
Sample Complexity of Probability Divergences under Group Symmetry

Ziyu Chen 1 Markos A. Katsoulakis 1 Luc Rey-Bellet 1 Wei Zhu 1

Abstract

We rigorously quantify the improvement in the

sample complexity of variational divergence es-

timations for group-invariant distributions. In

the cases of the Wasserstein-1 metric and the

Lipschitz-regularized α-divergences, the reduc-

tion of sample complexity is proportional to

an ambient-dimension-dependent power of the

group size. For the maximum mean discrepancy

(MMD), the improvement of sample complexity

is more nuanced, as it depends on not only the

group size but also the choice of kernel. Numeri-

cal simulations verify our theories.

1. Introduction

Probability divergences provide means to measure the dis-

crepancy between two probability distributions. They have

broad applications in a variety of inference tasks, such as

independence testing (Zhang et al., 2018; Kinney & Atwal,

2014), independent component analysis (Hyvarinen et al.,

2002), and generative modeling (Goodfellow et al., 2014;

Nowozin et al., 2016; Arjovsky et al., 2017; Gulrajani et al.,

2017; Tolstikhin et al., 2018; Nietert et al., 2021).

A key task within the above applications is the computation

and estimation of the divergences from finite data, which

is known to be a difficult problem (Paninski, 2003; Gao

et al., 2015). Empirical estimators based on the variational

representations for the probability divergences are generally

favored and widely used due to their scalability to both

the data size and the ambient space dimension (Belghazi

et al., 2018; Birrell et al., 2022b; Nguyen et al., 2007; 2010;

Ruderman et al., 2012; Sreekumar & Goldfeld, 2022; Birrell

et al., 2021; 2022d; Sriperumbudur et al., 2012; Gretton

et al., 2006; 2007; 2012; Genevay et al., 2019).

Empirical computation of the probability divergences and

theoretical analysis on their sample complexity are typically
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Figure 1. The distribution of the whole-slide prostate cancer im-

ages (LYSTO data set (Ciompi et al., 2019)) is rotation-invariant,

i.e., an image and its rotated copies are equiprobable.

studied without any a priori structural assumption on the

probability measures. Many distributions in real life, how-

ever, are known to have intrinsic structures, such as group

symmetry. For example, the distribution of the medical

images collected without preferred orientation should be

rotation-invariant, i.e., an image is supposed to have the

same likelihood as its rotated copies; see Figure 1. Such

structural information could be leveraged to improve the ac-

curacy and/or sample-efficiency for divergence estimation.

Indeed, the recent work by Birrell et al. (2022c) shows

that one can develop an improved variational representa-

tion for divergences between group-invariant distributions.

The key idea is to reduce the test function space in the

variational formula to its subset of group-invariant func-

tions, which effectively acts as an unbiased regularization.

When used in a generative adversarial network (GAN) for

group-invariant distribution learning, Birrell et al. (2022c)

empirically show that divergence estimation/optimization

based on their proposed variational representation under

group symmetry leads to significantly improved sample

generation, especially in the small data regime.

The purpose of this work is to rigorously quantify the perfor-

mance gain of divergence estimation under group symme-

try. More specifically, we analyze the reduction in sample

complexity of divergence estimation in terms of the (finite)

group size. We focus, in particular, on three types of proba-

bility divergences: the Wasserstein-1 metric, the maximum

mean discrepancy (MMD), and the family of Lipschitz-

regularized α-divergences; see Section 3.1 for the exact def-

inition. Our main results show that the reduction of samples

needed for guaranteed fidelity in statistical estimation of

divergences is proportional to a dimension-dependent power

of the group size; see Theorem 4.1 for the Wasserstein-1

metric and Theorem 4.8 for the Lipschitz-regularized α-
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divergences respectively. In the case of MMD, the reduction

in sample complexity due to the group invariance is more

nuanced and depends on the properties of the kernel; see

Theorem 4.10. As a byproduct, we also establish the consis-

tency and sample complexity for the Lipschitz-regularized

α-divergences without group symmetry, which, to the best

of our knowledge, is missing in the previous literature.

2. Related work

Empirical estimation of probability divergences. Prob-

ability divergences have been widely used, including in

generative adversarial networks (GANs) (Arjovsky et al.,

2017; Goodfellow et al., 2014; Nowozin et al., 2016; Birrell

et al., 2022c; Gulrajani et al., 2017), uncertainty quantifi-

cation (Chowdhary & Dupuis, 2013; Dupuis et al., 2016),

independence determination through mutual information

estimation (Belghazi et al., 2018), bounding risk in probably

approximately correct (PAC) learning (Catoni et al., 2008;

McAllester, 1999; Shawe-Taylor & Williamson, 1997),

statistical mechanics and interacting particles (Kipnis &

Landim, 1999), large deviations (Dupuis & Ellis, 2011), and

parameter estimation (Broniatowski & Keziou, 2009).

