
This paper is included in the
Proceedings of the 21st USENIX Symposium on

Networked Systems Design and Implementation.

April 16–18, 2024 • Santa Clara, CA, USA

978-1-939133-39-7

Open access to the Proceedings of the

21st USENIX Symposium on Networked

Systems Design and Implementation

is sponsored by

Parcae: Proactive, Liveput-Optimized DNN Training
on Preemptible Instances

Jiangfei Duan, The Chinese University of Hong Kong; Ziang Song, ByteDance;

Xupeng Miao and Xiaoli Xi, Carnegie Mellon University; Dahua Lin, The Chinese

University of Hong Kong; Harry Xu, University of California, Los Angeles;

Minjia Zhang, Microsoft; Zhihao Jia, Carnegie Mellon University

https://www.usenix.org/conference/nsdi24/presentation/duan

Parcae: Proactive, Liveput-Optimized DNN Training on Preemptible Instances

Jiangfei Duan³♠ Ziang Song§♠ Xupeng Miao²♠ Xiaoli Xi²

Dahua Lin³ Harry Xu♯ Minjia Zhang⋄ Zhihao Jia²

Carnegie Mellon University² The Chinese University of Hong Kong³

ByteDance§ University of California, Los Angeles♯ Microsoft⋄

Abstract

Deep neural networks (DNNs) are becoming progressively

large and costly to train. This paper aims to reduce DNN

training costs by leveraging preemptible instances on modern

clouds, which can be allocated at a much lower price when idle

but may be preempted by the cloud provider at any time. Prior

work that supports DNN training on preemptive instances

employs a reactive approach to handling instance preemptions

and allocations after their occurrence, which only achieves

limited performance and scalability.

We present Parcae, a system that enables cheap, fast, and

scalable DNN training on preemptible instances by proac-

tively adjusting the parallelization strategy of a DNN training

job to adapt to predicted resource changes before instance pre-

emptions and allocations really happen, which significantly

reduces the cost of handling these events. Parcae optimizes

liveput, a novel metric that measures the expected training

throughput of a DNN job under various possible preemp-

tion scenarios. Compared to existing reactive, throughput-

optimized systems, Parcae’s proactive, live-optimized solution

considers both the throughput of a job and its robustness under

preemptions. To optimize liveput, Parcae supports lightweight

instance migration and uses an availability predictor to fore-

cast future preemptions. It then uses a liveput optimizer to

discover an optimal strategy to parallelize DNN training un-

der predicted preemptions. We evaluate Parcae on a variety

of DNNs and preemption traces and show that Parcae outper-

forms existing spot-instance DNN training systems by up to

10×. More importantly, Parcae achieves near-optimal perfor-

mance for training large DNNs under frequent preemptions,

in which case existing approaches cannot make any progress.

1 Introduction

Deep neural networks (DNNs) have surpassed human predic-

tive performance on a spectrum of tasks, including computer

vision [18], natural language progressing [14], game play-

ing [44], and content generation [46]. The success of DNNs is

♠ Contributed equally. Work done during internships at CMU.

associated with progressively increasing energy and financial

costs. For example, a single training run of GPT-3 [12], a

language model with 175 billion parameters, requires more

than 1.5 million GPU hours and costs $4.6 million to train

on AWS even with the lowest priced GPUs [37]. While pre-

trained models are publicly available and can be fine-tuned

for different downstream tasks, training new models is often

required for emerging applications and datasets.

Modern cloud platforms provide a variety of cheap pre-

emptible instances, which can be leveraged to minimize the

monetary cost of DNN training. First, spot GPU instances

allow users to take advantage of unused GPU capacity at a

price up to 90% lower than on-demand counterparts [1]. Sec-

ond, modern data centers generally reserve additional GPU

capacity for urgent jobs, which can be allocated by other jobs

in a preemptible manner [35]. Third, some ML systems [51]

support opportunistically running training jobs on inference-

dedicated GPUs to maximize resource utilization and preempt

these training jobs when inference requests arrive. While this

paper focuses on spot GPUs, our techniques can easily gener-

alize to other preemptible resources.

Existing systems that support DNN training on spot in-

stances use a reactive approach to handling instance preemp-

tion and allocation, and can be categorized into two classes:

checkpoint- and redundancy-based systems. We introduce the

two categories and identify the limitations of these reactive

approaches in performance and scalability when applied to

DNN training on preemptible instances.

The first line of work uses checkpoints to maintain model

states during training. For example, Varuna [8] periodically

saves model states to persistent storage and loads the latest

checkpoint back after a preemption, as shown in Figure 1c.

Although Varuna offers promising training throughput when

spot instances have low preemption rates, it struggles to make

progress when preemptions are frequent. This is due to two

reasons: (1) saving and loading checkpoints incur significant

IO overhead, particularly as model size increases, making

frequent checkpointing costly, and (2) high preemption rates

cause training to frequently roll back to the last saved check-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1121

(a) Regular Training with On-demand Instance (b) Redundancy-based Training with Spot Instance (e.g., Bamboo)

(c) Checkpoint-based Training with Spot Instance (e.g., Varuna)

(d) Liveput-based Training with Spot Instance (e.g., Parcae)

!!

!"

!#

1 2 3 4

1 2 3 4

1 2 3 4

!$

!%

!&

1 2 3 4

1 2 3 4

1 2 3 4

Iteration (= 1 (= 2

. . .

!!

!"

!#

1 2 3 4

Iteration (= 1

!!

!"

!#

1 2 3 4

1 2 3 4

1 2 3 4

!$

!%

!&

1 2 3 4

1 2 3 4

1 2 3 4

!$

!%

1 2 3 4

1 2 3 4

Iteration (= 1 (= 2 (= 4

S
a

v
e

C
h

e
ck

p
o

in
t Lo

a
d

 C
h

e
ck

p
o

in
t

2 3 4 1 !!

!"

!#

1 2 3 42 3 4 1

1 2 3 42 3 4 1

!$

!%

!&

1 2 3 4

(= 2

2 3 4 1 !$

!%

!&

1 2 42 3 4 1

1 3 42 3 4 1

!!

!"

!#

1 2 3 4

1 2 3 4

1 2 3 4
!% 1 2 3 4

Iteration (= 1 (= 2

. . .

(= 3(= 2

A
v
a

ila
b

ility

P
re

d
ictio

n

M
ig

ra
tio

n

!$ 1 2 3 4

!' 1 2 3 4

(= 3

!& 1 2 3 4

3

R
e

co
n

fig
u

ra
tio

n

!% 1 2 3 4 5

!$ 1 2 3 4 5

Lo
a

d
 C

h
e

ck
p

o
in

tR
e

co
n

fig
u

ra
tio

n

2

(= 3

. . .

!$

!%

1 2 3 4

1 2 3 4

(= 5

. . .

M
ig

ra
tio

n !& 1 2 3 4

(= 4

!) 1 2 3 4

(= 4

U
p

d
a

te

U
p

d
a

te

U
p

d
a

te

U
p

d
a

te

U
p

d
a

te

U
p

d
a

te

U
p

d
a

te

U
p

d
a

te

U
p

d
a

te

R
e

co
n

fig
u

ra
tio

n

Lo
a

d
 C

h
e

ck
p

o
in

t

(= 5
M

ig
ra

tio
n !) 1 2 3 4

(= 5

!(1 2 3 4

Device

Preemption

Pipeline Stage

Model Update

Redundant Stage

Uncommitted Mini-batch

Unutilized Instance

Prediction Result

Figure 1: Illustration of pipelined data parallelism training over on-demand and spot instance respectively. Preempted spot

instances are marked with red markers. X j represents the j-th mini-batch of input data.

point, resulting in wasted computation as model updates made

since the last checkpoint are lost.

The second line of work uses redundant computation to

provide resilience in the presence of preemptions. For ex-

ample, as shown in Figure 1b, Bamboo [47] replicates DNN

computations across spot instances by letting each instance in

a pipeline perform normal computations over assigned DNN

layers (dark boxes) and redundant computations over its suc-

cessor’s layers (striped boxes). Upon an instance preemption,

its predecessor has all the information (e.g., layers and activa-

tions) to continue DNN training. Although Bamboo achieves

higher training throughput than pure checkpointing-based

methods when preemption rates are high, its computation effi-

ciency can still be limited. This is because it is difficult to com-

pletely hide the overhead of redundant computation through

pipeline bubbles, especially for large-scale models (§10.2).

Additionally, storing redundant model states increases per-

GPU memory consumption. Existing redundancy-based meth-

ods such as Bamboo address this challenge by increasing

pipeline depth, but this can lead to reduced computation effi-

ciency and increased vulnerability to preemptions.

To address the performance and scalability limitations of

existing approaches, this paper presents Parcae, a proactive,

liveput-optimized system for DNN training on spot instances.

Parcae combines data and pipeline parallelism for DNN train-

ing on spot instances, and maintains identical semantics as

on-demand training. A key insight behind Parcae is that dif-

ferent strategies to parallelize DNN training exhibit diverse

robustness under preemptions. For example, a strategy with

long pipelines achieves higher throughput but is more vulner-

able to preemptions than a strategy with shorter pipelines.

Parcae is designed to maximize preemption-aware through-

put in a proactive way. We purpose a formulation of liveput for

DNN training on preemptible instances, which is the expected

training throughput of a DNN job under different preemp-

tion scenarios. A key advantage of liveput is that it considers

both the throughput of a parallel configuration and its ro-

bustness under preemptions. Figure 1d illustrates how Parcae

optimizes liveput. After observing two preemptions (i = 2

in the figure), Parcae anticipates that the cloud has reached

its capacity limit and expects additional preemptions in the

near future. Therefore, instead of maintaining two pipelines

each with five instances, which maximizes throughput, Parcae

keeps four instances on each pipeline, which is more robust

under additional preemptions and maximizes liveput. This

allows Parcae to cheaply handle future preemptions using

lightweight live migrations (i = 3,4 in the figure).

There are three key challenges Parcae must address to

optimize liveput: (1) predicting liveput, (2) handling preemp-

tions, and (3) discovering parallel configurations to maximize

liveput. We elaborate these challenges and the main ideas

Parcae uses to overcome them.

First, spot instances can be preempted and reallocated

due to many reasons (e.g., market price changes, resource

constraints) at any time. It is challenging to know ahead

of time when and which specific instances will be pre-

empted/allocated by the cloud provider; nor does the cloud

provider provides any hints or auxiliary information on how

1122 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

instance preemption and addition decisions are made. How-

ever, estimating the liveput of a parallel configuration requires

considering a variety of preemption scenarios.

