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Abstract ClinicalTrials.gov is an accessible online medical resource for researchers, 

healthcare professionals, and policy designers seeking detailed information on clin-

ical trials. Summarizing these long clinical records can significantly reduce the time 

needed for the database users as the process transforms comprehensive information 

into concise synopses, preserving the essential meaning and facilitating understand-

ing. In this paper, we employ the Bidirectional and Auto-Regressive Transformers 

model to generate the trials’ brief summaries. Our contributions provide new prepro-

cessing techniques for model training, which leads to a robust summarization model. 

The fine-tuned model significantly enhanced ROUGE-1, ROUGE-2, and ROUGE-

L F1-scores by 14%, 23%, and 20%, respectively, compared to previous studies. 

Additionally, we present an innovative knowledge graph based on entity classes to 

assess the generated summaries. This graph not only quantifies the essential entities 

transformed from the original text to the summaries but also provides insights into 

their specific order and arrangement in sentences. 

Keywords Large language models · Clinical data · Summarization · Named 

entity preservation · Knowledge graph 

1 Introduction 

ClinicalTrials.gov is a database of medical documents that offers comprehensive and 

publicly accessible records of registered clinical trials worldwide. This extensive 

repository contains many fields including detailed trial descriptions, study objec-
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Fig. 1 An example of summary generated by our system. Entities within the text are annotated 

to demonstrate our model is able to summarize the descriptions to a shorter text while preserving 

all the main entities of the text. Some entities are shown by underscore due to overlap with other 

entities 

tives, eligibility criteria, locations, intervention details, and outcomes. The database 

is a resource for researchers, healthcare professionals, and policy designers, which 

provides a wealth of information necessary to understand the breadth and depth of 

failed, ongoing, and completed clinical research. However, the database extensive 

and intricate nature poses a challenge regarding efficient record retrieval and com-

prehension, underscoring the need for an effective data summarization [ 1] (Fig. 1). 

This work is driven by three primary goals. First, observing that many trials 

within the database lack concise and informative summaries which creates a gap in 

accessibility and understanding. Second, making trial information easier to under-

stand especially for complicated areas like different treatment methods can make 

the database more helpful for different user groups. Third, summarizing this data 

effectively will uncover new opportunities for advanced data analysis and text min-

ing which can lead to novel insights and contribution to the broader field of medical 

research and practice. In addition to these goals, we want to include all the principal 

entities from the original text in the summary to maximize the knowledge transfer. 

To achieve our objectives, we conducted a graph-based entity analysis to address our 

model performance on knowledge transfer and text summarization. We show that 

our model is cable of preserving most of the principal entities from the description in 

the generated summary. Our study employs the Bidirectional and Auto-Regressive 

Transformers (BART) model, a sophisticated Natural Language Processing (NLP) 

tool [ 2]. Our contributions are as follows:
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1. We undertake meticulous cleaning and database preparation, focusing on diverse 

fields to train a robust and effective summarization model. This alignment is 

particularly challenging given the varied nature of data fields such as study design, 

participant details, and endpoints. 

2. We fine-tune an abstractive text summarization model, resulting in improved qual-

ity of summaries as evidenced by enhanced ROUGE-1, ROUGE-2, and ROUGE-L 

F1-scores, which increased by 14%, 23%, and 20%, respectively, compared to 

the results reported by [ 3]. 

3. We introduce a novel entity class-based heterogeneous knowledge graph that eval-

uates the generated summaries. This graph incorporates two types of nodes: entity 

types and sentence numbers. Nodes from these classes are connected if the corre-

sponding entity class is present in the associated sentence. For each trial record, 

we create two graphs for both the original and BART-generated summaries. The 

proximity of these graphs calculated by Jaccard similarity indicates the preserva-

tion of entity classes and their sentence-wise direction in the summaries. 

Our model generates concise clinical trials summaries, offering compact abstracts 

that encapsulate essential study details. Despite their brevity, these summaries are 

information-rich, encompassing key elements such as study objectives, methodolo-

gies, interventions, and outcomes. Our innovative sentence-wise summary evaluation 

graphs provide valuable insights into the preserving of principal entities and the clin-

ical trial summary structure. 

