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ABSTRACT

Stars in an open cluster are assumed to have formed from a broadly homogeneous distribution of gas,

implying that they should be chemically homogeneous. Quantifying the level to which open clusters

are chemically homogeneous can therefore tell us about ISM pollution and gas-mixing in progenitor

molecular clouds. Using SDSS-V Milky Way Mapper and SDSS-IV APOGEE DR17 abundances, we

test this assumption by quantifying intrinsic chemical scatter in up to 20 different chemical abundances

across 26 Milky Way open clusters. We find that we can place 3σ upper limits on open cluster

homogeneity within 0.02 dex or less in the majority of elements, while for neutron capture elements, as

well as those elements having weak lines, we place limits on their homogeneity within 0.2 dex. Finally,

we find that giant stars in open clusters are ∼0.01 dex more homogeneous than a matched sample of

field stars.

1. INTRODUCTION

Immediately after the Big Bang, the only elements in

the universe were hydrogen, helium, and trace lithium.

It took the formation of stars and galaxies to populate

the universe with the rest of the periodic table. There-

fore understanding where and how stars produce and

disperse heavy elements is essential to understanding

the enrichment of the universe. However, many ques-

tions regarding the chemical enrichment of the universe
still remain unanswered. Specifically, there is still much

uncertainty on how well-mixed giant molecular clouds

are or how heavy elements get from their production

sites into stars (Matteucci & Francois 1989; Chiappini

et al. 2001; Spitoni & Matteucci 2011; Weinberg et al.

2019). Fortunately, with a few exceptions, the surface

abundances of stars are fossil records of the gas composi-

tion from the molecular cloud in which they formed. As

a result, we can use the present-day chemistry of stars

to learn about the chemistry of the Milky Way in the

past.

In the age of large astronomical surveys such as

GALAH (De Silva et al. 2015; Buder et al. 2021; Shei-

nis et al. 2015; Kos et al. 2017; Zwitter et al. 2021),

LAMOST (Zhao et al. 2012), RAVE (Steinmetz et al.

2020a,b), APOGEE (Majewski et al. 2017), and Gaia

(Gaia Collaboration et al. 2016; Katz et al. 2023), we

can now probe the chemistry of stars in the Milky Way

on the scale of ∼ 0.1 dex or smaller in multiple elements

across different nucleosynthetic families, allowing us to

trace different chemical enrichment pathways. Further-

more, we can now study the chemistry of the Milky Way

at multiple different scales, from the simplest population

in conatal binaries (Hawkins et al. 2020) to large popu-

lations of dispersed field stars (Ness et al. 2022).

Stars in an open cluster (OC) are assumed to have

formed from a broadly homogeneous distribution of gas

at the same time, implying that they should all have

the same age and be at the same distance (Lada & Lada

2003). Using the chemistry of OC stars, we can infer the

chemistry of the gas available at that point in the Milky

Way’s history, in particular within the thin disk. In the

past, it has been suggested that using assumptions of

chemical homogeneity from simple stellar populations

like open clusters, it would be possible to reconstruct a

dissolved cluster purely by its members’ chemistry (Free-

man & Bland-Hawthorn 2002). This technique, known

as chemical tagging, has been a strong motivator for

studies of cluster chemistry.

While many studies support this assumption of OC

chemical homogeneity (De Silva et al. 2007; Bovy 2016;
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Ness et al. 2018; Cheng et al. 2021), there has been work

showing that at least some clusters are chemically inho-

mogeneous (Ness et al. 2018). For example, Geisler et al.

(2012) argued that NGC 6791 may not be chemically

homogeneous, due to the presence of a potential Na-O

anti-correlation, a relationship most commonly found in

globular clusters (Gratton et al. 2001). This would be an

exciting result as NGC 6791 already unique in the Milky

Way, as both the most massive and the most metal rich

open cluster. However other studies, such as Cunha

et al. (2015), have shown that it is chemically homo-

geneous within measurement uncertainties. For a more

detailed discussion on previous studies of open cluster

chemical homogeneity, see Section 5.

There are reasons why OCs could be heterogeneous in

specific elements. Slow neutron capture element abun-

dances, such as Sr, Ba, and Zr, can change over a star’s

lifetime as it enters the AGB phase of its evolution

(Smith & Lambert 1990). Dredge-up, which occurs in

stars on the giant branch, causes the star’s convective

envelope to expand, and it eventually gets deep enough

to pull CNO-cycled elements to the surface, thereby al-

tering the surface abundances we measure (e.g.; Bres-

san et al. 2012; Lagarde et al. 2012; Choi et al. 2016a).

NGC 6705 is an interesting OC regarding this effect, as

it has been observed to also be enhanced in Na due to

dredge up (Loaiza-Tacuri et al. 2023).

The surface abundances of elements such as Mg can

be affected by effects like mass transfer and atomic diffu-

sion (Michaud et al. 2015; Souto et al. 2019). However,

the latter only weakly impacts the upper giant branch.

Lastly, mass transfer (e.g.; Milliman et al. 2015; Bastian

et al. 2013; Abate et al. 2013) and pollution events such

as planetary engulfment (e.g.; Pinsonneault et al. 2001;

Laughlin & Adams 1997; Carlberg et al. 2010) can also

alter a star’s surface abundances.

However, if an open cluster was measured to have

nonzero chemical scatter even accounting for these fac-

tors, that could point to interesting and understudied

physics that may have occurred during the formation

of the OC. Simulations have shown that turbulent mix-

ing during cloud assembly naturally produces a stellar

abundance scatter that is ∼ 5 times smaller than that in

the natal gas (Feng & Krumholz 2014); suggest that this

mixing could explain the observed chemical homogene-

ity of stars forming from the same molecular cloud. This

is supported by recent work by Bhattarai et al. (2024)

who find open clusters in FIRE-2 simulations (Hopkins

et al. 2014, 2018; Wetzel et al. 2016) to have chemical

scatter within 0.02 dex on average.

However, chemical inhomogeneity in real clouds could

be due to effects not fully captured by simulations, re-

lated to internal turbulence and gas mixing within the

progenitor molecular cloud or pollution events such as

core collapse supernovae (CCSNe) that occurred ear-

lier in the cluster’s lifetime (e.g.; Krumholz et al. 2019;

Looney et al. 2006).

Quantifying the level of chemical homogeneity in open

clusters across a broad set of elements from various nu-

cleosynthetic families would provide the basis for under-

standing the physics of early OC formation.

This work aims to constrain the chemical homogeneity

in a large set of abundances and clusters to disentangle

the causes of those chemical variances. The structure

of the paper is as follows: Section 2 outlines the sur-

vey data, verification of the abundance uncertainties,

and determination of the cluster membership. Section

3 details the methodology and calculation of the intrin-

sic scatter within each [X/Fe] across the final cluster

sample. Section 4 presents the results of our work, and

Section 5 compares our results to previous findings.

2. DATA

2.1. SDSS

2.1.1. SDSS-V/MWM

The abundances and radial velocities (RVs) we use are

primarily drawn from the Milky Way Mapper (MWM;

J.A. Johnson, in prep), a component of the fifth genera-

tion of the Sloan Digital Sky Survey (SDSS-V; Kollmeier

et al. 2017, J. Kollmeier, in prep). We use data from

Internal Product Launch 3 (IPL-3), which will form

the basis for SDSS DR19 (K. Hawkins, in prep). This

dataset builds off of the observing strategies and survey

goals outlined in SDSS Data Release 18 and includes

observations of over a million targets (Almeida et al.

2023).

