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Abstract—Trust is an attribute that many people use daily,
whether consciously thinking of it or not. Although commonly
designated as a firm belief in reliability, trust is more complex
than many think. It is not just physical, but rather an emotion,
feeling, or choice that has many layers, and can be influenced
in a variety of ways. As robotics and artificial intelligence
grow, humans have to deliberate whether they trust working
with these technical counterparts or not. In this work, we build
computational models to quantitatively characterize and
analyze humans’ trust in robots using multimodal physical and
physiological biometric data based on the TrustBase we have
created through user studies in human-robot collaborative
tasks. During human-robot collaborative processes, we have
collected physical and physiological attribute data of human
subjects as well as the users’ trust levels for each interaction.
This data is used to develop a database known as TrustBase.
With the data from TrustBase, computational and analytical
approaches are used to investigate the correlation between
robot performance factors and humans’ trust levels and to
characterize humans’ trust in robots during human-robot
collaboration. Results and their analysis suggest the effectiveness
of the developed models, providing new findings to the human
factors and cognitive ergonomics in human-robot interaction.
Future research directions are also discussed.

I. INTRODUCTION

With the introduction and growth of ChatGPT and other
Large Language Models (LLMs), robotics and artificial
intelligence are pushing the boundaries of science and
technology [1, 2]. Incorporating these technological
advancements, industries can automate processes, expedite
production, relieve personnel from tedious and dangerous
work tasks [3, 4]. Industries are not the only ones able to take
advantage of these new developments. With the progress that
has been made, these technologies have become widely
accessible to all people. Other industries such as education,
healthcare, and transportation have also benefited from these
improvements. For example, some researchers have explored
the use of artificial intelligence in education. Al takes a form
in web-based systems, humanoid robots, chatbots, and
grading tools. These tools help both teachers and students
achieve newfound heights [5]. With these synthetic intelligences
being added into more industries, we can already see how
great an influence they have generated.

While it is advantageous to have these artificial
intelligent technologies assist in workloads and tasks, their
widespread implementation is still in its early stages across
industries. This may lead to a disconnect for some people, as
they are not used to working with automated partners such as
robots. Industries for decades have mainly had human-to-
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human collaboration. With the implementation of robotics
and Al, we now have human-robot collaboration and human-
Al collaboration. This raises the question of whether humans
trust working with robots and Al. To dissect this question,
trust must be defined. According to the Oxford Dictionary,
the number one meaning of trust is the “firm belief in the
reliability, truth, or ability of someone or something;
confidence or faith in a person or thing, or in an attribute of a
person or thing” [6]. From a psychological perspective, this
makes sense as humans naturally can get a feeling about
someone or something. Whether it is verbal queues or body
language, humans can instinctively tell whether persons or
things are good or bad and trust them or not. According to
Buchan “trust development is dynamic and fluid, changing in
nature from context to context, and is influenced by a
multiplicity of economic, sociological, psychological, and
political factors in the cultural environment of the trust
relationship” [7]. Now, what happens when a person works
with a robot counterpart? A robot does not express
personable features a person may express. So, how does one
find out if humans will be comfortable and trust working
alongside these newfound advanced technologies?

To further anatomize if humans are comfortable and trust
working alongside robotics, Al, and new technologies, in this
study, we utilize the data from our developed database,
TrustBase [8], to delve deep into this multifaceted term known
as trust in human-robot partnerships. The data in TrustBase
is composed of four types of physical and physiological
biometric attributes, as well as real-time trust levels collected
throughout the experiments where users work with a robot to
complete collaborative tasks. Methodologies used to further
analyze this data are time series analysis to find anomalies or
outliers, as well as cross-correlation to incorporate feature
analysis. This selects the most prominent features to be used
for human trust modeling. Then the Support Vector Machine
(SVM), TabPFN, and XGBoost are utilized to perform
classification and prediction of human trust in human-robot
collaboration. This will allow us to unveil if these physical
and physiological attributes pair with the development of trust
between a user and an inorganic counterpart.

