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Abstract. Due to limited direct organ visualization, minimally invasive
interventions rely extensively on medical imaging and image guidance to
ensure accurate surgical instrument navigation and target tissue manip-
ulation. In the context of laparoscopic liver interventions, intra-operative
video imaging only provides a limited field-of-view of the liver surface,
with no information of any internal liver lesions identified during diag-
nosis using pre-procedural imaging. Hence, to enhance intra-procedural
visualization and navigation, the registration of pre-procedural, diagnos-
tic images and anatomical models featuring target tissues to be accessed
or manipulated during surgery entails a sufficient accurate registration
of the pre-procedural data into the intra-operative setting. Prior work
has demonstrated the feasibility of neural network-based solutions for
nonrigid volume-to-surface liver registration. However, view occlusion,
lack of meaningful feature landmarks, and liver deformation between
the pre- and intra-operative settings all contribute to the difficulty of
this registration task. In this work, we leverage some of the state-of-
the-art deep learning frameworks to implement and test various network
architecture modifications toward improving the accuracy and robust-
ness of volume-to-surface liver registration. Specifically, we focus on the
adaptation of a transformer-based segmentation network for the task of
better predicting the optimal displacement field for nonrigid registra-
tion. Our results suggest that one particular transformer-based network
architecture—UTNet—led to significant improvements over baseline per-
formance, yielding a mean displacement error on the order of 4 mm across
a variety of datasets.
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1 Introduction

Background and Motivation: Hepatocellular carcinoma is a pressing concern
in oncology, being the fifth-most common cancer responsible for the second-most
cancer-related deaths [10]. For these cases, surgery is frequently the standard of
care [16].

For all minimally invasive intervention applications, accurate navigation to
relevant tissues is paramount. In laparoscopic surgery, the procedure is per-
formed under guidance provided by a camera inserted through a small incision.
While this confers several benefits such as recovery time, additional difficul-
ties are encountered in surgical navigation. Limited field-of-view (FOV) and the
homogeneous appearance of the surface of organs can pose significant difficulty
in locating relevant lesions [21].

This task can be facilitated by using 3D preoperative scans, generated from
Computed Tomography (CT) or Magnetic Resonance Imaging (MRI). While this
approach has some benefits, the use of pre-procedural scans adds a necessary pre-
processing step to be performed during surgery: the registration of that data to
the surgical view. This step has several challenges that need to be overcome.
For rigid registration, the homogeneous intraoperative surface and varying noise
characteristics make localizing a specific view on the intraoperative liver diffi-
cult [22]. The nature of the liver as a soft body introduces additional difficulties
after rigid registration. Factors such as the interaction of surgical instruments
with the organs, patient breathing, and insufflation of the abdominal cavity dur-
ing surgery to increase the working volume lead to deformations that must be
predicted and compensated for in order to achieve a sufficiently accurate and
faithful pre- to intra-operative organ registration [26]. In addition, the opacity
of most organs implies that the intraoperative view cannot be easily modeled as
a closed shape of finite volume. Rather, the problem of registering the preoper-
ative scan onto a limited intraoperative view is a problem of volume-to-surface
registration. This task entails two major components: first, a correspondence
must be found between the partial surface and the complete volume; second,
both rigid and nonrigid registration must be performed to correct for deforma-
tions between the preoperative organ volume (from CT or MRI) and the recon-
structed intraoperative partial organ surface. Both tasks have been the focus of
substantial prior work, both in the clinical setting [5,12,14] and elsewhere [30].
Prior work has identified the potential advantages of image-guided navigation
in concert with augmented reality visualization during minimally invasive liver
surgery. While currently proposed methods could be highly useful to the sur-
geon, improvements in anatomical precision are necessary to increase the value
of image guidance in the operating theater [1,4]. Therefore, a rapid volume-to-
surface registration method would enable the surgeon to visualize in real time the
intraoperative location of relevant lesions present inside the liver, and identified
in pre-procedural scans, but not visible using intraoperative video, since located
beneath the liver surface, in turn, allowing for more effective visualization and
navigation to the target tissue during surgery.
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Prior Work: Prior literature indicates the viability of predicting soft-body
deformations given partial data. Several of these methods function by input
of two meshes representing the preoperative and intraoperative geometriesand
output the deformation field that warps the preoperative geometry to match
the intraoperative geometry [18,19]. Sulewack et al. [26] have developed a
physics-based shape matching method for this task. While this does achieve
sub-millimeter registration accuracy, the need for manual statement of boundary
conditions and inference time hamper practical usefulness. Other methods have
demonstrated the viability of lower-dimensional representations of 3D objects.
Small-scale neural networks trained on individual scenes have allowed for efficient
volume encoding and generation of novel views [7,15,20].