SDSS-V/MWM uses two telescopes: the Sloan Foun-

dation Telescope at APO (Gunn et al. 2006) and the

duPont Telescope at LCO (Bowen & Vaughan 1973).

Both are outfitted with nearly identical custom-built

300-fiber APOGEE spectrographs (Wilson et al. 2019),

which reach a resolution of R ∼ 22, 500, spanning the

range of wavelengths between 1.51-1.70 µm. Unlike in

SDSS-IV, which used a plug-plate system, SDSS-V now

uses robotic fiber positioners (Pogge et al. 2020), which

benefited from the adoption of a three-element corrector

for the Sloan telescope at APO (Barkhouser et al. 2022).

Within IPL-3, three different data pipelines were used

to analyze the data taken from APO and LCO: The

Payne (Ting et al. 2019), The Cannon (Ness et al. 2015),

and the APOGEE Stellar Parameters and Abundances

Pipeline (ASPCAP; Garćıa Pérez et al. 2016). Both

The Payne and The Cannon are label-transfer methods

that determine stellar labels from spectra after being
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trained on a set of spectra with known labels. They are

differentiated by the fact that The Cannon is a data-

driven model which requires no information about stel-

lar models. Rather measurements from the Cannon in-

herit information from the models from its training data.

The Payne incorporates physical models directly into

its analysis. While these datasets are similar in many

aspects, comparing the limits derived through each of

them will provide a stronger constraint on the true ho-

mogeneity of the OCs in our sample.

2.1.2. SDSS-IV/APOGEE

In addition to IPL-3, we use abundances and RVs

from the seventeenth and final data release (DR17; Ab-

durro’uf et al. 2022) of SDSS-IV’s (Blanton et al. 2017)

Apache Point Observatory Galaxy Evolution Experi-

ment (APOGEE; Majewski et al. 2017), which contains

over 700,000 stars. The initial targeting strategy for

APOGEE-1 and APOGEE-2 are outlined in Zasowski

et al. (2013) and Zasowski et al. (2017), respectively,

and the final targeting for APOGEE-2 is outlined in

Beaton et al. (2021) for APOGEE-2 north, and Santana

et al. (2021) for APOGEE-2S.

The details for the APOGEE data reduction pipeline

are described in Nidever et al. (2015), and the details for

ASPCAP are found in Garćıa Pérez et al. (2016). The

description for the updates to these pipelines for DR17

is included in Holtzman et al. (in prep). The MARCS

model atmospheres and interpolation methodology used

in APOGEE are described by Jönsson et al. (2020) and

Gustafsson et al. (2008). The line lists used for DR17 are

outlined in Smith et al. (2021), and the spectral fitting

used for ASPCAP is described in Allende Prieto et al.

(2006). The details describing the APOGEE spectral

grids can be found in Osorio et al. (2020a), Osorio et al.

(2020b), and Hubeny & Lanz (2017), and lastly, the

details for Turbospectum can be found in Plez (2012a)

and Plez (2012b).

We also include abundances from the BACCHUS

Analysis of Weak Lines in APOGEE Spectra (BAWLAS;

Hayes et al. 2022), a value-added catalog (VAC) in

DR17. This VAC provided abundances for several chem-

ical species having weak and blended lines that cannot

be reliably analyzed using ASPCAP. This sample con-

sists of high signal to noise (SNR > 150) red giant stars

with no flags in either STARFLAG or ASPCAPFLAG and ana-

lyzed using the BACCHUS code (Masseron et al. 2016),

which measures line-by-line elemental abundances from

on-the-fly spectral synthesis. High quality measure-

ments are stacked to create a sample of elemental abun-

dances for elements with weak or blended lines. We use

the BAWLAS VAC abundances and uncertainties for the

following elements: Na, P, S, V, Cu, Ce, and Nd.

Two separate uncertainties are reported for each

BAWLAS abundance measurement. One is the X FE ERR MEAS

describing the measured uncertainty from the combined

spectra using the same methodology as ASPCAP. The

other is X FE ERR EMP, which describes the uncertainty

derived from the spectral lines themselves. Here to re-

main consistent in our analysis we use X FE ERR MEAS as

it is the closest to the uncertainty calculation method

that we verify in Section 2.3.

The calculation of the abundances in the BAWLAS

catalog is outlined fully in Hayes et al. (2022). Each

spectrum has an associated X SPECTRA FLAG, with values

0, 1, or 9. Both 0 and 9 indicate either suspicion with

the final fit or total failure, and only 1 indicates that the

spectral fit is trustworthy. To ensure the highest quality

sample, we require all the stars used in this study to

have measurements with X SPECTRA FLAG = 1.

2.1.3. Quality Cuts

We limit our sample in APOGEE DR17 to stars with

VERR < 0.1 km s−1 and |VHELIO AVG| < 5000 km s−1 to

ensure our stars have reliable radial velocities. We also

restrict our sample to stars with VSCATTER < 1 km s−1,

to remove potential binaries within our sample (Badenes

et al. 2018; Price-Whelan et al. 2020). Here VHELIO AVG

refers to the average radial velocity derived from indi-

vidual RVs that are drawn from cross-correlation of in-

dividual spectra with combined spectrum. VERR refers

to the uncertainty on that radial velocity, and VSCATTER

refers to the scatter of individual visit RVs around the

average. To ensure the sample has reliable measure-

ments we enforce a SNR > 50. These limits are identical

between DR17 and IPL-3. We also limit our sample to

stars between 3000 K and 6500 K, and −1 ≤ [Fe/H] ≤ 1.

We also exclude from our sample any stars that have

[X/Fe] flags in more than 2 elements. Lastly, we only

sample from stars with LOGG ≤ 3.5 in order to ensure

that every star we study is a member of the giant branch.

These requirements result in a sample of 305,201 stars.

When using IPL-3 we use the corresponding columns

and limits, with the exception of VSCATTER which is not

included in IPL-3.

In DR17’s allStar file, we enforce quality cuts on

the STARFLAG and ASPCAPFLAG columns, the details

of which are included here: https://data.sdss.org/

datamodel/files/APOGEE ASPCAP/APRED VERS/

ASPCAP VERS/allStar.html. The details of the

APOGEE bitmasks are located here https://www.

sdss4.org/dr17/algorithms/bitmasks/. Within the

https://data.sdss.org/datamodel/files/APOGEE_ASPCAP/APRED_VERS/ASPCAP_VERS/allStar.html
https://data.sdss.org/datamodel/files/APOGEE_ASPCAP/APRED_VERS/ASPCAP_VERS/allStar.html
https://data.sdss.org/datamodel/files/APOGEE_ASPCAP/APRED_VERS/ASPCAP_VERS/allStar.html
https://www.sdss4.org/dr17/algorithms/bitmasks/
https://www.sdss4.org/dr17/algorithms/bitmasks/
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ASPCAPFLAG column we enforced the following require-

ments:

1. BITMASK 23; STAR BAD == 0; BAD overall for

star: set if any of TEFF, LOGG, CHI2, COLORTE,

ROTATION, SN error are set, or any parameter

is near grid edge (GRIDEDGE BAD is set in any

PARAMFLAG)

2. BITMASK 19; METALS BAD == 0; FERRE failed to

return a value for metals.

3. BITMASK 20; ALPHAFE BAD == 0; Elemental

abundance from window differs > 0.5 dex from

parameter abundance for [α/Fe].

and within the STARFLAG we made the following cuts:

1. BITMASK 2; BRIGHT NEIGHBOR == 0; Star has

neighbor more than 10 times brighter.

2. BITMASK 3; VERY BRIGHT NEIGHBOR == 0; Star

has neighbor more than 100 times brighter.