Instead of predicting preemptions and allocations for in-

dividual instances, Parcae uses a two-level approach to fore-

casting the availability of instances at a coarse granularity.

First, the availability predictor takes the instance preemption

and allocation history as input and only predicts the num-

ber of available instances in the near future. Second, the

Monte Carlo preemption sampler uses the predicted instance

availability to sample preemptions. This two-level approach

allows Parcae to employ a lightweight predictor to forecast

spot-instance availability and quickly estimate the liveput of

different parallel configurations.

Second, existing checkpoint- and redundancy-based ap-

proaches to handling preemptions introduce significant mem-

ory and computation overheads. Checkpoint-based systems

(e.g., Varuna [8]) omit all model updates since the last check-

point after each preemption, and periodically saving and load-

ing checkpoints introduce additional overheads. These over-

heads are substantial even by adopting fine-grained check-

pointing mechanisms [32] for better overlapping (see §10.2).

Meanwhile, redundancy-based systems (e.g., Bamboo [47])

require redundant computation on each instance even in the

absence of preemptions, which decreases training throughput

and increases monetary cost due to redundant computations.

To effectively handle preemptions, Parcae uses a

lightweight live migration mechanism that allows DNN train-

ing to proceed despite losing instances and without introduc-

ing redundant computation as done by prior work. To achieve

this goal, Parcae’s live migration mechanism always uses the

same number of samples to update model’s parameters in

each training iteration and opportunistically reorder samples

to avoid redundant computation or restarting training. This ap-

proach preserves model accuracy by leveraging the stochastic

nature of DNN training — all training samples are drawn in-

dependently from an intrinsic data distribution and reordering

samples does not affect model accuracy [10].

Third, optimizing liveput requires reasoning about instance

preemptions and allocations and quickly adapting to new

resources allocations while minimizing transition cost. Recent

work (e.g., PipeDream [34] and Alpa [55]) has proposed a

variety of techniques to automatically discover throughput-

optimized parallel configurations for DNN training. However,

all these approaches assume a fixed set of GPUs and do not

apply to spot-instance training.

To address this challenge, Parcae’s liveput optimizer formu-

lates the problem of maximizing liveput as an optimization

task and uses a novel dynamic programming algorithm to ex-

plore the search space of parallel configurations that combine

data and pipeline parallelism and discover an optimal parallel

configuration in the search space.

The above techniques allow Parcae to significantly outper-

form prior work. Figure 2 compares Parcae against Bamboo

0 500 1000 1500 2000 2500 3000 3500

Time (Seconds)

0

200

400

600

800

1000

1200

N
u
m

b
e
r

o
f

M
in

i-
B

a
tc

h
e
s

2.38x

On-demand

Parcae (Ideal)

Parcae

Varuna

Bamboo

Figure 2: Comparing Parcae and prior work for training GPT-

2 [38] on 32 spot GPU instances. Note that Parcae, Bamboo,

and Varuna use an identical preemption trace.

and Varuna for training GPT-2 on 32 spot V100 GPU in-

stances on AWS using a collected preemption trace. Parcae

outperforms Bamboo and Varuna by 2.4× under the same pre-

emptions. The grey curve shows an ideal case, where Parcae

knows all future preemptions and allocations and maximizes

liveput accordingly. Parcae achieves 89% efficiency of the

ideal case. We have evaluated Parcae on a variety of DNN

models and preemption traces and shown that Parcae outper-

forms Varuna by up to 9.9× and Bamboo by up to 10.8×.

Moreover, our evaluation shows that Bamboo and Varuna can-

not scale to large models — for certain spot-instance traces,

both of them cannot make any progress for training GPT-

3 [12] with 6.7 billion parameters, while Parcae can achieve

almost identical performance as its ideal case (i.e., knowing

all future preemptions and allocations).

This paper makes the following contributions:

• We propose liveput, a novel metric that simultaneously

consider the performance and robustness of a paralleliza-

tion strategy for DNN training on spot instances.

• We build Parcae, a liveput-optimized system for spot-

instance training that accurately predicts instance avail-

ability, cheaply handles preemptions, and efficiently op-

timizes training performance under preemptions.

• We evaluate Parcae and show that it outperforms Varuna

and Bamboo by up to 9.9× and 10.8×, and supports

training large-scale models on spot instances.

2 Background

2.1 Distributed DNN Training

Data parallelism. Data parallelism [7, 36] is the most widely

used parallelization strategy in distributed DNN training.

Each GPU has a model replica and performs forward and

backward computations for different batches of data samples

independently. It requires to synchronize model gradients

(e.g., All-Reduce [4]) before mode update.

Pipeline parallelism. Pipeline parallelism [19] partitions

DNN model into different stages with data dependency. Each

stage is trained on one GPU, and different GPUs communicate

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1123

activations and corresponding gradients, which are computed

by forward and backward computation respectively, instead of

parameter gradients. A mini-batch of training samples is split

into multiple micro-batches in pipeline training and pipeline

parallelism exploits the opportunity to parallelize the compu-

tations of different micro-batches.

Hybrid data and pipeline parallelism. Some studies [15,

33] combine data and pipeline parallelism to further acceler-

ate the training of large models. Given a number of GPUs,

the training throughput varies for different parallel configura-

tions, which describes the number of stages and data-parallel

pipelines it owns. Some recent systems (e.g., FlexFlow [48],

Alpa [55], Galvatron [30]) further involve more complicated

model parallelism to benefit distributed training of particular

DNNs. However, they can not be applied on spot instance

with dynamic device membership. Our approach considers

hybrid data and pipeline parallelism, follows Varuna and Bam-

boo, and leaves the exploration of more fine-grained model

parallelism as our future work.

2.2 Spot-Instance Training

Recent frameworks [6, 8, 47] exploit cheap but preemptible

instances provided by clouds to train DNN models on. Torch-

Elastic [6] focuses on elastic data parallelism training and

cannot be adopted to large models, where pipeline parallelism

is definitely needed. Since the availability of spot instances

varies significantly and frequently, it is critical to decide the

parallel configuration for a DNN model in response to preemp-

tions and allocations. Bamboo [47] keeps the pipeline depth

fixed and varies the number of pipelines according to the avail-

ability of spot instances. This mechanism makes it difficult for

Bamboo to utilize spot instances, which have low availabil-

ity, for large models that require a long pipeline. Varuna [8]

introduces job morphing to dynamically change the parallel

configuration and maximize throughput for a given number

of spot instances. For instances with low preemption rate or

models with negligible reconfiguration cost, switching to the

optimal parallel configuration is definitely optimal. However,

the current spot instance market and DNN models violate the

two conditions, making it sub-optimal to always adopt the

parallel configuration with the optimal throughput.

3 Liveput

This section introduces liveput, a new metric for DNN training

that describes the expected training throughput of a paralleliza-

tion strategy on spot instances by simultaneously considering

its throughput and robustness under preemptions.

3.1 Definition of Liveput

To address the challenge mentioned above, we introduce

liveput, a novel metric for distributed DNN training on spot in-

stances that considers both the performance of a DNN system

as well as potential preemptions.

Figure 3: Comparing the liveput and throughput of different

parallel configurations and preemption scenarios.

Definition 1 (Liveput). Let (D,P) denote the parallel con-

figuration of a DNN training job, where P is the number of

pipeline stages, and D is the number of data-parallel pipelines.

The liveput of this training job is the expectation of its through-

put under all possible preemption scenarios:

LIVEPUT(D,P,V) = E
�v∼V

[THROUGHPUT(D�v,P�v)] (1)

where V : {0,1}D×P → [0,1] is the probability distribution of

all preemption scenarios. Each�v is an preemption indicator

vector, vk = 1 if instance k will be preempted and vk = 0

otherwise. THROUGHPUT(D�v,P�v) is the throughput of the

new parallel configuration (D�v,P�v) after preemption�v.

Note that we follow prior work [8, 47] and focus on data-

and pipeline-parallel DNN training in this paper, while the

liveput definition can easily generalize to other parallel con-

figurations such as model [21] and reduction [48] parallelism.

3.2 Comparing Liveput and Throughput

A key advantage of liveput is that it considers how the per-

formance of a parallel configuration changes under different

preemption scenarios. Figure 3 demonstrates this advantage

with a DNN training example on six spot instances with

two possible parallel configurations: {D = 2,P = 3} and

{D = 3,P = 2}. For simplicity, we assume the throughput

of a pipeline with three (or two) stages is 50 (or 30) sam-

ples/second and ignore the parameter synchronization cost.

We compare the two parallel configurations under three pre-

emption scenarios: (a) no preemption, (b) one preemption,

and (c) two preemptions. We also assume that the preemption

probabilities of all instances are the same.

Figure 3 compares the throughput and liveput of the two

parallel configurations under the three preemption scenar-

ios. Throughput is independent of instance preemptions;

therefore, {D = 2,P = 3} achieves a higher throughput than

{D = 3,P = 2} for all cases. On the other hand, liveput con-

siders the amount of possible preemptions as well as the distri-

1124 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

bution of these preemptions over spot instances. When there is

no preemption (i.e., fixed resource allocation), liveput is equiv-

alent to throughput. Once a concrete future preemption sce-

nario is given as a prior condition, the corresponding liveput

can be treated as the effective throughput after such a pre-

emption. For example, under preemption of 1 or 2 instances,

the configuration {D = 3,P = 2} achieves higher effective

throughput than {D= 2,P= 3}. Intuitively, due to data depen-

dencies between the pipeline stages, longer pipelines are more

vulnerable to preemptions, since a single preemption would

invalidate an entire pipeline within a mini-batch, and shorter

pipelines exhibit better elasticity and resilience under frequent

preemptions. Existing throughput-optimized approaches fail

to consider this trade-off when estimating training efficiency

and may make suboptimal decisions.

4 Parcae Overview

Figure 4 shows an overview of Parcae, a liveput-optimized sys-

tem for DNN training on spot instances. Computing liveput re-

quires predicting instance preemptions and allocations. Since

predicting instance-wise availability is infeasible (§5.1), Par-

cae uses a two-level approach to forecasting the availability

of all instances at a coarse granularity, where an availability

predictor takes the instance preemption/allocation history as

input and only predicts the number of available instances in

the future, and the Monte Carlo preemption sampler uses the

predicted availability to sample preemptions and allocations.

Parcae’s liveput optimizer takes the predicted instance avail-

ability as input and discovers a parallel configuration to max-

imize the liveput of the DNN model. The liveput optimizer

formulates the problem of maximizing liveput as an opti-

mization task and uses a dynamic programming algorithm to

discover an optimal parallel configuration.