A growing body of literature has been dedicated to the em-

pirical estimation of divergences from finite data. Earlier

works based on density estimation are known to work best

for low dimensions (Kandasamy et al., 2015; PÂoczos et al.,

2011). Recent research has shown that statistical estima-

tors based on the variational representations of probability

divergences scale better with dimensions; such studies in-

clude the KL-divergences (Belghazi et al., 2018), the more

general f -divergences (Birrell et al., 2022b; Nguyen et al.,

2007; 2010; Ruderman et al., 2012; Sreekumar & Gold-

feld, 2022), RÂenyi divergences (Birrell et al., 2021; 2022d),

integral probability metrics (IPMs) (Sriperumbudur et al.,

2012; Gretton et al., 2006; 2007; 2012), and Sinkhorn diver-

gences (Genevay et al., 2019). Such estimators are typically

constructed to compare an arbitrary pair of probability mea-

sures without any a priori structural assumption, and are

hence sub-optimal in estimating divergences between distri-

butions with known structures, such as group symmetry.

Group-invariant distributions. Recent development in

group-equivariant machine learning (Cohen & Welling,

2016; Cohen et al., 2019; Weiler & Cesa, 2019) has sparked

a flurry of research in neural generative models for group-

invariant distributions. Most of the works focus only on

the guaranteed generation, through, e.g., an equivariant

normalizing-flow, of the group-invariant distributions (Biloš

& GÈunnemann, 2021; Boyda et al., 2021; Garcia Satorras

et al., 2021; KÈohler et al., 2019; Liu et al., 2019; Rezende

et al., 2019); the divergence computation between the gener-

ated distribution and the ground-truth target, a crucial step in

the optimization pipeline, however, does not leverage their

group-invariant structure. Equivariant GANs for group-

invariant distribution learning have also been proposed by

modifying the inner loop of discriminator update through

either data-augmentation (Zhao et al., 2020) or constrained

optimization within a subspace of group-invariant discrimi-

nators (Dey et al., 2021); the theoretical justification of such

procedures, as well as the resulting performance gain, have

been explained by Birrell et al. (2022c) as an improved esti-

mation of variational divergences under group symmetry via

an unbiased regularization. The exact quantification of the

improvement, in terms of reduction in sample complexity,

is however still missing; this is the main focus of this work.

3. Background and motivation

3.1. Variational divergences and probability metrics

Let X be a measurable space, and P(X ) be the set of proba-

bility measures on X . A map D : P(X )×P(X ) → [0,∞]
is called a divergence on P(X ) if

D(P,Q) = 0 ⇐⇒ P = Q ∈ P(X ), (1)

hence providing a notion of ªdistanceº between probability

measures. Many probability divergences of interest can be

formulated using a variational representation

D(P,Q) = sup
γ∈Γ

H(γ;P,Q), (2)

where Γ ⊂ M(X ) is a space of test functions, M(X ) is

the set of measurable functions on X , and H : M(X ) ×
P(X ) × P(X ) → [−∞,∞] is some objective functional.

Through suitable choices of H(γ;P,Q) and Γ, formula (2)

includes many divergences and probability metrics. Below

we list two specific classes of examples.

(a) Γ-Integral Probability Metrics (Γ-IPMs). Given Γ ⊂
Mb(X ), the space of bounded measurable functions on X ,

the Γ-IPM between P and Q is defined as

DΓ(P,Q) := sup
γ∈Γ

{EP [γ]− EQ[γ]} . (3)

Some prominent examples of the Γ-IPMs include the

Wasserstein-1 metric, the total variation metric, the Dud-

ley metric, and the maximum mean discrepancy (MMD)

(MÈuller, 1997; Sriperumbudur et al., 2012). Our work, in

particular, focuses on the following two specific IPMs.

• The Wasserstein-1 metric, W (P,Q) :=
DLipL(X )(P,Q), i.e.,

W (P,Q) := sup
γ∈LipL(X )

{EP [γ]− EQ[γ]}, (4)

where LipL(X ) is the space of L-Lipschitz functions

on X . We note that the normalizing factor L−1 has

been omitted from the formula.
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• The maximum mean discrepancy, MMD(P,Q) :=
DBH(P,Q), i.e.,

MMD(P,Q) := sup
γ∈BH

{EP [γ]− EQ[γ]}, (5)

where BH is the unit ball of some reproducing kernel

Hilbert space (RKHS) H on X .

(b) (f,Γ)-divergences. Let f : [0,∞) → R be convex and

lower semi-continuous, with f(1) = 0 and f strictly convex

at x = 1. Given Γ ⊂ Mb(X ) that is closed under the shift

transformations γ 7→ γ + ν, ν ∈ R, the (f,Γ)-divergence

introduced by Birrell et al. (2022a) is defined as

DΓ
f (P∥Q) = sup

γ∈Γ
{EP [γ]− EQ[f

∗(γ)]}, (6)

where f∗ denotes the Legendre transform of f . For-

mula (6) includes, as a special case when Γ = Mb(X ), the

widely known class of f -divergences, with notable examples

such as the Kullback-Leibler (KL) divergence (Kullback

& Leibler, 1951), the total variation distance, the Jensen-

Shannon divergence, the χ2-divergence, the Hellinger dis-

tance, and more generally the family of α-divergences

(Nowozin et al., 2016). Of particular interest to us is the

class of the Lipschitz-regularized α-divergences,

DΓ
fα(P∥Q), Γ = LipL(X ), fα(x) =

xα − 1

α(α− 1)
, (7)

where α > 0 and α ̸= 1 is a positive parameter.