3. BITMASK 17; SUSPECT BROAD LINES== 0; WARN-

ING: cross-correlation peak with template signifi-

cantly broader than autocorrelation of template.

The IPL-3 ASPCAP allStar file does not have a pub-

lished ASPCAPFLAG column. As such, we require that

all the stars in our sample have flag bad == False

and flag warn == False. For all three IPL-3 pipelines

we use we enforce a result flags == 0 requirement.

Where possible we enforce a x h flag == 0 require-

ment within each pipeline. Within the three IPL-3 all-

Star files we use, we enforce these quality cuts on the

spectrum flag column, which has bits that correspond
to DR17’s STARFLAG column.

2.2. Cluster Membership

We start from the catalog of cluster members pub-

lished in Cantat-Gaudin et al. (2018), hereafter CG18,

which contains membership information for over 200,000

stars across ∼ 2000 OCs using Gaia DR2 (Gaia Collab-

oration et al. 2018). Due to the more recent availability

of Gaia DR3 (Gaia Collaboration et al. 2021, 2023), we

first match the stars identified as cluster members in

CG18 to their DR3 kinematics and positions. CG18

used two spatial (RA α, DEC β) and two kinematic

(proper motion-RA δα∗, proper motion-DEC δβ∗) pa-

rameters, as well as parallax ϖ, as inputs into an unsu-

pervised machine learning algorithm to determine clus-

ter membership. We limit the initial cluster membership

candidacy to stars from CG18 within three cluster radii

of their cluster centers. Using each cluster’s distribu-

tion in radial velocity, we find that a minimum proba-

bility cut of P ≥ 0.5 in the CG18 catalog maximized the

overlap in membership within DR17 and IPL-3 while

also minimizing contamination from non-cluster mem-

bers. Of the 2019 OCs identified in CG18, only 145

clusters have any members within both DR17 and IPL-

3.

2.2.1. Kinematic Selection

To further ensure that the clusters identified had min-

imal contamination, we use a Kernel Density Estimator

with a variable bandwidth, following Silverman’s Rule,

to measure the dispersion in four dimensions (radial ve-

locity, δα∗, δβ∗, and ϖ). We reject stars further than

two standard deviations from the cluster median. For an

example of this methodology, see Figure 1, which shows

the final distributions after these cuts in M67. The kine-

matic selection plots for all clusters in our sample can

be found in Appendix B.

We plot the [Fe/H] distribution of each cluster against

the distribution of nearby non-cluster members between

2–5 cluster radii, as published in CG2018. We visually

inspect the HR diagrams for the cluster members com-

pared to the annulus to ensure no contamination, as each

cluster should follow a single distinct isochrone. We use

MIST isochrones (Dotter 2016; Choi et al. 2016b), gen-

erated using ages from Cantat-Gaudin et al. (2020), and

the median cluster [Fe/H]. Lastly, we only select clusters

with N ≥ 6 members, resulting in a final sample set of

26 open clusters. Determination of this minimum limit

and the final sample size is related to material in Section

3.2.1.

2.2.2. Final Cluster Sample

The distribution of the final cluster sample in radius,

age, and [Mg/Fe] versus [Fe/H] can be seen in Figure 2.

We calculate the positional, kinematic, and orbital in-

formation for each cluster in our final cluster sample.

Using Astropy SkyCoords (Astropy Collaboration et al.

2013, 2018, 2022) we calculate the Cartesian X, Y, Z

galactocentric coordinates for all the clusters in our sam-

ple, as well as the galactocentric radius.

We integrate each cluster’s orbit to measure its Zmax,

eccentricity, and guiding radius using Galpy, with the

MWPotential2014 gravitational potential (Bovy 2015;

Mackereth & Bovy 2018) While this potential lacks a

bar, no member of our sample is close enough to the

Galactic center to produce a noticeable difference in the

final measured eccentricity, guiding radius, or maximum

height above the galactic plane. While there have been

measured effects on these parameters due to the Milky

Way’s spiral arms, as seen in Carrera et al. (2022), as we
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Figure 1. Cluster membership plot for M67. Top Left: The
distribution of stars on the sky in RA and DEC, with cluster
members colored in blue, cluster member candidates that did
not pass Section 2.2.1’s kinematic and parallax cuts in red,
and field stars in grey. Top Right: The KDE distribution of
radial velocities of the cluster members compared to nearby
field stars. Middle Left: The distribution of the combined
proper motion of the cluster members compared to nearby
field stars. Middle Right: The distribution of parallaxes of
the cluster members compared to nearby field stars. Bot-
tom Left: The distribution of [Fe/H] of the cluster members
compared to nearby field stars; note that this was not used
to prune membership. Bottom Right: The Kiel diagram of
cluster members compared to surrounding stars. We also
plot the MIST isochrone (Dotter 2016; Choi et al. 2016b) for
this cluster’s age and metallicity in black.

do not use these parameters in the final science results,

we do not include spiral arms in our potential.

We use a Monte Carlo method with N = 100 iterations

to estimate uncertainties on these parameters. We mea-

sure 3D space velocity dispersion as a proxy for cluster

mass and using the methodology outlined in Weinberg

et al. (2019), we quantify the ratio of nucleosynthetic

enrichment within each cluster from CCSNe and Type

Ia supernovae.

Lastly, we include age estimates on all our clusters

from Cantat-Gaudin et al. (2020). These ages were

derived using an artificial neural network trained on a

sample of reference clusters. For further description see

Cantat-Gaudin et al. (2020). At this stage we also flag

red clump stars by eye within each cluster. All the clus-

ter parameters are included in Table 1, and will be in-

cluded as a machine readable table.

2.3. Verification of Abundances & Uncertainties

The values of intrinsic scatter in OC abundances are

on the order of ∼0.01 dex (e.g., Bovy 2016; Liu et al.

2016; Ness et al. 2018; Poovelil et al. 2020), as are

the abundance uncertainties within DR17. Therefore,

verifying that the uncertainties on the abundances we

are studying were not underestimated or overestimated

was necessary. The method we use is the same as

Poovelil et al. (2020). Since each star has some intrin-

sic true abundance measurement, repeated observations

of the same star should result in a normal distribution

around that value, where the width of the distribution is

due only to the measurement uncertainties. Therefore

we can use stars that have multiple visits in different

APOGEE fields to measure the true uncertainty, and

compare it to reported values within DR17 and IPL-3.

To quantify our multiple-visit empirical uncertainty, we

use Equation 1 from Poovelil et al. (2020).

e[X/Fe],k =

√
π

2
median(|[X/Fe]j − [X/Fe]i]|), (1)

where [X/Fe]j and [X/Fe]i are the abundance mea-

surements from the same star’s ith and j th visits.

e[X/Fe],k is the resulting [X/Fe] uncertainty after me-

dian stacking the pairwise measurements in the kth bin.

We group stars by SNR in bins spanning 50–70,

70–100, 100–130, 130–200, and greater than 200, as

shown in Fig 3. Within each SNR range, stars are

binned by Teff and [M/H], where ∆[M/H] = 0.2 dex

and ∆ Teff = 200 K. We use the K-S statistical test to

ensure the distribution of abundance differences in each

bin is consistent with a normal distribution, and flag

those that are not to ensure they do not contaminate

our sample. Bins that are not consistent with a normal

distribution have two main causes. Firstly, some are at

the edge of the [M/H] parameter space, in particular at

low metallicities where ASPCAP is less reliable. Sec-

ondly, some bins have poor completion, with less than

10 measurements.