2 Background 

Over the past few years, technological advancements have resulted in a surge of 

textual data in the biomedical field. Automatic text summarization systems are piv-

otal in this context, as they play a significant role in streamlining physicians’ time 

and pinpointing relevant information [ 4]. Text summarization aims to produce a 

more concise passage from a document, ensuring grammatical and logical coher-

ence while retaining essential information. Most of these studies in this domain falls 

into abstractive or extractive summaries [ 5]. 

The extractive approach initially identifies noteworthy sentences from the source 

document and subsequently organizes them to create a summary without altering 

the original text. Studies [ 3, 6, 7] present state-of-the-art extractive methods on 

biomedical datasets. Research conducted by [ 6] introduced a method using Ontol-

ogy and Graph-Based techniques, surpassing baseline approaches with a ROUGE-L 

F1-score of 0.29 on the PubMed Central dataset. In [ 7], a model named BioBERTSum 

is introduced. This model employed a domain-aware pre-trained language model as 

its encoder, subsequently fine-tuning it for the specific biomedical extractive sum-

marization task. The approach demonstrated superior performance compared to pre-

vious Bert-based methods on the PubMed dataset, achieving a ROUGE-L score of 

0.37. The potential of text summarization is important in the context of clinical
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trials, offering an efficient means to comprehend subjects and investigate interven-

tions concisely. The clinicaltrials.gov database, a comprehensive and openly accessi-

ble resource, features two primary data fields: detailed description and brief summary. 

These fields outline a trial’s main goals and methods, providing an excellent infor-

mation at a glance. The detailed description field typically tends to be longer than 

the brief summary. 

In a study by Gulden [ 3], various text summarization algorithms, including 

LexRank and SumBasic were employed to condense detailed descriptions into brief 

summaries. Standard ROUGE metrics were then calculated, achieving a F1-score of 

0.35 for ROUGE-1. 

Abstractive summarization goes beyond extracting sentences by aiming to under-

stand the text’s meaning. Unlike extractive summarization, it generates concise sum-

maries using its own language and style, often introducing new elements for a more 

human-like text. Reference [ 8] provides a comprehensive review of pre-trained lan-

guage models in biomedical text summarization. It emphasizes that pre-trained lan-

guage models equipped with decoders, such as the GPT series, T5, and BART are 

particularly well-suited for abstractive synopses [ 9]. 

Research conducted in [ 10] explores the BART model’s application in summa-

rizing multiple medical documents. The findings reveal that this model can produce 

cohesive synopses that align with the reference summaries in evidence direction 

approximately 50% of the time. Reference [ 11] utilizes the BART model to generate 

the biomedical evidence summaries of multiple clinical trials. Their data is 4528 

systematic reviews composed by members of the Cochrane Collaboration (https:// 

www.cochrane.org/). They suggest new ways to improve summaries using unique 

models for specific fields. For example, they highlight important parts of the infor-

mation and focus more on reports from large and high-quality trials. These methods 

make the summaries more accurate. Lastly, they suggest a new approach to check if 

the summaries’ information is correct by utilizing models that can infer the direction 

of reported findings. 

In this study, we employ BART to generate summaries of clinical trials using 

Brief Summary and Detailed Descriptions sourced from clinicaltrials.gov. Our pri-

mary objective is to develop a model capable of enhancing brief summaries by infer-

ring from the detailed trial descriptions, thereby resolving the issue of low-quality 

summaries that are either blank or need more comprehensive information about trial 

features. Our approach closely aligns with the methodology outlined in a previous 

paper [ 3]. However, we fine-tune BART, a well-suited auto-regressive model for sum-

marization. We propose a novel knowledge graph that assesses generated summaries, 

which includes entity types and sentence numbers as nodes,that are connected when 

the associated sentence contains the corresponding entity class. We create two graphs 

for each trial record, one for the original and one for the BART-generated summary. 

