
SuperFlow: A Fully-Customized RTL-to-GDS

Design Automation Flow for Adiabatic

Quantum-Flux-Parametron Superconducting Circuits

Yanyue Xie1*, Peiyan Dong1*, Geng Yuan2, Zhengang Li1, Masoud Zabihi3, Chao Wu1, Sung-En Chang1,

Xufeng Zhang1, Xue Lin1, Caiwen Ding4, Nobuyuki Yoshikawa5, Olivia Chen6 and Yanzhi Wang1

1Northeastern University, 2University of Georgia, 3IBM Research,
4University of Connecticut, 5Yokohama National University, 6Tokyo City University

1{xie.yany, dong.pe, yanz.wang}@northeastern.edu, 6olivia.chen@ieee.org

AbstractÐSuperconducting circuits, like Adiabatic Quantum-
Flux-Parametron (AQFP), offer exceptional energy efficiency but
face challenges in physical design due to sophisticated spacing
and timing constraints. Current design tools often neglect the
importance of constraint adherence throughout the entire design
flow. In this paper, we propose SuperFlow, a fully-customized
RTL-to-GDS design flow tailored for AQFP devices. SuperFlow
leverages a synthesis tool based on CMOS technology to transform
any input RTL netlist to an AQFP-based netlist. Subsequently, we
devise a novel place-and-route procedure that simultaneously con-
siders wirelength, timing, and routability for AQFP circuits. The
process culminates in the generation of the AQFP circuit layout,
followed by a Design Rule Check (DRC) to identify and rectify
any layout violations. Our experimental results demonstrate that
SuperFlow achieves 12.8% wirelength improvement on average
and 12.1% better timing quality compared with previous state-
of-the-art placers for AQFP circuits.

I. INTRODUCTION

Superconducting logic circuits exhibit extremely

high energy efficiency over their Complementary

Metal±Oxide±Semiconductor (CMOS) counterparts [1].

Adiabatic Quantum-Flux-Parametron (AQFP) logic [2] is a

representative energy-efficient superconducting logic that is

designed to achieve a reduction in both static and dynamic

power consumption by adopting adiabatic switching [3].

AQFP can potentially achieve 104 − 105 energy efficiency

gain compared with state-of-the-art CMOS technology with a

clock frequency of several GHz [4]. AQFP differs from CMOS

circuits in terms of active components, passive components,

logic gates, data propagation, clocking scheme, fan-out

requirements, and power consumption, as detailed in Table I.

Therefore, the design automation tools developed for CMOS

cannot be directly applied to the design of AQFP circuits.

There have been several existing works on customized design

automation tools for AQFP circuits. [5]±[7] solve the buffer

and splitter insertion problem during the logic synthesis stage

for path balancing and fan-out branching imposed by AQFP

technology. [8] and [9] consider spacing constraints and max-

wirelength constraints of AQFP during the placement stage.

[10] further improves the timing of AQFP designs. However,

all of these works focus solely either on the logic synthesis

*Equal contributions.

TABLE I
COMPARISON OF AQFP WITH CMOS.

Circuits AQFP CMOS

Active component Josephson junction (JJ) Transistor

Passive component Inductor Capacitor

Logic gate Majority-based gates And, or, inverter gates

Data propagation Current pulse Voltage level

Clocking Four-phase clocking Synchronous

Fan-out = 1(Splitter for fan-outs) ≥ 1

Power Alternating Current (AC) Direct Current (DC)

stage or the placement stage, without addressing the entire

design flow, i.e., a complete RTL-to-GDS (Register-Transfer

Level to Graphic Design System) flow. While some studies

offer complete design flows, they only focus on specific steps

like logic synthesis or AQFP cell library design [11] [12], both

leaving placement and routing stage to commercial tools and

lacking flexibility.