To migrate across different parallel configurations and han-

dle potential preemptions, Parcae uses three live migration

strategies. These migration strategies leverage statistical ro-

bustness of DNN training, allow Parcae to significantly reduce

migration and preemption overheads compared to existing

checkpoint- and redundancy-based systems.

For the rest of this paper, we introduce Parcae’s availability

predictor in §5, live migration strategies in §6, and liveput

optimizer in §7. §8 describes how Parcae handles exceptional

cases where actual preemptions mismatch Parcae’s predic-

tions. Finally, we discuss Parcae’s design and implementation

on modern clouds in §9 and evaluate its performance in §10.

5 Availability Predictor

5.1 Instance-wise Availability Unpredictability

There are several factors that affect spot-instance preemptions

and allocations, including the types of the instances a user

requires and their availability zones, the price of the current

spot instance market, and competitions from other users. Most

existing approaches to predicting the availability of spot in-

stances focus on estimating their prices [16,17], which cannot

Figure 4: An overview of Parcae.

be used to estimate their lifetime. Prior work [16, 27, 31, 53]

has also tried to predict the reliability of spot instances based

on historical data collected from cloud providers. These at-

tempts rely heavily on the cloud behaviour, which varies

across cloud providers and availability zones within a cloud.

Moreover, for a new cloud or zone, applying these data-driven

approaches before running a job is expensive and time con-

suming. As a result, accurately forecasting individual in-

stances’ preemptions (i.e.,�v in Definition 1) is impractical

since clouds currently do not support specifying preferences

on the instance preemption order (i.e., which instances to pre-

empt first), nor do they provide any auxiliary information that

can help understand preemption and allocation decisions.

5.2 Statistical Availability Prediction

To make Parcae a general and practical DNN training system

on spot instances, the only visible and reliable information

is the past preemption/allocation records of the current user-

submitted training job. Instead of forecasting when and which

instance will be preempted in the future, Parcae uses a coarse-

grained time-series forecasting approach. We observe that

it is possible to predict the total amount of available spot

instances for short time intervals in the future and benefit

Parcae’s proactive optimization performance.

Problem formulation. We split the timeline of a training

job into equally sized intervals, where the length of an interval

T is a hyper-parameter. For the i-th interval, we define a tupe

(Ni,N
+
i ,N−

i) to represent the number of available instances,

newly allocated instances, and preempted instances within the

i-th interval, respectively. We assume that node preemptions

and allocations only happen at the beginning of each time

interval and that all available spot instances are stable within a

time interval; this assumption is reasonable since each interval

is small (e.g., 1 minute). Therefore, we have Ni = Ni−1 +
N+

i −N−
i (i > 0). Instead of predicting N+

i and N−
i , Parcae’s

availability predictor only forecasts a sequence of Ni (i.e.,

overall availability) and uses Ni to derive N+
i and N−

i . This

design is based on an important observation that a cloud does

not preempt existing instances and allocate new instances at

the same time, therefore N+
i = max(0,Ni −Ni−1) and N−

i =

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1125

Figure 6: Illustrations of different migration strategies over a 3×4 parallel configuration facing 2 preempted instances.

2 6 12

#Look-ahead Intervals

0

1

2

3

4

N
o

rm
a

li
ze

d
 L

1
 D

is
ta

n
ce Averaging Smoothing

Exponential Smoothing

Current Available Nodes

ARIMA

(a) ARIMA vs. other models

0 1 2 3 4 5 6 7 8 9 10 11

Hours

10

15

20

25

30

#
A

v
a

il
a

b
le

 N
o

d
e

s

Real Trace

Predicted Trace

(b) ARIMA-predicted vs. real trace

Figure 5: (a) Comparison of normalized L1 distance of pre-

dictive performance for ARIMA and other solutions (H= 12,

lower is better). (b) Comparison between ARIMA-predicted

trace (H= 12, I= 4) and the ground truth.

max(0,Ni−1 −Ni). Formally, in the time-series forecasting

problem, an agent takes the instance availability trace in the

past H intervals as input and forecasts the instance availability

for the future I time intervals:

(Ni, · · · ,Ni+I−1) = PREDICTION(Ni−H , · · · ,Ni−1). (2)

Note that (Ni, · · · ,Ni+I−1) can be used to derive the predicted

instance preemptions and allocations for the next I intervals.

Limited input data prevents Parcae from using complex

prediction models such as deep neural networks. Instead,

we propose to leverage lightweight statistical algorithms

(e.g., moving averaging, exponential smoothing, current avail-

able nodes) and empirically study their performance in Fig-

ure 5a (more details are in Appendix B). We select the

auto-regressive integrated moving average (ARIMA) algo-

rithm [11] as our availability predictor due to its superior

performance. We observe that ARIMA can faithfully de-

scribe the tendency of instance availability, as shown in Fig-

ure 5b. Finally, our evaluation on collected real-world pre-

emption/allocation traces further verifies that the ARIMA pre-

dictor can help Parcae achieve near-optimal liveput (§10.2).

6 Live Migration

This section describes the proactive migration mechanism

of Parcae. Existing checkpoint- and redundancy-based ap-

proaches handle preemptions reactively, leading to significant

overheads. Instead, we design several fine-grained live mi-

gration strategies to proactively handle different future pre-

emption scenarios. Given the preemption prediction results,

Parcae could schedule efficient adjustments in advance to

adapt to the dynamic instance availability.

6.1 Pipeline-aware Preemption Mapping

Before introducing live migration, we first discuss the pre-

emption mapping step in Parcae. Recall that the outputs of

the availability predictor (§5) only include statistical informa-

tion (i.e., the number of preemptions or allocations during a

time interval). However, the impact of an instance preemption

highly depends on the instance’s position in the data- and

pipeline-parallel topology. Therefore, instance-wise preemp-

tion predictions (i.e.,�v in Definition 1) is still necessary to

make efficient live migration decisions.

To bridge this gap, Parcae uses a probabilistic model to

reason about the mapping from preemption events to actual

instances. This preemption mapping is essential for data- and

pipeline-parallel training because of the unique dependen-

cies between instances. In particular, instances in the same

pipeline have sequential dependencies for both forward and

backward computation, and instances in the same stage have

synchronization dependencies for parameter synchronization.

For each preemption event, Parcae assumes that all spot in-

stances may be preempted with the same probability (see

the example in Figure 3). Note that such an assumption can

be replaced by more accurate estimations when additional

preemption information is provided by cloud providers.

6.2 Migration Strategies

Parcae uses three migration strategies (Figure 6) to handle

preemptions: intra-stage, inter-stage, and pipeline migration.

Intra-stage migration. In pipeline-parallel training, in-

stances in the same stage maintain the same shard of model

parameters. Therefore, when an instance is preempted, Parcae

can opportunistically divert an available instance from the

same stage in another broken pipeline. This intra-stage mi-

gration allows Parcae to re-establish a complete pipeline. As

shown in Figure 6 (a), when instances a and f are preempted,

Parcae can replace f by moving b to the second pipeline (e.g.,

f → b), resulting in two complete pipelines. Intra-stage mi-

gration only requires updating the communication routing

(e.g., →) of a few instances and does not involve transferring

parameters since b and the preempted instance f share the

same model parameters and states.

Inter-stage migration. When intra-stage migration does

not help recover broken pipelines, Parcae opportunistically

performs inter-stage migrations, which moves intstances

across stages. Figure 6 (b) shows an inter-stage migration,

1126 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

where instances b and f are preempted, and Parcae moves e

from the first stage to the second stage of the first pipeline

(e.g., b⇒ e), resulting in two complete pipelines. Inter-stage

migration requires transferring model parameters (e.g.,⇒)

as the instances keep the model parameters and states of dif-

ferent stages. Both intra- and inter-stage migrations preserve

pipeline depth and manage to recover as many data-parallel

pipelines as possible.

Pipeline migration. Changing the pipeline depth is an im-

portant choice for maximizing training efficiency. Compared

with the other two migration strategies, pipeline migration

requires repartitioning the DNN model into a different num-

ber of pipeline stages, which involves significant migration

overheads as instances need to broadcast their model param-

eters (e.g., All ⇒ All). Pipeline migration is similar to the

reconfiguration mechanism in prior work (e.g., Varuna [8],

Bamboo [47]) to handle instance preemptions.

Parcae makes migration decisions by considering the cur-

rent parallel configuration, the new optimized parallel config-

uration and the actual preemptions. Given the probabilistic

mapping of predicted preemptions, Parcae automatically re-

newals the optimal parallel configuration and the migration

strategy (§7.2). Once the prediction mismatches with the ac-

tual availability, Parcae adjusts the parallel configuration as

well as the corresponding migration strategies for adaptation

(§8). The actual migration decisions are finalized when pre-

emptions really happen, and Parcae leverages the grace period

(e.g., 30s on Azure [2]) to perform these migrations.

7 Liveput Optimizer

This section describes Parcae’s liveput optimizer, which de-

termines the parallel configurations of training a DNN model

on spot instances to maximize its liveput.

7.1 Problem Definition

We formulate liveput maximization as an optimization prob-

lem, where the objective is to discover a sequence of parallel

configurations to maximize the committed training samples in

expectation of spot instance availability. The sequence length

is set to be consistent with the number of time intervals pre-

dicted by the availability predictor (Section 5). Formally, the

objective function Φ is the accumulated number of committed

training samples during the I time intervals:

Φ(D,P | N) =
I−1

∑
i=0

φ(Di,Pi,Ni | Di+1,Pi+1,Ni+1), (3)

where Ni is the predicted number of available instances (see

Section 5) at the i-th time interval. Recall that Parcae derives

N−i+1 (i.e., the number of instances to be preempted) and N+
i+1

(i.e., the number of instances to be launched) from Ni and Ni+1.

In addition, the preemption distribution v⃗i+1 (Definition 1) is

generated from Ni and N−i+1 using the probabilistic preemp-

tion model developed in Section 6.1. Finally φ calculates the

number of committed samples within a interval:

φ(Di,Pi,Ni | Di+1,Pi+1,Ni+1) (4)

= E
v⃗i+1

[LIVEPUT(Di+1,Pi+1 | v⃗i+1)×Teff],

Teff = T −Tmig(Di,Pi,Di+1,Pi+1 | v⃗i+1),

where T and Teff are the length of the time interval and ef-

fective training time after migrations, respectively, and Tmig

is the migration overhead. Note that φ extends liveput by

making the preemption distribution v⃗i+1 a prior. With these

definitions, the objective of the liveput optimizer is:

argmax
D,P

Φ(D,P | N) (5)

where N = {N1,N2, · · · ,NI} is the output of the availability

predictor, and Parcae discovers a sequence of parallel config-

urations (D,P) to maximize liveput.