The graphs’ similarities indicate how well entity classes and their sentence structure 

are maintained in the summaries.

https://www.cochrane.org/
https://www.cochrane.org/
https://www.cochrane.org/
https://www.cochrane.org/
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3 Methods 

In the field of NLP, summarization tasks play a crucial role in distilling extensive 

texts into concise, informative summaries. Generally, there are two primary types 

of summarization methods: extractive and abstractive. Formally, given a document 

.D = {s1, s2, . . . , sn}, an abstractive summary .S is created such that . S = {s '
1, s

'
2,

. . . , s '
m}, where .m ≤ n, and each .s '

i is a newly generated sentence encapsulating 

the document’s core information. However, extractive summarization selects and 

compiles the most relevant and significant sentences from the original document 

without altering their form. In this approach, for the same document . D, the extrac-

tive summary . d is a subset of . D, defined as .d = {si1, si2, . . . , sik}, where each .si j is 

directly taken from .D and .k ≤ n. This method maintains the integrity of the original 

text’s structure and content. 

In this research, we utilize the BART model which is an Encoder-Decoder trans-

formers architecture to generate the trials’ abstractive summaries. Three predominant 

training strategies are delineated in contemporary literature. The first, feature-based 

methods, use Pre-trained Language Models (PLMs) for contextual representations 

without altering their pre-trained parameters. The second, which we adopt, is the 

fine-tuning-based approach, where PLMs are fine-tuned as text encoders on a task-

specific basis, enhancing their performance for specific tasks like summarization. 

The third, domain-adaptation-with-fine-tuning, involves initially adapting PLMs to 

a specific domain before fine-tuning them to task-specific data, thus blending broad 

and domain-specific knowledge [ 8]. 

3.1 Dataset 

Clinicaltrials.gov frequently publishes their database’s XML archives for content 

analysis. It contains all key information about trials such as: interventions, conditions, 

descriptions of the trial, and study arms. There are two primary columns in this 

database labeled as Detailed Description and Brief Summary which are focus of our 

research. 

The Detailed Description field on ClinicalTrials.gov, written by human experts, 

provides a comprehensive overview of a clinical study. It includes the study’s objec-

tives, design, participant eligibility criteria, intervention details, and outcome mea-

sures. Additionally, it outlines the study’s duration, locations, and contact informa-

tion. This section is essential for conveying the study’s purpose, methodology, and 

other key aspects to researchers, healthcare professionals, and potential participants. 

Alongside the Detailed Description, ClinicalTrials.gov also features a Brief Sum-

mary section. This section offers a concise overview of the clinical study, presenting 

key information in a readable format. It typically includes a succinct explanation 

of the study’s purpose, the type of research being conducted, and basic information 

about the study design and interventions. The Brief Summary is designed to provide
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a snapshot of the study, making it easier for the general public, patients, and health-

care professionals to understand the essential aspects of the research without delving 

into the technical details found in the Detailed Description. 

3.2 Data Processing 

Data quality is a crucial part of any Machine Learning pipeline [ 12]. The raw data 

in its original form is often too cluttered with noise to be effectively utilized for 

fine-tuning transformer models. Given these models’ robust memory capabilities, 

they benefit significantly from a smaller and high-quality dataset rather than a larger 

noisy one. To achieve this higher quality, we implement several preprocessing steps. 

These steps are designed to sift through the data, removing low-quality entries and 

refining the dataset for training purposes. 

