2024 Design, Automation & Test in Europe Conference (DATE 2024)

SuperFlow: A Fully-Customized RTL-to-GDS
Design Automation Flow for Adiabatic
Quantum-Flux-Parametron Superconducting Circuits

Yanyue Xie!*, Peiyan Dong'*, Geng Yuan?, Zhengang Li', Masoud Zabihi?, Chao Wu', Sung-En Chang',
Xufeng Zhangl, Xue Lin', Caiwen Ding4, Nobuyuki Yoshikawa®, Olivia Chen® and Yanzhi Wang1
I Northeastern University, >University of Georgia, ’IBM Research,
4University of Connecticut, >Yokohama National University, 5Tokyo City University
!{xie.yany, dong.pe, yanz.wang} @northeastern.edu, ®olivia.chen@ieee.org

Abstract—Superconducting circuits, like Adiabatic Quantum-
Flux-Parametron (AQFP), offer exceptional energy efficiency but
face challenges in physical design due to sophisticated spacing
and timing constraints. Current design tools often neglect the
importance of constraint adherence throughout the entire design
flow. In this paper, we propose SuperFlow, a fully-customized
RTL-to-GDS design flow tailored for AQFP devices. SuperFlow
leverages a synthesis tool based on CMOS technology to transform
any input RTL netlist to an AQFP-based netlist. Subsequently, we
devise a novel place-and-route procedure that simultaneously con-
siders wirelength, timing, and routability for AQFP circuits. The
process culminates in the generation of the AQFP circuit layout,
followed by a Design Rule Check (DRC) to identify and rectify
any layout violations. Our experimental results demonstrate that
SuperFlow achieves 12.8% wirelength improvement on average
and 12.1% better timing quality compared with previous state-
of-the-art placers for AQFP circuits.

I. INTRODUCTION

Superconducting  logic  circuits  exhibit  extremely
high energy efficiency over their Complementary
Metal-Oxide—Semiconductor (CMOS) counterparts [1].

Adiabatic Quantum-Flux-Parametron (AQFP) logic [2] is a
representative energy-efficient superconducting logic that is
designed to achieve a reduction in both static and dynamic
power consumption by adopting adiabatic switching [3].
AQFP can potentially achieve 10* — 10° energy efficiency
gain compared with state-of-the-art CMOS technology with a
clock frequency of several GHz [4]. AQFP differs from CMOS
circuits in terms of active components, passive components,
logic gates, data propagation, clocking scheme, fan-out
requirements, and power consumption, as detailed in Table I.
Therefore, the design automation tools developed for CMOS
cannot be directly applied to the design of AQFP circuits.
There have been several existing works on customized design
automation tools for AQFP circuits. [5]-[7] solve the buffer
and splitter insertion problem during the logic synthesis stage
for path balancing and fan-out branching imposed by AQFP
technology. [8] and [9] consider spacing constraints and max-
wirelength constraints of AQFP during the placement stage.
[10] further improves the timing of AQFP designs. However,
all of these works focus solely either on the logic synthesis

*Equal contributions.

TABLE I
COMPARISON OF AQFP wiTH CMOS.

Circuits | AQFP CMOS

Active component Josephson junction (J7) Transistor

Passive component | Inductor Capacitor

Logic gate Majority-based gates And, or, inverter gates
Data propagation Current pulse Voltage level
Clocking Four-phase clocking Synchronous

Fan-out = 1(Splitter for fan-outs) >1

Power Alternating Current (AC)  Direct Current (DC)

stage or the placement stage, without addressing the entire
design flow, i.e., a complete RTL-to-GDS (Register-Transfer
Level to Graphic Design System) flow. While some studies
offer complete design flows, they only focus on specific steps
like logic synthesis or AQFP cell library design [11] [12], both
leaving placement and routing stage to commercial tools and
lacking flexibility.