II. TRUSTBASE

A database known as TrustBase, developed in our
previous work [8], is utilized to perform deep data analysis
on the physical and physiological biometrics of participants
and their trust levels for the robot. TrustBase is a multifaceted
database management system (DBMS) with three layers:
Trust-User, Trust-Logical, and Trust-Physical. TrustBase
currently includes data from 100 user studies involving human-
robot collaboration. The Trust-User layer is accompanied by
a webpage that allows users to acquire information pertaining
to the data stored on each user’s experiment experience. The
Trust-Logical layer is responsible for the logical structure
and data management of the database. This layer maintains



all the recorded data from users. The data obtained contains
subject demographics, four datasets of physiological attributes,
and the level of trust a user has with the robot through the
experiment. The demographics of the subjects are compliance,
gender, age, and education. The four datasets of physical and
physiological features collected from each subject are
electromyography, electroencephalography, electrocardiography,
and ocular senses. Each dataset holds sub-attributes that
contain specific data about the physiological feature. Users
could utilize a 7-point Likert scale to record their trust rating.
The concluding tier of the database is the Trust-Physical layer
[8], tasked with the storage and retrieval of data. Aside from
demographics and trust levels, stored as strings and integers,
physiological data is preserved as character large objects
(CLOBs) to accommodate the substantial volume of
information recorded from a user.

III. DATA PREPROCESSING

Utilizing the data of TrustBase, we can uncover patterns,
errors, and potential correlations between physical features
and trust. TrustBase consists of thousands of data points,
some of which may have potential errors. For quality models
and results, the data in the TrustBase first should be
examined and cleaned for any uncertainties, errors, and
outliers. Data cleaning and preprocessing methods used in
this work are deletion, aggregation, and Synthetic Minority
Oversampling Technique (SMOTE) [9].

An additional challenge during the experiments with
subjects is the timing issue. When starting an experiment, all
sensors are started sequentially. Although they all perform
close in relation to time, there are time differences. Both the
beginning and end of data series are to be trimmed to
accurately reflect true values experienced through the
experiment itself. To ensure the data being deleted is proper,
each video must be analyzed to determine the exact time the
experiment starts, and the exact time it ends. The data series
is then trimmed to fit the duration of the experiment.

To analyze the extensive data stored in TrustBase and
uncover patterns as well as modeling results later discussed
in this study, the data must undergo multiple preprocessing
and aggregation methods. The first aggregation method we
realize to handle raw data is grouping. To accurately group
the data to fit each series of human-robot interactions, time

Complete Graph

Left and Right Eye Pupil Diameter

Pupil Diameter

Complete with Anomalies

Heartbeat and RR Interval Visualization vs Time

intervals are created. Since each experiment has the same
amount of time, and the robot’s performance factors are the
same among experiments, static time intervals are employed.
Utilizing these time intervals, the physical and physiological
biometric data collected are grouped for each of the 27
interactions with the robot. This allows for easy implementation
of data aggregation. The aggregation technique utilized for
each group is taking the mean. Once the mean is calculated
for each group, the data is then inserted into a data frame
where each human subject has 44 columns of physical
attributes and 27 rows of data, paired with the corresponding
trust rating for the experiment.

Once all subjects’ data are retrieved from TrustBase,
grouped, aggregated, and fit into the same data frame, all
data are further processed before trust characterization. The
first form of preprocessing is normalization. Due to the data
being collected in different scales and measurement units,
normalization is critical for training the data. Normalization
standardizes all data by scaling them to a similar range.

The normalization method used is Min-Max scaling [10].
1)

After the data are normalized, an oversampling technique
known as SMOTE [9] is applied to the data to balance
underrepresented classes. The decision to apply SMOTE to
the dataset is made from the structure of the data and the
large difference between higher classes such as somewhat
trustworthy to very trustworthy; versus the occurrence of
lower-trust classes such as very untrustworthy to somewhat
untrustworthy. This allows the models to better generalize
the data, avoid bias, and produce better-trained models.

X = X— Xmin

Xmax— Xmin

The final preprocessing technique incorporated is
synthetically generating a timeline for the heartbeat data. For
each subject, the dataset has a timeline, except for the
heartbeat data. We create a proper timeline for heartbeat data
by using the start and end time of EEG datasets, and then the
time intervals of the human-robot object handover process
are incorporated. A complete timeline is thus created and
appended to the heartbeat dataset. This is validated by
viewing and analyzing a time series graph of data, to be
further discussed later.