7.2 Parallelization Advisor

Parcae uses a dynamic programming algorithm to explore

the optimization space and discovers an optimal sequence of

parallel configurations. Specifically, let F(i+ 1,Di+1,Pi+1)
represent the maximal number of committed training samples

at the end of the i-th time interval, which uses parallel config-

uration (Di+1,Pi+1). We start from F(0,D0,P0) = 0 and have

the following optimal substrates:

F(i+1,Di+1,Pi+1) (6)

= max
∀Di×Pi≤Ni

{

F(i,Di,Pi)+

φ(Di,Pi,Ni | Di+1,Pi+1,Ni+1)

}

,

and figure out the final target as max∀DI×PI≤NI
{F(I,DI ,PI)}.

The DP algorithm considers all possible parallel con-

figurations that satisfy resource constraints (i.e., Di×Pi ≤
Ni), and φ(Di,Pi,Ni | Di+1,Pi+1,Ni+1) is the product of two

terms in Equation (4). Here the exploration adapts a simi-

lar search space as Varuna with a size of O(N logN), which

is large enough for most recent large DNNs consisting of

a stack of homogeneous layers. It is also possible to ex-

tend to a larger search space (e.g., Alpa) for more com-

plicated workloads. The first term LIVEPUT can be re-

placed by THROUGHPUT(Di+1,Pi+1), where (Di+1,Pi+1) is

the new parallel configuration after live migration. Note that

(Di+1,Pi+1) should be a feasible model partition that satisfies

the device memory capacity. For unfeasible cases that violate

memory constraints, their THROUGHPUT is set to be zero.

The second term Teff depends on the preemption distri-

bution, (Di,Pi), (Di+1,Pi+1), and the migration strategy to

transit from (Di,Pi) to (Di+1,Pi+1). Given a pair of parallel

configurations (Di,Pi) and (Di+1,Pi+1), there may exist mul-

tiple migration strategies with different overheads Tmig, and

the cost of each migration strategy also depends on the DNN

workload. Parcae uses a cost estimator (Section 9.4) to es-

timate Tmig for different migration strategies. If the pipeline

depth changes (i.e., Pi+1 ̸= Pi), Parcae infers that pipeline mi-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1127

gration is performed. Otherwise, Tmig should be attributed to

either inter- or intra-stage migrations. When both of them are

applicable, Parcae selects the one with lower migration cost.

In the absence of preemptions (i.e., Ni+1 = Ni), there can be

no migration cost if (Di+1,Pi+1) equals to (Di,Pi).

7.3 Preemption Mapping Sampler

As introduced in Section 6.1, preemption mapping is nec-

essary to reason about live migration, since preemptions at

different positions in the data- and pipeline-parallel topology

require different migration strategies. Given Ni spot instances,

among which N−

i+1 are to be preempted, the number of possi-

ble preemption mappings on a D×P topology grows expo-

nentially in N−

i+1. The large preemption mapping space makes

it infeasible to explicitly consider all preemption scenarios or

analyze the exact solutions mathematically.

To address this issue, Parcae uses sampling techniques

to explore the mapping space and quickly discovers reason-

able accurate approximations. Specifically, Parcae applies

Monte Carlo (MC) sampling over the large space of all pre-

emption scenarios and randomly samples�v while preserving

N−

i+1 = ∑
Ni
j=1 v j. For each sampled�v, Parcae identifies the cor-

responding migration costs. Parcae ensembles multiple trails

of sampling to approximate the expectation in Equation (4).

Note that this sampling step can be done offline in advance,

therefore it does not block the dynamic programming opti-

mization procedure. This allows parallelization advisor to

quickly compute new parallel configurations and migration

strategies during spot-instance training.

8 Exception Handling

This section describes how Parcae handles exceptional cases

where actual spot-instance preemptions mismatch Parcae’s

predictions or the suggested parallel configuration is not com-

patible with the available spot instances.

Parallelization adaptation. Compared to prior work, Par-

cae proactively adjusts parallel configurations by predicting

instances’ availability and planning live migrations ahead.

However, if actual preemptions rarely differ from predictions,

the liveput optimizer may not work on available spot instances.

To address this issue, Parcae includes a configuration adapta-

tion step to adjust the target parallel configuration before live

migration. Specifically, when the number of actual available

spot instances is greater (or less) than the predicted Ni, Parcae

adds (or drops) data-parallel pipelines while preserving the

pipeline depth. When available spot instances cannot even for-

mulate a single pipeline, it will try to re-partition the pipeline

into fewer stages. This adaptation ensures a feasible configu-

ration without significant migration overheads, performing at

least as well as existing throughput-optimized approaches that

reactively handle preemptions when predictions go wrong.

Fault tolerance. Even if the predictions align well with

actual preemptions, there still exist rare cases where the mi-

gration strategies do not work. For example, if all instances

Figure 7: Overview of Parcae’s design and implementation.

in one stage are preempted, both inter- and intra-stage migra-

tion cannot recover this stage’s status. Parcae uses a cheap,

in-memory checkpointing mechanism (§9.3) to handle these

cases. In addition, for the extreme cases where the number of

available instances is less than the minimum feasible pipeline

depth P, the training process has to be suspended until new

spot instances are available.

9 Parcae’s Design and Implementation

Parcae consists of three main components as illustrated in Fig-

ure 7. First, ParcaeScheduler (§9.2) runs persistently on one

on-demand CPU instance, determining the migration sched-

ule based on our liveput optimizer and availability predictor.

It also manages the training data samples to maintain the

training semantics. Second, each spot GPU instance runs a

ParcaeAgent (§9.2), which performs assigned training work-

load, monitors training progress, and executes the migration

strategies issued by the ParcaeScheduler. Third, ParcaePS

(§9.3) runs on several on-demand CPU instances to keep

model checkpoints for rare rollback cases.

Parcae’s implementation consists of ∼ 8K LoC in Python

and takes PyTorch [25] as the default runtime. Communica-

tions between ParcaeScheduler and ParcaeAgent use etcd [5],

a distributed key-value store. We implement live migration

strategies by modifying DeepSpeed [40]. We show the work-

flow of ParcaeScheduler and ParcaeAgent in Algorithm 1 and

introduce the detailed components as follows.

9.1 ParcaeScheduler

ParcaeScheduler has two major components: a migration man-

ager and a sample manager. The former is responsible for

parallelization and live migration, and the latter handles the

data samples distribution.

1128 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Migration manager. As shown in Algorithm 1, the migra-

tion manager keeps receiving instance availability information

(i.e., preemption or allocation interruptions) from the cloud

provider and updating the current number of available in-

stances (line 3). As discussed in §8, the parallel configuration

(Di,Pi) computed in the previous iteration using predicted

availability may be incompatible with the current instances’

availability. To handle this exception, ParcaeScheduler first

adjusts the target parallel configuration (line 4) and then gen-

erates the required migration strategy Si based on the current

and target configurations (Di−1,Pi−1) and (Di,Pi). Note that

the adaptation step (line 4) is performed before generating the

migration strategy (line 5) so it will not involve re-adjustment

overheads. Next, the availability predictor will forecast the

number of available instances for a series of future intervals

(i.e., Ni+1, · · · ,Ni+I) based on the historical information (line

7). Finally, the liveput optimizer makes parallelization sugges-

tions for the following time interval using the prediction (line

8). The workflow continues until the training job is completed.

The handling of instance preemption and allocation inter-

ruptions are slightly different. Allocations are controllable

as they only occur after we consciously send requests to the

cloud, although they may not always succeed. We let a new

instance join after its ParcaeAgent is successfully initialized.

In contrast, preemptions are passive and may interrupt in-

stances at any time, which requires additional mechanisms

to handle various exceptions. Fortunately, the clouds usually

provide a small grace period to inform the preemption before

it happens. As the duration is usually enough to finish a mini-

batch’s training, we utilize the preemption notice to simplify

the implementation and enforce instances to be preempted

only at the mini-batches’ boundaries. Parcae also handles rare

failures that may interrupt training process, in which case

ParcaeScheduler restarts training using the latest checkpoint

in ParcaePS, avoiding losing model updates.

Sample manager. The training dataset is divided into mini-

batches of fixed size and trained by DNNs iteratively. Each

mini-batch of samples are ªcommittedº after each iteration.

However, preemptions may terminate training at any time, re-

sulting in uncommitted mini-batches (Figure 1). To guarantee

the same training semantics as on-demand instances, the sam-

ple manager tracks each data sample, records all uncommitted

samples’ indices, and makes them rejoin the training process

later. This guarantees that all data samples are trained exactly

once per epoch, preserving identical theoretical convergence

property as the original data feeding order. We also provide

a convergence experiment in Figure 16 to verify its training

correctness.

9.2 ParcaeAgent

A ParcaeAgent runs on each spot GPU instance to interact

with ParcaeScheduler as shown in Algorithm 1. It repeatedly

receives a migration instruction from the ParcaeScheduler

(line 13). If no migration is required, the ParcaeAgent re-

Algorithm 1 Workflow of Parcae components.

▷ ParcaeScheduler

1: function MIGRATIONMANAGER(D0,P0)

2: for i in 1, 2, 3, · · · do

3: Ni ← Receive availability info from cloud provider

4: (Di,Pi)← AdjustParallelConfiguration(Ni)

5: Si← GetMigrationStrategy ((Di−1,Pi−1), (Di,Pi))
6: Send migration strategy Si to all ParcaeAgents

7: Ni+1, · · · ,Ni+I ← AvailPredictor(Ni−H+1, ...,Ni)

8: (Di+1,Pi+1)← LiveputOpt
(

(Di,Pi),Ni, ...,Ni+I

)

9: if job completes then

10: break

▷ ParcaeAgent

11: function PARCAERUNTIME(model, batch_size)

12: while job does not complete do

13: Receive migration instruction m from ParcaeScheduler

14: Apply migration instruction m if m is not empty

15: X ,Y ← DataLoader(batch_size)

16: Train(model, X , Y)

quests a batch of training samples and starts model training

(line 15-16). Otherwise, it performs the assigned migration in-

struction (line 14). ParcaeAgent manages to reuse the current

model states to alleviate checkpoint overheads and rollbacks.

For example, intra-stage migration is implemented by rebuild-

ing communication groups and reusing previous model states

on each GPU. For inter-stage and pipeline migration, addi-

tional costs are required for loading the latest model states

from other instances via GPUs’ peer-to-peer communications.

Specially, if all instances of a stage are preempted, all the

ParcaeAgents have to roll back to a previous checkpoint. In

this way, ParcaeScheduler automatically generates the most

efficient migration strategy and let the ParcaeAgents transit to

the target parallel configuration. Note that, the ParcaeSched-

uler also notifies a ParcaeAgent if it will be preempted or stay

idle (i.e., Ni−Di×Pi instances will be idle) by sending a halt

or termination instruction to the ParcaeAgent.

