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Abstract ClinicalTrials.gov is an accessible online medical resource for researchers,
healthcare professionals, and policy designers seeking detailed information on clin-
ical trials. Summarizing these long clinical records can significantly reduce the time
needed for the database users as the process transforms comprehensive information
into concise synopses, preserving the essential meaning and facilitating understand-
ing. In this paper, we employ the Bidirectional and Auto-Regressive Transformers
model to generate the trials’ brief summaries. Our contributions provide new prepro-
cessing techniques for model training, which leads to a robust summarization model.
The fine-tuned model significantly enhanced ROUGE-1, ROUGE-2, and ROUGE-
L Fl-scores by 14%, 23%, and 20%, respectively, compared to previous studies.
Additionally, we present an innovative knowledge graph based on entity classes to
assess the generated summaries. This graph not only quantifies the essential entities
transformed from the original text to the summaries but also provides insights into
their specific order and arrangement in sentences.

Keywords Large language models + Clinical data - Summarization - Named
entity preservation + Knowledge graph

1 Introduction

ClinicalTrials.gov is a database of medical documents that offers comprehensive and
publicly accessible records of registered clinical trials worldwide. This extensive
repository contains many fields including detailed trial descriptions, study objec-
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Fig. 1 An example of summary generated by our system. Entities within the text are annotated
to demonstrate our model is able to summarize the descriptions to a shorter text while preserving
all the main entities of the text. Some entities are shown by underscore due to overlap with other
entities

tives, eligibility criteria, locations, intervention details, and outcomes. The database
is a resource for researchers, healthcare professionals, and policy designers, which
provides a wealth of information necessary to understand the breadth and depth of
failed, ongoing, and completed clinical research. However, the database extensive
and intricate nature poses a challenge regarding efficient record retrieval and com-
prehension, underscoring the need for an effective data summarization [1] (Fig. 1).

This work is driven by three primary goals. First, observing that many trials
within the database lack concise and informative summaries which creates a gap in
accessibility and understanding. Second, making trial information easier to under-
stand especially for complicated areas like different treatment methods can make
the database more helpful for different user groups. Third, summarizing this data
effectively will uncover new opportunities for advanced data analysis and text min-
ing which can lead to novel insights and contribution to the broader field of medical
research and practice. In addition to these goals, we want to include all the principal
entities from the original text in the summary to maximize the knowledge transfer.
To achieve our objectives, we conducted a graph-based entity analysis to address our
model performance on knowledge transfer and text summarization. We show that
our model is cable of preserving most of the principal entities from the description in
the generated summary. Our study employs the Bidirectional and Auto-Regressive
Transformers (BART) model, a sophisticated Natural Language Processing (NLP)
tool [2]. Our contributions are as follows:
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1. We undertake meticulous cleaning and database preparation, focusing on diverse
fields to train a robust and effective summarization model. This alignment is
particularly challenging given the varied nature of data fields such as study design,
participant details, and endpoints.

2. We fine-tune an abstractive text summarization model, resulting in improved qual-
ity of summaries as evidenced by enhanced ROUGE-1, ROUGE-2, and ROUGE-L
F1-scores, which increased by 14%, 23%, and 20%, respectively, compared to
the results reported by [3].

3. Weintroduce a novel entity class-based heterogeneous knowledge graph that eval-
uates the generated summaries. This graph incorporates two types of nodes: entity
types and sentence numbers. Nodes from these classes are connected if the corre-
sponding entity class is present in the associated sentence. For each trial record,
we create two graphs for both the original and BART-generated summaries. The
proximity of these graphs calculated by Jaccard similarity indicates the preserva-
tion of entity classes and their sentence-wise direction in the summaries.

Our model generates concise clinical trials summaries, offering compact abstracts
that encapsulate essential study details. Despite their brevity, these summaries are
information-rich, encompassing key elements such as study objectives, methodolo-
gies, interventions, and outcomes. Our innovative sentence-wise summary evaluation
graphs provide valuable insights into the preserving of principal entities and the clin-
ical trial summary structure.