Transitioning from CMOS to the more energy-efficient

AQFP circuits necessitates a comprehensive and dedicated

AQFP design automation tool flow to optimize Power, Perfor-

mance, and Area (PPA). The absence of such a comprehensive

tool flow restricts design optimization, potentially leading to

issues like congestion and post-routing timing violations. Stan-

dard electronic design automation (EDA) tools for CMOS logic

are not applicable to AQFP logic, due to inherent differences

such as clocking constraints and fan-out requirements. Relying

on commercial EDA tools for certain or all stages would result

in limited flexibility, particularly considering that AQFP is an

emerging technology and the AQFP cell library is under active

development [12]. In light of these challenges, we develop a

fully-customized RTL-to-GDS design automation flow tailored

for AQFP circuits, enabling designers to easily adjust the design

objectives for AQFP and incorporate timely updates to the

AQFP cell library.

Our major contributions can be summarized as follows:

• We present a fully-customized RTL-to-GDS design flow,

SuperFlow, for AQFP circuits. To the best of our knowl-

edge, this is the first non-commercial RTL-to-GDS design

2024 Design, Automation & Test in Europe Conference (DATE 2024)	

 979-8-3503-4859-0/DATE24/© 2024 EDAA 

	



automation tool that targets AQFP devices.

• We optimize the placement quality by optimizing wire-

length and timing simultaneously while respecting the

clocking and the mixed-cell-size constraints at the detailed

placement stage.

• We introduce a layer-wise routing strategy, capable of

routing with space expansion, thereby addressing potential

routability issues.

• Experimental results show that SuperFlow achieves 12.8%

wirelength improvement on average with 12.1% better

timing quality over previous state-of-the-art placers for

AQFP circuits.

II. BACKGROUND

AND

‘0’

a

xoutxin

b c

d

inv ‘1’ inv

a

xoutxin

b c

d

MAJ
a

xoutxin

b c

d

SPLITTER
a

xoutxin

db c

(a) (b) (c) (d)

buffer bufferbuffer buffer bufferbuffer

NAND

Fig. 1. The symbols of AQFP logic gates. (a) and gate; (b) nand gate; (c)
majority gate; (d) splitter gate.

A. AQFP Superconducting Logic

The fundamental building block of AQFP logic gates is the

AQFP buffer, which consists of a double-Josephson junction

(JJ) superconducting quantum interference device (SQUID)

[1]. Together with the inverter gate and constant gate, these

basic gates constitute the AQFP cell library, including and,

or, not, majority, buffer, and splitter, as shown

in Fig. 1. The AQFP standard cell library is built via the

minimalist design approach, utilizing a bottom-up method to

construct more complex gates [6]. The design of the AQFP

cell library follows the AIST standard process 2 (STP2) and the

MIT Lincoln Laboratory (MIT-LL) SQF5ee fabrication process,

both of which are niobium-based integrated-circuit technologies

suitable for AQFP.

Different from traditional CMOS logic that utilizes and-

or-inverter-based (AOI) representation, AQFP logic favors

majority-based (MAJ) gates, due to the efficient utilization of

JJ resources. Three-input majority gates in AQFP consume the

same amount of JJ resources as two-input AOI gates [6]. Please

note that, unlike CMOS gates which can connect to fan-out

directly, all AQFP gates require the use of splitter cells

for multiple fan-outs.

B. AQFP Clocking Architecture

The clocking architecture and timing requirements of AQFP

differ from CMOS. In CMOS circuits, multi-level gates are

expected to meet timing constraints as a group, i.e., multi-level

gates for pipelining, while in AQFP circuits, each gate must

satisfy the timing requirements, i.e., the gate-level pipelining.

Specifically, four-phase AC bias currents serve as both power

supply and clock signal [1], which triggers the data from one

clock phase to the next, as illustrated in Fig. 2. AQFP utilizes

this feature to mitigate the power consumption overhead of DC

bias shown in other superconducting logic technologies, such

as RSFQ [13]. While AC biasing contributes to exceptional

energy efficiency, AQFP circuits also adopt a deep-pipelined

architecture since each AQFP logic gate is connected to an

AC clock signal and occupies one clock phase. This deep-

pipelined architecture mandates all inputs for a logic gate to

have the same delay (clock phases) from the primary inputs

[6], necessitating rigorous path balancing. Furthermore, when it

comes to a complete design flow, AQFP’s gate-level pipelining

provides more flexibility, allowing simultaneous optimization

of spacing and timing constraints.