Within those bins where the empirical uncertainties

are well-measured and normally distributed, we find

very good agreement with the native pipeline uncer-

tainties; thus for the rest of this work, we adopt those

pipeline uncertainties directly from DR17 and IPL-3.

3. MEASURING CHEMICAL SCATTER

3.1. Paired Stars Method
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Figure 2. Left : A plot of the [Mg/Fe] versus [Fe/H] plane

where the full giant star sample in APOGEE DR17 (subject to the same quality cuts as in Section 2.1.3) is shown in black,
and the clusters are colored by log(age). Right : The guiding radius and galactocentric height of all the clusters in our sample,

colored by number of member stars as described in Section 2.2.1.

Figure 3. Top: [Mg/Fe] uncertainties calculated using stars with multiple visits. Middle: [Mg/Fe] uncertainties calculated
by ASPCAP for DR17. Bottom: The subtracted difference between the uncertainties calculated using multiple visits and the
uncertainties from ASPCAP.
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Table 1. List of columns in the table of cluster parameters.

Column Name Units Column Description

cluster Cluster name

Nmems Number of identified cluster members identified in DR17 that passed all kinematic and quality cuts.

RA deg Central right ascension for all the cluster members, from the median of Gaia DR3 coordinates

DEC deg Central declination for all the cluster members, from the median of Gaia DR3 coordinates

parallax mas Median parallax of cluster members from Gaia DR3

parallax error mas Standard deviation parallax of cluster members from Gaia DR3

pmRA mas yr−1 Median right ascension proper motion of cluster members from Gaia DR3

pmRA error mas yr−1 Standard deviation of right ascension proper motion of cluster members from Gaia DR3

pmDEC mas yr−1 Median declination proper motion of cluster members from Gaia DR3

pmDEC error mas yr−1 Standard deviation of declination proper motion of cluster members from Gaia DR3

RV km s−1 Median radial velocity of cluster members

RV sigma km s−1 Standard deviation of radial velocity of cluster members

RV sigma error km s−1 Uncertainty on RV sigma calculated by bootstrapping the cluster

TV km s−1 Median tangential velocity, calculated by vtangential = 4.74µϖ−1, where µ is the total proper motion

TV sigma km s−1 Standard deviation in tangential velocity of cluster members

TV sigma error km s−1 Uncertainty on TV sigma calculated by bootstrapping the cluster

SV km s−1 Median 3D space velocity calculated by v3D =
√

v2radial + v2tangential

SV sigma km s−1 Standard deviation in 3D space velocity of cluster members

SV sigma error km s−1 Uncertainty on SV sigma calculated by bootstrapping the cluster

Rgc kpc Median galactocentric radius from Galpy integration

Rgc error kpc Uncertainty on galactocentric radius from Galpy integration

Rguiding kpc Median guiding radius from Galpy integration

Rguiding error kpc Uncertainty on guiding radius from Galpy integration

Zmax kpc Median maximum distance from galactic midplane from Galpy integration

Zmax error kpc Uncertainty on the maximum distance from galactic midplane from Galpy integration

e Median eccentricity from Galpy integration

e error Uncertainty on eccentricity from Galpy integration

X kpc Median x galactocentric coordinate using Cartesian coordinates

X error kpc Uncertainty on x galactocentric distance using Cartesian coordinates

Y kpc Median y galactocentric coordinate using Cartesian coordinates

Y error kpc Uncertainty on y galactocentric coordinate using Cartesian coordinates

Z kpc Median z galactocentric coordinate using Cartesian coordinates

Z error kpc Uncertainty on z galactocentric coordinate using Cartesian coordinates

SNe ratio Ratio of enrichment in the cluster from Type Ia vs. CCSNe supernovae

SNe ratio erro Uncertainty on the ratio of enrichment in the cluster from Type Ia vs. CCSNe supernovae

log age dex Log age in years of cluster, from Cantat-Gaudin et al. (2020)
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Our primary method of determining the intrinsic scat-

ter uses the difference in abundances between stars close

to one another on the HR diagram: ∆Teff < 100 K and

∆ log g < 0.1 dex. These limits are chosen because the

maximum induced abundance offset between pair mem-

bers due to the systematics discussed in Section 3.2.2 is

on the order ∼0.001 dex.

We measure the intrinsic dispersion within each pair

using Equation 2, where e1 and e2 are the abundance

uncertainties of each star in the pair, |∆[X/Fe]| is the

absolute value of the difference in abundance measure-

ments between the pair, and σ is the inferred intrinsic

dispersion.

σ =

√
π
2 |∆[X/Fe]|2 − (e21 + e22))

2
(2)

We use a Monte Carlo method with N = 100 iterations

to vary the abundance measurement of each star within

the pair to estimate a final uncertainty on the measured

pairwise scatter. Within each cluster, we separate the

red clump and RGB stars as to not induce any scatter

from potential evolutionary effects. Within each sub-

sample, we sort the stars into pairs and then measure

the intrinsic scatter between them. Finally, we take the

median scatter of all the pairs within an OC as the true

intrinsic scatter of the cluster. This method allows for

extremely precise results, with final uncertainties on the

order of ∼ 0.001 in most elements.

To determine the number of pairs needed for a reli-

able measurement with this method, we use a synthetic

“cluster” of points, with “true” and “observed” [X/H]

abundances, and the same temperature and log(g) dis-

tribution as our real clusters. The true abundances for

the synthetic stars reflect a given intrinsic scatter for the

synthetic cluster. The observed abundances are gener-

ated by perturbing each true abundance by a random

value drawn from a normal distribution with σ set to

the uncertainty of a real APOGEE star with the same

temperature, log(g), and metallicity.

We then pair the stars as described in Section 3.1 and

perform the intrinsic scatter measurement described us-

ing N = 3 to N = 20 pairs. We find that the measured

cluster scatters are noisy and have both systematic off-

sets and larger uncertainties up until N = 8, at which

point the difference between the true and measured scat-

ter does not change at larger N . Thus, we require a

minimum of eight stellar pairs for clusters using this

method.

Due to the restrictions outlined above regarding the

separation of the pairs in Teff and log g, as well as the

minimum number of pairs required, this method can

only be applied to 15 of the 26 clusters studied in this

paper. However due to the significantly higher precision

of these values as compared to those derived using the

method outlined in Section 3.2, within these 15 clusters

we only publish results from this method.

3.2. Maximum Likelihood Estimator

We adopt a second method in the form of a Maximum

Likelihood Estimator (MLE) to calculate the intrinsic

scatter across our sample. This method produces larger

uncertainties than our pairwise method, but it also has

fewer sampling restrictions and can be applied to a larger

set of OCs. The form of the MLE is shown in Equation

3 below.

lnL =

∞∏
i=1

1√
2π(σ2

[X/Fe] + e2i )
1/2

exp(
−(xi − µ[X/Fe])

2

2(σ2
[X/Fe] + e2i )

).

(3)

In Equation 3, σ[X/Fe] is the intrinsic scatter being

tested, and ei is the uncertainty on the [X/Fe] mea-

surement for the ith star in that cluster. We sample

a narrow range of mean [X/Fe] (µ), where ∆µ = 0.05

dex around the calculated mean of the cluster mem-

bers, with an initial range of 0.1 dex for intrinsic scatter

and spacing of 0.003 dex. We then do a second itera-

tion with finer spacing in the intrinsic scatter dimension,

with spacing on the order of 10−4 dex, centered on the

likeliest value from the coarser grid. An example of this

is shown in Figure 4. We calculate a variance from the

Fisher information matrix, and from that we calculate

the uncertainty the intrinsic scatter. We apply the MLE

method to all twenty-six clusters in our sample. Of these

twenty-six clusters in our sample, ten use the MLE in-

trinsic scatters for their final measurement.