2 Background

Over the past few years, technological advancements have resulted in a surge of
textual data in the biomedical field. Automatic text summarization systems are piv-
otal in this context, as they play a significant role in streamlining physicians’ time
and pinpointing relevant information [4]. Text summarization aims to produce a
more concise passage from a document, ensuring grammatical and logical coher-
ence while retaining essential information. Most of these studies in this domain falls
into abstractive or extractive summaries [5].

The extractive approach initially identifies noteworthy sentences from the source
document and subsequently organizes them to create a summary without altering
the original text. Studies [3, 6, 7] present state-of-the-art extractive methods on
biomedical datasets. Research conducted by [6] introduced a method using Ontol-
ogy and Graph-Based techniques, surpassing baseline approaches with a ROUGE-L
F1-score of 0.29 on the PubMed Central dataset. In [7], a model named BioBERTSum
is introduced. This model employed a domain-aware pre-trained language model as
its encoder, subsequently fine-tuning it for the specific biomedical extractive sum-
marization task. The approach demonstrated superior performance compared to pre-
vious Bert-based methods on the PubMed dataset, achieving a ROUGE-L score of
0.37. The potential of text summarization is important in the context of clinical
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trials, offering an efficient means to comprehend subjects and investigate interven-
tions concisely. The clinicaltrials.gov database, a comprehensive and openly accessi-
ble resource, features two primary data fields: detailed description and brief summary.
These fields outline a trial’s main goals and methods, providing an excellent infor-
mation at a glance. The detailed description field typically tends to be longer than
the brief summary.

In a study by Gulden [3], various text summarization algorithms, including
LexRank and SumBasic were employed to condense detailed descriptions into brief
summaries. Standard ROUGE metrics were then calculated, achieving a F1-score of
0.35 for ROUGE-1.

Abstractive summarization goes beyond extracting sentences by aiming to under-
stand the text’s meaning. Unlike extractive summarization, it generates concise sum-
maries using its own language and style, often introducing new elements for a more
human-like text. Reference [8] provides a comprehensive review of pre-trained lan-
guage models in biomedical text summarization. It emphasizes that pre-trained lan-
guage models equipped with decoders, such as the GPT series, T5, and BART are
particularly well-suited for abstractive synopses [9].

Research conducted in [10] explores the BART model’s application in summa-
rizing multiple medical documents. The findings reveal that this model can produce
cohesive synopses that align with the reference summaries in evidence direction
approximately 50% of the time. Reference [11] utilizes the BART model to generate
the biomedical evidence summaries of multiple clinical trials. Their data is 4528
systematic reviews composed by members of the Cochrane Collaboration (https://
www.cochrane.org/). They suggest new ways to improve summaries using unique
models for specific fields. For example, they highlight important parts of the infor-
mation and focus more on reports from large and high-quality trials. These methods
make the summaries more accurate. Lastly, they suggest a new approach to check if
the summaries’ information is correct by utilizing models that can infer the direction
of reported findings.

In this study, we employ BART to generate summaries of clinical trials using
Brief Summary and Detailed Descriptions sourced from clinicaltrials.gov. Our pri-
mary objective is to develop a model capable of enhancing brief summaries by infer-
ring from the detailed trial descriptions, thereby resolving the issue of low-quality
summaries that are either blank or need more comprehensive information about trial
features. Our approach closely aligns with the methodology outlined in a previous
paper [3]. However, we fine-tune BART, a well-suited auto-regressive model for sum-
marization. We propose a novel knowledge graph that assesses generated summaries,
which includes entity types and sentence numbers as nodes,that are connected when
the associated sentence contains the corresponding entity class. We create two graphs
for each trial record, one for the original and one for the BART-generated summary.
The graphs’ similarities indicate how well entity classes and their sentence structure
are maintained in the summaries.


