2022), we use HELM Lite v1.0.0,

which has the 10 core scenarios (total of approx. 10K eval-

uation examples) and 30 models that have their perfor-

mances registered for all scenarios. Performance metrics

for each scenario vary and can be non-binary (e.g., F1

score), and the overall performance on the benchmark is

measured with mean win rate across scenarios. For this

benchmark, the dates models were added are not available.

Instead, we split models based on the organizations that

trained them to create more challenging train-test splits,

e.g., all OpenAI models are either in train or in test. For

the random train-test split we use 11-fold cross-validation.

That is, we partition the set of all LLMs into k = 11 parts

and, for each one of these parts, we use one of them to

test and k − 1 parts for training. Then, we average the

results over the choice of the testing part.

• AlpacaEval 2.0 (Li et al., 2023) consists of 100 LLMs

evaluated on 805 examples. Although it is a fairly small

benchmark, evaluation is expensive as it requires GPT-4

as a judge. For each input, GPT-4 compares the responses

of a candidate LLM and a baseline LLM (currently also

6
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Figure 3. Performance estimation error per benchmark (columns) tested on random (top row) and recent (bottom row) LLMs for increasing

number of evaluation examples. 100 examples per scenario is sufficient to achieve ≈2% average performance estimation error across

benchmarks and evaluated LLMs. This corresponds to 600 out of 29K examples for Open LLM Leaderboard, 100 out of 14K examples

for MMLU, 1000 out of 10K examples for HELM, and 100 out of 800 examples for AlpacaEval 2.0.

GPT-4) and declares a winner. The average win rate4 is

used to measure the overall performance. When splitting

the data by date, we pick 25% most recent models for

testing and the rest for training. For the random split, we

employ 4-fold cross-validation analogous to HELM.

Evaluation strategies We consider 3 strategies presented

in §3 for selecting a subset of examples for efficient evalua-

tion: “random” for stratified random sampling, “correctness”

for clustering correctness of models in the train set, and

“IRT” for clustering the example representations obtained

from the IRT model fit on the train set. For each strategy,

we evaluate the vanilla variation, i.e., simply using the per-

formance of a test LLM on the (weighted) set of selected

examples to estimate its performance on the full benchmark,

and “++” variation that adjusts this estimate using the IRT

model as described in equation (4.4). In total, we assess six

evaluation strategies. Results are averaged over 5 restarts.

Key findings We investigate the effectiveness of strategies

as we increase the number of examples available for evalu-

ating test LLMs. Results for both train-test split scenarios

are presented in Figure 3 (see also Figure 14 for Spearman’s

rank correlations). Our main conclusions are:

• Our approach to reducing evaluation costs is effective.

The best-performing strategies achieve estimation error

within 2% on all benchmarks with 100 examples or less

4AlpacaEval 2.0 considered in the experiments uses continuous
preferences instead of binary.

per dataset or scenario. For example, for MMLU this

reduces the evaluation cost by a factor of 140 (from 14k

to 100). For Open LLM Leaderboard even 30 examples

per scenario is enough, reducing the evaluation cost by a

factor of 160 (from 29K to 180).

• Most strategies perform well when there is a temporal

shift between the train and test LLM’s (see the lower row

of plots in Figure 3 for the results with “by date” split).

Thus our approaches for reducing evaluation costs remain

practical when evaluating the performance of newer, more

capable LLMs and can help save GPU hours when evalu-

ating future LLMs and/or checkpoints during pre-training.

• IRT-based methods (“IRT” and “IRT++”) perform consis-

tently well across benchmarks and train-test splits. The

gp-IRT (“++”) variation always improves or matches its

vanilla counterpart, while adding only a few seconds to

the evaluation time (see Figure 13). Thus we use the

IRT-based anchor examples to construct tiny versions tiny

versions (100 examples per scenario) of each of the bench-

marks and release them along with the gp-IRT tool (code

and pre-trained IRT model) for efficient evaluation of

future LLMs. We present additional evaluations of tiny-

Benchmarks in Figure 4 for one of the 5 random seeds in

which the random sampling underperforms. In Appendix

B, we conduct an exploratory analysis of the examples

comprising tinyMMLU.

