
Characterization of Human Trust in Robot through Multimodal Physical 
and Physiological Biometrics in Human-Robot Partnerships 

Abstract—Trust is an attribute that many people use daily, 
whether consciously thinking of it or not. Although commonly 
designated as a firm belief in reliability, trust is more complex 
than many think. It is not just physical, but rather an emotion, 
feeling, or choice that has many layers, and can be influenced 
in a variety of ways. As robotics and artificial intelligence 
grow, humans have to deliberate whether they trust working 
with these technical counterparts or not. In this work, we build 
computational models to quantitatively characterize and 
analyze humans’ trust in robots using multimodal physical and 
physiological biometric data based on the TrustBase we have 
created through user studies in human-robot collaborative 
tasks. During human-robot collaborative processes, we have 
collected physical and physiological attribute data of human 
subjects as well as the users’ trust levels for each interaction. 
This data is used to develop a database known as TrustBase. 
With the data from TrustBase, computational and analytical 
approaches are used to investigate the correlation between 
robot performance factors and humans’ trust levels and to 
characterize humans’ trust in robots during human-robot 
collaboration. Results and their analysis suggest the effectiveness 
of the developed models, providing new findings to the human 
factors and cognitive ergonomics in human-robot interaction. 
Future research directions are also discussed. 

I. INTRODUCTION 

With the introduction and growth of ChatGPT and other 
Large Language Models (LLMs), robotics and artificial 
intelligence are pushing the boundaries of science and 
technology [1, 2]. Incorporating these technological 
advancements, industries can automate processes, expedite 
production, relieve personnel from tedious and dangerous 
work tasks [3, 4]. Industries are not the only ones able to take 
advantage of these new developments. With the progress that 
has been made, these technologies have become widely 
accessible to all people. Other industries such as education, 
healthcare, and transportation have also benefited from these 
improvements. For example, some researchers have explored 
the use of artificial intelligence in education. AI takes a form 
in web-based systems, humanoid robots, chatbots, and 
grading tools. These tools help both teachers and students 
achieve newfound heights [5]. With these synthetic intelligences 
being added into more industries, we can already see how 
great an influence they have generated. 

While it is advantageous to have these artificial 
intelligent technologies assist in workloads and tasks, their 
widespread implementation is still in its early stages across 
industries. This may lead to a disconnect for some people, as 
they are not used to working with automated partners such as 
robots. Industries for decades have mainly had human-to-

human collaboration. With the implementation of robotics 
and AI, we now have human-robot collaboration and human-
AI collaboration. This raises the question of whether humans 
trust working with robots and AI. To dissect this question, 
trust must be defined. According to the Oxford Dictionary, 
the number one meaning of trust is the “firm belief in the 
reliability, truth, or ability of someone or something; 
confidence or faith in a person or thing, or in an attribute of a 
person or thing” [6]. From a psychological perspective, this 
makes sense as humans naturally can get a feeling about 
someone or something. Whether it is verbal queues or body 
language, humans can instinctively tell whether persons or 
things are good or bad and trust them or not. According to 
Buchan “trust development is dynamic and fluid, changing in 
nature from context to context, and is influenced by a 
multiplicity of economic, sociological, psychological, and 
political factors in the cultural environment of the trust 
relationship” [7]. Now, what happens when a person works 
with a robot counterpart? A robot does not express 
personable features a person may express. So, how does one 
find out if humans will be comfortable and trust working 
alongside these newfound advanced technologies? 

To further anatomize if humans are comfortable and trust 
working alongside robotics, AI, and new technologies, in this 
study, we utilize the data from our developed database, 
TrustBase [8], to delve deep into this multifaceted term known 
as trust in human-robot partnerships. The data in TrustBase 
is composed of four types of physical and physiological 
biometric attributes, as well as real-time trust levels collected 
throughout the experiments where users work with a robot to 
complete collaborative tasks. Methodologies used to further 
analyze this data are time series analysis to find anomalies or 
outliers, as well as cross-correlation to incorporate feature 
analysis. This selects the most prominent features to be used 
for human trust modeling. Then the Support Vector Machine 
(SVM), TabPFN, and XGBoost are utilized to perform 
classification and prediction of human trust in human-robot 
collaboration. This will allow us to unveil if these physical 
and physiological attributes pair with the development of trust 
between a user and an inorganic counterpart. 