...

Logic gates in one clock phase

...

...

...

Phase 1: AC1 + DC

Phase 3: -(AC1 - DC)

Phase 2: AC2 - DC

Phase 4: -(AC2 + DC)

...

...

...

...

AC1

AC2

DC

Fig. 2. AQFP clocking architecture. AQFP clocking scheme utilizes one
DC and two AC signals to create a four-phase clocking scheme. The two AC
signals have a phase difference of 90 degrees. The intricate zigzag clocking
signals impose strict timing constraints on AQFP logic cells and formulate a
deep-pipelined architecture.

C. Challenges of AQFP Physical Design

AQFP physical design is complicated and challenging due

to various design constraints: (i) The AQFP placement prob-

lem involves fulfilling multiple spacing limitations, including

cell spacing and zigzag spacing constraints [8]. Cell spacing

requires that neighboring cells in a row either touch or maintain

a minimum distance. Regarding zigzag spacing, when vias are

utilized to change the wire directions, the wire zigzags must

adhere to a predetermined minimum spacing (e.g., 10µm for the

MIT-LL process). (ii) AQFP circuits should comply with maxi-

mum wirelength requirements, which specify that a single wire

connection should not exceed Wmax [9]. If a single connection

exceeds the maximum wirelength restriction, it is necessary

to insert an entire row of buffers between the two rows. (iii)

Due to the different sizes of AQFP buffers relative to other

majority-based cells, and the possibility of having various types

of cells within a single clock phase, AQFP placement presents

a mixed-cell-size problem. Within a single densely populated

clock phase with multiple mixed-cell-size cells, perturbations

or cell swapping can potentially cause significant intra-row

violations. (iv) Strict timing constraints should be maintained

since AQFP circuits run at a clock frequency of several GHz.

The zigzag clocking scheme and the deep-pipelined architecture

impose great challenges to AQFP placement algorithms as the

cell positions in a fixed row have a significant impact on the

timing closure. As a result, traditional placers [8], [9] that

address wirelength alone may lead to placement results with



severe timing violations. (v) AQFP routing is limited to two

metal layers between two adjacent clock phases, conforming

to the zigzag clocking architecture and process requirements.

Hence, relying solely on separate synthesizers, placers, or

routers for AQFP circuits is insufficient. A comprehensive

design flow that encompasses and adheres to the various

design constraints of AQFP circuits is imperative. For instance,

following logic synthesis and the insertion of buffers/splitters

for path balancing, each logic cell is assigned a specific clock

phase or row index. The placement stage should preserve

the assigned row index for each logic cell while optimizing

their horizontal positions within the rows. Subsequently, during

the routing stage, clock wires must be routed based on the

placement results, ensuring no violations occur. Furthermore,

both placement and routing must consider clocking constraints

to achieve optimal timing and meet the desired clock frequency.

III. METHODS

A. Overall AQFP Design Flow

Fig. 3 demonstrates the overall design flow of SuperFlow for

AQFP circuits. The input files are the standard cell library of

AQFP and the Register-Transfer Level (RTL) files describing

circuit architecture. After logic synthesis and an AQFP inter-

preter, SuperFlow maps the netlist to an AQFP-based netlist,

which serves as the input to the following place-and-route

step. Then SuperFlow generates the circuit layout based on the

physical information provided after the place-and-route step.

Should any violations emerge after the Design Rule Check

(DRC), SuperFlow automatically rectifies these violations and

proceeds to finalize the layout files for AQFP circuits in Graphic

Design System II (GDSII) format

Logic Synthesis Tool (Yosys)

Benchmark 

Verilog files

Standard cell 

library

MAJ Netlist Converter

AQFP-based 

netlist

Global Placement

Detailed Placement

A* Based Layer-Wise Routing

Layout Generation 

GDSII layout

Timing-Aware Dynamic 

Programming

Time-Space Cell Swapping

Buffer Insertion

Wirelength & Timing 

Violations

No Violations

Yes

No

KLayout DRC

Buffer & Splitter Insertion

Tetris-based Legalization

Fig. 3. The overall design flow of SuperFlow.