An important observation that will be useful in one of our

results, Theorem 4.8, is that DΓ
fα

admits an equivalent rep-

resentation, which writes

DΓ
fα(P∥Q) = sup

γ∈Γ,ν∈R

{EP [γ+ν]−EQ[f
∗
α(γ+ν)]} (8)

due to the invariance of Γ = LipL(X ) under the shift map

γ 7→ γ + ν for ν ∈ R.

3.2. Empirical estimation of variational divergences

Given i.i.d. samples X = {x1, x2, · · · , xm} and Y =
{y1, y2, · · · , yn}, respectively, from two unknown probabil-

ity measures P,Q ∈ P(X ), it is often of interestÐin appli-

cations such as two-sample testing (Bickel, 1969; Gretton

et al., 2006; 2012; Cheng & Xie, 2021) and independence

testing (Gretton et al., 2007; 2012; Zhang et al., 2018; Kin-

ney & Atwal, 2014)Ðto estimate the divergence between

P and Q (Sriperumbudur et al., 2012; Birrell et al., 2021;

Nguyen et al., 2007; 2010). For variational divergences

DΓ(P,Q) and DΓ
f (P∥Q) in the form of (3) and (6), their

empirical estimators can naturally be given by

DΓ(Pm, Qn) = sup
γ∈Γ

{

m
∑

i=1

γ(xi)

m
−

n
∑

i=1

γ(yi)

n

}

, (9)

DΓ
f (Pm∥Qn) = sup

γ∈Γ

{

m
∑

i=1

γ(xi)

m
−

n
∑

i=1

f∗(γ(yi))

n

}

(10)

where Pm = 1
m

∑m
i=1 δxi

and Qn = 1
n

∑n
j=1 δyj

represent

the empirical distributions of P and Q, respectively.

The consistency and sample complexity of the empirical

estimators W (Pm, Qn) and MMD(Pm, Qn) in the form

of (9) for, respectively, the Wasserstein-1 metric (4) and

MMD (5) between two general distributions P,Q ∈ P(X )
have been well studied (Sriperumbudur et al., 2012; Gretton

et al., 2012). However, for probability measures with spe-

cial structures, such as group symmetry, one can potentially

obtain a divergence estimator with substantially improved

sample complexity as empirically observed by Birrell et

al. (2022c). We provide, in the following section, a brief

review of group-invariant distributions and the improved

variational representations for probability divergences under

group symmetry, which serves as a motivation and founda-

tion for our theoretical analysis in Section 4.

3.3. Variational divergences under group symmetry

A group is a set Σ equipped with a group product satisfying

the axioms of associativity, identity, and invertibility. Given

a group Σ and a set X , a map θ : Σ × X → X is called

a group action on X if θσ := θ(σ, ·) : X → X is an

automorphism on X for all σ ∈ Σ, and θσ2
◦ θσ1

= θσ2·σ1
,

∀σ1, σ2 ∈ Σ. By convention, we will abbreviate θ(σ, x) as

σx throughout the paper.

A function γ : X → R is called Σ-invariant if γ ◦ θσ =
γ, ∀σ ∈ Σ. Let Γ be a set of measurable functions γ : X →
R; its subset, ΓΣ, of Σ-invariant functions is defined as

ΓΣ := {γ ∈ Γ : γ ◦ θσ = γ, ∀σ ∈ Σ}. (11)

On the other hand, a probability measure P ∈ P(X )
is called Σ-invariant if P = (θσ)∗P, ∀σ ∈ Σ, where

(θσ)∗P := P ◦ (θσ)
−1 is the push-forward measure of P

under θσ . We denote the set of all Σ-invariant distributions

on X as PΣ(X ) := {P ∈ P(X ) : P is Σ-invariant}.

Finally, for a compact Hausdorff topological group Σ
(Folland, 1999), we define two symmetrization operators,

SΣ : Mb(X ) → Mb(X ) and SΣ : P(X ) → P(X ), on

functions and probability measures, respectively, as follows

SΣ[γ](x) :=

∫

Σ

γ(σx)µΣ(dσ), ∀γ ∈ Mb(X ) (12)

ESΣ[P ]γ := EPSΣ[γ], ∀P ∈ P(X ), ∀γ ∈ Mb(X ) (13)

where µΣ is the unique Haar probability measure on Σ. The

operators SΣ[γ] and SΣ[P ] can be intuitively understood,

respectively, as ªaveragingº the function γ or ª‘spreadingº

the probability mass P across the group orbits in X ; one
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can easily verify that they are projection operators onto

the corresponding invariant subsets ΓΣ ⊂ Γ and PΣ(X ) ⊂
P(X ) (Birrell et al., 2022c).

The main result by Birrel et al. (2022c), which we summa-

rize in Result 3.1, is that for Σ-invariant distributions, the

function space Γ in the variational formulae (3) and (6) can

be reduced to its invariant subset ΓΣ ⊂ Γ.

Result 3.1 (paraphrased from (Birrell et al., 2022c)). If

SΣ[Γ] ⊂ Γ and P,Q ∈ P(X), then

DΓ(SΣ[P ], SΣ[Q]) = DΓΣ(P,Q), (14)

DΓ
f (S

Σ[P ]∥SΣ[Q]) = DΓΣ

f (P∥Q), (15)

where DΓ(P,Q) and DΓ
f (P∥Q) are given by (3) and (6).