3.2.1. MLE Corrections for Small Samples

Based on tests with synthetic data, we find that the

measured intrinsic scatter is unreliable when the number

of cluster stars (N) is low, with a consistent systematic

bias at N < 9 in the measured scatter. This is due

to the fact that the MLE is a biased estimator and at

small sample sizes has a negative bias that causes it to

underestimate the true parameter value, which can be

accounted for with a multiplicative factor (Thorley &

Schwarz 2018):

∆σtrue =

√
N

N − 1
σMLE (4)

This correction is applied to clusters with 6 ≤ N <

9 members. Below six members, the measured scatters

are too unpredictably noisy. This small sample size cor-

rection results in an additional six clusters added to our

sample, creating the final sample of 26 OCs.
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Figure 4. Outside Red: The initial likelihood surface over
which we initially test to determine a best guess for σ[X/Fe].
Within Red: Using the findings from the initial run, we more
finely sample the likelihood surface in order to measure the
final intrinsic scatter and uncertainty.

3.2.2. Systematics

As discussed in Garćıa Pérez et al. (2016), the method-

ology for measuring a star’s [X/Fe] involves a multi-

parameter fit that includes fitting the observed stellar

spectrum to synthetic models. First a global fit to the

spectrum is done to determine the best fit values for tem-

perature, surface gravity, microturbulent velocity, and

[M/H]. Holding these parameters constant, individual

elemental abundances are extracted from narrow spec-

tral windows.

To test for any systematic trend between the global

stellar parameters and elemental abundances, we quan-

tify the slope of the uncalibrated log(g) vs. [X/Fe]

within all the clusters in each pipeline, approximating

it as a linear relationship, as seen in Figure 5. We ex-

clude red clump stars as they are further along their

evolutionary track than red giant stars, and potentially

have slightly different surface abundances due to evo-

lutionary effects or internal systematics. As a result,

including them in the slope measurement could artifi-

cially drive any measurements of chemical homogeneity.

However, these RC stars are adjusted afterwards along

with the other giants in their cluster. This process en-

sures a uniform abundance correction across the entire

cluster. From this, we find that the existing slopes in

the cluster sample are nonzero, with a median slope of

∼0.02 dex/dex.

This systematic bias is present in DR17, and in the

Cannon and ASPCAP allStar files from IPL-3. However

it is not present in the IPL-3 allStar release analyzed

using the Payne. We adjust the measured [X/Fe] for

each cluster star using the following equation:

[X/Fe]i, corrected = [X/Fe]i −mlog gi + ZP, (5)

where each ith index is a star in a cluster and m is

the best fit slope of [X/Fe] and log(g) within a specific

cluster. We set the zero-point (ZP) of the cluster [X/Fe]

after the correction using the abundances of the stars on

the giant branch below the red clump to ensure that the

median cluster [X/Fe] is reflective of its true value. The

fitting uncertainties are propagated to uncertainties on

the correction, which are then added in quadrature with

the existing abundance uncertainties.

Figure 5. Uncalibrated surface gravity versus [Mg/Fe] for
M67. The [Mg/Fe] values from DR17 are shown in black, and
have a clear linear relationship with log(g). The adjusted
abundances used in the calculation of intrinsic scatter are
shown in red.

4. RESULTS

Within one standard deviation, the only abundance

that showed evidence of inhomogeneity, or consistent

nonzero intrinsic scatter, across multiple clusters was

[M/H]. This is because [M/H] has small uncertainties

compared to other [X/Fe] measurements (∼0.008 dex as

compared to ∼0.015 dex for the rest of the DR17 and

IPL-3 abundances and ≥0.03 for the BAWLAS abun-

dances). Given that the [M/H] uncertainties are smaller

but not under-reported, as we verified in Section 2, it
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potentially implies that we could detect the existence of

inhomogeneities that were then masked by larger uncer-

tainties in the other abundances.

However, within three standard deviations (a 99.7%

confidence interval), none of the clusters show measur-

able inhomogeneities in any of the measured elements.

Furthermore, the scale of the limits derived using the

paired stars method are also on the scale of ∼0.001 dex

in many elements. And using that method we find no

measurement of scatter across in any of the elements

and clusters. As a result, we are confident that in the

majority of elements we can constrain the homogeneity

of the OCs to less than 0.01 dex in a 99.7% confidence

interval.

All the measured quantities for each [X/Fe] are pre-

sented in Table 2. We show that across DR17 and

all MWM pipelines, we do not find any elements that

show consistent chemical inhomogeneity across our clus-

ter sample, and in Figure 6 we show that we do not find

any clusters with consistent scatter across their abun-

dance samples. We only show the results from the IPL-3

ASPCAP data in the here because it includes values for

weak lined elements. The literature comparison plots

using DR17, IPL-3 Cannon, and IPL-3 Payne releases

are comparable and are shown in Appendix A.

The upper limits on the intrinsic scatter measured in

elements included in the BAWLAS catalog are higher

than the limits on intrinsic scatter placed on the more

well-measured elements, such as Mg or Ni. The reasons

for this are twofold: Firstly, while many of the clusters

studied did have enough stars to measure an intrinsic

scatter, the number of stars that contained BAWLAS

abundances within each cluster was smaller than the

number of stars used to calculate α and iron-peak el-

ements. Secondly, the associated uncertainties for the

weak-lined elements were appreciably larger (0.03–0.08

dex) than the ones included in DR17 and MWM (0.01–

0.04 dex).

5. DISCUSSION

5.1. Comparison to Milky Way Field Stars

To quantify the difference in chemical homogeneity

between our OCs and the Milky Way field, we create a

matched field star sample (MFS) that mirrors our exist-

ing cluster sample.

For each of the 15 clusters in our study with enough

members to apply the pairwise method, we match each

star within the cluster to a field star within two sigma1

1 We tested the effects of using 1σ and 3σ to match
stars and found no difference in our conclusions.

in Galactocentric radius, [M/H], [α/M], Teff , and log g.

Here we consider the parameter uncertainties of both

the cluster star as well as any candidate field stars. We

use each star’s [M/H] and [α/M] value from prior to

the stellar parameter correction. We then measure the

intrinsic scatter in each of the MFS samples, replicating

the methodology outlined in Section 3.1. Finally, we

compare the difference in intrinsic scatter between our

MFS sample and the OC sample (Figure 7).

We find that on average, across all abundances, the

matched field star samples have +0.012+0.02
−0.01 dex more

intrinsic scatter than the open clusters in our sample.

This is in strong agreement with Ness et al. (2022),

which states that stars in the Milky Way are chemi-

cally similar (within ∼0.01–0.02 dex) when given a fixed

Galactocentric radius, [M/H], and [α/Fe]. The median

difference between OC intrinsic scatter and field star in-

trinsic scatter (∆σ[X/Fe]) for each nucleosynthetic fam-

ily is given below:

• α-elements (Mg, Si, Ca, Ti, P, S): 0.002 dex

• Iron-peak elements (Cr, Mn, Fe, Co, Ni, V): 0.012

dex

• Odd-Z (Na, Al, K): 0.023 dex

• Neutron-capture (Nd, Ce): 0.02 dex

Due to our selection criteria for the field star sample,

we expect similar intrinsic scatter in the α, and iron-

peak elements. Interestingly, two of the odd-Z elements,

Al and K, both have nonzero scatter in the majority of

our MFS samples despite being measured as homoge-

neous in our OCs. While in [Na/Fe] the distribution in

∆σ[X/Fe] is roughly symmetric, Na is an element with

weak lines in APOGEE’s wavelength range and was in-

cluded in our sample with the BAWLAS catalog. As a

result, not only does it have comparatively larger uncer-

tainties than the other odd-Z elements, but it has poorer

completion as well, as only a subset of high SNR stars

in our study have BAWLAS abundances. This implies

that odd-Z elements may be a useful tool in differentiat-

ing otherwise chemically similar populations. However,

given that the distribution for all of these elements is

consistent with zero in at least a subset of clusters and

field star comparisons, more precise limits are needed to

accurately test this

Neutron capture elements also show slightly larger dif-

ferences in scatter than their field star counterparts.