B. Majority-Based Logic Synthesis for AQFP

1) Majority Netlist Conversion: Fig. 3 illustrates the logic

synthesis stage. AQFP prefers a majority-based netlist and we

first leverage a CMOS-based synthesis tool, Yosys, to generate

AOI netlists for input RTL files. The AOI netlist is then con-

verted to an MAJ netlist by mapping all feasible three-input nets

to their corresponding two-level majority-based implementation

while maintaining the minimum overall resource consumption.

To elaborate, we view the netlist as a directed graph. In

an AOI netlist, each node has two parent gates. While in

a majority-based netlist, each node has two or three parents

depending on its type of logic gate, e.g. an and gate or

a majority gate. The majority netlist conversion involves

three steps: (i) Identifying convertible three-input nets in AOI

netlists. (ii) Applying a table-based method to map these nets to

majority-based logic. (iii) Selecting the most resource-efficient

mapping for each net.

We initiate by identifying feasible three-input nets in the AOI

netlist using a depth-first search, starting from the netlist output.

The search begins with a two-input net formed by the node

and its two parent inputs, progressively adding parent nodes

to expand the net. This iterative search continues until three

independent parent nodes are found, ensuring no parent node

is a descendant of another in this search. If more than three

parent nodes are identified, the search is aborted, deeming the

node unsuitable for a three-input net.

Feasible three-input nets identified earlier can be mapped to

majority-based gates. Each net can be represented by up to two

majority gates. To check for majority mapping suitability, we

use a Karnaugh map checking method. This method compares

the Karnaugh maps of all combinations of three parent nodes

with the target net. If a match is found with primary gates,

the net is mapped directly; otherwise, it is mapped to two-level

majority-based logic with three majority gates at the first level

and one at the second level, connecting to the outputs of the

first three gates.

In optimizing the majority-based netlist, our goal is to

minimize both Josephson junction count and clock delays. This

requires a thorough search across the entire directed graph. We

prioritize majority mappings that use more logic gates and clock

phases, iterating through all mapping schemes for each three-

input net to find the one that uses the least resources overall.

2) Buffer and Splitter Insertion: After converting the AOI

netlist to a majority-based netlist, we insert splitter cells to

the converted netlist to comply with the AQFP fan-out require-

ments. Gates with over two fan-outs require a splitter cell,

selected based on the number of fan-outs. After addressing all

fan-outs, we reset and recalculate net delays. Given the updated

delay for each net, buffers are inserted in each data path to

every gate accordingly to produce equal delay (clock phase),

which is required by the AQFP technology [6]. Since the logic

structure of the converted netlist is fixed, buffer insertion could

be resolved in any order and will not change the total clock

phases or the critical path. With all buffers and splitter

cells in place, we finalize the majority-based AQFP netlist for

subsequent placement and routing stages.

C. AQFP Placement

The placement in Fig. 3 can be divided into global placement,

legalization, and detailed placement. In this section, we clarify

the implementation details of these steps.

1) Problem Formulation: The AQFP placement problem

can be formulated as a hypergraph G = (V,E), where V and

E denote the cells and nets, respectively. Let xi and yi be the x

and y coordinates of the center of logic cell vi. Given the AQFP



clocking architecture and a design netlist, our objective is to

determine the positions of the cells that optimize the routed

wirelength subject to the following constraints:

• Each logic cell should maintain consistent delay (clock

phase), respecting the sequence from the netlist.

• Cells must not overlap with others, and two horizontally

neighboring cells in a row can either be abutting or keeping

a minimum spacing smin (spacing constraint).

• All the wires must not exceed the maximum wirelength

Wmax (max-wirelength constraint).

• All timing requirements should be satisfied based on the

clocking signal (timing constraint).

• Cells of different sizes should not cause perturbations that

result in intra-row violations (mixed-cell-size constraint).