https://www.cochrane.org/
https://www.cochrane.org/
https://www.cochrane.org/
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3 Methods

In the field of NLP, summarization tasks play a crucial role in distilling extensive
texts into concise, informative summaries. Generally, there are two primary types
of summarization methods: extractive and abstractive. Formally, given a document
D = {s1, 52, ..., 5.}, an abstractive summary S is created such that § = {s7, 53,

, s, }, where m < n, and each slf is a newly generated sentence encapsulating
the document’s core information. However, extractive summarization selects and
compiles the most relevant and significant sentences from the original document
without altering their form. In this approach, for the same document D, the extrac-
tive summary d is a subset of D, defined as d = {s;1, Si2, - . ., Six}, where each s;; is
directly taken from D and k < n. This method maintains the integrity of the original
text’s structure and content.

In this research, we utilize the BART model which is an Encoder-Decoder trans-
formers architecture to generate the trials’ abstractive summaries. Three predominant
training strategies are delineated in contemporary literature. The first, feature-based
methods, use Pre-trained Language Models (PLMs) for contextual representations
without altering their pre-trained parameters. The second, which we adopt, is the
fine-tuning-based approach, where PLMs are fine-tuned as text encoders on a task-
specific basis, enhancing their performance for specific tasks like summarization.
The third, domain-adaptation-with-fine-tuning, involves initially adapting PLMs to
a specific domain before fine-tuning them to task-specific data, thus blending broad
and domain-specific knowledge [8].

3.1 Dataset

Clinicaltrials.gov frequently publishes their database’s XML archives for content
analysis. It contains all key information about trials such as: interventions, conditions,
descriptions of the trial, and study arms. There are two primary columns in this
database labeled as Detailed Description and Brief Summary which are focus of our
research.

The Detailed Description field on ClinicalTrials.gov, written by human experts,
provides a comprehensive overview of a clinical study. It includes the study’s objec-
tives, design, participant eligibility criteria, intervention details, and outcome mea-
sures. Additionally, it outlines the study’s duration, locations, and contact informa-
tion. This section is essential for conveying the study’s purpose, methodology, and
other key aspects to researchers, healthcare professionals, and potential participants.
Alongside the Detailed Description, ClinicalTrials.gov also features a Brief Sum-
mary section. This section offers a concise overview of the clinical study, presenting
key information in a readable format. It typically includes a succinct explanation
of the study’s purpose, the type of research being conducted, and basic information
about the study design and interventions. The Brief Summary is designed to provide
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a snapshot of the study, making it easier for the general public, patients, and health-
care professionals to understand the essential aspects of the research without delving
into the technical details found in the Detailed Description.

3.2 Data Processing

Data quality is a crucial part of any Machine Learning pipeline [12]. The raw data
in its original form is often too cluttered with noise to be effectively utilized for
fine-tuning transformer models. Given these models’ robust memory capabilities,
they benefit significantly from a smaller and high-quality dataset rather than a larger
noisy one. To achieve this higher quality, we implement several preprocessing steps.
These steps are designed to sift through the data, removing low-quality entries and
refining the dataset for training purposes.

Frequency of bigram b in document d

TE(b, d) = - . (D
Total number of bigrams in document d
N
IDF(b, D) = log —— @)
Number of documents with bigram b
TF-IDF(b, d, D) = TF(b, d) x IDF(b, D) 3)

Figure 2 details our study’s preprocessing steps. One of the key motivations for our
research stems from the observation that a significant number of trials lack descrip-
tions and summaries. Given our model’s reliance on pairs of detailed descriptions
and brief summaries, the initial phase of preprocessing involves filtering out trials
that lack either of these elements. Following this, we set aside approximately 5%
of the data, equating to about 15,000 trials, as a held-out test set to evaluate model
performance. This test set was selected prior to further data cleaning to maintain a