Recent advances in computer vision and image processing have focused on the
network structure known as the Transformer, first described in [27]. This devi-
ates from the CNN architecture by creating representations of patch sequences,
and using self-attention to extract more global information. This in turn allows
transformers to extract more global information, contrasted with the limited
influence range of a CNN. Prior work showed its effectiveness in image classifi-
cation tasks [8] and in image segmentation [11,28].

Proposed Work: The proposed work leverages the prior work of [22] that
yielded V2S-Net, a Convolutional Neural Network (CNN) to simultaneously
establish surface correspondences and perform the nonrigid registration in one
step. Their implementation employs a structure akin to a U-Net as in [24]. It uses
voxelized representations of the preoperative volume and intraoperative surface
as input, and generates a 3 × 64 × 64 × 64 voxel image corresponding to the
spatial displacement components. Such an implementation allows for efficient
inferencing and simple scalability for large quantities of synthetic data.

In this work, we build on the technique proposed by Pfeiffer et al. [22] by
investigating several alterations to the network architecture to more accurately
estimate the pre- to intraoperative displacement to help achieve a better registra-
tion. The most promising network architecture modification found, and the focus
of this work, consists of the use of transformer architectures to better encode
global shape information, which, in turn, will provide better control toward bet-
ter predicting the pre- to intra-operative displacement field.

Following the example in [11], our proposed UTNet-inspired architecture is
adapted for this 3D image transformation task by employing transformer encoder
blocks on the encoding pathway and replacing the traditional skip connec-
tions with transformer decoding blocks. Further investigation consists of altering
network components such as activation function and the presence of dropout.
Finally, the performance of the proposed network architectures is evaluated by
assessing their accuracy (and robustness) achieved under different levels of noise
present in the test data.
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2 Methods

Training Data: Training data for the networks in this study were generated
using the pipeline in [22]. The pipeline begins by generating an icosphere in
Blender [6] and uses automated operations to deform it into a soft body of
random shape. Figure 1 shows one such random body. In our work, we modify
the previous implementation at this step by repairing non-closed meshes; this
enforcement of watertightness improves stability in generating valid data. Gmsh
[13] is then used to convert the surface mesh to a tetrahedral volumetric mesh.
Random forces of 1.5 N maximum magnitude are assigned to specific locations
on the mesh surface, and zero-displacement boundary conditions are applied to
randomly-selected areas. These data are passed to Elmer [17] to calculate the
displacement field via the Finite Element Modeling (FEM) method.

Fig. 1. An example of a random body surface generated by deforming the icosphere
using the training dataset and pipeline proposed in [22]

The FEM yields the equivalent of an intraoperative organ volume used to
extract a random surface point cloud patch to serve as an intraoperative limited
laparoscopic view; in addition, random portions of the patch are removed to
simulate occlusion. Lastly, to better portray the reality of intraoperative data,
uncertainty is added to the dataset by displacing 30% of the surface points along
each axis by uniform noise with a magnitude of no more than 1 cm.

In order to easily use this data as a neural network input, both the preop-
erative and intraoperative surfaces are voxelized. A uniform 64 × 64 × 64 grid
of 30 cm in each direction is generated for the preoperative and intraoperative
surfaces. In each case, each voxel represents the shortest distance from the center
of that voxel to the surface. For the preoperative case, the sign of the distance
map is inverted for voxels inside the surface. The displacement field is voxelized
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in a similar manner using Gaussian interpolation. For the purpose of our work,
a total of 40 000 cases are generated in this fashion. Further data augmentation
consists of reflecting the samples across the xy, yz, and xz planes, scaling the
training set size by a factor of 8 and yielding approximately 32 0000 effective
training samples. Figure 2 shows the summary of this process. Dataset used is
available upon request.

Fig. 2. A diagram of the data generation pipeline, reproduced from [22]. a) Preoper-
ative volume mesh; b) Intraoperative surface in green with partial surface in orange;
c) Preoperative signed distance map; d) Intraoperative distance map; e) Ground truth
displacement field to be predicted.

Testing Data: In order to further evaluate the robustness of the network, a
number of additional datasets are generated.

To evaluate network performance in the presence of additional noise, a
dataset of 1000 samples was created by adding displacement noise featuring
a maximum magnitude of 5 cm. An additional dataset was generated without
noise to assess the ability of the network to encode clean, noiseless shapes.