In particular, if P,Q ∈ PΣ(X ) are Σ-invariant, then

DΓ(P,Q) = DΓΣ(P,Q), DΓ
f (P∥Q) = DΓΣ

f (P∥Q).

Result 3.1 motivates a potentially more sample-efficient

way to estimate the divergences DΓ(P,Q) and DΓ
f (P∥Q)

between Σ-invariant distributions P,Q ∈ P(X ) using

DΓΣ(Pm, Qn) = sup
γ∈ΓΣ

{

m
∑

i=1

γ(xi)

m
−

n
∑

i=1

γ(yi)

n

}

, (16)

DΓΣ

f (Pm∥Qn) = sup
γ∈ΓΣ

{

m
∑

i=1

γ(xi)

m
−

n
∑

i=1

f∗(γ(yi))

n

}

.

(17)

Compared to Eq. (9) and (10), the estimators (16) and (17)

have the benefit of optimizing over a reduced space ΓΣ ⊂ Γ
of test functions, effectively acting as an unbiased regular-

ization, and their efficacy has been empirically observed by

Birrell et al. (2022c) in neural generation of group-invariant

distributions with substantially improved data-efficiency.

However, the theoretical understanding of the performance

gain is still lacking.

The purpose of this work is to rigorously quantify the im-

provement in sample complexity of the divergence estima-

tions (16) and (17) for group-invariant distributions. To

contextualize the idea, we will focus our analysis on three

specific types of probability divergences, the Wasserstein-1

metric (4), the MMD (5), and the Lipschitz-regularized α
divergence (6)(7) between Σ-invariant P,Q ∈ PΣ(X ),

W (P,Q) = WΣ(P,Q) ≈ WΣ(Pm, Qn), (18)

MMD(P,Q) = MMDΣ(P,Q) ≈ MMDΣ(Pm, Qn) (19)

DΓ
fα(P∥Q) = DΓΣ

fα
(P∥Q) ≈ DΓΣ

fα
(Pm∥Qn), (20)

where

WΣ(P,Q) := D[LipL(X )]Σ(P,Q), (21)

MMDΣ(P,Q) := D[BH]Σ(P,Q), (22)

and the definition of DΓΣ

fα
(P∥Q) is given by Equations (6),

(7) and (11).

3.4. Further notations and assumptions

For the rest of the paper, we assume the measurable space

X ⊂ R
d is a bounded subset of Rd equipped with the Eu-

clidean metric ∥·∥2 and the group Σ acting on X is assumed

to be finite, i.e., |Σ| < ∞, where |Σ| is the cardinality of

Σ. The Haar measure µΣ is thus a uniform probability mea-

sure over Σ, and the symmetrization SΣ[γ] [Eq. (12)] is an

average of γ over the group orbit. We next introduce the

concept of fundamental domain in the following definition.

Definition 3.1. A subset X0 ⊂ X is called a fundamental

domain of X under the Σ-action if for each x ∈ X , there

exists a unique x0 ∈ X0 such that x = σx0 for some σ ∈ Σ.
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Figure 2. The unit disk X ⊂ R
2 with the action of the (discrete)

rotation groups Σ = Cn, n = 1, 4, 16, 64. The fundamental

domain X0 for each Cn is filled with yellow color.

Figure 2 displays an example where X is the unit disk in

R
2, and Σ = Cn, n = 1, 4, 16, 64, are the discrete rota-

tion groups acting on X ; the fundamental domain X0 for

each Σ = Cn is filled with yellow color. We note that the

choice of the fundamental domain X0 is not unique. We

will slightly abuse the notation X = Σ× X0 to denote X0

being a fundamental domain of X under the Σ-action. We

define T0 : X → X0

T0(x) := y ∈ X0, if y = σx for some σ ∈ Σ, (23)

i.e., T0 maps x ∈ X to its unique orbit representative in X0.

In addition, we denote by PX0 ∈ P(X0) the distribution

on the fundamental domain X0 induced by a Σ-invariant

distribution P ∈ PΣ(X ) on X ; that is,

PX0
= (T0)♯P. (24)

The diameter of X ⊂ R
d is defined as

diam(X ) = sup
x,y∈X

∥x− y∥2. (25)

Finally, part of our results in Section 4 relies heavily on the

concept of covering numbers which we define below.
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Definition 3.2 (Covering number). Let (X , ρ) be a metric

space. A subset S ⊂ X is called a δ-cover of X if for

any x ∈ X there is an s ∈ S such that ρ(s, x) ≤ δ. The

δ-covering number of X is defined as

N (X , δ, ρ) := min {|S| : S is a δ-cover of X} .
When ρ(x, y) = ∥x − y∥2 is the Euclidean metric in R

d,

we abbreviate N (X , δ, ρ) as N (X , δ).

4. Sample complexity under group invariance

In this section, we outline our main results for the sample

complexity of divergence estimation under group invariance.