Therefore, we formulate our objective function for the row-

wise AQFP placement problem as follows:

min
x

∑

ei∈E

W (ei) + λtT (ei),

s.t. ∀ei ∈ E W (ei) ≤ Wmax,

xi + wi ≥ xi+1 − ziB,

xi + wi ≤ xi+1 − zismin,

(1)

where the λt is the positive weight for timing cost, W (ei) is

the wirelength cost function of net ei, Wmax is the maximum

allowed wirelength, zi is a binary value indicating whether two

cells are abutted, B is a big positive constant, smin is the

minimum spacing, and wi is the cell width. When zi = 0, it

means two cells are abutted, and the two equations correspond

to xi +wi = xi+1. When zi = 1, only xi +wi ≤ xi+1 − smin

is required and two cells should maintain a minimal spacing

horizontally. T (ei) is the four-phase timing model cost of net

ei, which depends on the located clock phase and is defined as

follows:

T (ei) =



















(xend − xstart)
α, if phase % 4 = 0

(xend + xstart)
α, if phase % 4 = 1

(−xend + xstart)
α, if phase % 4 = 2

(2Ŵ − xend − xstart)
α, if phase % 4 = 3

(2)

where xstart and xend are the start and end x coordinates of net

ei, Ŵ is the layer width of the clock phase, and α is a parameter

that modulating the relative importance of the connection across

different clock phases, which we set to 2.

2) Global Placement: Global placement aims to determine

the best possible cell locations that minimize the overall wire-

length while respecting the max-wirelength and spacing con-

straints of the AQFP. Meanwhile, timing should be addressed

during global placement to ensure that the generated placement

results do not hold a negative slack. Thus, the objective function

should also be timing-aware such that the placement results can

work at the desired clock frequency.

A prevalent approach to this constrained minimization prob-

lem is to relax the constraints into the objective function and

solve the unconstrained minimization problem:

min
x

∑

ei∈E

W (ei) + λtT (ei) + λw(W (ei)−Wmax). (3)

where λw is the weight for max-wirelength cost.

We utilize DREAMPlace [14] as our analytical global place-

ment engine, incorporating a timing-aware objective function.

To address the non-smooth, non-convex nature of the half-

perimeter wirelength (HPWL) model, we use a weighted-

average (WA) model for more effective wirelength cost op-

timization.

During global placement, we limit cell location optimization

to the one-dimensional x axis, keeping the cell row (clock

phase) fixed. Following this, we apply a Tetris-like legalization

approach, aiming to preserve global placement results while

minimizing cell overspreading. This legalization is iteratively

performed to eliminate cell overlaps within each clock phase.

BUF
AND

BUF BUF
MAJ3

BUF

BUF
SPL3

BUF
OR

BUF

BUF
AND

BUF
MAJ3

BUF
AND

BUF BUF
MAJ3

BUF

BUF
SPL3

BUF
OR

BUF

BUF
AND

BUF
MAJ3

AC2

AC1

Phase

i-1

Phase i

Phase

i+1

AC2

AC2

AC1

(a) Phase i-1 has fixed candidates 

Phase i-1 has the widest width 

with all cells abutted.

(b) Phase i-1 has flexible candidates

✗violation!

✓no violation

Fig. 4. An illustration of the detailed placement stage where one clock
phase has the widest width and all cells are abutted. (a) When cell candidates
are strictly matched to cells of identical sizes, it is possible to end up with a
sub-optimal state, leaving some nets with timing violations (highlighted by the
red line, SPL3 in phase i to MAJ3 in phase i+1); (b) By allowing flexibility
in cell candidates and permitting cell swaps to avoid overlaps (MAJ3, AND,
and BUF in phase i-1, in contrast to only MAJ3 and AND in (a)), the detailed
placement result is better than (a), exhibiting no timing violations.