II.  TRUSTBASE  

A database known as TrustBase, developed in our 
previous work [8], is utilized to perform deep data analysis 
on the physical and physiological biometrics of participants 
and their trust levels for the robot. TrustBase is a multifaceted 
database management system (DBMS) with three layers: 
Trust-User, Trust-Logical, and Trust-Physical. TrustBase 
currently includes data from 100 user studies involving human-
robot collaboration. The Trust-User layer is accompanied by 
a webpage that allows users to acquire information pertaining 
to the data stored on each user’s experiment experience. The 
Trust-Logical layer is responsible for the logical structure 
and data management of the database. This layer maintains 
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all the recorded data from users. The data obtained contains 
subject demographics, four datasets of physiological attributes, 
and the level of trust a user has with the robot through the 
experiment. The demographics of the subjects are compliance, 
gender, age, and education. The four datasets of physical and 
physiological features collected from each subject are 
electromyography, electroencephalography, electrocardiography, 
and ocular senses. Each dataset holds sub-attributes that 
contain specific data about the physiological feature. Users 
could utilize a 7-point Likert scale to record their trust rating. 
The concluding tier of the database is the Trust-Physical layer 
[8], tasked with the storage and retrieval of data. Aside from 
demographics and trust levels, stored as strings and integers, 
physiological data is preserved as character large objects 
(CLOBs) to accommodate the substantial volume of 
information recorded from a user. 

III. DATA PREPROCESSING 

Utilizing the data of TrustBase, we can uncover patterns, 
errors, and potential correlations between physical features 
and trust. TrustBase consists of thousands of data points, 
some of which may have potential errors. For quality models 
and results, the data in the TrustBase first should be 
examined and cleaned for any uncertainties, errors, and 
outliers. Data cleaning and preprocessing methods used in 
this work are deletion, aggregation, and Synthetic Minority 
Oversampling Technique (SMOTE) [9]. 

An additional challenge during the experiments with 
subjects is the timing issue. When starting an experiment, all 
sensors are started sequentially. Although they all perform 
close in relation to time, there are time differences. Both the 
beginning and end of data series are to be trimmed to 
accurately reflect true values experienced through the 
experiment itself. To ensure the data being deleted is proper, 
each video must be analyzed to determine the exact time the 
experiment starts, and the exact time it ends. The data series 
is then trimmed to fit the duration of the experiment. 

To analyze the extensive data stored in TrustBase and 
uncover patterns as well as modeling results later discussed 
in this study, the data must undergo multiple preprocessing 
and aggregation methods. The first aggregation method we 
realize to handle raw data is grouping. To accurately group 
the data to fit each series of human-robot interactions, time 

intervals are created. Since each experiment has the same 
amount of time, and the robot’s performance factors are the 
same among experiments, static time intervals are employed. 
Utilizing these time intervals, the physical and physiological 
biometric data collected are grouped for each of the 27 
interactions with the robot. This allows for easy implementation 
of data aggregation. The aggregation technique utilized for 
each group is taking the mean. Once the mean is calculated 
for each group, the data is then inserted into a data frame 
where each human subject has 44 columns of physical 
attributes and 27 rows of data, paired with the corresponding 
trust rating for the experiment. 

Once all subjects’ data are retrieved from TrustBase, 
grouped, aggregated, and fit into the same data frame, all 
data are further processed before trust characterization. The 
first form of preprocessing is normalization. Due to the data 
being collected in different scales and measurement units, 
normalization is critical for training the data. Normalization 
standardizes all data by scaling them to a similar range. 

The normalization method used is Min-Max scaling [10]. 