Specialized LLMs In our previous experiments the test

set of LLMs consisted of either a random subset of mod-

els or the most recent ones. Both of these test sets are

7
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Figure 4. Predicted performance compared with true performance for the four benchmarks (columns) and recent LLMs. We verify the

efficacy of the evaluation strategies (IRT and IRT++) we chose to construct tinyBenchmarks.

Figure 5. Estimation error on specialized LLMs (right) compared

to error on random LLMs (left) on MMLU. Correctness-based

example selection is affected the most by this distribution shift.

dominated by base and instruction-tuned LLMs. Here we

assess the ability of the considered strategies to predict the

performance of specialized LLMs, i.e., models fine-tuned

for specific domains such as code, biology, or finance. We

consider MMLU benchmark and collect a new hand-picked

test set of 40 specialized models. Such models are likely to

have unique strengths and perform well in specific MMLU

categories while relatively underperforming on others. Thus,

their correctness patterns might be different from those in

the train set, posing a challenge for our evaluation strategies.

We present results in Figure 5.

As we anticipated, the correctness-based anchor strategy

deteriorates when tested on specialized LLMs. In contrast

to the IRT-based anchors that are only slightly affected,

demonstrating their robustness and supporting our choice to

use them for tinyBenchmarks construction.

Estimation error analysis We present a more detailed

view of the estimation error of the best performing “IRT++”

evaluation strategy on MMLU with 100 examples. In Figure

6 we plot estimation error against the actual accuracy of 99

test LLMs for a random train-test split. Our strategy can

estimate the performance of more capable LLMs slightly

better, although there is no strong dependency. We also

note that the estimation error never exceeds 4% (except for

one LLM with extremely low performance). Recall that the

average error is 2% as shown in Figure 3, supporting the

reliability of our evaluation approach.

Figure 6. Spread of estimation errors across a random subset of

LLMs with varying capabilities on MMLU. The error tends to

be slightly lower for more capable models. The worst case error

across almost all models is ≤ 4%.

6. Conclusion

In this paper, we demonstrate it is possible to accurately as-

sess the capabilities of LLMs with a fraction (sometimes two

orders of magnitude smaller) of the examples in common

benchmark datasets by leveraging models of educational

assessments from psychometrics. This leads directly to

savings in terms of the monetary costs associated with eval-

uating LLMs, but also the computational and environmental

costs. For practitioners, the computational cost savings are

especially convenient because they enable them to evalu-

ate LLMs more frequently during fine-tuning and prompt

engineering.

Based on our results we are releasing tinyBenchmarks, pre-

selected subsets of examples from the widely adopted LLM

benchmarks. tinyBenchmarks are simply small datasets that

are straightforward to use to evaluate LLMs cheaply. We

are also releasing an IRT-based tool to enhance performance

estimation. The tool provides code and IRT parameters

trained on the corresponding benchmarks and can be run on

a CPU in a few seconds.

6.1. Extensions

Prompt evaluation A persistent challenge in prompt-

based model evaluation is the influence the prompting setup

has on model predictions (see, e.g., Lu et al., 2022; Mishra

8
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Figure 7. Estimation error when predicting the performance of prompt templates. The results demonstrate that using our methods for

efficient prompt-based model evaluation is a promising application.

et al., 2022; Min et al., 2022; Yoo et al., 2022; Weber et al.,

2023b; Wei et al., 2023). We can use the previously de-

scribed approaches to make predictions across different

prompting setups. This way, we can estimate how well a

model will do on a new set of prompts using just a few

evaluations, or how a new model will perform on a given

prompt. To test this idea, we train an IRT model on the

prediction data from Weber et al. (2023a), containing evalu-

ations of eight LLaMA LLMs (vanilla or instruction tuned

on the Alpaca self-instruct dataset; Touvron et al., 2023;

Taori et al., 2023) for the ANLI dataset (Nie et al., 2020).