Manea et al. (2023) showed that neutron-capture ele-

ments have more discriminatory power in distinguishing

“doppelganger stars”. What we find potentially corrob-

orates that, but we also show that for co-eval and co-

natal stars within an OC, the expectation of chemical

homogeneity within neutron capture elements is broadly
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Table 2. List of [X/Fe] columns in the table of cluster parameters for IPL-3 ASPCAP. All columns have units of dex, and all
X/Fe measurements are scaled to solar values. The abundances measured in these columns are Mg, Ca, Si, S, P, Ni, Cr, Ti, V,
Mn, Co, Na, K, Al, V, Mn, Co, Cu, CNO, Nd, and Ce. In addition we provide columns for [Fe/H] and [M/H]. This table will
be made available in machine readable format.

Column Name Column Description

cluster Cluster name

Pipeline Which pipeline (ASPCAP, Cannon, Payne) was used to derive abundances

Method Whether the paired stars (pair) or MLE method (MLE) was used

x fe Median [X/Fe] of the cluster

x fe cluster disp Dispersion in [X/Fe] within the cluster

x fe sigma [X/Fe] intrinsic MLE scatter

x fe sigma uncertainty [X/Fe] intrinsic pairwise scatter uncertainty

x fe sigma upper limit [X/Fe] intrinsic MLE scatter 3 uncertainty upper limit

comparable to that of elements from other well-studied

and well-measured nucleosynthetic families. In a field

star sample with a high expectation of chemical simi-

larity to an OC, as shown by the relative lack of differ-

ence in measured α-element intrinsic scatter, there is a

0.02 ± 0.02 dex difference in measured scatter for neu-

tron capture elements. Due to this, it seems possible

that neutron capture elements could be useful in dis-

tinguishing otherwise highly similar stellar populations

but significantly more precise limits would be required

to accomplish that goal.

In both cases of odd-Z and neutron capture elements,

the differences between each OC and their respective

MFS are consistent with zero within 3 uncertainties.

More precise limits are required to make any conclu-

sive statements on their effectiveness in distinguishing

co-natal and co-eval stellar populations.

5.2. Previous Studies of Chemical Homogeneity

There have been numerous studies focusing on mea-

suring the chemical homogeneity of star clusters; how-

ever, most of these studies have been focused on larger

and more complicated globular clusters. Within open

clusters, different studies have found a wide range of

limits on inhomogeneity. This is further complicated by

the fact that not every study investigates the same set

of abundances, nor is every analysis method compara-

ble to one another. One of the differences between this

study and many others is that their published limits on

homogeneity are either 68% and 95% limits; the values

we publish and show in Figures 6 and Appendix A are

all 99.7% limits.

Given the number of studies done on M67, NGC 6791,

and NGC 6819, they are shown in Figure 6, while the

literature comparisons for the remaining clusters are lo-

cated in Appendix A. The figures comparing the intrin-

sic scatter measured using DR17, Cannon, and Payne

abundances for all 26 OCs are also shown in Appendix

A.

We compare our results to four previous studies (Bovy

2016; Liu et al. 2016; Ness et al. 2018; Poovelil et al.

2020). We find that within the α and iron peak elements,

which are well-measured in APOGEE and MWM, the

upper limits derived in this study are consistent with

previous findings. In the weak-lined elements such as

V, Cu, Ce, and Nd, there is more variance. But even

within those elements, in many clusters we find compa-

rable limits to previous works.

It is worth outlining the differences in the analyses

and sample sets between these different studies. Poovelil

et al. (2020) is the most similar to ours in terms of sam-

ple size, analysis method, and dataset (using APOGEE

DR16; Ahumada et al. 2020). While they measure upper

limits that are far less constraining than ours, they also

measure lower limits that strongly imply the existence

of true intrinsic scatter. However, the stellar parameter

systematic that we found in DR17 and MWM is also

present in DR16 but was unaccounted for in Poovelil

et al. (2020)’s final results. Therefore, it is possible that

the measured scatters in Poovelil et al. (2020) are im-

pacted by a relationship between stellar parameters and

abundance measurements. Our uncorrected σ[X/Fe] val-

ues (not shown in this paper) are in strong agreement

with the ones published in Poovelil et al. (2020), which

lends evidence to this hypothesis.

Liu et al. (2016) uses high resolution spectroscopy

(R ∼ 50, 000) to study two solar twins in M67. This,

makes it less likely that their final abundances are driven

by systematics due to stellar atmospheres or poor line

fitting, as the stars are in very similar parts of parameter

space. This method is similar, but not identical, to the

pairwise method of deriving intrinsic scatter outlined in

Section 3.1. They derive abundances for a total of 26 el-

ements as well as [Fe/H], with an average measurement

uncertainty of e[X/Fe] ≤ 0.02 dex. As a result, within
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Figure 6. The 99.7% upper limits using abundances from IPL-3 ASPCAP in M67, NGC 6791, and NGC 6819. The median
99.7 percentile upper limit for each cluster is shown as a magenta horizontal line. We compare our findings to upper limits
and measurements from previous literature. The upper limits are broadly in agreement with other studies for well-measured
elements in APOGEE and Milky Way Mapper.

Figure 7. A violin plot comparing the difference in element intrinsic scatter between open clusters and matched samples of
field stars as shown in Section 5.1. Here the elements that belong to the α, CNO, and iron-peak families are shaded in grey as
we expect them to be similar due to our selection criteria. Within these elements P and V have larger limits due to them being
weak lined elements from the BAWLAS catalog. While broadly we find that the field star samples have more scatter than their
OC counterpart, we don’t find any conclusive difference in any element between the two samples.
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their sample they were able to very tightly constrain the

difference in [X/Fe] between the two stars, showing that

for elements with Z < 30, there was an average differ-

ence of < 0.06 dex, and for the neutron capture elements

there was an average difference of < 0.05 dex. It is en-

couraging that in the strong-lined elements included in

our study, we place similar upper limits on abundance

scatter.

Ness et al. (2018) uses APOGEE DR13 (Albareti et al.

2017) abundances and spectra to measure intrinsic dis-

persions within a set of seven open clusters, six of which

are included in this study. However, their methodol-

ogy in constraining scatter was noticeably different than

this work. Using The Cannon (Ness et al. 2015), they

derive abundances and uncertainties in 20 different el-

ements from APOGEE spectra and a training set of

open cluster stars in APOGEE DR13. Ness et al. (2018)

notes that while their Cannon abundance measurements

were broadly comparable to ASPCAP’s, the uncertain-

ties are between 20-50% smaller. Beyond that, using a

chi-squared fit they determined that the uncertainties,

a quadrature sum of formal abundance uncertainty and

cross-validation uncertainty, are overestimated given the

widths of calculated abundance distributions. There-

fore, they derive a scaling factor to correct the uncertain-

ties to match the theoretically predicated value; how-

ever, this methodology also introduces the risk of artifi-

cially down-scaling the measured limits on the intrinsic

scatter. However, it is also worth noting that in the

majority of elements, the values they publish are com-

parable to the ones derived in this work.