𝑋𝑋 =  𝑋𝑋− 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚
𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚− 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚

 .                                 (1) 

After the data are normalized, an oversampling technique 
known as SMOTE [9] is applied to the data to balance 
underrepresented classes. The decision to apply SMOTE to 
the dataset is made from the structure of the data and the 
large difference between higher classes such as somewhat 
trustworthy to very trustworthy; versus the occurrence of 
lower-trust classes such as very untrustworthy to somewhat 
untrustworthy. This allows the models to better generalize 
the data, avoid bias, and produce better-trained models.  

The final preprocessing technique incorporated is 
synthetically generating a timeline for the heartbeat data. For 
each subject, the dataset has a timeline, except for the 
heartbeat data. We create a proper timeline for heartbeat data 
by using the start and end time of EEG datasets, and then the 
time intervals of the human-robot object handover process 
are incorporated. A complete timeline is thus created and 
appended to the heartbeat dataset. This is validated by 
viewing and analyzing a time series graph of data, to be 
further discussed later. 

 
Fig. 1. Time series of features under three situations. 
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IV. FEATURE AND CORRELATION ANALYSIS 

A. Analysis of Features in Time Series 
To better understand the collected data, and visualize 

how each feature looks throughout the experiment, time 
series analysis graphs are created for every subject. Such 
graphs are used to visually compare the physical and 
physiological features with the trust ratings to see if any 
patterns exist. They are also used to identify patterns, 
anomalies, and outliers, and ensure the completeness of the 
data. Specifically, they are used to verify the absence of gaps 
and missing data in the recorded period. Fig. 1 portrays the 
difference between a subject with complete datasets, with 
potential anomalies, versus a participant who made some 
errors during the experiment. Each time series graph is made 
based on the complete period of the experiment. Each data 
point is a cluster of 5-second data. These clusters are 
grouped based on 5-second intervals and then aggregated by 
taking the mean. Each experiment takes approximately 9.5 
minutes and each graph has about 114 data points. 

B. Correlation Analysis 
To further the analysis of the collected data, it is imperative 

to perform feature selection from each record in TrustBASE, 
which contains 44 features of physical and physiological data 
and 1 feature for trust ratings. Feature selection should be 
used to find the most prominent features that retain important 
information, while also reducing dimensionality by stripping 
the dataset of features that may not provide much influence 
when modeling. To ascertain the features to be used in 
training and human trust characterization, the first method is 
cross-correlation. According to [11], cross-correlation is a 
standard approach that can be utilized to evaluate the degree 
to which two series are correlated. Using this method, each 
feature is cross-correlated with one another. We create a 
heatmap of features that have a correlation compared to 
features that have no correlation. This heatmap can be seen 
in Fig. 2, with 44 physical and physiological attributes and 1 
trust attribute employed in the correlation analysis. 

In Fig. 2, the correlation heatmap’s x-axis and y-axis 
contain each feature in the dataset which are paired with each 
other and outputs a correlation coefficient. This coefficient 
indicates the strength of the correlation between each pair of 
features. The closer the coefficient is to 1, the more intense 
the red becomes, representing a high correlation or similarity 
between the pair. On the other side, the less correlation 
between two features, a more intense blue appears. Less 
correlation is not necessarily bad. It does show that two 
features are less similar but is a key component helping one 
understand the negative correlation. As one feature may 
grow and have a stronger correlation, another feature may 
have less correlation and become negative, which is still very 
important in how each of these features affects each other 
during a human-robot collaboration process. Otherwise, grey 
areas have very little to no correlation. Overall, the graph 
gives a better understanding of how the data features react 
and pair with each other. After analyzing the features in time 
series and the correlation among features, we employ 38 of 
44 physical and physiological attributes for later usage. The 
chosen physical and physiological attributes that the models 
are trained on are given in Table I. 

TABLE I.  THE CHOSEN PHYSICAL AND PHYSIOLOGICAL ATTRIBUTES. 