3) Detailed Placement: In the detailed placement stage,

our goal is to optimally position cells in a non-overlapped

circuit netlist G = (V,E) with specified locations L = (x, y),
adhering to clocking and mixed-cell-size constraints while

minimizing wirelength and timing costs. Since AQFP cells

reside in dedicated layers to satisfy the path balancing re-

quirement, a straightforward method is to transform detailed

placement to the shortest path problem [15]. This task involves

accommodating AQFP’s four-phase clocking architecture and

varying cell sizes, like 40µm by 30µm buffers and 60µm by

70µm majority gates. These cells, despite size differences, may

coexist in the same clock phase, complicating cell swapping due

to proximity issues. As shown in Fig. 4, if the phase i-1 has the

widest width and all cells are abutted, then cell swapping only

between candidates of identical sizes may result in sub-optimal

solutions. Our framework overcomes this by allowing flexibility

in choosing adjacent, non-overlapping cells of different sizes,

effectively reducing timing violations in detailed placement.

D. Layer-Wise Fast A* Routing with Space Expansion

Given a netlist with all placed cell locations, the routing

procedure aims to connect all nets with minimized wires and

vias following AQFP wiring resources. There are two major

differences between AQFP routing and CMOS routing: (i)

AQFP uses splitter cells for fan-outs, so the pin connection



is one-to-one; (ii) the zigzag clocking architecture forces wires

to only connect two adjacent layers (clock phases), not across

whole chip area. Therefore, a layer-wire routing is sufficient

for AQFP, instead of a separate global and detailed router.

As shown in Algorithm 1, we adopt the A* routing algorithm

with a priority queue and estimated costs to find the shortest

path, incorporating a dynamic step size to limit computation

complexity. This means routing wires turn only after a set

minimum spacing, for example, 10µm for the MIT-LL pro-

cess. While this spacing is efficient, it may cause routability

issues in large circuits. To resolve this, we iteratively increase

layer distance by the minimum spacing and reroute until all

constraints are satisfied. AQFP architecture ensures that this

expansion only affects the relative positions of adjacent layers,

keeping each layer’s placement intact.

Algorithm 1: Layer-wise A* Routing with Space Expanding

Input : Placement results with all cell locations and layers.
Output: Routing wires between each layer.

1 Function A_star(graph, start, goal):
2 let the Queue and List equal an empty list of nodes;
3 put start node on the Queue;
4 while Queue is not empty do
5 get current node from Queue;
6 if current node is the goal then
7 break;
8 end
9 update current cost;

10 for adjacent nodes not in List do
11 if cost is lower then
12 update current cost;
13 put adjacent node on the Queue;
14 append current node to List;
15 end
16 end
17 end
18 return List, cost

19 foreach layer do
20 while routing space is not enough do
21 expand spacing between two adjacent layers;
22 A_star(graph, start, goal);
23 update whole graph with routed wires;
24 end
25 end

E. Layout Generation and DRC

The final step of SuperFlow is the layout generation and

Design Rule Check (DRC). After placement and routing, we

obtain the physical information (coordinates, rotation, wiring

paths, track assignment, etc.) for all cells and wires. Using

the AQFP standard cell library, these details are referenced in

the layout file, compatible with most layout tools. We leverage

KLayout for DRC, checking for rule compliance (e.g., metal

layer density, via sizes, contact layer spacing). If the layout

passes DRC, we generate the final AQFP GDS layout file;

otherwise, we identify and address violation locations, adjusting

placement and routing as needed. As an illustration, Fig. 5

displays the completed layout for the AQFP circuit apc128.

IV. EXPERIMENTAL RESULTS

Settings: We implement SuperFlow in Python and conduct tests

on a Linux machine that features an AMD Ryzen Threadripper

Fig. 5. Layout for AQFP circuits apc128.

TABLE II
MAJORITY-BASED LOGIC SYNTHESIS RESULTS

Circuits #JJs #Nets #Delay

adder8 960 462 23

apc32 746 513 21

apc128 5,048 2,355 45

decoder 2,210 989 19

sorter32 3,788 1,474 30

c432 2,500 1,048 40

c499 4,946 2,202 31

c1355 4,996 2,236 31

c1908 4,716 2,182 34

2920X processor with 12 cores and 64GB DDR4 memory.