Bovy (2016) studied the abundance spread of 15 differ-

ent elements in three clusters, all of which are included

in this study: M67, NGC 2420, and NGC 6819. The

data came from APOGEE DR12 (Alam et al. 2015),

with cluster membership from Mészáros et al. (2013).

However, the key difference between their study and

this one is the methodology. Bovy (2016) made the as-

sumption that in the absence of any intrinsic chemical

scatter, the main driver for variation in the photometric

and spectroscopic attributes of OC stars is their mass,

which can be modeled as a one dimensional sequence.

They correct for any systematic variations in the spec-

tra driven by mass, using Teff as a proxy. They then use

detailed forward modeling of the spectra and Approx-

imate Bayesian Computation to measure the intrinsic

scatter as well as upper limits. Overall Bovy (2016) find

no indication of chemical inhomogeneity in any of the

three clusters they studied; the upper limits they de-

rived are largely in agreement with the ones calculated

using the MLE method in this work. However, using

the paired stars method we can constrain tighter upper

limits in the majority of elements. Similar to studies

discussed previously, the limits placed on the BAWLAS

neutron capture elements by Bovy (2016) are lower than

ours.

Finally, Cheng et al. (2021) use spectroscopic data

from APOGEE DR14 (Abolfathi et al. 2018) to measure

intrinsic scatter in M67, NGC 6791, and NGC 6819 in 15

different elemental abundances. The analysis method is

very similar to the one outlined in Bovy (2016), though

there are a few differences — notably, that they use

DR14 instead of DR12, which includes several differ-

ences in the line lists (detailed in Holtzman et al. 2018).

Furthermore, unlike Bovy (2016), they use spectroscopic

effective temperatures in their one-dimensional model as

opposed to photometric effective temperatures. Cheng

et al. (2021) found the clusters to be chemically homo-

geneous, placing upper limits comparable to this study

across its sample of elements. While they measured

fewer abundances than this work, in the three clusters

studied the upper limits they derive are similar to Bovy

(2016).

Thus, within the majority of the elements included

in DR17 and IPL-3, such as the α-elements and iron-

peak elements, the upper limits we calculate here are in

agreement with what has been previously found across

all the clusters studied. This lends credibility to the

limits placed on the numerous clusters studied in this

work that did not have previously derived limits in the

literature. However, the limits derived in this study for

the neutron capture elements are larger than what has

been previously found in any of the literature. This is

likely driven by the comparatively large uncertainties on

the elements (0.03–0.08 dex).

6. CONCLUSION

The purpose of this study was to quantify the level of

chemical homogeneity within the largest sample to date

of Milky Way open clusters for a broad set of elements.

Using SDSS-V Milky Way Mapper IPL-3 abundances

and Gaia DR3 kinematics, we identify a sample of 26

open clusters with large enough membership to measure

the intrinsic scatter in up to 20 elements. Using the

abundance differences between paired stars along the

HR diagram, as well as a Maximum Likelihood Estima-

tor, we then measure the intrinsic scatter within each

element for each cluster. We find the following:

1. We assemble a sample of 26 open clusters across a

broad range of metallicity, age, mass, and galactic

radii. Within a 99.7% confidence interval, we do

not find any evidence of intrinsic scatter on the

giant branch or in the red clump in any element

across all the open clusters in our sample.
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2. Within the majority of abundances included in

APOGEE DR17 and Milky Way Mapper IPL-

3, we constrain the chemical homogeneity to

≤0.02 dex within a 99.7% confidence interval, and

within ≤0.2 dex for the weak lined elements, such

as those included in the DR17 BAWLAS catalog.

Our limits are consistent with those in the liter-

ature for well-studied elements and clusters, and

we add roughly a dozen clusters to this literature

sample. Given the limited dataset in some of the

elements, we recommend follow up measurements

to better quantify their upper limits.

3. When compared to a sample of field stars with

similar Galactocentric radii, [α/M], and [M/H], we

find our OCs to be more chemically homogeneous,

with an average difference of ∼0.012 dex between

the two samples. This corroborates previous find-

ings that the dimensionality of chemical enrich-

ment of the Milky Way is low, and can likely be

explained through a few processes. In the future

this could be useful in placing constraints on radial

mixing and azimuthal variations within the Milky

Way.

4. We identify surface-gravity-dependent abundance

shifts within APOGEE DR17 and Milky Way

Mapper IPL-3 (corrected for in this analysis). This

systematic needs to be accounted for in similar fu-

ture work. We also find that the abundance un-

certainties within both APOGEE and MWM are

accurately estimated.

5. These findings have implications for attempts

to implement chemical tagging, especially strong

chemical tagging, specifically showing that within

the light elements alone it is not possible to confi-
dently separate field stars and co-natal stars given

similar stellar parameters and Galactic radii. The

tightest abundance variation constraints in OCs

may also help set limits on the rate of binary in-

teractions and planetary engulfment in different

environments.
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Nacional Autónoma de México, University of Arizona,

University of Colorado Boulder, University of Illinois at

Urbana-Champaign, University of Toronto, University

of Utah, University of Virginia, and Yale University.

Software: astropy (AstropyCollaboration et al. 2013,

2018,2022),scipy(Virtanenetal.2020),matplotlib(Hunter

2007), numpy (Harris et al. 2020), pandas (pandas devel-

opment team 2020; Wes McKinney 2010), and seaborn

(Waskom2021).

REFERENCES

Abate, C., Pols, O. R., Izzard, R. G., Mohamed, S. S., & de

Mink, S. E. 2013, A&A, 552, A26,

doi: 10.1051/0004-6361/201220007

Abdurro’uf, Accetta, K., Aerts, C., et al. 2022, ApJS, 259,

35, doi: 10.3847/1538-4365/ac4414

Abolfathi, B., Aguado, D. S., Aguilar, G., et al. 2018,

ApJS, 235, 42, doi: 10.3847/1538-4365/aa9e8a

Ahumada, R., Allende Prieto, C., Almeida, A., et al. 2020,

ApJS, 249, 3, doi: 10.3847/1538-4365/ab929e

Alam, S., Albareti, F. D., Allende Prieto, C., et al. 2015,

ApJS, 219, 12, doi: 10.1088/0067-0049/219/1/12

Albareti, F. D., Allende Prieto, C., Almeida, A., et al. 2017,

ApJS, 233, 25, doi: 10.3847/1538-4365/aa8992

Allende Prieto, C., Beers, T. C., Wilhelm, R., et al. 2006,

ApJ, 636, 804, doi: 10.1086/498131

Almeida, A., Anderson, S. F., Argudo-Fernández, M., et al.

2023, ApJS, 267, 44, doi: 10.3847/1538-4365/acda98

Astropy Collaboration, Robitaille, T. P., Tollerud, E. J.,

et al. 2013, A&A, 558, A33,

doi: 10.1051/0004-6361/201322068

Astropy Collaboration, Price-Whelan, A. M., Sipőcz, B. M.,

et al. 2018, AJ, 156, 123, doi: 10.3847/1538-3881/aabc4f

Astropy Collaboration, Price-Whelan, A. M., Lim, P. L.,

et al. 2022, apj, 935, 167, doi: 10.3847/1538-4357/ac7c74

Badenes, C., Mazzola, C., Thompson, T. A., et al. 2018,

ApJ, 854, 147, doi: 10.3847/1538-4357/aaa765

Barkhouser, R. H., Smee, S. A., Hammond, R. P., et al.