The dataset consists of evaluations of the 750 data points

wrapped with 15 different instruction templates sourced

from the promptsource collection (P3; Bach et al., 2022).

Similarly to our previous experiments, we evaluate random

splits and splits featuring distribution shifts (across model

sizes and different instruction templates). For model size,

we put all models with sizes 7B, 13B, and 30B in the train-

ing set while the models with size 65B go to the test set. For

splits related to prompts templates, we consider two differ-

ent approaches: first, we conduct a 2-fold cross-validation

rotating instruction templates; second, we consider using the

same and different instruction templates in the in-context-

learning examples and in the input example alternating the

strategies in the training and test sets. Results in Figure

7 suggest that prompt-based model evaluation can be effi-

ciently carried out with the methods introduced in this work,

even in the presence of several practical distribution shifts.

Adaptive testing We expect further performance estima-

tion improvements can be squeezed out by more sophisti-

cated applications of similar ideas. For example, instead

of pre-selecting a subset of examples before evaluating the

LLM, it may be possible to select the examples adaptively

during the evaluation process. This idea is widely used in

the computerized-assisted testing algorithms behind many

standardized tests. We demonstrate preliminary results on

MMLU using an adaptive IRT variant in Figure 8 (see Figure

16 for results on more benchmarks). Although the estima-

tion performance has improved, our current implementation

takes over 5 minutes to run, which might not be as appealing

practically.
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Figure 8. Preliminary adaptive testing results on MMLU.

6.2. Limitations

The main limitations of the methods described in this paper

are related to potential severe distribution shifts. Taking

MMLU as an example, we anticipate larger performance

estimation errors for models that fail on simple questions

while answering complicated ones correctly, thus altering

the correctness patterns. This might be caused by significant

architecture or pre-training data changes. A rapid increase

in LLM capabilities may also cause extrapolation errors.

To alleviate these problems, we recommend periodically

updating the curated examples and IRT parameter estimates

using data from more modern LLMs.
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A. Evaluation when subscenarios have different number of samples

Suppose we want to estimate the performance of a scenario j which is composed of sj subscenarios. Denote the set of

examples in each subscenario of j as Ijk, for k ∈ {1, · · · , sj}. Then, Ij = ∪kIjk, with disjoint Ijk’s. For a given LLM l,
our main goal is then to estimate 1

sj

∑
k

1
|Ijk|

∑
i∈Ijk

Yil. See that we can write

1
sj

∑
k

1
|Ijk|

∑
i∈Ijk

Yil =
∑

k

∑
i∈Ijk

1
sj |Ijk|

Yil =
∑

i∈Ij
ω̄iYil.

This tells us that we can represent the performance of model l as a weighted average instead of a simple average. In our

code, ωi ≜ |Ij | · ω̄i’s are called balance weights and ω̄i’s are called normalized balance weights. In Section

3, when computing the estimates using the stratified random sampling strategy, the weights for each example are still given

by 1/|Îj | (because subscenarios should already be equally represented) but when using the clustering ideas, the weight for

each anchor point is given by the sum of ω̄i’s of all items in its cluster. We do not apply any weighting when fitting the IRT

models but only when computing the p-IRT (and gp-IRT) estimate:

Ẑp-IRT
jl = λ̂

|Îj |

∑
i∈Îj

ωiYil +
1−λ̂

|Ij\Îj |

∑
i∈Ij\Îj

ωip̂il.

B. tinyMMLU

To construct tinyMMLU we chose 100 examples and weights identified by the IRT anchor point approach (“IRT”)

corresponding to the best test performance (across random seeds) in the experiment presented in the top part of Figure 3 on

MMLU. For comparison, we analogously selected 100 examples with the correctness anchor point method.