In particular, we focus on three cases: the Wasserstein-

1 metric (18), the MMD (19) and the (fα,Γ)-divergence

(20). While the convergence rate in the bounds for the

Wasserstein-1 metric and the (fα,Γ)-divergence depends on

the dimension of the ambient space, that for the MMD case

does not. In all the numerical experiments, for simplicity, we

choose X = {x1, x2, · · · , xm} and Y = {y1, y2, · · · , yn}
to sample from the same Σ-invariant distribution P = Q
for easy visualization and clear benchmark.

4.1. Wasserstein-1 metric, W (P,Q)

In this section, we set Γ = LipL(X ) to be the set of L-

Lipschitz functions on X ; see Eq. (4). We further assume

that the Σ-actions on X is 1-Lipschitz, i.e., ∥σx− σy∥2 ≤
∥x − y∥2, ∀σ ∈ Σ, ∀x, y ∈ X , so that SΣ[Γ] ⊂ Γ (see

Lemma A.3 for a proof). Due to Result 3.1, we have

W (P,Q) = WΣ(P,Q) for Σ-invariant probability mea-

sures P,Q ∈ PΣ(X ).

To convey the main message, we provide a summary of

our result in Theorem 4.1 for the sample complexity under

group invariance for the Wasserstein-1 metric. The detailed

statement and the technical assumption of the theorem as

well as its proof are deferred to Appendix A.1. Readers are

referred to Section 3 for the notations.

Theorem 4.1. Let X = Σ×X0 be a subset of Rd equipped

with the Euclidean distance. Suppose P,Q ∈ PΣ(X ) are Σ-

invariant distributions on X . If the number m,n of samples

drawn from P and Q are sufficiently large, then we have

with high probability,

1) when d ≥ 2, for any s > 0 ,
∣

∣W (P,Q)−WΣ(Pm, Qn)
∣

∣

≤ C

[

(

1

|Σ|m

)
1

d+s

+

(

1

|Σ|n

)
1

d+s

]

, (26)

where C > 0 depends only on d, s and X , and is indepen-

dent of m and n;

2) for d = 1, we have
∣

∣W (P,Q)−WΣ(Pm, Qn)
∣

∣

≤ C · diam(X0)

(

1√
m

+
1√
n

)

, (27)

where C > 0 is an absolute constant independent of

X ,X0,m and n.

Remark 4.2. In the case for d ≥ 2, the s > 0 in

Theorem 4.1 means the rate can be arbitrarily close to

− 1
d . If we further assume that X0 is connected, then the

bound can be improved to
∣

∣W (P,Q)−WΣ(Pm, Qn)
∣

∣ ≤

C

[

(

1
|Σ|m

)
1
2

lnm+
(

1
|Σ|n

)
1
2

lnn

]

for d = 2, and

∣

∣W (P,Q)−WΣ(Pm, Qn)
∣

∣ ≤ C

[

(

1
|Σ|m

)
1
d

+
(

1
|Σ|n

)
1
d

]

for d ≥ 3, without the dependence of s, which matches the

rate in (Fournier & Guillin, 2015). See Remark A.7 after

Lemma A.6 in the Appendix.

Sketch of the proof. Using the group invariance and the map

T0 defined in (23), we can transform the i.i.d. samples on

X to i.i.d. samples on X0, which are effectively sampled

from PX0
and QX0

[cf. Eq. (24)]. Hence the supremum

after applying the triangle inequality to the error (26) can be

taken over L-Lipschitz functions defined on the fundamental

domain X0, i.e., LipL(X0), instead of over the original space

LipL(X ). We further demonstrate in Lemma A.4 that the

supremum can be taken over an even smaller function space

F0 = {γ ∈ LipL(X0) : ∥γ∥∞ ≤ M} ⊂ LipL(X0), (28)

with some uniformly bounded L∞-norm M due to the

translation-invariance of γ in definition (4). Using Dud-

ley’s entropy integral (Bartlett et al., 2017), the error can be

bounded in terms of the metric entropy of F0 with m i.i.d.

samples,

inf
α>0

{

8α+
24√
m

∫ M

α

√

lnN (F0, δ, ∥·∥∞) dδ

}

. (29)

For d ≥ 2, we establish the relations between the metric en-

tropy, lnN (F0, δ, ∥·∥∞), of F0 and the covering numbers

of X0 and X via Lemma A.6 and Lemma A.8:

lnN (F0, δ, ∥·∥∞) ≤ N (X0,
c2δ

L
) ln(

c1M

δ
), (30)

N (X0, δ)

N (X , δ)
≤ 1

|Σ| , for small enough δ, (31)

which yields a factor in terms of the group size |Σ| in

Eq. (26). The dominant term of the bound based on the

singularity of the entropy integral at α = 0 is shown in

Eq. (26). For d = 1, the entropy integral is not singular

at the origin, and we bound the covering number of F0

by diam(X0) instead. The probability bound is from the

application of the McDiarmid’s inequality.

Remark 4.3. Even though we present in Theorem 4.1 only

the dominant terms showing the rate of convergence for

5



Sample Complexity of Probability Divergences under Group Symmetry

the estimator, our result for sample complexity is actually

non-asymptotic. See Theorem A.2 in Appendix A.1 for a

complete description of the result.

Remark 4.4. When |Σ| = 1, i.e., no group symmetry is

leveraged in the divergence estimation, our result reduces

to the case considered in, e.g., (Sriperumbudur et al., 2012),

for general distributions P,Q ∈ PΣ(X ) = P(X ).