Test set Training Set
(n=15,177) (n = 57,165)
non- empty
DD and BS
Clinicaltrials.gov T
n = 451,373 - .
( ) (1=1303553) Noisy Filter based on Filter Based on
Training set textual length Cosine Similarity
—»| —|
(n=288,376) (n=232,701) (n= 57,165)

Fig. 2 Preprocessing steps flowchart. Initial filtering removes trials without descriptions or sum-
maries, followed by setting aside a 5% test set. Further steps include truncating long summaries
and constructing bigram TF-IDF vectors for similarity analysis. The process yields 57,165 quality
pairs for fine-tuning the BART model. Detailed Description (DD) and Brief Summary (BS)
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representation of the original data distribution, thereby ensuring a fair comparison
with baseline models that were tested on a similar dataset.

In the subsequent stages of preprocessing, after segregating the test set, we begin
by removing summaries that are over 70% as long as their corresponding detailed
descriptions. This approach helps the model learn to generate more concise sum-
maries, rather than reproducing summaries of similar length to the original descrip-
tions. Following this, we construct bigram TF-IDF vectors for both source and target
columns of the remaining data, as outlined in Eqgs. 1-3. These vectors play a critical
role in evaluating the similarity between the columns. To quantify this similarity,
we use the Cosine Similarity score, which ranges from —1 to 1. Scores closer to 1
indicate a strong correlation, those nearing —1 suggest diametric opposition, and a
score of 0 indicates no similarity. In our analysis, we focus on trials exhibiting high
similarity, selecting those with a Cosine Similarity score above a certain threshold,
which we set at 0.3 in our experiment. The preprocessing steps results in 57,165
high-quality pairs of detailed descriptions and brief summaries used to fine-tune our
BART model.

3.3 Model Fine-Tune

In our approach, the BART model, which incorporates an encoder-decoder struc-
ture, is used to transform the textual content from the ’Detailed Description’ col-
umn into a summarized form represented in the ’Brief Summary.” Let’s consider
x = {x1, x2, ..., x,} as the sequence of tokens from the ’Detailed Description’, and
y = {y1, y2 ..., Ym} as the corresponding token sequence in the ’Brief Summary’.
The encoder part of the BART model, denoted as Ency,,, converts the input sequence
x into a continuous latent representation z. This encoding process is mathematically
expressed as z = Ency, (x), where z symbolizes the encoded form of x, and 6epc
refers to the encoder’s parameters. Following the encoding, the decoder, represented
as Decy,, takes over to produce the output summary sequence 3.

The decoding process is captured by the equation y = Decy, (z), where the
decoder aims to generate a summary that approximates the target sequence y, with
BO4ec as the decoder’s parameters. Through this iterative training process, the model’s
ability to generate accurate and coherent summaries from the input text is enhanced,
leading to improved performance in summarizing the ‘Detailed Description’” column
into the ‘Brief Summary’.

4 Results

This section evaluates our model, divided into three key components. Firstly, we
introduce the metrics employed for assessment. Then, we delve into the BART’s
implementation details, shedding light on its performance in the clinical trials’
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summarization task. Lastly, we present comprehensive insights into generating

knowledge graphs, outlining the process that facilitates of entity preservation evalu-
ation within the summarized text.

4.1 Model Evaluation

.. ZS €{Reference Summaries} Z gram, €System Summary CountmatCh (gramn)
Precision = “)
Z gram, €System Summary Count (gramn)
> , Countpaeen (gram, )
Se{Reference Summaries} Z ram, €System Summa match n
Recall = SR el (5)

ZSE{Reference Summaries} Zgram,, €S Count(gram”)

Precisionrouge.n X Recallrouce.n
F1-Score = 2 x — (6)
PremsmnROUGE_N + Reca]lROUGE—N