Transitioning from CMOS to the more energy-efficient
AQFP circuits necessitates a comprehensive and dedicated
AQFP design automation tool flow to optimize Power, Perfor-
mance, and Area (PPA). The absence of such a comprehensive
tool flow restricts design optimization, potentially leading to
issues like congestion and post-routing timing violations. Stan-
dard electronic design automation (EDA) tools for CMOS logic
are not applicable to AQFP logic, due to inherent differences
such as clocking constraints and fan-out requirements. Relying
on commercial EDA tools for certain or all stages would result
in limited flexibility, particularly considering that AQFP is an
emerging technology and the AQFP cell library is under active
development [12]. In light of these challenges, we develop a
fully-customized RTL-to-GDS design automation flow tailored
for AQFP circuits, enabling designers to easily adjust the design
objectives for AQFP and incorporate timely updates to the
AQFP cell library.

Our major contributions can be summarized as follows:

o We present a fully-customized RTL-to-GDS design flow,
SuperFlow, for AQFP circuits. To the best of our knowl-
edge, this is the first non-commercial RTL-to-GDS design
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automation tool that targets AQFP devices.

o We optimize the placement quality by optimizing wire-
length and timing simultaneously while respecting the
clocking and the mixed-cell-size constraints at the detailed
placement stage.

o We introduce a layer-wise routing strategy, capable of
routing with space expansion, thereby addressing potential
routability issues.

« Experimental results show that SuperFlow achieves 12.8%
wirelength improvement on average with 12.1% better
timing quality over previous state-of-the-art placers for
AQFP circuits.

II. BACKGROUND
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Fig. 1. The symbols of AQFP logic gates. (a) and gate; (b) nand gate; (c)
majority gate; (d) splitter gate.

A. AQFP Superconducting Logic

The fundamental building block of AQFP logic gates is the
AQFP buffer, which consists of a double-Josephson junction
(JJ) superconducting quantum interference device (SQUID)
[1]. Together with the inverter gate and constant gate, these
basic gates constitute the AQFP cell library, including and,
or, not, majority, buffer, and splitter, as shown
in Fig. 1. The AQFP standard cell library is built via the
minimalist design approach, utilizing a bottom-up method to
construct more complex gates [6]. The design of the AQFP
cell library follows the AIST standard process 2 (STP2) and the
MIT Lincoln Laboratory (MIT-LL) SQF5ee fabrication process,
both of which are niobium-based integrated-circuit technologies
suitable for AQFP.

Different from traditional CMOS logic that utilizes and-
or-inverter-based (AOI) representation, AQFP logic favors
majority-based (MAJ) gates, due to the efficient utilization of
JJ resources. Three-input majority gates in AQFP consume the
same amount of JJ resources as two-input AOI gates [6]. Please
note that, unlike CMOS gates which can connect to fan-out
directly, all AQFP gates require the use of splitter cells
for multiple fan-outs.

B. AQFP Clocking Architecture

The clocking architecture and timing requirements of AQFP
differ from CMOS. In CMOS circuits, multi-level gates are
expected to meet timing constraints as a group, i.e., multi-level
gates for pipelining, while in AQFP circuits, each gate must
satisfy the timing requirements, i.e., the gate-level pipelining.
Specifically, four-phase AC bias currents serve as both power
supply and clock signal [1], which triggers the data from one
clock phase to the next, as illustrated in Fig. 2. AQFP utilizes
this feature to mitigate the power consumption overhead of DC
bias shown in other superconducting logic technologies, such

as RSFQ [13]. While AC biasing contributes to exceptional
energy efficiency, AQFP circuits also adopt a deep-pipelined
architecture since each AQFP logic gate is connected to an
AC clock signal and occupies one clock phase. This deep-
pipelined architecture mandates all inputs for a logic gate to
have the same delay (clock phases) from the primary inputs
[6], necessitating rigorous path balancing. Furthermore, when it
comes to a complete design flow, AQFP’s gate-level pipelining
provides more flexibility, allowing simultaneous optimization
of spacing and timing constraints.
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Fig. 2. AQFP clocking architecture. AQFP clocking scheme utilizes one
DC and two AC signals to create a four-phase clocking scheme. The two AC
signals have a phase difference of 90 degrees. The intricate zigzag clocking
signals impose strict timing constraints on AQFP logic cells and formulate a
deep-pipelined architecture.