Remark 4.5. The factor diam(X0) in the case for d = 1
is not necessarily directly related to the group size |Σ|.
We refer to Example 4.6 below and its explanation in Re-

mark A.10 for cases where we can achieve a factor of |Σ|−1

in the rate.

Example 4.6. Let X = [0, 1) and Γ = LipL ([0, 1)),
i.e., d = 1. We consider the Σ-actions on X gener-

ated by the translation x 7→ (x + 1
r ) mod 1, where

r = 1, 4, 16, 64, 256, so that |Σ| = r is the group size. We

draw samples xi ∼ P = Q ∈ PΣ(X ) on X in the following

way: xi = r−1ξ
1/3
i + ηi, where ξi are i.i.d. uniformly dis-

tributed random variables on [0, 1) and ηi take values over

{0, 1
r , . . . ,

r−1
r } with equal probabilities. One can easily

verify that P = Q are indeed Σ-invariant. The numeri-

cal results for the empirical estimation of W (P,Q) = 0
using WΣ(Pn, Qn) with different group size |Σ| = r,

r = 1, 4, 16, 64, 256, are shown in the left panel of Fig-

ure 3. One can clearly observe a significant improvement of

the estimator as the group size |Σ| increases. Furthermore,

the right panel of Figure 3 displays the ratios between the

adjacent curves, all of which converge to 4, which is the

ratio between the consecutive group size. This matches our

calculation in Remark A.10; see also Remark 4.5.

Example 4.7. We let X = R
2, i.e., d = 2. The proba-

bility distributions P = Q are the mixture of 8 Gaussians

centered at
(

cos( 2πr8 ), sin( 2πr8 )
)

, r = 0, 1, . . . , 7, with the

same covariance. The distribution has C8-rotation symme-

try, but we pretend that it is only C1, C2 and C4; that is,

the Σ used in the empirical estimation WΣ(Pm, Qn) does

not reflect the entire invariance structure. Even though in

this case the domain X is unbounded, which is beyond our

theoretical assumptions, we can still see in Figure 4 that

as we increase the group size |Σ| in the computation of

WΣ(Pm, Qn), fewer samples are needed to reach the same

accuracy level in the approximation. The ratios between

adjacent curves in this case are slightly above the predicted

value
√
2 ≈ 1.414 according to our theory (see Remark 4.2),

suggesting that the complexity bound could be further im-

proved. For instance, in (Sriperumbudur et al., 2012), a

logarithmic correction term can be revealed for d = 2 after

a more thorough analysis.

4.2. Lipschitz-regularized α-divergence, DΓ
fα
(P∥Q)

The Lipschitz-regularized α-divergence is used in the

symmetry-preserving GANs (Birrell et al., 2022c), where it
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Figure 3. Left: the Wasserstein-1 distance with different group

sizes on [0, 1), averaged over 10 replicas. Right: the ratio of the

average of the Wasserstein-1 distance between different group

sizes: |Σ| = 1 over |Σ| = 4 (blue), |Σ| = 4 over |Σ| = 16 (red),

|Σ| = 16 over |Σ| = 64 (orange), |Σ| = 64 over |Σ| = 256
(purple). The black horizontal dashed line refers to the ratio equal

to 4, which is the value theoretically predicted in Theorem 4.1 for

d = 1. See Example 4.6 and Remark A.10 for the detail.
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Figure 4. Left: The Wasserstein-1 distance assuming different

group sizes in R
2, averaged over 10 replicas. Right: the ratio

of the average of the Wasserstein-1 distance between different

group sizes: |Σ| = 1 over |Σ| = 2 (blue), |Σ| = 2 over |Σ| = 4
(red). The black horizontal dashed line refers to the ratio equal to√
2, which is the value theoretically predicted in Theorem 4.1 for

d = 2. The ratios are slightly above the reference line, suggesting

that the complexity bound could be further improved. See Exam-

ple 4.7 and Remark 4.2 for the detail.

allowed them to systematically include symmetries and gave

a vastly improved performance on real data sets. The space

Γ in this section is always set to Γ = LipL(X ); see Eq. (7).

We only consider α > 1, as the case when 0 < α < 1 can

be derived in a similar manner. For α > 1, the Legendre

transform of fα, which is defined in (7), is

f∗
α(y) =

(

α−1(α− 1)
α

α−1 y
α

α−1 +
1

α(α− 1)

)

1y>0.

We provide a theorem for the sample complexity for the

(fα,Γ)-divergence under group invariance, whose detailed

statement and proof can be found in Appendix A.2. We note

that this is a new sample complexity result for the (fα,Γ)-
divergence even without the group structure, which is still

missing in the literature.