In the initial step of model evaluation, we measured the system performance
using the Recall-Oriented Understudy for Gisting Evaluation (ROUGE) score [13],
a prevalent metric to assess sequence-to-sequence systems such as summarization
and translation. The ROUGE metric encompasses several variants, each focusing on
different aspects of the text. ROUGE-1 and ROUGE-2 measure the overlap of uni-
grams and bigrams, respectively, between the model predictions and reference texts,
providing insights into lexical similarity. ROUGE-L, on the other hand, evaluates the
longest common subsequence, which is crucial to understand sentence-level structure
and fluency. These metrics, as detailed in Eqs.4-7, collectively offer a comprehen-
sive evaluation of our model’s performance. Our model, employing an abstractive
summarization approach, outperformed the baseline models by a significant margin.
This was evident in the results of Table 1, which shows marked improvements across
all three ROUGE-1, ROUGE-2, and ROUGE-L scores, indicating not only lexical
alignment with reference texts but also structural and contextual coherence.

LCS(X,Y)
Ry = ————
m
LCS(X, Y)
Pog=———— )
n
Flcs _ (1 + /32) : Rlcs . Plcs

Rlcs + ,32 . Plcs
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Table1 The performance metrics, including ROUGE-1, ROUGE-2, and ROUGE-L, across various
methods for summarizing clinicaltrial.gov descriptions

ROUGE-1 ROUGE-2 ROUGE-L

F1 R P F1 R P F1 R P
Random 0.316 |[0.300 |0.297 |0.130 |0.128 |0.125 |0.279 |0.266 |0.250
LexRank 0359 0.359 |0.348 |0.171 |0.176 |0.168 |0.319 |0.320 |0.297
TextRank 0.348 |0.380 |0.353 |0.167 |0.189 |0.172 |0.309 |0.338 |0.300
LSA 0.337 |0.368 |0.343 |0.161 |0.176 |0.164 |0.299 |0.328 |0.293
Luhn 0.344 0371 |0.346 |0.164 |0.183 |0.168 |0.306 |0.331 |0.296
SumBasic 0336 |0.296 |0.302 |0.134 |0.123 |0.123 |0.296 |0.263 |0.253
KLSUm 0326 |0.317 |0.312 |0.143 |0.140 |0.137 |0.288 |0.281 |0.265
BART 0.402 |0.450 |0.409 |0.213 |0.241 |0.223 |0.369 |0.412 |0.369

The best scores highlighted in bold text

4.2 Implementation Details

In our experiments, we employed the “facebook/bart-large-cnn” [2] model from the
Hugging Face transformers library for sequence-to-sequence language processing
tasks. The learning rate was set at 5 x 1073, and the training duration was extended
over 5 epochs. We opted for the AdamW optimizer to facilitate the training process.
These specific details, including the model choice, learning rate, number of epochs,
and optimizer, are provided to ensure reproducibility of our experimental setup,
allowing others to replicate and validate the results.

4.3 Graph-Based Evaluation of Named Entity Order
Preservation in Generated Summaries

In addition to employing the ROUGE metric, we conducted a supplementary assess-
ment of the generated summaries using an innovative methodology centered around
a bipartite knowledge graph. This approach examines the named entity class types
and their corresponding sentence numbers. The objective is to verify that the gener-
ated summaries maintain the fidelity of both the entity class types and their coherent
sequential arrangement within the overall structure of the summarized texts. This
multifaceted evaluation provides a comprehensive perspective on the summarization
process’ effectiveness, ensuring linguistic coherence and semantic integrity in the
representation of information.