Graph with Missing Data

EEG data

B ey

2215 220 2221 2222 2223 2228 2225 2226 2227
Time

Graph with Missing Data

EMG Data Visualization

Fig. 1. Time series of features under three situations.



IV. FEATURE AND CORRELATION ANALYSIS

A. Analysis of Features in Time Series

To better understand the collected data, and visualize
how each feature looks throughout the experiment, time
series analysis graphs are created for every subject. Such
graphs are used to visually compare the physical and
physiological features with the trust ratings to see if any
patterns exist. They are also used to identify patterns,
anomalies, and outliers, and ensure the completeness of the
data. Specifically, they are used to verify the absence of gaps
and missing data in the recorded period. Fig. 1 portrays the
difference between a subject with complete datasets, with
potential anomalies, versus a participant who made some
errors during the experiment. Each time series graph is made
based on the complete period of the experiment. Each data
point is a cluster of 5-second data. These clusters are
grouped based on 5-second intervals and then aggregated by
taking the mean. Each experiment takes approximately 9.5
minutes and each graph has about 114 data points.

B. Correlation Analysis

To further the analysis of the collected data, it is imperative
to perform feature selection from each record in TrustBASE,
which contains 44 features of physical and physiological data
and 1 feature for trust ratings. Feature selection should be
used to find the most prominent features that retain important
information, while also reducing dimensionality by stripping
the dataset of features that may not provide much influence
when modeling. To ascertain the features to be used in
training and human trust characterization, the first method is
cross-correlation. According to [11], cross-correlation is a
standard approach that can be utilized to evaluate the degree
to which two series are correlated. Using this method, each
feature is cross-correlated with one another. We create a
heatmap of features that have a correlation compared to
features that have no correlation. This heatmap can be seen
in Fig. 2, with 44 physical and physiological attributes and 1
trust attribute employed in the correlation analysis.

In Fig. 2, the correlation heatmap’s x-axis and y-axis
contain each feature in the dataset which are paired with each
other and outputs a correlation coefficient. This coefficient
indicates the strength of the correlation between each pair of
features. The closer the coefficient is to 1, the more intense
the red becomes, representing a high correlation or similarity
between the pair. On the other side, the less correlation
between two features, a more intense blue appears. Less
correlation is not necessarily bad. It does show that two
features are less similar but is a key component helping one
understand the negative correlation. As one feature may
grow and have a stronger correlation, another feature may
have less correlation and become negative, which is still very
important in how each of these features affects each other
during a human-robot collaboration process. Otherwise, grey
areas have very little to no correlation. Overall, the graph
gives a better understanding of how the data features react
and pair with each other. After analyzing the features in time
series and the correlation among features, we employ 38 of
44 physical and physiological attributes for later usage. The
chosen physical and physiological attributes that the models
are trained on are given in Table I.

TABLE I. THE CHOSEN PHYSICAL AND PHYSIOLOGICAL ATTRIBUTES.

Sensors Attributes
MYO EMGI1, EMG2, EMG3, EMG4, EMG5, EMG6, EMG7, EMG8
Emotiv EEG.AF3, EEG.F7, EEG.F3, EEG.FC5, EEG.T7, EEG.P7, EEG.Ol,

EEG.02, EEG.P8, EEG.T8, EEG.FC6, EEG.F4, EEG.F8, EEG.AF4
Left Eye Openness, Right Eye Openness, Left Eye Pupil Diameter,
Right Eye Pupil Diameter, Left Eye Normalized Gaze X, Left Eye

Normalized Gaze Y, Left Eye Normalized Gaze Z, Right Eye
Vivi Normalized Gaze X, Right Eye Normalized Gaze Y, Right Eye
Normalized Gaze Z, Right Eye Pupil Position (Left), Right Eye Pupil