Theorem 4.8. Let X = Σ×X0 be a subset of Rd equipped

with the Euclidean distance. Let fα(x) =
xα−1

α(α−1) , α > 1

6
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and Γ = LipL(X ). Suppose P and Q are Σ-invariant

distributions on X . If the number of samples m,n drawn

from P and Q are sufficiently large, we have with high

probability,

1) when d ≥ 2, for any s > 0 ,

∣

∣

∣DΓ
fα(P∥Q)−DΓΣ

fα
(Pm∥Qn)

∣

∣

∣

≤ C1

(

1

|Σ|m

)
1

d+s

+ C2

(

1

|Σ|n

)
1

d+s

, (32)

where C1 depends only on d, s and X ; C2 depends only on

d, s, X and α; both C1 and C2 are independent of m and

n;

2) for d = 1, we have

∣

∣

∣DΓ
fα(P∥Q)−DΓΣ

fα
(Pm∥Qn)

∣

∣

∣

≤ diam(X0)

(

C1√
m

+
C2√
n

)

, (33)

where C1 and C2 are independent of X0, m and n; C2

depends on α.

Sketch of the proof. The idea is similar to the proof of

Theorem 4.1. The only difference is that we need to tackle

the f∗
α(γ) term separately, since it is not translation-invariant

in γ. Using the equivalent form (8), we can obtain a different

Lipschitz constant associated with f∗
α, as well as a different

L∞ bound M than that in Eq. (28) by Lemma A.12. This

results in the α dependence for C2.

4.3. Maximum mean discrepancy, MMD(P,Q)

Though one can utilize the results on the covering number

of the unit ball of a reproducing kernel Hilbert space, e.g.

(Zhou, 2002; KÈuhn, 2011), to derive the sample complex-

ity bounds that depend on the dimension d, we provide a

dimension-independent bound as in (Gretton et al., 2012)

without the use of the covering numbers. In the MMD case,

we let BH represent the unit ball in some reproducing kernel

Hilbert space (RKHS) H on X ; see Eq. (5). In addition, we

make the following assumptions for the kernel k(x, y).

Assumption 4.9. The kernel k(x, y) for H satisfies

• k(x, y) ≥ 0 and k(σ(x), σ(y)) = k(x, y), ∀σ ∈
Σ, x, y ∈ X ;

• Let K := maxx,y∈X k(x, y), then k(x, y) = K if and

only if x = y;

• There exists cΣ,k ∈ (0, 1) such that for any σ ∈ Σ
and σ is not the identity element and x ∈ X0, we have

k(σx, x) ≤ cΣ,kK.

Intuitively, the third condition in Assumption 4.9 suggests

uniform decay of the kernel on the group orbits. See Re-

mark 4.12 and Example 4.13 for more details and a related

example.

From Lemma C.1 in (Birrell et al., 2022c), we know

SΣ[Γ] ⊂ Γ by the first assumption. Below is an abbrevi-

ated result for the sample complexity for the MMD, whose

detailed statement and proof can be found in Appendix A.3.

Theorem 4.10. Let X = Σ×X0 be a subset of Rd. H is a

RKHS on X whose kernel satisfies Assumption 4.9. Suppose

P and Q are Σ-invariant distributions on X . Then for m,n
sufficiently large, we have with high probability,

∣

∣MMD(P,Q)− MMDΣ(Pm, Qn)
∣

∣

< O

(

CΣ,k

(

1√
m

+
1√
n

))

, (34)

where CΣ,k =
√

1+cΣ,k(|Σ|−1)
|Σ| , and cΣ,k is the constant in

Assumption 4.9.

Sketch of the proof. Based on Result 3.1, we use the equality

MMDΣ(Pm, Qn) = MMD(SΣ[Pm], SΣ[Qn]) to expand

the divergence over all the orbit elements. The error bound

is controlled in terms of the Rademacher average, whose

supremum is attained at some known witness function due

to the structure of the RKHS using Lemma A.14. Since the

Rademacher average is estimated without covering numbers,

the rate is independent of the dimension d. Then we use the

decay of the kernel to obtain the bound.

Remark 4.11. When |Σ| = 1, the proof is reduced to that in

(Sriperumbudur et al., 2012).

Remark 4.12. Unlike the cases for the Wasserstein metric

and the Lipschitz-regularized α-divergence in Theorem 4.1

and Theorem 4.8, the improvement of the sample complex-

ity under group symmetry for MMD (measured by CΣ,k in

Theorem 4.10) depends on not only the group size |Σ| but

also the kernel k(x, y). For a fixed X and kernel k(x, y),
simply increasing the group size |Σ| does not necessarily

lead to a reduced sample complexity beyond a certain thresh-

old; see the first four subfigures in Figure 5. However,

we show in Example 4.13 below that, by adaptively pick-

ing a suitable kernel k depending on the group size |Σ|,
one can obtain an improvement in sample complexity by

CΣ,k ≈ 1√
|Σ|

for arbitrarily large |Σ|.

Example 4.13. Let X = {(r cos θ, r sin θ) ∈ R
2 : r ∈

[0, 1], θ ∈ [0, 2π)} be the unit disk centered at the origin,

and let ks(x, y) = e−
∥x−y∥22

2s2 , x, y ∈ X , be the Gaussian

kernel. Consider the group actions generated by a rotation

(with respect to the origin) of 2π
l , l = 1, 4, 16, 64, 256, so

that |Σ| = l is the group size. The fundamental domain X0

under the Σ-action is X0 = [0, 1] × [0, 2π
l ) (see Figure 2
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Figure 5. MMD simulations with Gaussian kernels ks(x, y) =

e
−

∥x−y∥22
2s2 . From left to right, top to bottom: s = 2π

1×6
, s = 2π

4×6
,

s = 2π
16×6

, s = 2π
64×6

, s = 2π
6|Σ|

. The first four subfigures (top

two rows) show that the Gaussian kernel with a fixed bandwidth

s > 0 satisfies the third condition in Assumption 4.9 up to a group

size of |Σ| = l, l = 1, 4, 16, 64, and thus an improvement of

sample complexity of order CΣ,k ≈ |Σ|−1/2
persists till |Σ| = l;

when |Σ| > l, no further reduction in sample complexity can be

observed. The last subfigure demonstrates that with an adaptive

bandwidth s inversely scaled with |Σ|, nonstop improvement of the

sample complexity can be achieved as the group size |Σ| increases.