Sensors Attributes 
MYO EMG1, EMG2, EMG3, EMG4, EMG5, EMG6, EMG7, EMG8 

Emotiv EEG.AF3, EEG.F7, EEG.F3, EEG.FC5, EEG.T7, EEG.P7, EEG.O1, 
EEG.O2, EEG.P8, EEG.T8, EEG.FC6, EEG.F4, EEG.F8, EEG.AF4 

Vivi 

Left Eye Openness, Right Eye Openness, Left Eye Pupil Diameter, 
Right Eye Pupil Diameter, Left Eye Normalized Gaze X, Left Eye 

Normalized Gaze Y, Left Eye Normalized Gaze Z, Right Eye 
Normalized Gaze X, Right Eye Normalized Gaze Y, Right Eye 

Normalized Gaze Z, Right Eye Pupil Position (Left), Right Eye Pupil 
Position (Right), Left Eye Pupil Position (Left), Left Eye Pupil 

Position (Right) 
HeartStrap Heartbeat, RR-Interval 

V. METHODOLOGIES FOR HUMAN TRUST CHARACTERIZATION 

A. Support Vector Machine 
The first type of modeling architecture employed is 

Support Vector Machine (SVM). The SVM algorithm is a 
form of supervised learning, which can be used to solve 
nonlinear pattern recognition, classification, and regression 
problems [12]. It can handle high dimensional, highly 
complex data. Additionally, SVMs include a large class of 
neural nets, radial basis function (RBF) nets, and polynomial 
classifiers as special cases. They utilize a variety of kernels 
to perform all computations in input space. These 
computations lead the algorithm to find the optimal 
hyperplane among classes. These hyperplanes can 
mathematically be defined as: 

(𝑤𝑤 ∗ 𝑥𝑥) + 𝑏𝑏 = 0 𝑤𝑤 ∈ 𝑅𝑅𝑁𝑁 , 𝑏𝑏 ∈ 𝑅𝑅.                (2) 

Based on decision functions: 

𝑓𝑓(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(∑ 𝑣𝑣𝑖𝑖𝑖𝑖 (𝑥𝑥 ∗ 𝑥𝑥𝑖𝑖) + 𝑏𝑏).               (3) 

In the training of our model, we incorporate the use of 
GridSearchCV which is an exhaustive search to find the best 
combination of the input of specific parameters. In this 
study, we search different combinations of SVM parameters  
including C, Kernel, and Gamma. The best one is C=100, 
Gamma=10, and Kernel is RBF. C is a regularization 
parameter used to regulate misclassification. Gamma 
regulates the amount of influence a data sample applies. The 
RBF kernel can be mathematically defined as: 

𝑘𝑘(𝑥𝑥,𝑦𝑦) = exp �− ‖𝑥𝑥−𝑦𝑦‖2

2𝜎𝜎2
�.                       (4) 

With this combination of parameters, we are able to 
obtain a higher accuracy than other combinations. Results 
and analysis of the support vector machine model utilized in 
this study are further discussed later. 

B. TabPFN 
The next modeling algorithm used in this study is 

TabPFN that is a relatively new architecture. According to 
Hollmann et al. “TabPFN is a transformer that can do 
supervised classification for small tabular datasets in less 
than a second, and needs no hyperparameter or tuning” [13]. 
TabPFN fits our dataset well since the processed data barely 
reaches 2k rows of data points. TabPFN is pragmatic for our 
dataset, as splitting the training and test sets appropriately 
allows for fast training and obtaining excellent results. It is to 
be noted that for TabPFN, the data needs no normalization 
prior to training as its architecture handles all normalization. 
TabPFN preprocesses all inputs using a z-score normalization 
for each feature and log-scales outliers heuristically.  



 
Fig. 2. Correlation analysis of all features. 

Due to TabPFN being a transformer, it tokenizes the 
features and labels, and through a single forward pass, can 
return the estimate of the posterior predictive distribution 
[13]. The posterior predictive distribution (PPD) provides a 
way to make predictions for new data points. The PPD can 
be expressed as: 

𝑝𝑝(𝑦𝑦|𝑥𝑥,𝐷𝐷) ∝ ∫𝛷𝛷 𝑝𝑝(𝑦𝑦|𝑥𝑥,𝜙𝜙)𝑝𝑝(𝐷𝐷|𝜙𝜙)𝑝𝑝(𝜙𝜙)𝑑𝑑𝑑𝑑.         (5) 

In this study, we use the same PPD defined in [13] to 
characterize trust based on subjects’ physical and 
physiological data. TabPFN’s PPD can help predict new data 
points and have the model create decision boundaries. This 
enables us to gain a better understanding of how physical and 
physiological data can affect trust during human-robot 
interactions, to be discussed. 