.TF(b, d) =
Frequency of bigram b in document d

Total number of bigrams in document d
(1) 

.IDF(b, D) = log

(

N

Number of documents with bigram b

)

(2) 

.TF-IDF(b, d, D) = TF(b, d) × IDF(b, D) (3) 

Figure 2 details our study’s preprocessing steps. One of the key motivations for our 

research stems from the observation that a significant number of trials lack descrip-

tions and summaries. Given our model’s reliance on pairs of detailed descriptions 

and brief summaries, the initial phase of preprocessing involves filtering out trials 

that lack either of these elements. Following this, we set aside approximately 5% 

of the data, equating to about 15,000 trials, as a held-out test set to evaluate model 

performance. This test set was selected prior to further data cleaning to maintain a 

Fig. 2 Preprocessing steps flowchart. Initial filtering removes trials without descriptions or sum-

maries, followed by setting aside a 5% test set. Further steps include truncating long summaries 

and constructing bigram TF-IDF vectors for similarity analysis. The process yields 57,165 quality 

pairs for fine-tuning the BART model. Detailed Description (DD) and Brief Summary (BS)
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representation of the original data distribution, thereby ensuring a fair comparison 

with baseline models that were tested on a similar dataset. 

In the subsequent stages of preprocessing, after segregating the test set, we begin 

by removing summaries that are over 70% as long as their corresponding detailed 

descriptions. This approach helps the model learn to generate more concise sum-

maries, rather than reproducing summaries of similar length to the original descrip-

tions. Following this, we construct bigram TF-IDF vectors for both source and target 

columns of the remaining data, as outlined in Eqs. 1–3. These vectors play a critical 

role in evaluating the similarity between the columns. To quantify this similarity, 

we use the Cosine Similarity score, which ranges from .−1 to 1. Scores closer to 1 

indicate a strong correlation, those nearing .−1 suggest diametric opposition, and a 

score of 0 indicates no similarity. In our analysis, we focus on trials exhibiting high 

similarity, selecting those with a Cosine Similarity score above a certain threshold, 

which we set at 0.3 in our experiment. The preprocessing steps results in 57,165 

high-quality pairs of detailed descriptions and brief summaries used to fine-tune our 

BART model. 

3.3 Model Fine-Tune 

In our approach, the BART model, which incorporates an encoder-decoder struc-

ture, is used to transform the textual content from the ’Detailed Description’ col-

umn into a summarized form represented in the ’Brief Summary.’ Let’s consider 

.x = {x1, x2, ..., xn} as the sequence of tokens from the ’Detailed Description’, and 

.y = {y1, y2, ..., ym} as the corresponding token sequence in the ’Brief Summary’. 

The encoder part of the BART model, denoted as.Encθenc , converts the input sequence 

. x into a continuous latent representation . z. This encoding process is mathematically 

expressed as .z = Encθenc(x), where . z symbolizes the encoded form of . x , and . θenc
refers to the encoder’s parameters. Following the encoding, the decoder, represented 

as .Decθdec , takes over to produce the output summary sequence . ŷ. 

The decoding process is captured by the equation .ŷ = Decθdec(z), where the 

decoder aims to generate a summary that approximates the target sequence . y, with 

.θdec as the decoder’s parameters. Through this iterative training process, the model’s 

ability to generate accurate and coherent summaries from the input text is enhanced, 

leading to improved performance in summarizing the ‘Detailed Description’ column 

into the ‘Brief Summary’. 

4 Results 

This section evaluates our model, divided into three key components. Firstly, we 

introduce the metrics employed for assessment. Then, we delve into the BART’s 

implementation details, shedding light on its performance in the clinical trials’
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summarization task. Lastly, we present comprehensive insights into generating 

knowledge graphs, outlining the process that facilitates of entity preservation evalu-

ation within the summarized text. 

4.1 Model Evaluation 

.Precision =

∑

S∈{Reference Summaries}

∑

gramn∈System Summary Countmatch(gramn)
∑

gramn∈System Summary Count(gramn)
(4) 

.Recall =

∑

S∈{Reference Summaries}

∑

gramn∈System Summary Countmatch(gramn)
∑

S∈{Reference Summaries}

∑

gramn∈S
Count(gramn)

(5) 

.F1-Score = 2 ×
PrecisionROUGE-N × RecallROUGE-N

PrecisionROUGE-N + RecallROUGE-N
(6) 