C. Challenges of AQFP Physical Design

AQFP physical design is complicated and challenging due
to various design constraints: (i) The AQFP placement prob-
lem involves fulfilling multiple spacing limitations, including
cell spacing and zigzag spacing constraints [8]. Cell spacing
requires that neighboring cells in a row either touch or maintain
a minimum distance. Regarding zigzag spacing, when vias are
utilized to change the wire directions, the wire zigzags must
adhere to a predetermined minimum spacing (e.g., 10um for the
MIT-LL process). (ii) AQFP circuits should comply with maxi-
mum wirelength requirements, which specify that a single wire
connection should not exceed W, 4, [9]. If a single connection
exceeds the maximum wirelength restriction, it is necessary
to insert an entire row of buffers between the two rows. (iii)
Due to the different sizes of AQFP buffers relative to other
majority-based cells, and the possibility of having various types
of cells within a single clock phase, AQFP placement presents
a mixed-cell-size problem. Within a single densely populated
clock phase with multiple mixed-cell-size cells, perturbations
or cell swapping can potentially cause significant intra-row
violations. (iv) Strict timing constraints should be maintained
since AQFP circuits run at a clock frequency of several GHz.
The zigzag clocking scheme and the deep-pipelined architecture
impose great challenges to AQFP placement algorithms as the
cell positions in a fixed row have a significant impact on the
timing closure. As a result, traditional placers [8], [9] that
address wirelength alone may lead to placement results with



severe timing violations. (v) AQFP routing is limited to two
metal layers between two adjacent clock phases, conforming
to the zigzag clocking architecture and process requirements.
Hence, relying solely on separate synthesizers, placers, or
routers for AQFP circuits is insufficient. A comprehensive
design flow that encompasses and adheres to the various
design constraints of AQFP circuits is imperative. For instance,
following logic synthesis and the insertion of buffers/splitters
for path balancing, each logic cell is assigned a specific clock
phase or row index. The placement stage should preserve
the assigned row index for each logic cell while optimizing
their horizontal positions within the rows. Subsequently, during
the routing stage, clock wires must be routed based on the
placement results, ensuring no violations occur. Furthermore,
both placement and routing must consider clocking constraints
to achieve optimal timing and meet the desired clock frequency.

III. METHODS
A. Overall AQFP Design Flow

Fig. 3 demonstrates the overall design flow of SuperFlow for
AQFP circuits. The input files are the standard cell library of
AQFP and the Register-Transfer Level (RTL) files describing
circuit architecture. After logic synthesis and an AQFP inter-
preter, SuperFlow maps the netlist to an AQFP-based netlist,
which serves as the input to the following place-and-route
step. Then SuperFlow generates the circuit layout based on the
physical information provided after the place-and-route step.
Should any violations emerge after the Design Rule Check
(DRC), SuperFlow automatically rectifies these violations and
proceeds to finalize the layout files for AQFP circuits in Graphic
Design System II (GDSII) format
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B. Majority-Based Logic Synthesis for AQFP

1) Majority Netlist Conversion: Fig. 3 illustrates the logic
synthesis stage. AQFP prefers a majority-based netlist and we
first leverage a CMOS-based synthesis tool, Yosys, to generate
AOI netlists for input RTL files. The AOI netlist is then con-
verted to an MAJ netlist by mapping all feasible three-input nets
to their corresponding two-level majority-based implementation
while maintaining the minimum overall resource consumption.