C. XGBoost 
In this work, eXtreme Gradient Boosting (XGBoost) is 

used to model and characterize human trust through subjects’ 
physical and physiological information. XGBoost is a well-
known supervised machine learning model. It utilizes 
distributed gradient-boosted decision trees (GBDT). This 
approach incorporates a regularized model to prevent 
overfitting. Its tree ensemble model can be used to predict 
the output [14]: 

𝑦𝑦�𝑖𝑖 = 𝜑𝜑(𝑥𝑥𝑖𝑖) = ∑ 𝑓𝑓𝑘𝑘𝐾𝐾
𝑘𝑘=1 (𝑥𝑥𝑖𝑖),  𝑓𝑓𝑘𝑘 ∈ 𝐹𝐹,                 (6) 

where is the F space of regression trees. 

To learn the functions of this model, the following 
regulation function is minimized: 

𝐿𝐿(𝜑𝜑) = ∑ 𝑙𝑙(𝑦𝑦�𝑖𝑖 ,𝑦𝑦𝑖𝑖)𝑖𝑖 + ∑ Ω(𝑓𝑓𝑘𝑘)𝑘𝑘 ,                   (7) 

where Ω(𝑓𝑓) =  𝛾𝛾𝛾𝛾 + 1
2

 𝜆𝜆‖𝑤𝑤‖2 is the penalty function to 
penalize the complexity of the model, T represents the 
number of leaves in the tree, 𝛾𝛾 is a constant representing the 
penalty degree, 𝑤𝑤  denotes leaf weight set, and 𝜆𝜆  is a 
constant for controlling the strength of regularization. l 
denotes a differentiable convex loss function used to 
measure the difference between the prediction 𝑦𝑦�𝑖𝑖  and the 
objective 𝑦𝑦𝑖𝑖 . 

In this study, we utilize XGBoost for its optimal learning 
rate and its ability to prevent overfitting for our dataset. It 
can also handle both classification and regression. Through 
this model, we use a tree method known as the exact greedy 
algorithm. We also incorporate 5 early stopping rounds to 
additionally prevent overfitting. The model sorts the data in 
order to accumulate the gradient statistic for the structure 
score in: 



𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 1
2
�

(∑ 𝑔𝑔𝑖𝑖)𝑖𝑖∈𝐼𝐼𝐿𝐿
2

∑ ℎ𝑖𝑖+𝑖𝑖∈𝐼𝐼𝐿𝐿 λ
+

(∑ 𝑔𝑔𝑖𝑖)𝑖𝑖∈𝐼𝐼𝑅𝑅
2

∑ ℎ𝑖𝑖+𝑖𝑖∈𝐼𝐼𝑅𝑅 λ
−  (∑ 𝑔𝑔𝑖𝑖)𝑖𝑖∈𝐼𝐼

2

∑ ℎ𝑖𝑖+𝑖𝑖∈𝐼𝐼 λ
� − γ,    (8) 

where 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the loss reduction after the tree split. IL and IR 
are the instance sets of left and right nodes of the tree 
branches after the split. 𝑔𝑔𝑖𝑖  and ℎ𝑖𝑖  are the first and second 
order gradient statistics on the loss function. Utilizing 
XGBoost we are able to get new insights on how human 
trust is characterized, to be discussed next. 

VI. RESULTS AND ANALYSIS 

A. Experimental Setup 
Each participant in the study is configured with the 

sensors that best fit his/her body to collect the data. Prior to 
setup, each is asked if there are any reasons as to why he/she 
cannot wear a sensor. Some participants have religious needs 
and other reasons so they cannot wear a specific sensor, e.g. 
the Emotiv Epoc+ headset. If consent is given to wear all 
four sensors, participants are then configured with the same 
setting across the board. They first wear the MYO armband 
on their dominant arm, right below the elbow on the forearm. 
The polar H10 heartbeat strap is configured on their sternum, 
right below their chest. The heartbeat strap is tightened to fit 
snuggly against their chest for accurate heartbeat detection. 
As shown in Fig. 3, the Emotiv headset is placed on the 
participants’ head, following a diagram on the headset 
application. This diagram shows where each node should be 
placed, and notifies when sufficient contact with the scalp has 
been made. The final sensor is a Vive headset, which is 
carefully placed over the participants’ eyes, then over the 
Emotiv headset. Finally, users undergo a calibration procedure 
with the Vive headset, to ensure the eye data is accurate.  