Benchmark Circuits: We test our framework using clas-

sic benchmark circuits for AQFP testing [16], including 8-

bit Kogge-Stone adder (adder8), 32-bit/128-bit approximate

parallel counter (apc32/apc128), decoder, and 32-bit sorter

(sorter32). We also validate it on the ISCAS’85 benchmark

circuits to showcase the effectiveness of our framework [17].

Our comprehensive design flow is demonstrated from RTL

netlists to final layouts, comparing our results with state-of-

the-art AQFP placement tools.

A. Logic Synthesis Results of SuperFlow

Table II shows the statistic results of AQFP-based netlist after

the logic synthesis step. We give the number of JJs, nets, and

delay (clock phases) for each AQFP-based netlist. Note that

the most basic structure of an AQFP cell (buffer) is a double-

Josephson junction, and all other AQFP cells use more than 2

JJs. Therefore, the number of JJs is larger than the number of

nets, and the results include all inserted buffers and splitters

after the logic synthesis stage.

B. Placement Results of SuperFlow

Table III compares SuperFlow with the GORDIAN-based ap-

proach [8] and a timing-aware placer, TAAS [10] for AQFP cir-

cuits. We report the HPWL, inserted buffer lines, and the worst

negative slack (WNS) using a timing analysis engine [10].

SuperFlow shows reduced HPWL and fewer buffers for small

circuits like adder8 and apc32. For larger circuits (apc128,



TABLE III
THE COMPARISON ON THE DESIGN PERFORMANCE BETWEEN GORDIAN-BASED APPROACH [8], TAAS [10], AND SUPERFLOW.

Circuits
GORDIAN-Based [8] TAAS [10] SuperFlow

HPWL (µm) Buffers WNS (ps) HPWL (µm) Buffers WNS (ps) HPWL (µm) Buffers WNS (ps) Runtime (s)

adder8 10,948 24 - 12,360 24 - 11,850 16 - 12.1

apc32 15,915 26 - 15,915 26 - 15,530 26 - 13.8

apc128 254,068 117 -40.7 245,416 110 -10.1 177,620 67 -9.6 374.8

decoder 141,151 34 -8.8 156,213 33 -1.4 153,030 43 -1.0 162.5

sorter32 168,208 29 -6.9 180,427 29 -3.3 132,640 29 -2.3 113.4

c432 51,009 46 - 52,208 45 - 36,050 29 - 50.1

c499 430,658 62 -29.9 431,108 62 -8.9 385,845 59 -6.7 517.5

c1355 422,556 58 -31.4 426,099 58 -9.1 396,640 56 -8.9 690.9

c1908 358,271 67 -25.5 361,071 66 -6.9 357,570 68 -6.9 353.3

Average 1.112 1.178 4.045 1.128 1.153 1.121 1 1 1

Note: ‘-’ means that the WNS is positive and no timing violations are found under the target clock frequency, which is set as 5GHz. For SuperFlow, the
HPWL for all circuits are all integers of 10µm, because the AQFP standard cell library goes through an update, and now the cell height, width, pin location,
are all integers of 10µm.

TABLE IV
ROUTING RESULTS OF SUPERFLOW.

Circuits #JJs after Routing #Nets Routed WL (µm)

adder8 2,170 1,064 21,100

apc32 2,040 986 22,510

apc128 13,860 6,761 260,770

decoder 7,896 3,807 252,050

sorter32 8,768 3,938 218,210

c432 5,286 2,531 75,710

c499 19,050 9,329 816,240

c1355 21,004 10,315 932,960

c1908 15,408 7,574 617,350

c499, c1355, c1908), it achieves significant buffer reductions

(up to 42.7% over GORDIAN-based, 39.1% over TAAS) and

shorter wirelength. While GORDIAN-based method excels in

wirelength, it faces timing issues. TAAS improves timing at a

slight wirelength cost. This shows that SuperFlow optimization

strategy is effective on large-scale circuits and cell swapping

within different-sized cells could save inserted buffer lines.