9.3 ParcaePS

Parcae needs checkpoints to handle rare cases as introduced

in §8. Unlike prior checkpointing approaches relying on ex-

pensive cloud storage (e.g., S3 on AWS), Parcae employs

several cheap on-demand CPU instances (e.g., c5.4xlarge

instance, 0.68$/hour) to maintain the latest model states in

their DRAM. Instead of directly communicating model states

and weights as prior checkpointing approaches, the ParcaePS

maintains an up-to-date checkpoint by iteratively synchroniz-

ing gradients with spot GPU instances to update the model

states the on CPU side (e.g., parameters and optimizer states),

which reduces communication by 5× for stateful optimizers

(e.g., Adam [23]) in the FP16 format [41]. Parcae also parti-

tions gradients into small pieces for better overlapping and

prevents bandwidth competition with cross-stage activation

transfer.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1129

Table 1: Overview of the four trace segments evaluated.

Trace HADP HASP LADP LASP

Availability High High Low Low

Preemption intensity Dense Sparse Dense Sparse

#avg instances 27.05 29.63 16.82 14.60

#preemption events 9 6 8 3

#allocation events 8 5 12 0

length 1h 1h 1h 1h

0 1 2 3 4 5 6 7 8 9 10 11

Hours

0

10

20

30

#
A

v
a

il
a

b
le

 N
o

d
e

s

HADP LADPHASP LASP

Figure 8: The complete trace and segments of four scenarios.

9.4 Cost Estimator

We develop a cost estimator to estimate migration cost by con-

sidering different preemption scenarios and parallel configu-

rations. We conduct an empirical study to profile the migra-

tion cost and find that it varies across several factors (details

in Appendix A). Some of these terms have relatively fixed

overheads like CUDA context initialization (less than 10s).

The communication group updating and model building costs

are associated with the parallel configuration (less than 30s).

The model transfer cost varies considerably according to the

preemptions (up to 60s). We consider the instance network

topology for each preemption scenario and adopt an α−β
model [49] to accurately estimate the communication cost.

10 Evaluation

10.1 Experimental Setup

DNNs. We select five popular DNNs for various applications.

ResNet-152 [18] and VGG-19 [45] are CV tasks, and we use

CIFAR-100 [24] as the training dataset. BERT [14], GPT-

2 [38], and GPT-3 [12] are popular model architectures for

NLP tasks, and we evaluate them on WikiText-2 [28]. We use

GPT-2 and GPT-3 including 1.5 and 6.7 billion model param-

eters respectively. More setting details are in Appendix C.

Traces. Due to the dynamic availability of spot instance,

it is almost impossible to evaluate different systems on real

spot instances multiple times and expect consistent dynamic

environments. Instead, to make a fair comparison, we take

the real spot instance availability traces and replay them on

regular instances. Specifically, we collect a 12-hour trace on

a 32-instance cluster with p3.2xlarge instances on AWS.

Inspired by Bamboo [47], we extract representative segments

from the whole trace for our evaluation. We design two new

measurements for each segment, including the availability

(i.e., the average number of instances) and the preemption

intensity (i.e., the number of instance preemption and alloca-

Table 2: Comparison of monetary cost (×1e−6USD) for dif-

ferent models and approaches. We report per-image cost for

ResNet and VGG and per-token cost for BERT and GPT.

Model Trace On-Demand Varuna Bamboo Parcae

ResNet

HADP 8.68 (2.3×) 10.86 (2.8×) 9.77 (2.6×) 3.81 (1×)

HASP 8.68 (2.4×) 5.32 (1.5×) 7.61 (2.1×) 3.62 (1×)

LADP 8.68 (3.2×) 4.89 (1.8×) 6.72 (2.5×) 2.71 (1×)

LASP 8.68 (3.4×) 2.43 (1.0×) 6.96 (2.7×) 2.54 (1×)

VGG

HADP 12.43 (2.7×) 12.10 (2.6×) 12.11 (2.6×) 4.62 (1×)

HASP 12.43 (2.7×) 6.52 (1.4×) 13.12 (2.8×) 4.66 (1×)

LADP 12.43 (3.4×) 5.43 (1.5×) 9.40 (2.6×) 3.66 (1×)

LASP 12.43 (4.0×) 3.37 (1.1×) 8.88 (2.9×) 3.11 (1×)

BERT

HADP 0.10 (2.9×) 0.09 (2.6×) 0.09 (2.6×) 0.03 (1×)

HASP 0.10 (2.8×) 0.06 (1.6×) 0.06 (1.9×) 0.03 (1×)

LADP 0.10 (3.4×) 0.07 (2.4×) 0.07 (2.4×) 0.03 (1×)

LASP 0.10 (4.2×) 0.03 (1.2×) 0.07 (3.0×) 0.02 (1×)

GPT-2

HADP 0.62 (2.9×) 0.49 (2.3×) 0.55 (2.6×) 0.21 (1×)

HASP 0.62 (3.0×) 0.44 (2.1×) 0.62 (3.0×) 0.21 (1×)

LADP 0.62 (3.5×) 0.63 (3.6×) 0.64 (3.6×) 0.18 (1×)

LASP 0.62 (4.1×) 0.27 (1.8×) 0.31 (2.1×) 0.15 (1×)

GPT-3

HADP 2.39 (2.5×) 9.35 (9.9×) 2.07 (2.2×) 0.94 (1×)

HASP 2.39 (3.0×) 1.81 (2.3×) 1.74 (2.2×) 0.80 (1×)

LADP 2.39 (3.6×) 3.81 (5.7×) 7.28 (10.8×) 0.67 (1×)

LASP 2.39 (4.8×) - - 0.49 (1×)

tion events). Table 1 and Figure 8 show four extracted 1-hour

trace segments based on different availability and preemp-

tion intensity. Traces with over 70% available instances are

high availability (i.e., HA) traces, otherwise have low avail-

ability (i.e., LA). Dense preemption intensity traces (i.e., DP)

have around 20 instance preemption and allocation events,

but sparse preemption intensity traces (i.e., SP) only have

few. We replay these four trace segments on 32 on-demand

V100-16GB GPU instances to simulate spot-instance clusters.

10.2 End-to-End Evaluation

We first compare the end-to-end training performance be-

tween Parcae and existing SOTA spot-instance training

systems including Bamboo [47] (redundancy-based) and

Varuna [8] (checkpoint-based). We also compare with on-

demand instances training approach. The results are displayed

in Figure 9a and Table 2. In all experiments, Parcae looks

ahead 12 intervals based on the availability predictor, while

Parcae (Ideal) looks ahead 12 intervals based on truth traces.

Parcae significantly outperforms both Bamboo and Varuna

in terms of throughput for almost all the models and preemp-

tion traces. On average, Parcae delivers an overall of 2.59×

higher throughput than Varuna and 3.0× than Bamboo. Ap-

parently, Parcae is much more economical than Varuna and

Bamboo as it completes more samples with the same mon-

etary costs. Compared with on-demand instances, Parcae is

3.24× cheaper, and Parcae (Ideal) even achieves competitive

throughput, e.g., only 14.2% lower for GPT-2 on high avail-

ability traces. The results also show that the performance of

Parcae is quite close (i.e., up to 13.3%) to Parcae (ideal).

The performance improvement mainly comes from two as-

pects. First, Parcae’s liveput optimized configurations balance

the trade-off between throughput and available duration, in-

1130 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

HADP HASP LADP LASP

0

2e3

2.8x2.6x
1.5x

2.1x 1.8x2.5x

1.0x

2.7x

ResNet-152

HADP HASP LADP LASP

0

2e5

2.6x2.6x
1.6x1.9x

2.4x2.4x
1.2x

3.0x

BERT-Large

HADP HASP LADP LASP

0

2e4
2.3x2.6x

2.1x
3.0x

3.6x3.6x
1.8x2.1x

GPT-2 (1.5B)

HADP HASP LADP LASP

0

5e3

1e4

x x9.9x
2.2x 2.3x2.2x

5.7x10.8x

GPT-3 (6.7B)

T
h

ro
u

g
h

p
u

t

On-demand Varuna Bamboo Parcae Parcae (Ideal)

(a) Parcae throughput.

1 4 8 12 14

#Look-ahead Intervals

0

10K

20K

30K

T
h
ro

u
g
h
p
u
t

(t
o
k
e
n
s
/s

)

Parcae

Parcae (Ideal)

(b) The effect of I in predictor.

Figure 9: (a) Training throughput comparison among existing frameworks and Parcae on four traces. The dotted on-demand line

shows the best throughput with on-demand instances. The numbers over the bars represent the speedup of Parcae over Varuna

and Bamboo respectively. (b) The GPT-2 training throughput for the HADP trace with different look-ahead intervals.

HADP HASP LADP LASP

0

1e5

2e5

T
h
ro

u
g
h
p
u
t

(t
o
k
e
n
s
/s

)

Parcae-S

Parcae-M
Monetary Cost

Trace Parcae-S Parcae-M

HADP 3.13 3.78

HASP 3.12 3.71

LADP 2.57 3.28

LASP 2.27 3.00

Figure 10: The comparison of throughput and monetary cost

(×1e
−8USD/token) of BERT for Parcae on single-GPU in-

stances (Parcae-S) and multi-GPU instances (Parcae-M).

0.5 1 2 3 4 5

Prediction Rate (mins per prediction)

3.2e4

3.5e4

3.8e4

T
h
ro

u
g
h
p
u
t Parcae (Ideal)

Parcae

Figure 11: GPT-2 training throughput (tokens/s) using the

HADP trace with different prediction rates.

stead of greedily doing expensive reconfiguration like Varuna.

While Bamboo maintains a fixed long pipeline depth (e.g., 16

for GPT-2), leading to many unutilized instances, especially

for low availability traces. Second, the migration mechanism

in Parcae is highly efficient to handle preemptions. Varuna

is designed for low preemption environments and relies on

shared storage (e.g. S3) to save and load checkpoints. Al-

though Varuna overlaps checkpoint saving with training itera-

tions, when preemptions happen, it requires rolling back to the

last checkpoint and loses tens of seconds’ (i.e., the duration

of one complete checkpointing) training progress for large

models. To recover from preemptions, Varuna needs to load

the last checkpoint from persistent storage and restart train-

ing, which is also expensive. Bamboo is designed for high

preemption environments based on redundant computation.

It can efficiently handle preemptions, but the redundant com-

putation is inefficient and brings additional synchronization

overheads between redundant and normal modules.