In order to assess ability to generalize to liver shapes specifically, two addi-
tional datasets were generated based on previously generated liver meshes. One
dataset is based on a set of 120 liver meshes derived from liver data in [2]. To
augment the dataset, each liver mesh was scaled by 5 random scaling factors.
The above pipeline was employed to generate a total of 1200 testing samples. A
second liver dataset was derived from the liver samples used by Suwelack et al.
in [26] in concert with a Physics-Based Shape Matching (PBSM) method. Mesh
representations of the liver phantoms used therein were obtained and used to
generate a series of four additional test cases.

Network Structures: For additional validation, the original V2S-Net network
was re-run with the newly-generated training dataset. This network features a
CNN architecture that uses an encoder chain to capture global detail, a decoder
chain to return to output resolution and skip connections to carry over higher-
resolution details to the decoder chain. Figure 3 shows a diagram of the network
structure. Elementary changes to the network were investigated by generating
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two additional networks with similar structure: one using the Rectified Lin-
ear Unit (ReLU) activation function at non-output layers, and one including a
dropout layer with probability 20% at each level of the encoder chain. Prior work
has seen performance improvements with either change: see Sivagami et al. [25]
and Yang et al. [29], respectively.

Fig. 3. A diagram of the general network structure of V2S-Net. The circled num-
bers indicate locations where relevant structures are appended to modify the original
network (V2S-Net) to generate modified networks evauated in this work: the Input net-
work, featuring a vision transformer at location 1; the Bottleneck network, featuring a
vision transformer at location 4; and the ViT network, featuring a vision transformer
at locations 1, 2, 3, and 4.

The original V2S-Net framework was further modified by the addition of
the transformer module as shown in [8]. Input and output channels were chosen
to maintain parity with the original network. The networks generated in this
fashion are as follows: the Input network, with a vision transformer at location
1; the Bottleneck network, with a vision transformer at location 4; and the ViT

network, with a vision transformer at locations 1, 2, 3, and 4.
An additional network, modeled after the UTNet framework in [11], was also

constructed. This network uses a similar methodology as the ViT network, but
alters the skip connections to instead employ a transformer decoder block to
combine upsampled features with features from the encoder chain. In light of
the prior work by Gao et al. [11], it is hypothesized that including transformer
architectures within the network will allow for more efficient encoding of shape
information similar to the semantic encoding described in [28]. This approach
would, in turn, yield more efficient training and more accurate estimates without
risk of overtraining due to the additional parameters.

Networks were trained using the research computing cluster at Rochester
Institute of Technology [23]. A one-cycle learning rate scheduler and the Adam
optimizer were used to train each network for 100 epochs.
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Evaluation: We assessed the performance of all modified network architectures
against the performance of the original network architecture (V2S-Net), in terms
of the accuracy of their predicted displacement fields relative to the ground
truth displacement field. Specifically, we computed the mean displacement error
(MDE) in mm, as the difference between the displacement field predicted by
each network architecture and the ground truth displacement field. The MDE
was averaged across each testing set for each network architecture. In addition,
to compare the performance of the modified network architectures to that of the
original baseline (V2S-Net) network, we conducted statistical tests to identify
any statistically significant differences in performance (quantified by the MDE
metric) brought forth by the network modifications under investigation.

3 Results and Discussion

Table 1. Summary of Mean Displacement Error (MDE) in mm reported as mean
± standard error, computed between the predicted displacement and ground-truth
displacement achieved by each model configuration under investigation and across all
datasets used for training and validation

Mean Displacement Error (MDE): Mean ± Std. Err. (mm)

Model/Dataset Synthetic

Validation

Set

Liver Test Set PBSM Dataset Noise Free

Synthetic

Data

High

Noise

Synthetic

Data

V2S-Net 5.4 ± 0.5 4.02 ± 0.09 2.9 ± 0.6 5.4 ± 0.2 5.6 ± 0.3

Bottleneck 5.9 ± 0.6 4.16 ± 0.09 4.0 ± 0.8 5.6 ± 0.2 5.7 ± 0.2

Input 5.6 ± 0.5 4.10 ± 0.09 3.2 ± 0.7 5.4 ± 0.2 5.6 ± 0.3

ViT 5.2 ± 0.5 4.16 ± 0.09 3.2 ± 0.5 5.4 ± 0.2 5.6 ± 0.2

UTNet 4.7 ± 0.5 3.91 ± 0.07 3.9 ± 1.3 4.9 ± 0.2 5.0 ± 0.2

V2S-Net (ReLU) 15.8 ± 1.3 7.2 ± 0.1 6.0 ± 1.0 14.5 ± 0.4 14.5 ± 0.4

V2S-Net (dropout) 5.4 ± 0.5 3.73 ± 0.05 3.0 ± 0.5 5.1 ± 0.2 5.5 ± 0.3

In general, the implementation of the UTNet network yields lower MDE across
the various testing datasets (see Table 1, Fig. 4). However, the high variability in
MDE across all networks limits the conclusiveness of this difference. Pfeiffer et