Position (Right), Left Eye Pupil Position (Left), Left Eye Pupil

Position (Right)
Heartbeat, RR-Interval

HeartStrap

V. METHODOLOGIES FOR HUMAN TRUST CHARACTERIZATION

A. Support Vector Machine

The first type of modeling architecture employed is
Support Vector Machine (SVM). The SVM algorithm is a
form of supervised learning, which can be used to solve
nonlinear pattern recognition, classification, and regression
problems [12]. It can handle high dimensional, highly
complex data. Additionally, SVMs include a large class of
neural nets, radial basis function (RBF) nets, and polynomial
classifiers as special cases. They utilize a variety of kernels
to perform all computations in input space. These
computations lead the algorithm to find the optimal

hyperplane among classes. These hyperplanes can
mathematically be defined as:
wxx)+b=0weRN,b €R. )

Based on decision functions:

f(x) = sign(X;v; (x * x;) + b). A3

In the training of our model, we incorporate the use of
GridSearchCV which is an exhaustive search to find the best
combination of the input of specific parameters. In this
study, we search different combinations of SVM parameters
including C, Kernel, and Gamma. The best one is C=100,
Gamma=10, and Kernel is RBF. C is a regularization
parameter used to regulate misclassification. Gamma
regulates the amount of influence a data sample applies. The
RBF kernel can be mathematically defined as:

k(x,y) = exp (- 220), ()

202

With this combination of parameters, we are able to
obtain a higher accuracy than other combinations. Results
and analysis of the support vector machine model utilized in
this study are further discussed later.

B. TabPFN

The next modeling algorithm used in this study is
TabPFN that is a relatively new architecture. According to
Hollmann et al. “TabPFN is a transformer that can do
supervised classification for small tabular datasets in less
than a second, and needs no hyperparameter or tuning” [13].
TabPFN fits our dataset well since the processed data barely
reaches 2k rows of data points. TabPFN is pragmatic for our
dataset, as splitting the training and test sets appropriately
allows for fast training and obtaining excellent results. It is to
be noted that for TabPFN, the data needs no normalization
prior to training as its architecture handles all normalization.
TabPFN preprocesses all inputs using a z-score normalization
for each feature and log-scales outliers heuristically.
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Fig. 2. Correlation analysis of all features.

Due to TabPFN being a transformer, it tokenizes the
features and labels, and through a single forward pass, can
return the estimate of the posterior predictive distribution
[13]. The posterior predictive distribution (PPD) provides a
way to make predictions for new data points. The PPD can
be expressed as:

p(|x,D) < [, p(y|x, )p(DIP)p(P)de.  (5)

In this study, we use the same PPD defined in [13] to
characterize trust based on subjects’ physical and
physiological data. TabPFN’s PPD can help predict new data

i =o() =Tk fi (), fi €F, (6)
where is the F space of regression trees.

To learn the functions of this model, the following
regulation function is minimized:

L(p) = 2il(3uy) + Xk Q(f), @)

where Q(f) = yT+§ Allw||? is the penalty function to

penalize the complexity of the model, 7 represents the
number of leaves in the tree, y is a constant representing the

points and have the model create decision boundaries. This
enables us to gain a better understanding of how physical and
physiological data can affect trust during human-robot
interactions, to be discussed.

C. XGBoost

In this work, eXtreme Gradient Boosting (XGBoost) is
used to model and characterize human trust through subjects’
physical and physiological information. XGBoost is a well-
known supervised machine learning model. It utilizes
distributed gradient-boosted decision trees (GBDT). This
approach incorporates a regularized model to prevent
overfitting. Its tree ensemble model can be used to predict
the output [14]:

penalty degree, w denotes leaf weight set, and 4 is a
constant for controlling the strength of regularization. /
denotes a differentiable convex loss function used to
measure the difference between the prediction y; and the
objective y;.

In this study, we utilize XGBoost for its optimal learning
rate and its ability to prevent overfitting for our dataset. It
can also handle both classification and regression. Through
this model, we use a tree method known as the exact greedy
algorithm. We also incorporate 5 early stopping rounds to
additionally prevent overfitting. The model sorts the data in
order to accumulate the gradient statistic for the structure
score in:
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where Lgp,;; is the loss reduction after the tree split. 7, and Ig
are the instance sets of left and right nodes of the tree
branches after the split. g; and h; are the first and second
order gradient statistics on the loss function. Utilizing
XGBoost we are able to get new insights on how human
trust is characterized, to be discussed next.