Multi-GPU instances. To demonstrate the generality of

Parcae, we also evaluate Parcae on multi-GPU instances. Un-

fortunately, we fail to collect meaningful multi-GPU spot

instance traces on the cloud (e.g. p3.8xlarge with 4 V100

GPUs) as they show extremely low availability recently. In-

stead, we propose to generate the 4-GPU instance based on

the single GPU trace by accumulating every four preemption

or allocation events. Each 4-GPU instance is allocated at the

first allocation event and preempted at the last preemption

event. In this way, multi-GPU instance trace will have higher

GPU hours than the single GPU trace in total. For multi-GPU

instances, we follow prior work [39, 43] using pipeline par-

allelism only for inter-nodes. Figure 10 shows the training

throughput and cost for different trace segments. Although

our trace generation favors multi-GPU instances in theoretical

availability, Parcae on single GPU instance still performs bet-

ter in terms of both throughput and monetary cost. The major

reason is that preempting one 4-GPU instance will interrupt 4

pipelines, significantly slowing down training. Besides, unuti-

lized 4-GPU instances are also significant as it takes four

times more GPUs to increase a new pipeline.

10.3 Breakdown Analysis

Look-ahead interval length. Figure 9b shows the results of

training GPT-2 with different numbers of look-ahead intervals

on the HADP trace. Here Parcae looks back past 12 intervals

and predicts the next 1,4,8,12, and 14 intervals respectively.

The results show that Parcae (Ideal) keeps improving by con-

sidering longer futures and achieves the best performance

when looking ahead 12 intervals. It shows the benefits of

liveput-optimized configurations by considering future pre-

emptions and allocations. On the other hand, Parcae exhibits

a slightly different pattern, where its performance improves

significantly by looking ahead 4 intervals compared with 1

interval (1.8×). As Parcae looks ahead more intervals, the

prediction error increases as we evaluated in Figure 5a. Fig-

ure 9b shows that Parcae can still yield significant improve-

ment compared with looking ahead 1 interval, and achieves

best performance by looking ahead 12 intervals. Overall, Par-

cae’s throughput is 12.8% lower than that of the ideal case.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1131

Parcae Bamboo Varuna
0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 (

%
)

Trace HADP

Parcae Bamboo Varuna
0

20

40

60

80

100

Trace LADP

Effective Comp

Redundant Comp

Reconfiguration

Checkpoint

Unutilized

Figure 12: GPU hours breakdown of GPT-2 execution.

The result demonstrates that looking ahead longer can indeed

help Parcae make more optimized decisions, and that there is

still room to improve our availability predictor.

Prediction rate. Figure 11 shows the results of training

GPT-2 with different prediction rates on the HADP trace. As

the prediction rate decreases, so do the training throughput

achieved by Parcae and Parcae (Ideal). Fortunately, the ex-

ecution time of the liveput optimizer is much less than one

minute, which allows Parcae to use a high prediction rate and

optimize frequently (i.e., per minute) for better performance.

GPU hours breakdown. To further understand the per-

formance and drawbacks of different approaches, we break-

down the GPU hours of GPT-2 training into five components

(Figure 12). The results demonstrate that Parcae spends the

majority of GPU hours performing effective computation (i.e.,

committed mini-batches). In contrast, Bamboo spends more

than 40% GPU hours on redundant computation on HADP,

while wastes more than 50% GPU hours on LADP. Similarly,

Varuna takes a long time to handle preemptions, including

checkpointing and reconfiguration. As a result, their unuti-

lized parts are quite small compared with Parcae. The results

also align with the disadvantages we mentioned in §10.2.

Parcae components analysis. Figure 13 shows how each

component contributes to the performance improvements,

using GPT-2 as an example. We start from a checkpoint-

based approach with throughput-optimized execution plans.

By adding ParcaePS and migration strategies, we improve

the throughput by 13%-67%. Especially for trace LADP with

low availability, it leaves little room for parallel configuration

variation. When there are frequent preemption and allocation

events, the migration allows training to make more progress

than frequently triggering the costly reconfiguration. Finally,

adopting liveput optimized parallel configurations improves

an additional 25.5% over migration mechanisms.

10.4 Proactive v.s. Reactive

Preemption Tolerance. We evaluate the performance of Par-

cae (i.e., Parcae-Proactive) and Parcae-Reactive with GPT-2

on a synthetic preemption trace Figure 14. The auxiliary base-

line (i.e., Parcae-Reactive) is created by disabling the liveput

optimization in Parcae and only enabling the parallelization

adaptation mechanism (§8). Parcae-Reactive can be classi-

HADP HASP LADP

0

20K

40K

1x
1.16x

1.25x

1.58x

1x
1.07x

1.13x
1.20x

1x
1.24x

1.67x

2.08x

T
h

ro
u

g
h

p
u

t
(t

o
k

e
n

s/
s)

Checkpoint-based

+ParcaePS

+Migration

Parcae

Parcae (Ideal)

Figure 13: The decomposed throughput speedup on GPT-2.

3 6 9 15 30

#Preemption

0

2e4

4e4

6e4

T
h
ro
u
g
h
p
u
t

1
.0

0
x

0
.9

4
x

1
.0

2
x

1
.0

0
x

0
.9

7
x

1
.0

1
x

1
.0

0
x

1
.1

8
x

1
.3

3
x

1
.0

0
x

1
.2

0
x

1
.3

9
x

1
.0

0
x

1
.2

3
x

1
.5

1
x

Parcae-Reactive

Parcae-Proactive

Parcae-Proactive (Ideal)

Figure 14: The throughput comparison between Parcae and

Parcae-Reactive under different preemption intensity.

fied as a throughput-optimized system and used to highlight

the advantages of our proactive, liveput-based approach. We

generate the synthetic trace from the HASP trace by scaling

the number of preemption events from 3 to 30 within one

hour. The performance gap between Parcae-Reactive and

Parcae-Proactive becomes larger as the preemption intensity

increases, showing that our proactive approach can be more

effective for scenarios with more frequent preemptions.

Case study. As a case study, we compare the liveput-

optimized Parcae with throughput-optimized Parcae-Reactive

in detail using GPT-2 and partial HADP trace. Figure 15a

shows each interval’s instance availability, parallel configura-

tion (D×P), and average throughput as time elapses. We

observe that for intervals with stable availability, Parcae-

Reactive can select configurations with relatively higher

throughput. However, greedily selecting execution plans that

maximize throughputs suffers when preemptions or alloca-

tions happen because it neglects high reconfiguration costs.

It can barely make training progress when the available

instances frequently change. In contrast, Parcae carefully

chooses parallel configurations by considering the future in-

stance availability and adapting efficient migration strategies

accordingly to ensure high training efficiency while mitigating

expensive reconfiguration. For example, in the first 8 inter-

vals, Parcae selects a pipeline depth of 7 and avoids changing

pipeline depth as Parcae-Reactive does (e.g., 8 and 13). Al-

though resulting in some unused instances, the progress made

is still larger than running with Parcae-Reactive because of

its reconfiguration overheads. Similar observation exists in

the last 10 consecutive intervals, where Parcae maintains the

same parallel configurations but leverages lightweight inter-

and intra-stage migrations to adapt to dynamic preemptions

1132 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Amazon ec2 spot instances. https://aws.amazon.

com/ec2/spot/.

[2] Use azure spot virtual machines. https://learn.

microsoft.com/en-us/azure/virtual-machines/

spot-vms.

[3] Amazon sagemaker spot training. https:

//docs.aws.amazon.com/sagemaker/latest/

dg/model-managed-spot-training.html, 2018.

[4] Nvidia nccl. https://developer.nvidia.com/nccl,

2021.

[5] Operating etcd clusters for kubernetes.

https://kubernetes.io/docs/tasks/

administer-cluster/configure-upgrade-etcd/,

2021.

[6] Pytorch elastic. https://github.com/pytorch/

elastic, 2021.

[7] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Geoffrey Irving, Michael Isard, Man-

junath Kudlur, Josh Levenberg, Rajat Monga, Sherry

Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,

Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,

and Xiaoqiang Zheng. Tensorflow: A system for large-

scale machine learning. In Proceedings of the 12th

USENIX Conference on Operating Systems Design and

Implementation, OSDI, 2016.

[8] Sanjith Athlur, Nitika Saran, Muthian Sivathanu, Ra-

machandran Ramjee, and Nipun Kwatra. Varuna: scal-

able, low-cost training of massive deep learning models.

In Proceedings of the Seventeenth European Conference

on Computer Systems, pages 472±487, 2022.

[9] Ataollah Fatahi Baarzi, Timothy Zhu, and Bhuvan Ur-

gaonkar. Burscale: Using burstable instances for cost-

effective autoscaling in the public cloud. In Proceedings

of the ACM Symposium on Cloud Computing, pages 126±

138, 2019.

[10] Léon Bottou. Stochastic gradient descent tricks. In

Neural networks: Tricks of the trade, pages 421±436.

Springer, 2012.

[11] George EP Box, Gwilym M Jenkins, Gregory C Reinsel,

and Greta M Ljung. Time series analysis: forecasting

and control. John Wiley & Sons, 2015.

[12] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind

Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen

Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,

Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-

pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,

Scott Gray, Benjamin Chess, Jack Clark, Christopher

Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,

and Dario Amodei. Language models are few-shot

learners. In Advances in Neural Information Processing

Systems 33: Annual Conference on Neural Information

Processing Systems 2020, NeurIPS 2020, December 6-

12, 2020, virtual, 2020.

[13] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos

Guestrin. Training deep nets with sublinear memory

cost. CoRR, abs/1604.06174, 2016.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. BERT: pre-training of deep bidirec-

tional transformers for language understanding. In Jill

Burstein, Christy Doran, and Thamar Solorio, editors,

Proceedings of the 2019 Conference of the North Amer-

ican Chapter of the Association for Computational Lin-

guistics: Human Language Technologies, NAACL-HLT

2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1

(Long and Short Papers), pages 4171±4186. Association

for Computational Linguistics, 2019.

[15] Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu

Wang, Zhen Zheng, Chuan Wu, Guoping Long, Jun

Yang, Lixue Xia, Lansong Diao, Xiaoyong Liu, and Wei

Lin. Dapple: A pipelined data parallel approach for

training large models. In Proceedings of the 26th ACM

SIGPLAN Symposium on Principles and Practice of

Parallel Programming, PPoPP ’21, page 431±445, New

York, NY, USA, 2021. Association for Computing Ma-

chinery.

[16] Aaron Harlap, Andrew Chung, Alexey Tumanov, Gre-

gory R. Ganger, and Phillip B. Gibbons. Tributary:

spot-dancing for elastic services with latency slos. In

Haryadi S. Gunawi and Benjamin Reed, editors, 2018

USENIX Annual Technical Conference, USENIX ATC

2018, Boston, MA, USA, July 11-13, 2018, pages 1±14.