 
Fig. 3. Participant configuration. 

B. Results and Analysis of SVM 
Leveraging the robust architecture of SVM, the resulting 

model is able to successfully achieve high accuracy in training. 
Using the features mentioned in Section V.B, and the predictor 
data and labels associated with the trust class, the data go 
through multiple training attempts with different methods. 
Initially, we obtain low performance, as the model is 
underperforming when encountering classes 0-3. To improve 
it, we decide to remap the classes as we find that the margins 
of the data are too close that can cause errors during the 
training. We remap all classes related to low trust (classes 0-
2) to a fused class known as untrustworthy (class 0), we keep 
neutral (class 3) as class 1, and all classes representing 
higher trust (classes 4-6) are remapped to trustworthy (class 
2). The resampling effectively solves this issue, as it 
neutralizes those margins to a point such that the model can 
better understand. Comparatively, we find that using SVM 
with the remapped classes and the GridSearchCV algorithm 

to find the best combination of hyperparameters, as well as 
with the SMOTE balancing the underrepresented classes in 
our dataset, we can achieve the highest accuracy and 
performance. The SVM model comparisons are presented in 
Table II. It can be observed that, with the remapped classes, 
SMOTE, and GridSearch [15], we are able to get a higher 
accuracy of human trust characterization based on the 
collected physical and physiological information from 
participants than other SVMs. 

TABLE II.  SVM MODEL COMPARISONS. 

Approach Accuracy 

SVM_7_classes_No_Smote_No_GridSearch 45.85% 

SVM_7_classes_Smote_No_GridSearch 39.41% 
SVM_7_classes_Smote_GridSearch 

Hyperparameters (C:10, Gamma:10, and Kernel: RBF). 49.90% 

SVM_3_classes_Smote_No_GridSearch 63.7% 
SVM_3_classes_Smote_GridSearch 

Hyperparameters (C:100, Gamma:10, and Kernel: RBF). 78.6% 

C. Results and Analysis of TabPFN 
TabPFN is chosen for its impressive architecture in 

handling complex data of small tabular datasets. Unlike 
SVM, the data need not be normalized prior to their usage 
for model training. TabPFN has a restriction of the dataset 
being larger than 1024 data points, so SMOTE is not needed 
since it may increase the dataset size making TabPFN not 
work efficiently. With TabPFN, we perform two training 
rounds, once with all 7 classes, and once with the remapped 
classes defined prior. We also train it on the full dataset, and 
in doing so, we have to split the data appropriately to fit the 
approach. To do this, we have applied a function that allows 
us to split the training and test data. For the data to be split 
appropriately, the test size is found to be 44% of the data. 
With this realization, we conduct two additional training 
methods, where we split the data into two training sessions. 
In the first session, the model is trained on 50% of the data 
with the split consisting of 80% training data and 20% testing 
data. The model is then reloaded and continues to be trained 
on the other half of the data with the same split. This method 
is executed twice, once with all 7 features, and once with the 
features being resampled. The accuracy comparisons of 
TabPFN-based approaches are shown in Table III. 

TABLE III.  TABPFN MODEL COMPARISONS. 

Approach Prediction Time (s) Accuracy 
TabPFN_7_Classes ~4.22 48.86% 

TabPFN_3 Classes ~4.23 82.03% 

TabPFN_Split_Training_7_Classes ~1.51 55.92% 

TabPFN_Split_Training_3_Classes ~1.68 87.5% 

From Table III we can see when remapping the 7 classes 
to 3 classes, the prediction accuracy significantly increases, 
with minimal effect on computation and prediction time. 
Furthermore, by splitting the data in half and training the 
model twice, the prediction time decreased by more than 
half, and accuracy increased by a significant amount.  