VI. RESULTS AND ANALYSIS

A. Experimental Setup

Each participant in the study is configured with the
sensors that best fit his/her body to collect the data. Prior to
setup, each is asked if there are any reasons as to why he/she
cannot wear a sensor. Some participants have religious needs
and other reasons so they cannot wear a specific sensor, e.g.
the Emotiv Epoc+ headset. If consent is given to wear all
four sensors, participants are then configured with the same
setting across the board. They first wear the MYO armband
on their dominant arm, right below the elbow on the forearm.
The polar H10 heartbeat strap is configured on their sternum,
right below their chest. The heartbeat strap is tightened to fit
snuggly against their chest for accurate heartbeat detection.
As shown in Fig. 3, the Emotiv headset is placed on the
participants’ head, following a diagram on the headset
application. This diagram shows where each node should be
placed, and notifies when sufficient contact with the scalp has
been made. The final sensor is a Vive headset, which is
carefully placed over the participants’ eyes, then over the
Emotiv headset. Finally, users undergo a calibration procedure
with the Vive headset, to ensure the eye data is accurate.

Emotiv Epoct
Headset

ol
Strap (In the front
of subi

MYO Armband

Fig. 3. Participant configuration.

B. Results and Analysis of SVM

Leveraging the robust architecture of SVM, the resulting
model is able to successfully achieve high accuracy in training.
Using the features mentioned in Section V.B, and the predictor
data and labels associated with the trust class, the data go
through multiple training attempts with different methods.
Initially, we obtain low performance, as the model is
underperforming when encountering classes 0-3. To improve
it, we decide to remap the classes as we find that the margins
of the data are too close that can cause errors during the
training. We remap all classes related to low trust (classes 0-
2) to a fused class known as untrustworthy (class 0), we keep
neutral (class 3) as class 1, and all classes representing
higher trust (classes 4-6) are remapped to trustworthy (class
2). The resampling effectively solves this issue, as it
neutralizes those margins to a point such that the model can
better understand. Comparatively, we find that using SVM
with the remapped classes and the GridSearchCV algorithm

to find the best combination of hyperparameters, as well as
with the SMOTE balancing the underrepresented classes in
our dataset, we can achieve the highest accuracy and
performance. The SVM model comparisons are presented in
Table II. It can be observed that, with the remapped classes,
SMOTE, and GridSearch [15], we are able to get a higher
accuracy of human trust characterization based on the
collected physical and physiological information from
participants than other SVMs.

TABLE II. SVM MODEL COMPARISONS.

Approach Accuracy

SVM_7 classes No_Smote No_GridSearch 45.85%

SVM_7_classes_Smote_No_GridSearch 39.41%
SVM_7 classes Smote GridSearch 49.90%

Hyperparameters (C:10, Gamma: 10, and Kernel: RBF). e
SVM 3 classes Smote No_GridSearch 63.7%
SVM_3 classes Smote GridSearch 78.6%
Hyperparameters (C:100, Gamma:10, and Kernel: RBF). 070

C. Results and Analysis of TabPFN

TabPFN is chosen for its impressive architecture in
handling complex data of small tabular datasets. Unlike
SVM, the data need not be normalized prior to their usage
for model training. TabPFN has a restriction of the dataset
being larger than 1024 data points, so SMOTE is not needed
since it may increase the dataset size making TabPFN not
work efficiently. With TabPFN, we perform two training
rounds, once with all 7 classes, and once with the remapped
classes defined prior. We also train it on the full dataset, and
in doing so, we have to split the data appropriately to fit the
approach. To do this, we have applied a function that allows
us to split the training and test data. For the data to be split
appropriately, the test size is found to be 44% of the data.
With this realization, we conduct two additional training
methods, where we split the data into two training sessions.
In the first session, the model is trained on 50% of the data
with the split consisting of 80% training data and 20% testing
data. The model is then reloaded and continues to be trained
on the other half of the data with the same split. This method
is executed twice, once with all 7 features, and once with the
features being resampled. The accuracy comparisons of
TabPFN-based approaches are shown in Table II1.

TABLE III. TABPFN MODEL COMPARISONS.