USENIX Association, 2018.

[17] Aaron Harlap, Alexey Tumanov, Andrew Chung, Gre-

gory R Ganger, and Phillip B Gibbons. Proteus: agile ml

elasticity through tiered reliability in dynamic resource

markets. In Proceedings of the Twelfth European Con-

ference on Computer Systems, pages 589±604, 2017.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition. In

2016 IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-

30, 2016, pages 770±778. IEEE Computer Society, 2016.

1134 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://aws.amazon.com/ec2/spot/
https://aws.amazon.com/ec2/spot/
https://learn.microsoft.com/en-us/azure/virtual-machines/spot-vms
https://learn.microsoft.com/en-us/azure/virtual-machines/spot-vms
https://learn.microsoft.com/en-us/azure/virtual-machines/spot-vms
https://docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html
https://developer.nvidia.com/nccl
https://kubernetes.io/docs/tasks/administer-cluster/configure- upgrade-etcd/
https://kubernetes.io/docs/tasks/administer-cluster/configure- upgrade-etcd/
https://github.com/pytorch/elastic
https://github.com/pytorch/elastic

[19] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan

Firat, Dehao Chen, Mia Xu Chen, HyoukJoong Lee,

Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng

Chen. Gpipe: Efficient training of giant neural networks

using pipeline parallelism. In Hanna M. Wallach, Hugo

Larochelle, Alina Beygelzimer, Florence d’Alché-Buc,

Emily B. Fox, and Roman Garnett, editors, Advances

in Neural Information Processing Systems 32: Annual

Conference on Neural Information Processing Systems

2019, NeurIPS 2019, December 8-14, 2019, Vancouver,

BC, Canada, pages 103±112, 2019.

[20] Insu Jang, Zhenning Yang, Zhen Zhang, Xin Jin, and

Mosharaf Chowdhury. Oobleck: Resilient distributed

training of large models using pipeline templates. In

Jason Flinn, Margo I. Seltzer, Peter Druschel, Antoine

Kaufmann, and Jonathan Mace, editors, Proceedings of

the 29th Symposium on Operating Systems Principles,

SOSP 2023, Koblenz, Germany, October 23-26, 2023,

pages 382±395. ACM, 2023.

[21] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond

data and model parallelism for deep neural networks.

In Proceedings of the 2nd Conference on Systems and

Machine Learning, SysML’19, 2019.

[22] Jcs Kadupitiya, Vikram Jadhao, and Prateek Sharma.

Scispot: Scientific computing on temporally constrained

cloud preemptible vms. IEEE Transactions on Parallel

and Distributed Systems, 2022.

[23] Diederik P. Kingma and Jimmy Ba. Adam: A method

for stochastic optimization. In Yoshua Bengio and Yann

LeCun, editors, 3rd International Conference on Learn-

ing Representations, ICLR 2015, San Diego, CA, USA,

May 7-9, 2015, Conference Track Proceedings, 2015.

[24] Alex Krizhevsky and Geoffrey Hinton. Learning multi-

ple layers of features from tiny images. 2009.

[25] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar,

Pieter Noordhuis, Teng Li, Adam Paszke, Jeff Smith,

Brian Vaughan, Pritam Damania, et al. Pytorch dis-

tributed: Experiences on accelerating data parallel train-

ing. Proceedings of the VLDB Endowment, 13(12).

[26] Shijian Li, Robert J Walls, and Tian Guo. Characterizing

and modeling distributed training with transient cloud

gpu servers. In 2020 IEEE 40th International Confer-

ence on Distributed Computing Systems (ICDCS), pages

943±953. IEEE, 2020.

[27] Yan Li, Bo An, Junming Ma, Donggang Cao, Yasha

Wang, and Hong Mei. Spottune: Leveraging transient

resources for cost-efficient hyper-parameter tuning in

the public cloud. In 2020 IEEE 40th International Con-

ference on Distributed Computing Systems (ICDCS),

pages 45±55. IEEE, 2020.

[28] Stephen Merity, Caiming Xiong, James Bradbury, and

Richard Socher. Pointer sentinel mixture models. In

5th International Conference on Learning Representa-

tions, ICLR 2017, Toulon, France, April 24-26, 2017,

Conference Track Proceedings. OpenReview.net, 2017.

[29] Xupeng Miao, Chunan Shi, Jiangfei Duan, Xiaoli Xi,

Dahua Lin, Bin Cui, and Zhihao Jia. Spotserve: Serv-

ing generative large language models on preemptible

instances. Proceedings of ASPLOS Conference, 2024.

[30] Xupeng Miao, Yujie Wang, Youhe Jiang, Chunan Shi,

Xiaonan Nie, Hailin Zhang, and Bin Cui. Galvatron:

Efficient transformer training over multiple gpus using

automatic parallelism. Proc. VLDB Endow., 16(3):470±

479, 2023.

[31] Ashish Kumar Mishra, Brajesh Kumar Umrao, and Dhar-

mendra K Yadav. A survey on optimal utilization of

preemptible vm instances in cloud computing. The Jour-

nal of Supercomputing, 74(11):5980±6032, 2018.

[32] Jayashree Mohan, Amar Phanishayee, and Vijay

Chidambaram. {CheckFreq}: Frequent,{Fine-

Grained}{DNN} checkpointing. In 19th USENIX

Conference on File and Storage Technologies (FAST

21), pages 203±216, 2021.

[33] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,

Vivek Seshadri, Nikhil R. Devanur, Gregory R. Ganger,

Phillip B. Gibbons, and Matei Zaharia. Pipedream: Gen-

eralized pipeline parallelism for dnn training. In Pro-

ceedings of the 27th ACM Symposium on Operating

Systems Principles, SOSP ’19, page 1±15, New York,

NY, USA, 2019. Association for Computing Machinery.

[34] Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie

Chen, and Matei Zaharia. Memory-efficient pipeline-

parallel DNN training. In Marina Meila and Tong

Zhang, editors, Proceedings of the 38th International

Conference on Machine Learning, ICML 2021, 18-24

July 2021, Virtual Event, volume 139 of Proceedings of

Machine Learning Research, pages 7937±7947. PMLR,

2021.

[35] Andrew Newell, Dimitrios Skarlatos, Jingyuan Fan, Pa-

van Kumar, Maxim Khutornenko, Mayank Pundir, Yirui

Zhang, Mingjun Zhang, Yuanlai Liu, Linh Le, Bren-

don Daugherty, Apurva Samudra, Prashasti Baid, James

Kneeland, Igor Kabiljo, Dmitry Shchukin, Andre Ro-

drigues, Scott Michelson, Ben Christensen, Kaushik

Veeraraghavan, and Chunqiang Tang. Ras: Continuously

optimized region-wide datacenter resource allocation.

In Proceedings of the ACM SIGOPS 28th Symposium on

Operating Systems Principles, SOSP ’21, page 505±520,

New York, NY, USA, 2021. Association for Computing

Machinery.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1135

[36] Adam Paszke, Sam Gross, Francisco Massa, Adam

Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,

Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban

Desmaison, Andreas Köpf, Edward Z. Yang, Zachary

DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-

amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and

Soumith Chintala. Pytorch: An imperative style, high-

performance deep learning library. In Advances in Neu-

ral Information Processing Systems 32: Annual Confer-

ence on Neural Information Processing Systems 2019,

NeurIPS 2019, December 8-14, 2019, Vancouver, BC,

Canada, pages 8024±8035, 2019.

[37] David A. Patterson, Joseph Gonzalez, Quoc V. Le,

Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild,

David R. So, Maud Texier, and Jeff Dean. Carbon

emissions and large neural network training. CoRR,

abs/2104.10350, 2021.

[38] Alec Radford, Jeffrey Wu, Rewon Child, David Luan,

Dario Amodei, Ilya Sutskever, et al. Language mod-

els are unsupervised multitask learners. OpenAI blog,

1(8):9, 2019.

[39] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and

Yuxiong He. Zero: Memory optimizations toward train-

ing trillion parameter models. In SC20: International

Conference for High Performance Computing, Network-

ing, Storage and Analysis, pages 1±16. IEEE, 2020.

[40] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and

Yuxiong He. Deepspeed: System optimizations enable

training deep learning models with over 100 billion pa-

rameters. In Proceedings of the 26th ACM SIGKDD

International Conference on Knowledge Discovery &

Data Mining, pages 3505±3506, 2020.

[41] Jie Ren, Samyam Rajbhandari, Reza Yazdani Am-

inabadi, Olatunji Ruwase, Shuangyan Yang, Minjia

Zhang, Dong Li, and Yuxiong He. {ZeRO-Offload}:
Democratizing {Billion-Scale} model training. In 2021

USENIX Annual Technical Conference (USENIX ATC

21), pages 551±564, 2021.

[42] Supreeth Shastri and David E. Irwin. Hotspot: auto-

mated server hopping in cloud spot markets. In Pro-

ceedings of the 2017 Symposium on Cloud Computing,

SoCC 2017, Santa Clara, CA, USA, September 24-27,

2017, pages 493±505. ACM, 2017.

[43] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,

Patrick LeGresley, Jared Casper, and Bryan Catanzaro.

Megatron-lm: Training multi-billion parameter language

models using model parallelism. CoRR, abs/1909.08053,

2019.

[44] David Silver, Aja Huang, Chris J. Maddison, Arthur

Guez, Laurent Sifre, George van den Driessche, Julian

Schrittwieser, Ioannis Antonoglou, Veda Panneershel-

vam, Marc Lanctot, Sander Dieleman, Dominik Grewe,

John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy

Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore

Graepel, and Demis Hassabis. Mastering the game of

Go with deep neural networks and tree search. Nature,

529(7587):484±489, jan 2016.

[45] Karen Simonyan and Andrew Zisserman. Very deep con-

volutional networks for large-scale image recognition.

In Yoshua Bengio and Yann LeCun, editors, 3rd Interna-

tional Conference on Learning Representations, ICLR

2015, San Diego, CA, USA, May 7-9, 2015, Conference

Track Proceedings, 2015.

[46] Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma,

Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-

based generative modeling through stochastic differen-

tial equations. In 9th International Conference on Learn-

ing Representations, ICLR 2021, Virtual Event, Austria,

May 3-7, 2021. OpenReview.net, 2021.

[47] John Thorpe, Pengzhan Zhao, Jonathan Eyolfson, Yi-

fan Qiao, Zhihao Jia, Minjia Zhang, Ravi Netravali, and

Guoqing Harry Xu. Bamboo: Making preemptible in-

stances resilient for affordable training of large dnns.