Overall, SuperFlow achieves 12.8% better wirelength with

15.3% fewer inserted buffer lines and 12.1% timing improve-

ment over previous state-of-the-art placer, TAAS [10].

C. Routing Results of SuperFlow

Table IV demonstrates the final routing results for AQFP

benchmarks including JJs, nets, and routed wirelength. We

calculated all the cells and wires in the final layout, including

buffers and splitters inserted during the logic synthesis and

placement stage.

V. CONCLUSIONS

In this paper, we present SuperFlow, a fully-customized

RTL-to-GDS design flow specifically tailored for AQFP super-

conducting circuits. SuperFlow simultaneously optimizes wire-

length and timing while adhering to the clocking and mixed-

cell-size constraints inherent in AQFP circuits throughout the

design process. In the routing phase, SuperFlow employs a

layer-wise strategy to support space expansion and address

potential routability issues. Experimental results demonstrate

that SuperFlow outperforms previous design tools in terms

of wirelength and timing for AQFP circuits, setting a robust

groundwork for future AQFP applications like RISC-V CPUs

and neural network accelerators. [18].

VI. ACKNOWLEDGMENT

This work was supported by JST FOREST Program (Grant

Number JPMJFR226W, Japan), and the NSF Expedition pro-

gram CCF-2124453, NSF CCF-2008514.

REFERENCES

[1] N. Takeuchi et al., ªAn adiabatic quantum flux parametron as an ultra-
low-power logic device,º Supercond. Sci. Technol., 2013.

[2] Y. Harada et al., ªBasic operations of the quantum flux parametron,º
IEEE Trans. Magn., 1987.

[3] N. Takeuchi et al., ªEnergy efficiency of adiabatic superconductor logic,º
Supercond. Sci. Technol., 2014.

[4] R. Cai et al., ªA stochastic-computing based deep learning framework
using adiabatic quantum-flux-parametron superconducting technology,º in
ISCA, 2019.

[5] C.-Y. Huang et al., ªAn optimal algorithm for splitter and buffer insertion
in adiabatic quantum-flux-parametron circuits,º in ICCAD, 2021.

[6] R. Cai et al., ªA majority logic synthesis framework for adiabatic
quantum-flux-parametron superconducting circuits,º in GLSVLSI, 2019.

[7] S.-Y. Lee et al., ªBeyond local optimality of buffer and splitter insertion
for aqfp circuits,º in DAC, 2022.

[8] H. Li et al., ªTowards aqfp-capable physical design automation,º in DATE,
2021.

[9] Y.-C. Chang et al., ªAsap: An analytical strategy for aqfp placement,º in
ICCAD, 2020.

[10] P. Dong et al., ªTaas: a timing-aware analytical strategy for aqfp-capable
placement automation,º in DAC, 2022.

[11] G. Meuli et al., ªMajority-based design flow for aqfp superconducting
family,º in DATE, 2022.

[12] T. Tanaka et al., ªA full-custom design flow and a top-down rtl-to-gds
flow for adiabatic quantum-flux-parametron logic using a commercial eda
design suite,º IEEE Trans. Appl. Supercond., 2023.

[13] K. K. Likharev et al., ªRsfq logic/memory family: A new josephson-
junction technology for sub-terahertz-clock-frequency digital systems,º
IEEE Trans. Appl. Supercond., 1991.

[14] Y. Lin et al., ªDreamplace: Deep learning toolkit-enabled gpu acceleration
for modern vlsi placement,º in DAC, 2019.

[15] S. Dhar et al., ªAn effective timing-driven detailed placement algorithm
for fpgas,º in ISPD, 2017.

[16] O. Chen et al., ªAdiabatic quantum-flux-parametron: Towards building
extremely energy-efficient circuits and systems,º Scientific reports, 2019.

[17] EPFL, ªISCAS’85 and Simple Arithmetic Benchmarks,º
https://github.com/lsils/SCE-benchmarks.

[18] Z. Li et al., ªSuperbnn: Randomized binary neural network using adia-
batic superconductor josephson devices,º in MICRO, 2023.