Approach Prediction Time (s) Accuracy
TabPFN_7 Classes ~4.22 48.86%
TabPFN_3 Classes ~4.23 82.03%

TabPFN_Split_Training_7_Classes ~1.51 55.92%
TabPFN_Split Training_3 Classes ~1.68 87.5%

From Table III we can see when remapping the 7 classes
to 3 classes, the prediction accuracy significantly increases,
with minimal effect on computation and prediction time.
Furthermore, by splitting the data in half and training the
model twice, the prediction time decreased by more than
half, and accuracy increased by a significant amount.

D. Results and Analysis of XGBoost

This study capitalizes on the XGBoost algorithm’s
proficiency in applying gradient boost, regularization, and
tree pruning. Due to the nature of the data being complex and



having a high dimensionality, XGBoost is selected since it can
well handle such data and produce interesting results. Like
SVM, we perform several training sessions in different ways.
As shown in Table IV, we can see the comparison results.

TABLE IV. XGBOOST MODEL COMPARISONS.

Average
Approach mLogL%)ss Accuracy
XGB_7 Classes No Smote Exact Method ~1.33 51.87%
XGB_7 Classes Smote Exact Method ~1.34 49%
XGB 3 Classes No Smote Exact Method ~0.57 82.11%
XGB 3 Classes Smote Exact Method ~0.65 76.15%

Dissecting the data in Table IV, the methods not using
SMOTE perform better. This is due to the underrepresentation
of the lower trust classes. The data is dominated by the
higher trust classes. This ultimately creates a bias in the
model, leading to higher prediction accuracy due to the
overwhelming amount of data in the high trust classes. The
other two methods using SMOTE do not completely solve
the issue because they balance the high-trust and low-trust
datasets more than the other two models without SMOTE.
When they balance the dataset and increase the significance
of the lower trust classes, the loss and accuracy do change.
Although the accuracy is lower and the loss is slightly
higher, the results are exceptional and indicate that
participants’ biometric data and their trust ratings have a
correlation. The results also suggest that human trust can be
characterized and predicted in human-robot collaboration.

E. Discussion

Three computational models (SVM, TabPFN, and
XGBoost) are employed for the characterization of human
trust based on the participants’ physical and physiological
information collected during the human-robot collaborative
tasks. Table V showcases the top accuracy of each model. It
can be observed that the best result is achieved by TabPFN.
Due to its ability to handle small tabular datasets, high
complexity handling, and internal preprocessing techniques,
additionally being incrementally trained, it is proven to
produce highly accurate results. SVM and XGBoost are
proven to generate good results that can be further improved.
Overall, we can conclude that human trust can be well
characterized and predicted via the participant’s physical and
physiological information. The results also indicate that the
biometric status of a human that is caused by the robot's
performance in human-robot collaborative contexts may
influence his/her trust in the robot.

TABLE V. COMPARISONS OF THE TOP RESULTS OF ALL APPROACHES

Approach Accuracy
SVM_3 classes Smote_GridSearch 78.6%
Hyperparameters (C:100, Gamma:10, and Kernel: RBF). o
TabPFN_Split Training 3 Classes 87.5%
XGB_3 Classes_Smote_Exact Method 76.15%

VII. CONCLUSION AND FUTURE WORK

In this study, we have utilized the data of TrustBase to
conduct deep analysis as well as characterization and prediction
of participants’ trust levels based on their physical and
physiological information in the context of human-robot
collaboration. The data in TrustBase consists of 100 user
studies, with datasets of participants’ four types of biometric

information and their trust ratings during a human-robot
collaboration process. The participants’ biometric information
contains 44 physical and physiological attributes. After
conducting feature analyses, 38 of 44 attributes are found to
be prominent in the characterization and analysis of human
trust. The data is preprocessed accordingly and then used for
model training. The three computational architectures utilized
in analyzing the data are SVM, TabPFN, and XGBoost.
After fitting the data and training each algorithm, we have
found that all models can obtain desired results. These results
indicate that human trust can successfully be characterized
by using human physical and physiological information.

Subsequent endeavors should further process and analyze
the data in TrustBase. We hope to find more insights into
how robot performance factors can affect users’ trust and
how this trust can be better parametrized by their information
when working with their robot counterparts.
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