Nodes Representation Within the graphs, our nodes are organized into two distinct
classes. The first class indicates the named entity types, while the second class corre-
sponds to the text’s sentence numbers. We are doing the named entity type extraction
in two passes.
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e First Pass: We leverage llama 2-70 billion parameters [14] served by vLLM
[15] to extract named entities from the brief summary derived from a randomly
sampled set of 1000 records. We employ a frequency-based criterion to discern
the ten most commonly occurring entity types within the extracted text. These are
‘disease,” ‘medical condition,” ‘drug,” ‘device, ‘dose or measurements, ‘clinical
trial phase,” ‘population,” ‘time,” ‘medical procedure,” and ‘biomarker.” We address
this node type as E = {ey, ez, ..., €10}

e Second Pass: After identifying the most prevalent entity types, we select the sum-
maries generated by BART for the initial 1000 records. In this phase, we disas-
semble the summaries into individual sentences. Subsequently, both the generated
and original summaries undergo analysis using llama 2 70 billion. Listing 1.1
indicates the prompt we have used. This involves applying a specific prompt to
ascertain the presence or absence of a particular entity type within each sentence.
The outcome of this pass for each trial d; results in two binary matrices. The first
matrix corresponds to the original brief summary as ground truth which has dimen-
sions m; x 10, where m; represents the number of sentences in the document i.
The second matrix pertains to the generated summary and possesses dimensions
n; x 10; with n; denotes the number of sentences in the generated summary text
i.Inthiscasei e N,1 <i < D.

Graph Representation We employ binary matrices to construct a bipartite graph
that captures the relationships between entity types and sentence numbers for both
the original and generated records. We designate the graph corresponding to the i,
original records as Gy;, and the graph for the model-generated summaries as G;
(Fig.3).

Graph-Based Evaluation Results In our study, we focus on documents with an
equal number of sentences in both their original content and the BART-generated
Brief Summaries (n = m). The assessment of these bipartite graphs relies on utiliz-
ing Jaccard similarity, as outlined in Formula 9. Conducting D trials (in our case,
D = 1000), we calculate the average Jaccard similarity, yielding 0.71. This result
signifies that approximately 71 % of entity classes and their sentence-wise positional
relationships within the sentences are retained in the summarized text.

Listing 1.1 Llama 2 prompt for extracting entity classes

quest_list = ["disease","medical condition", "drug", "device",
"Dose or measurements","clinical trial phase", "population",
"Time", "Medical Procedure", "Biomarker"]

gquestion = f""" Does the following sentence includes any

named entities with {{quest_list[i]}} type?:
‘"‘{{sentence}}'"

Proposition 1 Assume the number of sentences in generated and original summaries
is identical, denoted asn = m. In this context, E (G) represents the edges of the graph
G.
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Fig. 3 Overview of a
bipartite graph illustrating
connections between entity
class nodes (eq, ea, ..., €10)
and sentences on the record
(81,825 -y Sn)

Y2 J(Gi, Gn)
D

forl<i<D ®)

|E(G1) N E(Gy)|
JG1,G) = ———— 9
(1. G = G UEG)] ©

5 Conclusion

Our research marks a significant stride in NLP’s application to medical informatics,
leveraging the capabilities of the BART model to generate structured summaries of
clinical trials. Our fine-tuned BART model notably outperforms previous baseline
models, distinguishing itself with its abstractive approach that enables it to generate
more coherent and contextually rich summaries. This advancement in summarization
technology is pivotal, as it transforms detailed and often complex trial information
into concise, comprehensible formats. The enhanced accessibility and utility of trial
data, as facilitated by our model, underscore its potential to significantly impact the
way clinical information is consumed and utilized.

Looking ahead, the research reveals two critical areas for future exploration.
The first involves a deeper comparative analysis with expert-generated summaries.
This comparison would assess the Al-generated summaries against those created by
human experts, providing a nuanced understanding of the model’s accuracy and areas
for improvement. Secondly, there is an exciting opportunity to explore generating
summaries based on inherent trial properties, such as their goals, methodologies, and
outcomes, independent of their detailed descriptions. Such an approach promises to
refine the summarization process, making it more efficient and possibly unveiling
new perspectives in trial classification and analysis. These future research paths hold
the promise of not only extending the current work’s utility but also of contribut-
ing significantly to NLP’s evolving landscape in the realm of medical data analysis
[16—-19]. Our previous efforts in the areas of information retrieval and document
analysis may also significantly affect our future work [20-22].
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