al. [22] noted that outliers could be observed during testing, especially for cases
with relatively low visible surface area. Contrary to expectations, simply imple-
menting the vision transformer modules do not appear to significantly improve
MDE, and seemingly leads to slight degradation in some cases. In this case, it
appears that under-generalization caused by the increased number of parameters
outweighs the benefits of the transformer architecture. Nevertheless the UTNet-
based architecture, with the most parameters of all, displays a generally lower
mean MDE. This indicates a benefit of the transformer decoder block specifically
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Fig. 4. Performance comparison between each network architecture under investigation
and the baseline network architecture (V2S-Net) in terms of Mean Displacement Error
- MDE (mm) evaluated across five datasets.

in terms of semantic encoding; this network block appears to be able to carry
over global features in a manner that the simple skip connection cannot.

Results in terms of elementary modifications to the V2S-Net were similarly
unremarkable. Unexpectedly, the changing of the activation function led to a
substantial increase in MDE. It is possible that the nature of the output as a
signed function creates issues when using the strictly non-negative ReLU func-
tion. Combined with the need of the network to output multiple resolution levels
during training, this could reduce the ability of the network to generate effective
estimates. On the other hand, the use of dropout has a more negligible effect on
MDE. The current understanding of the dropout indicates that the training set
is not too restricted to cause substantial network overfitting.

The need for substantial variability in input shape creates a demand for
large quantities of synthetically-acquired data, as is the case in this study. Cur-
rent work is investigating methods to generate novel liver meshes that are still
physiologically plausible. It is important to note that the current analysis is
specifically tested on the purpose of navigation in liver surgery. As such, it is
not necessarily problematic if the method is overfitted to liver shapes, as long
as it is generalized enough to adapt to novel liver shapes.

It may also be feasible to consider alternative methods for encoding of liver
shapes. The current implementation with fixed inputs of 64×64×64 voxels does
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require substantial computational power to increase the resolution; hence, further
boosting the resolution will require techniques that provide a reasonable trade-
off between resolution and computational expense. Prior work has identified
deep networks trained on functional map representations as a viable method for
non-rigid partial shape correspondence [3]. Modifications to that methodology
may provide another efficient method for volume to surface registration through
encoding at arbitrary resolution.

The use of voxelized datasets as input and output makes it difficult to com-
pare the performance of the models with other benchmarks used for similar
tasks. Several investigations are currently being conducted to effectively convert
the voxelized displacement estimates into a displaced mesh. This conversion to
a more traditional displacement dataset will facilitate the comparison of the
proposed model performance to the performance of a broader set of existing
techniques. Typical metrics used for assessing similar tasks have included the
mean error value at mesh nodes as in Suwelack et al. [26]; and Hausdorff dis-
tance between the pre-operative and intraoperative meshes as in Elhawary et al.

[9]. Future updates to this framework that can easily improve these metrics will
allow for more unified comparison with traditional methods and benchmarks.

4 Conclusion and Future Work

In this work we investigate several network architecture modifications and exten-
sions to baseline configurations featuring the classic U-Net architecture in the
effort to improve the performance of voxelized volume-to-surface liver registra-
tion. This study has shown that, using synthetically generated data, the network
configurations investigated here were able to predict displacement fields within
5 mm on average of the ground truth displacements. Moreover, while three of the
transformer-based modifications did not yield significant performance improve-
ments in terms of the quantified mean displacement error (MDE), the UTNet
transformer modification led to the most significant performance improvement,
while the dropout and ReLU activation functions led to slight and significant
performance deterioration, respectively. Nevertheless, the UTNet-based trans-
former architecture not only improved overall performance, yielding a MDE on
the order of 4 mm relative to the ground truth displacement, but also brings forth
several advantages over other methods, specifically: it performs both a rigid and
nonrigid registration concurrently, does not require any parameter tuning, and
does not rely on any prior knowledge of boundary conditions.

Several avenues exist for further extensions of this work. Pfeiffer et al. [22]
pointed out the potential of training the networks on inhomogeneous bodies to
more accurately capture the nature of lesion-containing organs. This could allow
for further extensions of the network by allowing for estimates of the ground
truth material property to be passed in as input [22]. While exact knowledge of
these properties is not available, reasonable estimates may suffice to solve the
nonrigid registration. In addition, we also plan to extend the validation of the
robustness of the best performing models using more realistic, either in vitro

collected data or deidentified clinical patient data.
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