D. Results and Analysis of XGBoost 
This study capitalizes on the XGBoost algorithm’s 

proficiency in applying gradient boost, regularization, and 
tree pruning. Due to the nature of the data being complex and 



having a high dimensionality, XGBoost is selected since it can 
well handle such data and produce interesting results. Like 
SVM, we perform several training sessions in different ways. 
As shown in Table IV, we can see the comparison results. 

TABLE IV.   XGBOOST MODEL COMPARISONS. 

Approach Average 
mLogLoss Accuracy 

XGB_7_Classes_No_Smote_Exact_Method ~1.33 51.87% 
XGB_7_Classes_Smote_Exact_Method ~1.34 49% 

XGB_3_Classes_No_Smote_Exact_Method ~0.57 82.11% 
XGB_3_Classes_Smote_Exact_Method ~0.65 76.15% 

Dissecting the data in Table IV, the methods not using 
SMOTE perform better. This is due to the underrepresentation 
of the lower trust classes. The data is dominated by the 
higher trust classes. This ultimately creates a bias in the 
model, leading to higher prediction accuracy due to the 
overwhelming amount of data in the high trust classes. The 
other two methods using SMOTE do not completely solve 
the issue because they balance the high-trust and low-trust 
datasets more than the other two models without SMOTE. 
When they balance the dataset and increase the significance 
of the lower trust classes, the loss and accuracy do change. 
Although the accuracy is lower and the loss is slightly 
higher, the results are exceptional and indicate that 
participants’ biometric data and their trust ratings have a 
correlation. The results also suggest that human trust can be 
characterized and predicted in human-robot collaboration.  

E. Discussion 
Three computational models (SVM, TabPFN, and 

XGBoost) are employed for the characterization of human 
trust based on the participants’ physical and physiological 
information collected during the human-robot collaborative 
tasks. Table V showcases the top accuracy of each model. It 
can be observed that the best result is achieved by TabPFN. 
Due to its ability to handle small tabular datasets, high 
complexity handling, and internal preprocessing techniques, 
additionally being incrementally trained, it is proven to 
produce highly accurate results. SVM and XGBoost are 
proven to generate good results that can be further improved. 
Overall, we can conclude that human trust can be well 
characterized and predicted via the participant’s physical and 
physiological information. The results also indicate that the 
biometric status of a human that is caused by the robot's 
performance in human-robot collaborative contexts may 
influence his/her trust in the robot.  

TABLE V.  COMPARISONS OF THE TOP RESULTS OF ALL APPROACHES 

Approach Accuracy 
SVM_3_classes_Smote_GridSearch 
Hyperparameters (C:100, Gamma:10, and Kernel: RBF). 78.6% 

TabPFN_Split_Training_3_Classes 87.5% 

XGB_3_Classes_Smote_Exact_Method 76.15% 

VII.  CONCLUSION AND FUTURE WORK 

In this study, we have utilized the data of TrustBase to 
conduct deep analysis as well as characterization and prediction 
of participants’ trust levels based on their physical and 
physiological information in the context of human-robot 
collaboration. The data in TrustBase consists of 100 user 
studies, with datasets of participants’ four types of biometric 

information and their trust ratings during a human-robot 
collaboration process. The participants’ biometric information 
contains 44 physical and physiological attributes. After 
conducting feature analyses, 38 of 44 attributes are found to 
be prominent in the characterization and analysis of human 
trust. The data is preprocessed accordingly and then used for 
model training. The three computational architectures utilized 
in analyzing the data are SVM, TabPFN, and XGBoost. 
After fitting the data and training each algorithm, we have 
found that all models can obtain desired results. These results 
indicate that human trust can successfully be characterized 
by using human physical and physiological information. 

Subsequent endeavors should further process and analyze 
the data in TrustBase. We hope to find more insights into 
how robot performance factors can affect users’ trust and 
how this trust can be better parametrized by their information 
when working with their robot counterparts. 
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