To elaborate, we view the netlist as a directed graph. In
an AOI netlist, each node has two parent gates. While in
a majority-based netlist, each node has two or three parents
depending on its type of logic gate, e.g. an and gate or
a majority gate. The majority netlist conversion involves
three steps: (i) Identifying convertible three-input nets in AOI
netlists. (ii)) Applying a table-based method to map these nets to
majority-based logic. (iii) Selecting the most resource-efficient
mapping for each net.

We initiate by identifying feasible three-input nets in the AOI
netlist using a depth-first search, starting from the netlist output.
The search begins with a two-input net formed by the node
and its two parent inputs, progressively adding parent nodes
to expand the net. This iterative search continues until three
independent parent nodes are found, ensuring no parent node
is a descendant of another in this search. If more than three
parent nodes are identified, the search is aborted, deeming the
node unsuitable for a three-input net.

Feasible three-input nets identified earlier can be mapped to
majority-based gates. Each net can be represented by up to two
majority gates. To check for majority mapping suitability, we
use a Karnaugh map checking method. This method compares
the Karnaugh maps of all combinations of three parent nodes
with the target net. If a match is found with primary gates,
the net is mapped directly; otherwise, it is mapped to two-level
majority-based logic with three majority gates at the first level
and one at the second level, connecting to the outputs of the
first three gates.

In optimizing the majority-based netlist, our goal is to
minimize both Josephson junction count and clock delays. This
requires a thorough search across the entire directed graph. We
prioritize majority mappings that use more logic gates and clock
phases, iterating through all mapping schemes for each three-
input net to find the one that uses the least resources overall.

2) Buffer and Splitter Insertion: After converting the AOI
netlist to a majority-based netlist, we insert splitter cells to
the converted netlist to comply with the AQFP fan-out require-
ments. Gates with over two fan-outs require a splitter cell,
selected based on the number of fan-outs. After addressing all
fan-outs, we reset and recalculate net delays. Given the updated
delay for each net, buffers are inserted in each data path to
every gate accordingly to produce equal delay (clock phase),
which is required by the AQFP technology [6]. Since the logic
structure of the converted netlist is fixed, buffer insertion could
be resolved in any order and will not change the total clock
phases or the critical path. With all buffers and splitter
cells in place, we finalize the majority-based AQFP netlist for
subsequent placement and routing stages.

C. AQFP Placement

The placement in Fig. 3 can be divided into global placement,
legalization, and detailed placement. In this section, we clarify
the implementation details of these steps.

1) Problem Formulation: The AQFP placement problem
can be formulated as a hypergraph G = (V, E), where V and
E denote the cells and nets, respectively. Let x; and y; be the x
and y coordinates of the center of logic cell v;. Given the AQFP



clocking architecture and a design netlist, our objective is to
determine the positions of the cells that optimize the routed
wirelength subject to the following constraints:
o Each logic cell should maintain consistent delay (clock
phase), respecting the sequence from the netlist.
o Cells must not overlap with others, and two horizontally
neighboring cells in a row can either be abutting or keeping
a minimum spacing S.,;, (Spacing constraint).
o All the wires must not exceed the maximum wirelength
Winaz (max-wirelength constraint).
« All timing requirements should be satisfied based on the
clocking signal (timing constraint).
o Cells of different sizes should not cause perturbations that
result in intra-row violations (mixed-cell-size constraint).
Therefore, we formulate our objective function for the row-
wise AQFP placement problem as follows:

min Z Wi(ei) + AT (ei),
X e, eFE
st. Ve, e FE W(ez) < Whaz, (D

Ti +w; > X1 — 2B,
Ti +w; < Xip1 — ZiSmin,

where the \; is the positive weight for timing cost, W (e;) is
the wirelength cost function of net e;, W4, is the maximum
allowed wirelength, z; is a binary value indicating whether two
cells are abutted, B is a big positive constant, S, is the
minimum spacing, and w; is the cell width. When z; = 0, it
means two cells are abutted, and the two equations correspond
to z; + w; = z;41. When z; =1, only z; + w; < Zi11 — Smin
is required and two cells should maintain a minimal spacing
horizontally. T'(e;) is the four-phase timing model cost of net
e;, which depends on the located clock phase and is defined as
follows:

if phase % 4 =0
if phase % 4 =1
if phase % 4 =2
if phase % 4 =3

(UCend - xstart)ay

(Tend + Tstart)”,
(_xend + zstart)aa
(QW — Tend — sztart)a,

T(e;) = )

where Z;4,-+ and ., are the start and end x coordinates of net
e;, W is the layer width of the clock phase, and « is a parameter
that modulating the relative importance of the connection across
different clock phases, which we set to 2.

2) Global Placement: Global placement aims to determine
the best possible cell locations that minimize the overall wire-
length while respecting the max-wirelength and spacing con-
straints of the AQFP. Meanwhile, timing should be addressed
during global placement to ensure that the generated placement
results do not hold a negative slack. Thus, the objective function
should also be timing-aware such that the placement results can
work at the desired clock frequency.

A prevalent approach to this constrained minimization prob-
lem is to relax the constraints into the objective function and
solve the unconstrained minimization problem:

> Wlen) + ATles) + Au(W(e:) -

e, €E

min
X

Wmaz)- (3)

where )., is the weight for max-wirelength cost.

We utilize DREAMPlace [14] as our analytical global place-
ment engine, incorporating a timing-aware objective function.
To address the non-smooth, non-convex nature of the half-
perimeter wirelength (HPWL) model, we use a weighted-
average (WA) model for more effective wirelength cost op-
timization.

During global placement, we limit cell location optimization
to the one-dimensional x axis, keeping the cell row (clock
phase) fixed. Following this, we apply a Tetris-like legalization
approach, aiming to preserve global placement results while
minimizing cell overspreading. This legalization is iteratively
performed to eliminate cell overlaps within each clock phase.
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Fig. 4. An illustration of the detailed placement stage where one clock
phase has the widest width and all cells are abutted. (a) When cell candidates
are strictly matched to cells of identical sizes, it is possible to end up with a
sub-optimal state, leaving some nets with timing violations (highlighted by the
red line, SPL3 in phase i to MAJ3 in phase i+1); (b) By allowing flexibility
in cell candidates and permitting cell swaps to avoid overlaps (MAJ3, AND,
and BUF in phase i-1, in contrast to only MAJ3 and AND in (a)), the detailed
placement result is better than (a), exhibiting no timing violations.

3) Detailed Placement: In the detailed placement stage,
our goal is to optimally position cells in a non-overlapped
circuit netlist G = (V, E) with specified locations L = (z,y),
adhering to clocking and mixed-cell-size constraints while
minimizing wirelength and timing costs. Since AQFP cells
reside in dedicated layers to satisfy the path balancing re-
quirement, a straightforward method is to transform detailed
placement to the shortest path problem [15]. This task involves
accommodating AQFP’s four-phase clocking architecture and
varying cell sizes, like 40pm by 30um buffers and 60pm by
70um majority gates. These cells, despite size differences, may
coexist in the same clock phase, complicating cell swapping due
to proximity issues. As shown in Fig. 4, if the phase i-1 has the
widest width and all cells are abutted, then cell swapping only
between candidates of identical sizes may result in sub-optimal
solutions. Our framework overcomes this by allowing flexibility
in choosing adjacent, non-overlapping cells of different sizes,
effectively reducing timing violations in detailed placement.

D. Layer-Wise Fast A* Routing with Space Expansion

Given a netlist with all placed cell locations, the routing
procedure aims to connect all nets with minimized wires and
vias following AQFP wiring resources. There are two major
differences between AQFP routing and CMOS routing: (i)
AQFP uses splitter cells for fan-outs, so the pin connection



is one-to-one; (ii) the zigzag clocking architecture forces wires
to only connect two adjacent layers (clock phases), not across
whole chip area. Therefore, a layer-wire routing is sufficient
for AQFP, instead of a separate global and detailed router.