To better understand the composition of tinyMMLU, in Figure 9 we visualize the distribution of the weights of the selected

examples and compare it to the weights of the correctness anchors. Recall that weights are non-negative and sum to 1.

If an item has a weight 0.1, for example, that item has a contribution of 10% in the final estimated score. From Figure

9, we can see that tinyMMLU has more uniform weights compared to its correctness-based counterpart. We measure

uniformity through the effective sample size (ESS) of the example weights. ESS, traditionally used in the Monte Carlo

and domain adaptation (Elvira et al., 2022; Maia Polo & Vicente, 2023) literature, measures weight inequality in a way

such that ESS = 0.50, for example, informally means that the corresponding weighted average is influenced by only 50%
of (uniformly weighted) examples. In the context of our problem, more uniform weights of tinyMMLU contribute to its

robustness when evaluating LLMs with varying correctness patterns, such as specialized LLMs in Figure 5.

We also investigate the total weight of the tinyMMLU examples within each of the 57 subjects in Figure 10. The highest

weighted are “high school psychology”, “elementary mathematics”, and “professional law”. Interestingly the weight of the

subjects is fairly different from its correctness-based counterpart.

Figure 9. Comparing the spread of examples weights using both the IRT and correctness approaches to find anchor points. We see that

weights inequality is much higher when we cluster examples using correctness.
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Figure 10. Weights given to MMLU subscenarios by the two anchoring methods.

C. Proof of Proposition 4.1

Proof of proposition 4.1. See that

|Ê[Zjl | Yi0l, · · · , Yikl]− E[Zjl | Yi0l, · · · , Yikl]| f
1−λ̂

|Ij\Îj |

∑
i∈Ij\Îj

|σ(θ̂¦l αi − βi)− σ(θ¦l αi − βi)|

f 1

|Ij\Îj |

∑
i∈Ij\Îj

|(θ̂l − θl)
¦αi|

f 1

|Ij\Îj |

∑
i∈Ij\Îj

∥αi∥2

∥∥∥θ̂l − θl

∥∥∥
2

f c
∥∥∥θ̂l − θl

∥∥∥
2
→ 0

in probability as |Î| → ∞. The second step uses the fact that σ is 1/4-Lipschitz and the third step applies Cauchy-Schwarz

inequality.

D. More details about benchmarks

• HuggingFace’s Open LLM Leaderboard (Beeching et al., 2023): the data from this benchmark is composed of 395 LLMs

and approx. 29k items that were downloaded from the platform in January/2024. To extract data from those models, we

filter all models from the platform that have an MMLU score over5 .3, order them according to their average performance,

and equally spaced selected models. Then, we kept all models that had scores for all six scenarios: ARC (Clark et al.,

2018), HellaSwag (Zellers et al., 2019), MMLU (Hendrycks et al., 2020), TruthfulQA (Lin et al., 2021), Winogrande

(Sakaguchi et al., 2021), and GSM8K (Cobbe et al., 2021). In a second round of data collection, we collected data for 40

“specialized models” by recognizing which models were fine-tuned to do the math, coding, etc.. The two sets of models

have an intersection, and in total, we have collected data from 428 LLMs.

• HELM (Liang et al., 2022): we use HELM Lite (https://crfm.stanford.edu/helm/lite) v1.0.0, which is a

dataset composed of 37 LLMs and approx. 10k evaluation examples from 10 scenarios. The scenarios are OpenbookQA

(Mihaylov et al., 2018), MMLU (Hendrycks et al., 2020), NarrativeQA (Kočiskỳ et al., 2018), NaturalQuestions (closed-

book) (Kwiatkowski et al., 2019), NaturalQuestions (open-book), Math (Hendrycks et al., 2021), GSM8K (Cobbe et al.,

2021), LegalBench (Guha et al., 2024), MedQA (Jin et al., 2021), WMT14 (Bojar et al., 2014).