In the initial step of model evaluation, we measured the system performance 

using the Recall-Oriented Understudy for Gisting Evaluation (ROUGE) score [ 13], 

a prevalent metric to assess sequence-to-sequence systems such as summarization 

and translation. The ROUGE metric encompasses several variants, each focusing on 

different aspects of the text. ROUGE-1 and ROUGE-2 measure the overlap of uni-

grams and bigrams, respectively, between the model predictions and reference texts, 

providing insights into lexical similarity. ROUGE-L, on the other hand, evaluates the 

longest common subsequence, which is crucial to understand sentence-level structure 

and fluency. These metrics, as detailed in Eqs. 4–7, collectively offer a comprehen-

sive evaluation of our model’s performance. Our model, employing an abstractive 

summarization approach, outperformed the baseline models by a significant margin. 

This was evident in the results of Table 1, which shows marked improvements across 

all three ROUGE-1, ROUGE-2, and ROUGE-L scores, indicating not only lexical 

alignment with reference texts but also structural and contextual coherence. 

.

Rlcs =
LCS(X,Y )

m

Plcs =
LCS(X,Y )

n

Flcs =
(1 + β2) · Rlcs · Plcs

Rlcs + β2 · Plcs

(7)
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Table 1 The performance metrics, including ROUGE-1, ROUGE-2, and ROUGE-L, across various 

methods for summarizing clinicaltrial.gov descriptions 

ROUGE-1 ROUGE-2 ROUGE-L 

F1 R P F1 R P F1 R P 

Random 0.316 0.300 0.297 0.130 0.128 0.125 0.279 0.266 0.250 

LexRank 0.359 0.359 0.348 0.171 0.176 0.168 0.319 0.320 0.297 

TextRank 0.348 0.380 0.353 0.167 0.189 0.172 0.309 0.338 0.300 

LSA 0.337 0.368 0.343 0.161 0.176 0.164 0.299 0.328 0.293 

Luhn 0.344 0.371 0.346 0.164 0.183 0.168 0.306 0.331 0.296 

SumBasic 0.336 0.296 0.302 0.134 0.123 0.123 0.296 0.263 0.253 

KLSUm 0.326 0.317 0.312 0.143 0.140 0.137 0.288 0.281 0.265 

BART 0.402 0.450 0.409 0.213 0.241 0.223 0.369 0.412 0.369 

The best scores highlighted in bold text 

4.2 Implementation Details 

In our experiments, we employed the “facebook/bart-large-cnn” [ 2] model from the 

Hugging Face transformers library for sequence-to-sequence language processing 

tasks. The learning rate was set at .5 × 10−5, and the training duration was extended 

over 5 epochs. We opted for the AdamW optimizer to facilitate the training process. 

These specific details, including the model choice, learning rate, number of epochs, 

and optimizer, are provided to ensure reproducibility of our experimental setup, 

allowing others to replicate and validate the results. 

4.3 Graph-Based Evaluation of Named Entity Order 

Preservation in Generated Summaries 

In addition to employing the ROUGE metric, we conducted a supplementary assess-

ment of the generated summaries using an innovative methodology centered around 

a bipartite knowledge graph. This approach examines the named entity class types 

and their corresponding sentence numbers. The objective is to verify that the gener-

ated summaries maintain the fidelity of both the entity class types and their coherent 

sequential arrangement within the overall structure of the summarized texts. This 

multifaceted evaluation provides a comprehensive perspective on the summarization 

process’ effectiveness, ensuring linguistic coherence and semantic integrity in the 

representation of information. 

Nodes Representation Within the graphs, our nodes are organized into two distinct 

classes. The first class indicates the named entity types, while the second class corre-

sponds to the text’s sentence numbers. We are doing the named entity type extraction 

in two passes.
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• First Pass: We leverage llama 2-70 billion parameters [ 14] served by vLLM 

[ 15] to extract named entities from the brief summary derived from a randomly 

sampled set of 1000 records. We employ a frequency-based criterion to discern 

the ten most commonly occurring entity types within the extracted text. These are 

‘disease,’ ‘medical condition,’ ‘drug,’ ‘device,’ ‘dose or measurements,’ ‘clinical 

trial phase,’ ‘population,’ ‘time,’ ‘medical procedure,’ and ‘biomarker.’ We address 

this node type as .E = {e1, e2, . . . , e10}. 