As shown in Algorithm 1, we adopt the A* routing algorithm
with a priority queue and estimated costs to find the shortest
path, incorporating a dynamic step size to limit computation
complexity. This means routing wires turn only after a set
minimum spacing, for example, 10um for the MIT-LL pro-
cess. While this spacing is efficient, it may cause routability
issues in large circuits. To resolve this, we iteratively increase
layer distance by the minimum spacing and reroute until all
constraints are satisfied. AQFP architecture ensures that this
expansion only affects the relative positions of adjacent layers,
keeping each layer’s placement intact.

Algorithm 1: Layer-wise A* Routing with Space Expanding

Input : Placement results with all cell locations and layers.
Output: Routing wires between each layer.
1 Function A_star (graph, start, goal):

2 let the Queue and List equal an empty list of nodes;
3 put start node on the Queue;

4 while Queue is not empty do

5 get current node from Queue;

6 if current node is the goal then

7 break;

8 end

9 update current cost;

10 for adjacent nodes not in List do

11 if cost is lower then

12 update current cost;

13 put adjacent node on the Queue;
14 append current node to List;

15 end

16 end

17 end

18 return List, cost

19 foreach layer do

20 while routing space is not enough do

expand spacing between two adjacent layers;
A_star (graph, start, goal) ;

update whole graph with routed wires;

24 end
25 end

E. Layout Generation and DRC

The final step of SuperFlow is the layout generation and
Design Rule Check (DRC). After placement and routing, we
obtain the physical information (coordinates, rotation, wiring
paths, track assignment, etc.) for all cells and wires. Using
the AQFP standard cell library, these details are referenced in
the layout file, compatible with most layout tools. We leverage
KLayout for DRC, checking for rule compliance (e.g., metal
layer density, via sizes, contact layer spacing). If the layout
passes DRC, we generate the final AQFP GDS layout file;
otherwise, we identify and address violation locations, adjusting
placement and routing as needed. As an illustration, Fig. 5
displays the completed layout for the AQFP circuit apc128.

IV. EXPERIMENTAL RESULTS

Settings: We implement SuperFlow in Python and conduct tests
on a Linux machine that features an AMD Ryzen Threadripper

Fig. 5. Layout for AQFP circuits apc128.

TABLE I
MAJORITY-BASED LOGIC SYNTHESIS RESULTS

Circuits | #JJs #Nets #Delay
adder8 960 462 23
apc32 746 513 21
apcl28 5,048 2,355 45
decoder 2,210 989 19
sorter32 3,788 1,474 30
c432 2,500 1,048 40
c499 4,946 2,202 31
c1355 4,996 2,236 31
c1908 4716 2,182 34

2920X processor with 12 cores and 64GB DDR4 memory.
Benchmark Circuits: We test our framework using clas-
sic benchmark circuits for AQFP testing [16], including 8-
bit Kogge-Stone adder (adder8), 32-bit/128-bit approximate
parallel counter (apc32/apcl28), decoder, and 32-bit sorter
(sorter32). We also validate it on the ISCAS’85 benchmark
circuits to showcase the effectiveness of our framework [17].
Our comprehensive design flow is demonstrated from RTL
netlists to final layouts, comparing our results with state-of-
the-art AQFP placement tools.

A. Logic Synthesis Results of SuperFlow

Table II shows the statistic results of AQFP-based netlist after
the logic synthesis step. We give the number of JJs, nets, and
delay (clock phases) for each AQFP-based netlist. Note that
the most basic structure of an AQFP cell (buffer) is a double-
Josephson junction, and all other AQFP cells use more than 2
JJs. Therefore, the number of JJs is larger than the number of
nets, and the results include all inserted buffers and splitters
after the logic synthesis stage.

B. Placement Results of SuperFlow

Table III compares SuperFlow with the GORDIAN-based ap-
proach [8] and a timing-aware placer, TAAS [10] for AQFP cir-
cuits. We report the HPWL, inserted buffer lines, and the worst
negative slack (WNS) using a timing analysis engine [10].