CoRR, abs/2204.12013, 2022.

[48] Colin Unger, Zhihao Jia, Wei Wu, Sina Lin, Mandeep

Baines, Carlos Efrain Quintero Narvaez, Vinay Ramakr-

ishnaiah, Nirmal Prajapati, Patrick S. McCormick, Ja-

maludin Mohd-Yusof, Xi Luo, Dheevatsa Mudigere,

Jongsoo Park, Misha Smelyanskiy, and Alex Aiken.

Unity: Accelerating DNN training through joint opti-

mization of algebraic transformations and paralleliza-

tion. In 16th USENIX Symposium on Operating Systems

Design and Implementation, OSDI 2022, Carlsbad, CA,

USA, July 11-13, 2022, pages 267±284. USENIX Asso-

ciation, 2022.

[49] Leslie G Valiant. A bridging model for parallel com-

putation. Communications of the ACM, 33(8):103±111,

1990.

[50] Zhuang Wang, Zhen Jia, Shuai Zheng, Zhen Zhang, Xin-

wei Fu, T. S. Eugene Ng, and Yida Wang. GEMINI: fast

failure recovery in distributed training with in-memory

checkpoints. In Jason Flinn, Margo I. Seltzer, Peter

Druschel, Antoine Kaufmann, and Jonathan Mace, edi-

tors, Proceedings of the 29th Symposium on Operating

Systems Principles, SOSP 2023, Koblenz, Germany, Oc-

tober 23-26, 2023, pages 364±381. ACM, 2023.

[51] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang,

Pengyang Hou, Zhi Li, Yihui Feng, Wei Lin, and

1136 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Yangqing Jia. Antman: Dynamic scaling on gpu clusters

for deep learning. In Proceedings of the 14th USENIX

Conference on Operating Systems Design and Imple-

mentation, OSDI’20, USA, 2020. USENIX Association.

[52] Fangkai Yang, Lu Wang, Zhenyu Xu, Jue Zhang, Liqun

Li, Bo Qiao, Camille Couturier, Chetan Bansal, Soumya

Ram, Si Qin, et al. Snape: Reliable and low-cost com-

puting with mixture of spot and on-demand vms. In

Proceedings of the 28th ACM International Conference

on Architectural Support for Programming Languages

and Operating Systems, Volume 3, pages 631±643, 2023.

[53] Sheng Yang, Samir Khuller, Sunav Choudhary, Subrata

Mitra, and Kanak Mahadik. Scheduling ml training

on unreliable spot instances. In Proceedings of the

14th IEEE/ACM International Conference on Utility

and Cloud Computing Companion, pages 1±8, 2021.

[54] Zongheng Yang, Zhanghao Wu, Michael Luo, Wei-

Lin Chiang, Romil Bhardwaj, Woosuk Kwon, Siyuan

Zhuang, Frank Sifei Luan, Gautam Mittal, Scott Shenker,

and Ion Stoica. SkyPilot: An intercloud broker for sky

computing. In 20th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 23), pages

437±455, Boston, MA, April 2023. USENIX Associa-

tion.

[55] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao

Zhuang, Zhifeng Chen, Yanping Huang, Yida Wang,

Yuanzhong Xu, Danyang Zhuo, Eric P. Xing, Joseph E.

Gonzalez, and Ion Stoica. Alpa: Automating inter- and

intra-operator parallelism for distributed deep learning.

In Marcos K. Aguilera and Hakim Weatherspoon, ed-

itors, 16th USENIX Symposium on Operating Systems

Design and Implementation, OSDI 2022, Carlsbad, CA,

USA, July 11-13, 2022, pages 559±578. USENIX Asso-

ciation, 2022.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1137

Table 3: Overview of the five DNNs evaluated.

Model mini-batch micro-batch Dataset

ResNet-152 [18] 2048 32 CIFAR-100 [24]

VGG-19 [45] 2048 32 CIFAR-100 [24]

BERT-Large [14] 1024 8 WikiText-2 [28]

GPT-2 (1.5B) [38] 128 1 WikiText-2 [28]

GPT-3 (6.7B) [12] 64 1 WikiText-2 [28]

Table 4: Migration costs in our experiments on AWS.

Cost Terms Magnitude (s) Interfering Factor

Start process < 1

Instance stateRendezvous 0 ∼ 10

Init CUDA context 0 ∼ 10

Load data 0 ∼ 10 Dataset

Build model 0 ∼ 10
Model, Configuration

Update comm. groups 0 ∼ 20

Model states transfer 0 ∼ 60
Model, Configuration

Preemption Scenario

A Addition Details of Migration Costs

Table 4 lists detailed costs of migrations and their magnitudes.

All of them are profiled multiple times and averaged over five

DNN models (see Table 3).

B Additional Details of ARIMA

The ARIMA time-series forecasting algorithm is sensitive to

trivial perturbations in inputs, which may impede its under-

standing of essential patterns from previous instance history.

We introduce a few optimizations to ensure its predictions

are faithful. First, we flatten random spikes that last for only

1-2 intervals in previous instance history, since such trivial

noise will likely cause abrupt rise and falls in prediction.

ARIMA also likes to simulate the tendency of the entire input

curves. When input curves have multiple "hops", we ensure

that ARIMA only learns from the most recent variations that

are indeed beneficial for prediction. Second, though ARIMA

can accurately capture intermediate fluctuations, its prediction

can be so steep that it easily hits the upper and lower bound-

aries of available instances on intervals of sudden increase

and decrease. To do so, we set upper and lower boundaries to

limit the predicted curves based on observations of all spot

instance traces we have. Additionally, our empirical study on

traces indicate most intervals have a limitation on the extent

of growth. Thus, we would also apply such constraints on

predictions. We also apply additional penalty to flatten ex-

cessively steep predictions such as their predictions follow

the essential patterns of AWS traces. We take care to reset

ARIMA mispredictions when the generation deviates seri-

ously from the input. With these rules and modifications, we

ensure the ARIMA model can sufficiently describe future

scenarios by learning from the past history.

HADP HASP LADP LASP

0

1e
3

2e
3

2.6x 2.6x

1.4x

2.8x

1.5x

2.6x

1.1x

2.9x

VGG19

T
h

ro
u

g
h

p
u

t

On-demand

Varuna

Bamboo

Parcae

Parcae (Ideal)

Figure 17: Training throughput comparison of VGG19 among

existing frameworks and Parcae on four traces. The dotted

on-demand line shows the best throughput with on-demand

instances. The numbers over the bars represent the speedup

of Parcae over Varuna and Bamboo respectively.

C Additional Experimental Details

C.1 End-to-End Evaluation Setting

We select five popular DNNs for various applications and

summarize them in Table 3. For all the models, we used

Adam optimizer with half precision (i.e., FP16) for training.

Parallel Configuration. Parcae and Varuna will adjust

parallel configurations according to instance availability dur-

ing training. The parallel configuration of Parcae is decided

by migration manager, while it is decided by job morphing

for Varuna. We follow the settings of Vauna and first run a

one-time profiling to collect primitive parameters of the hard-

ward and the DNN model. Varuna will automatically decide

the optimal parallel configuration considering DNN models

and number of availability instances. Table 5 summarizes the

parallel configurations used for Bamboo in our evaluation.

Bamboo maintains a fixed pipeline depth and its redundant

computation consumes a huge amount of memory. For dif-

ferent models, we tuned the number of pipeline stages and

partitions to find an optimal parallel configuration for Bam-

boo. We find it requires at least 20 stages for Bamboo to run

GPT-3 even with activation checkpointing [13] enabled, and

Bamboo performs best for P = 23.

VGG Results Figure 17 shows the end-to-end evaluation

results of VGG19. Parcae significantly outperforms Varuna

and Bamboo, except for trace LASP, where Varuna achieves

comparable performance with Parcae. We move these results

in the appendix due to the limited page space.

C.2 Parcae Components Evaluation

Cost Estimation Accuracy. The cost estimator estimates mi-

gration cost for different preemption scenarios and parallel

configurations. An accurate estimator is important for accu-

rate liveput optimization. We compare the estimated migration

cost predicted by cost estimator with the real migration time

measured by actual executions. Figure 18a shows the results

1138 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 5: The parallel configuration of Bamboo in evaluation.

Model D P

ResNet-152 [18] 8 4

VGG-19 [45] 8 4

BERT-Large [14] 4 8

GPT-2 (1.5B) [38] 2 16

GPT-3 (6.7B) [12] 1 23

1 2 4 8 16 32 64

Estimated Cost (s)

1

2

4

8

16

32

64

R
e
a
l
C

o
s
t

(s
) BERT

GPT-2

GPT-3

(a) The accuracy of cost estimator.

HADP HASP LADP LASP

0.0

0.1

0.2

T
im

e
 (

s
)

(b) The cost of migration advisor.

Figure 18: (a) Comparison between the estimated and actual

reconfiguration time for different models. (b) Optimization

time of looking ahead 12 intervals for GPT-2.

for different DNN models. The dashed lines indicate a rela-

tive difference of −15% and 15% between real and estimated

migration cost, respectively. The results demonstrate that our

cost estimator is appropriate to evaluate the migration cost for

different preemption scenarios and models.

Optimization Cost. ParcaeScheduler periodically runs on-

line liveput optimization to suggest the parallel configuration

for the next interval. We evaluate the optimization time it

takes to look ahead 12 intervals for one run on one CPU ma-

chine. Figure 18b shows the results of GPT-2 on different

trace segments. Overall, one optimization takes less than 0.3

seconds, which is negligible compared with interval length.

Therefore, the liveput optimization will not delay the training

process.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1139

	Introduction
	Background
	Distributed DNN Training
	Spot-Instance Training

	Liveput
	Definition of Liveput
	Comparing Liveput and Throughput

	Parcae Overview
	Availability Predictor
	Instance-wise Availability Unpredictability
	Statistical Availability Prediction

	Live Migration
	Pipeline-aware Preemption Mapping
	Migration Strategies

	Liveput Optimizer
	Problem Definition
	Parallelization Advisor
	Preemption Mapping Sampler

	Exception Handling
	Parcae's Design and Implementation
	ParcaeScheduler
	ParcaeAgent
	ParcaePS
	Cost Estimator

	Evaluation
	Experimental Setup
	End-to-End Evaluation
	Breakdown Analysis
	Proactive v.s. Reactive
	Convergence Preservation

	Related Work
	Conclusion
	Addition Details of Migration Costs
	Additional Details of ARIMA
	Additional Experimental Details
	End-to-End Evaluation Setting
	Parcae Components Evaluation