5On the leaderboard. The actual score we use can be different because we use the last submission to the leaderboard, while the
leaderboard shows the best results among all submissions.
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E. Extra results

E.1. Robustness in predicting performance in a longer time horizon

We conduct extra ablation studies placing 75% of the data in the test set. For the Open LLM Leaderboard and MMLU, it

means we are using 3 months of future data as the test set (vs. approx. 3 weeks in the main text) while for AlpacaEval 2.0

that would correspond to 6 months (vs. approx. 2 months in the main text). In general, we show that our main method

“IRT++” is pretty robust to the advancements in the field when predicting the performance of new LLMs. We report in the

following plots the average estimation error in the test set (using 75% of the most recent data in the test set) and standard

deviation across LLMs. The results do not differ considerably from the ones in the main text.

0 20 40 60 80 100
number of examples (per scenario)

0.00

0.02

0.04

0.06

0.08

0.10

pe
rfo

rm
an

ce
 e

st
. e

rro
r 

 (7
5%

 d
at

e 
sp

lit
)

Open LLM Leaderboard

0 20 40 60 80 100
number of examples

0.00

0.02

0.04

0.06

0.08

0.10
MMLU

0 20 40 60 80 100
number of examples

0.00

0.02

0.04

0.06

0.08

0.10
AlpacaEval

random
correct.
IRT
random++
correct.++
IRT++

Figure 11. Our methods are robust in predicting performance in a longer time horizon

E.2. How costly is it for stratified random sampling beat IRT++ with larger samples?

We present results comparing IRT++ and stratified random sampling for a larger number of evaluation examples n. On

Open LLM Leaderboard 400 examples per task (2400 total) are enough to match IRT++ with 100 examples per task (600

total). On MMLU, random sampling improves quite slowly and would require >400 examples to match IRT++ at 100. On

AlpacaEval, random with 200 examples matches IRT++ with 100 examples (note that AlpacaEval is a small benchmark

with 805 examples total, but evaluation requires GPT-4 and is thus quite expensive). We use the random split for the LLMs,

implying no distribution shift between train and test.
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Figure 12. Benchmark results for different methods and sample sizes

E.3. Running time

We record the running time of IRT inference (ability parameter fitting) when running our experiments. In Figure 13 we show

that the average running time is fairly negligible.
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Figure 13. Average running time by the amount of test examples: IRT inference.

E.4. Rank correlation results

In this section, we explore versions of Figures 3 and 5 when we look at rank correlation (correlation between true and

predicted ranking) instead of performance. It is clear from the plots below that our method can be used to rank models

efficiently with tiny samples.

Figure 14. Rank correlation for true performance and predicted performance among LLMs.

Figure 15. Rank correlation for true performance and predicted performance among LLMs in MMLU. The plot on the left represents a

random split of the data while the plot on the right considers specialized models as the test set.

E.5. Adaptive testing

In this section, we complement the results shown in Figure 8 for all benchmarks.
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Figure 16. Results of adaptive testing for different benchmarks.

F. Individual performances per scenario

In this section, we explore what is behind Figure 3 by looking in detail at results for individual scenarios for the Open LLM

Leaderboard and HELM. It is clear from the following plots that there are scenarios in which our methods shine more than

others.

F.1. Open LLM Leaderboard

Figure 17. ARC
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Figure 18. GSM8K

Figure 19. TruthfulQA

Figure 20. HellaSwag
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Figure 21. MMLU

Figure 22. Winogrande
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F.2. HELM

Figure 23. OpenbookQA

Figure 24. GSM
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Figure 25. LegalBench

Figure 26. Math

Figure 27. MedQA
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Figure 28. MMLU

Figure 29. NarrativeQA

Figure 30. NaturalQA (closed book)
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Figure 31. NaturalQA (open book)

Figure 32. WMT14
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