SuperFlow shows reduced HPWL and fewer buffers for small
circuits like adder8 and apc32. For larger circuits (apcl28,



TABLE III
THE COMPARISON ON THE DESIGN PERFORMANCE BETWEEN GORDIAN-BASED APPROACH [8], TAAS [10], AND SUPERFLOW.

Circuits‘ GORDIAN-Based [8] TAAS [10] SuperFlow
\HPWL (pnm) Buffers WNS (ps) HPWL (pm) Buffers WNS (ps) HPWL (xm) Buffers WNS (ps) Runtime (s)
adder8 10,948 24 - 12,360 24 - 11,850 16 - 12.1
apc32 15,915 26 - 15,915 26 - 15,530 26 - 13.8
apc128 254,068 117 -40.7 245,416 110 -10.1 177,620 67 -9.6 374.8
decoder 141,151 34 -8.8 156,213 33 -1.4 153,030 43 -1.0 162.5
sorter32 168,208 29 -6.9 180,427 29 -3.3 132,640 29 -2.3 113.4
c432 51,009 46 - 52,208 45 - 36,050 29 - 50.1
c499 430,658 62 -29.9 431,108 62 -8.9 385,845 59 -6.7 517.5
cl1355 422,556 58 -31.4 426,099 58 9.1 396,640 56 -8.9 690.9
c1908 358,271 67 -25.5 361,071 66 -6.9 357,570 68 -6.9 353.3
Average 1.112 1.178 4.045 1.128 1.153 1.121 1 1 1

Note: -’

means that the WNS is positive and no timing violations are found under the target clock frequency, which is set as SGHz. For SuperFlow, the

HPWL for all circuits are all integers of 10um, because the AQFP standard cell library goes through an update, and now the cell height, width, pin location,

are all integers of 10um.

TABLE IV
ROUTING RESULTS OF SUPERFLOW.

Circuits ‘ #)Js after Routing #Nets  Routed WL (um)
adder8 2,170 1,064 21,100
apc32 2,040 986 22,510
apcl128 13,860 6,761 260,770
decoder 7,896 3,807 252,050
sorter32 8,768 3,938 218,210
c432 5,286 2,531 75,710
c499 19,050 9,329 816,240
c1355 21,004 10,315 932,960
c1908 15,408 7,574 617,350

c499, c1355, c1908), it achieves significant buffer reductions
(up to 42.7% over GORDIAN-based, 39.1% over TAAS) and
shorter wirelength. While GORDIAN-based method excels in
wirelength, it faces timing issues. TAAS improves timing at a
slight wirelength cost. This shows that SuperFlow optimization
strategy is effective on large-scale circuits and cell swapping
within different-sized cells could save inserted buffer lines.
Overall, SuperFlow achieves 12.8% better wirelength with
15.3% fewer inserted buffer lines and 12.1% timing improve-
ment over previous state-of-the-art placer, TAAS [10].

C. Routing Results of SuperFlow

Table IV demonstrates the final routing results for AQFP
benchmarks including JJs, nets, and routed wirelength. We
calculated all the cells and wires in the final layout, including
buffers and splitters inserted during the logic synthesis and
placement stage.

V. CONCLUSIONS

In this paper, we present SuperFlow, a fully-customized
RTL-to-GDS design flow specifically tailored for AQFP super-
conducting circuits. SuperFlow simultaneously optimizes wire-
length and timing while adhering to the clocking and mixed-
cell-size constraints inherent in AQFP circuits throughout the
design process. In the routing phase, SuperFlow employs a
layer-wise strategy to support space expansion and address
potential routability issues. Experimental results demonstrate
that SuperFlow outperforms previous design tools in terms

of wirelength and timing for AQFP circuits, setting a robust
groundwork for future AQFP applications like RISC-V CPUs
and neural network accelerators. [18].
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