• Second Pass: After identifying the most prevalent entity types, we select the sum-

maries generated by BART for the initial 1000 records. In this phase, we disas-

semble the summaries into individual sentences. Subsequently, both the generated 

and original summaries undergo analysis using llama 2 70 billion. Listing 1.1 

indicates the prompt we have used. This involves applying a specific prompt to 

ascertain the presence or absence of a particular entity type within each sentence. 

The outcome of this pass for each trial .di results in two binary matrices. The first 

matrix corresponds to the original brief summary as ground truth which has dimen-

sions . mi × 10, where .mi represents the number of sentences in the document . i . 

The second matrix pertains to the generated summary and possesses dimensions 

. ni × 10; with .ni denotes the number of sentences in the generated summary text 

. i . In this case .i ∈ N, 1 ≤ i ≤ D. 

Graph Representation We employ binary matrices to construct a bipartite graph 

that captures the relationships between entity types and sentence numbers for both 

the original and generated records. We designate the graph corresponding to the . ith
original records as .G1i , and the graph for the model-generated summaries as . G2i

(Fig. 3). 

Graph-Based Evaluation Results In our study, we focus on documents with an 

equal number of sentences in both their original content and the BART-generated 

Brief Summaries .(n = m). The assessment of these bipartite graphs relies on utiliz-

ing Jaccard similarity, as outlined in Formula 9. Conducting .D trials (in our case, 

.D = 1000), we calculate the average Jaccard similarity, yielding .0.71. This result 

signifies that approximately 71% of entity classes and their sentence-wise positional 

relationships within the sentences are retained in the summarized text. 

Listing 1.1 Llama 2 prompt for extracting entity classes 

1 

2 

3 

4 

5 

6 

7 

8 

Proposition 1 Assume the number of sentences in generated and original summaries 

is identical, denoted as.n = m. In this context,.E(G) represents the edges of the graph 

G.
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Fig. 3 Overview of a 

bipartite graph illustrating 

connections between entity 

class nodes . (e1, e2, ..., e10)

and sentences on the record 

. (s1, s2, ..., sn)

.

∑D
i=1 J (G i1,G i2)

D
for 1 ≤ i ≤ D (8) 

.J (G1,G2) =
|E(G1) + E(G2)|

|E(G1) , E(G2)|
(9) 

5 Conclusion 

Our research marks a significant stride in NLP’s application to medical informatics, 

leveraging the capabilities of the BART model to generate structured summaries of 

clinical trials. Our fine-tuned BART model notably outperforms previous baseline 

models, distinguishing itself with its abstractive approach that enables it to generate 

more coherent and contextually rich summaries. This advancement in summarization 

technology is pivotal, as it transforms detailed and often complex trial information 

into concise, comprehensible formats. The enhanced accessibility and utility of trial 

data, as facilitated by our model, underscore its potential to significantly impact the 

way clinical information is consumed and utilized. 

Looking ahead, the research reveals two critical areas for future exploration. 

The first involves a deeper comparative analysis with expert-generated summaries. 

This comparison would assess the AI-generated summaries against those created by 

human experts, providing a nuanced understanding of the model’s accuracy and areas 

for improvement. Secondly, there is an exciting opportunity to explore generating 

summaries based on inherent trial properties, such as their goals, methodologies, and 

outcomes, independent of their detailed descriptions. Such an approach promises to 

refine the summarization process, making it more efficient and possibly unveiling 

new perspectives in trial classification and analysis. These future research paths hold 

the promise of not only extending the current work’s utility but also of contribut-

ing significantly to NLP’s evolving landscape in the realm of medical data analysis 

[ 16– 19]. Our previous efforts in the areas of information retrieval and document 

analysis may also significantly affect our future work [ 20– 22]. 
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