2022, in Society of Photo-Optical Instrumentation

Engineers (SPIE) Conference Series, Vol. 12182,

Ground-based and Airborne Telescopes IX, ed. H. K.

Marshall, J. Spyromilio, & T. Usuda, 121823O,

doi: 10.1117/12.2630655

Bastian, N., Lamers, H. J. G. L. M., de Mink, S. E., et al.

2013, MNRAS, 436, 2398, doi: 10.1093/mnras/stt1745

Beaton, R. L., Oelkers, R. J., Hayes, C. R., et al. 2021, AJ,

162, 302, doi: 10.3847/1538-3881/ac260c

Bhattarai, B., Loebman, S. R., Ness, M. K., et al. 2024,

arXiv e-prints, arXiv:2408.02228,

doi: 10.48550/arXiv.2408.02228

Blanton, M. R., Bershady, M. A., Abolfathi, B., et al. 2017,

AJ, 154, 28, doi: 10.3847/1538-3881/aa7567

Bovy, J. 2015, ApJS, 216, 29,

doi: 10.1088/0067-0049/216/2/29

—. 2016, ApJ, 817, 49, doi: 10.3847/0004-637X/817/1/49

Bowen, I. S., & Vaughan, A. H., J. 1973, ApOpt, 12, 1430,

doi: 10.1364/AO.12.001430

Bressan, A., Marigo, P., Girardi, L., et al. 2012, MNRAS,

427, 127, doi: 10.1111/j.1365-2966.2012.21948.x

Buder, S., Sharma, S., Kos, J., et al. 2021, MNRAS, 506,

150, doi: 10.1093/mnras/stab1242

Cantat-Gaudin, T., Jordi, C., Vallenari, A., et al. 2018,

A&A, 618, A93, doi: 10.1051/0004-6361/201833476

Cantat-Gaudin, T., Anders, F., Castro-Ginard, A., et al.

2020, A&A, 640, A1, doi: 10.1051/0004-6361/202038192

Carlberg, J. K., Smith, V. V., Cunha, K., Majewski, S. R.,

& Rood, R. T. 2010, ApJL, 723, L103,

doi: 10.1088/2041-8205/723/1/L103

Carrera, R., Casamiquela, L., Carbajo-Hijarrubia, J., et al.

2022, A&A, 658, A14, doi: 10.1051/0004-6361/202141832

Cheng, C. M., Price-Jones, N., & Bovy, J. 2021, MNRAS,

506, 5573, doi: 10.1093/mnras/stab2106

Chiappini, C., Matteucci, F., & Romano, D. 2001, ApJ,

554, 1044, doi: 10.1086/321427

Choi, J., Dotter, A., Conroy, C., et al. 2016a, ApJ, 823,

102, doi: 10.3847/0004-637X/823/2/102

—. 2016b, ApJ, 823, 102,

doi: 10.3847/0004-637X/823/2/102

Cunha, K., Smith, V. V., Johnson, J. A., et al. 2015, ApJL,

798, L41, doi: 10.1088/2041-8205/798/2/L41

De Silva, G. M., Freeman, K. C., Asplund, M., et al. 2007,

AJ, 133, 1161, doi: 10.1086/511182

De Silva, G. M., Freeman, K. C., Bland-Hawthorn, J., et al.

2015, MNRAS, 449, 2604, doi: 10.1093/mnras/stv327

Dotter, A. 2016, ApJS, 222, 8,

doi: 10.3847/0067-0049/222/1/8

Feng, Y., & Krumholz, M. R. 2014, Nature, 513, 523,

doi: 10.1038/nature13662

Freeman, K., & Bland-Hawthorn, J. 2002, ARA&A, 40,

487, doi: 10.1146/annurev.astro.40.060401.093840

http://doi.org/10.1051/0004-6361/201220007
http://doi.org/10.3847/1538-4365/ac4414
http://doi.org/10.3847/1538-4365/aa9e8a
http://doi.org/10.3847/1538-4365/ab929e
http://doi.org/10.1088/0067-0049/219/1/12
http://doi.org/10.3847/1538-4365/aa8992
http://doi.org/10.1086/498131
http://doi.org/10.3847/1538-4365/acda98
http://doi.org/10.1051/0004-6361/201322068
http://doi.org/10.3847/1538-3881/aabc4f
http://doi.org/10.3847/1538-4357/ac7c74
http://doi.org/10.3847/1538-4357/aaa765
http://doi.org/10.1117/12.2630655
http://doi.org/10.1093/mnras/stt1745
http://doi.org/10.3847/1538-3881/ac260c
http://doi.org/10.48550/arXiv.2408.02228
http://doi.org/10.3847/1538-3881/aa7567
http://doi.org/10.1088/0067-0049/216/2/29
http://doi.org/10.3847/0004-637X/817/1/49
http://doi.org/10.1364/AO.12.001430
http://doi.org/10.1111/j.1365-2966.2012.21948.x
http://doi.org/10.1093/mnras/stab1242
http://doi.org/10.1051/0004-6361/201833476
http://doi.org/10.1051/0004-6361/202038192
http://doi.org/10.1088/2041-8205/723/1/L103
http://doi.org/10.1051/0004-6361/202141832
http://doi.org/10.1093/mnras/stab2106
http://doi.org/10.1086/321427
http://doi.org/10.3847/0004-637X/823/2/102
http://doi.org/10.3847/0004-637X/823/2/102
http://doi.org/10.1088/2041-8205/798/2/L41
http://doi.org/10.1086/511182
http://doi.org/10.1093/mnras/stv327
http://doi.org/10.3847/0067-0049/222/1/8
http://doi.org/10.1038/nature13662
http://doi.org/10.1146/annurev.astro.40.060401.093840


16

Gaia Collaboration, Prusti, T., de Bruijne, J. H. J., et al.

2016, A&A, 595, A1, doi: 10.1051/0004-6361/201629272

Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al.

2018, A&A, 616, A1, doi: 10.1051/0004-6361/201833051

—. 2021, A&A, 649, A1, doi: 10.1051/0004-6361/202039657

Gaia Collaboration, Vallenari, A., Brown, A. G. A., et al.

2023, A&A, 674, A1, doi: 10.1051/0004-6361/202243940
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APPENDIX

A.

Here we show the literature comparison plots for the well studied OCs in our sample, as discussed in Section 5.
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Figure 8. The literature comparison plots for the well studied OCs in our sample using IPL-3 ASPCAP (colored in magenta).
The horizontal line indicates the median 99.7% confidence limit for that cluster’s homogeneity.
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Figure 9. The literature comparison plots for the well studied OCs in our sample using IPL-3 Cannon (colored in blue). The
horizontal line indicates the median 99.7% confidence limit for that cluster’s homogeneity.



21

Figure 10. The literature comparison plots for the well studied OCs in our sample using IPL-3 Payne (colored in red). The
horizontal line indicates the median 99.7% confidence limit for that cluster’s homogeneity.
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Figure 11. The literature comparison plots for the well studied OCs in our sample using APOGEE DR17 (colored in black).
The horizontal line indicates the median 99.7% confidence limit for that cluster’s homogeneity.
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B. OPEN CLUSTER SAMPLE MEMBERSHIP

Here we show the plots outlining the kinematic selection of our open cluster sample, as described in Section 2.2.1.
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Figure 12. These figures follow the same layout as Figure 1 in Section 2.2.1.



25

Figure 13. These figures follow the same layout as Figure 1 in Section 2.2.1.
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Figure 14. These figures follow the same layout as Figure 1 in Section 2.2.1.