See Example 4.13 for the detail and explanations.

for a visual illustration). We draw samples xi ∼ P = Q ∈
PΣ(X ) in the following way,

xi =
√

ξi

(

cos

[

2π

l
θ
1/3
i + ηi

2π

l

]

, sin

[

2π

l
θ
1/3
i + ηi

2π

l

])

where ξi and θi are i.i.d. uniformly distributed random

variables on [0, 1) and ηi take values over {0, 1
l , . . . ,

l−1
l }

with equal probabilities. We select the kernel bandwidth

s > 0 in different ways:

• Fixed s with changing group size |Σ| = l. We intu-

itively follow the ªthree-sigma ruleº in the argument di-

rection to pick different s. Since the angle of each sec-

tor is 2π
l , we select s = 2π

6l , l = 1, 4, 16, 64. Smaller

bandwidth s corresponds to faster decay of the kernel

ks(x, y), such that for a fixed bandwidth s = 2π
6l , the

third condition in 4.9 is satisfied with a small ck for

any group Σ such that |Σ| ≤ l, i.e., CΣ,k ≈ |Σ|−1/2
.

On the other hand, it is difficult to observe the improve-

ment by further increasing the group size |Σ| beyond

|Σ| > l, since the third condition in 4.9 is not satisfied

with any uniformly small c. See the top two rows in

Figure 5 for the results for s = 2π
l×6 , l = 1, 4, 16, 64.

Notice that the sample complexity improvement stops

right at |Σ| = l, perfectly matching our theoretical

result Theorem 4.10.

• s inversely scales with |Σ|, i.e., s = 2π
6|Σ| . Unlike

the fixed s discusses previously, with these adaptive

selections of kernels, we can observe nonstop improve-

ment of the sample complexity as the group size |Σ|
increases; see the last row of Figure 5. This numerical

result is explained by the third condition in Assump-

tion 4.9; that is, in order to continuously observe the

benefit from the increasing group size |Σ|, we need to

have a faster decay in the kernel ks (i.e., smaller s) so

that cΣ,ks
is uniformly small for all |Σ|.

Remark 4.14. The bound provided in Theorem 4.10 for the

MMD case is almost sharp in the sense that, by a direct

calculation, one can obtain that

EX MMDΣ(P, Pn)
2

EX MMD(P, Pn)2
≈ C2

Σ,k,

if the kernel bandwidth s ∝
√

2cΣ,kπ

|Σ| .

5. Conclusion and future work

We provide rigorous analysis to quantify the reduction in

sample complexity for variational divergence estimations be-

tween group-invariant distributions. We obtain a reduction

on the error bound by a power of the group size. The expo-

nent on the group size depends on the ambient dimension

for the Wasserstein-1 metric and the Lipschitz-regularized

α-divergence; that exponent, however, is independent of the

ambient dimension for the MMD with a proper choice of

the kernel.

This work also motivates some possible future directions.

For the Wasserstein-1 metric in R
2, one could potentially

derive a sharper bound in terms of the group size. For the

MMD with Gaussian kernels, it is worth investigating how

to choose the bandwidth to make as much use of the group

structure as possible. Further applications of the theories

on machine learning, such as neural generative models or

neural estimations of divergence under symmetry, are also

expected.
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A. Theorems and Proofs

In this section, we provide detailed statements of the theorems introduced in the main text as well as their proofs.

A.1. Wasserstein-1 metric

Assumption A.1. Let X = Σ×X0 ⊂ R
d. Assume that there exists some δ0 > 0 such that

1) ∥σ(x)− σ′(x′)∥2 > 2δ0, ∀x, x′ ∈ X0, σ ̸= σ′ ∈ Σ; and

2) ∥σ(x)− σ(x′)∥2 ≥ ∥x− x′∥2, ∀x, x′ ∈ X0, σ ∈ Σ,

where ∥ · ∥2 is the Euclidean norm on R
d.

Example 4.6 provides a simple example when this assumption holds.

Theorem A.2. Let X = Σ × X0 be a subset of Rd satisfying the conditions in Assumption A.1. Suppose P and Q are

Σ-invariant probability measures on X .

1) If d ≥ 2, then for any s > 0, ϵ > 0 and m,n sufficiently large, we have with probability at least 1− ϵ,

∣

∣W (P,Q)−WΣ(Pm, Qn)
∣

∣ ≤
(

8 +
24

(d+s
2 − 1)

)





(

9D2
X ,L

|Σ|m

)
1

d+s

+

(

9D2
X ,L

|Σ|n

)
1

d+s





+ D̄X0,L

(

24√
m

+
24√
n

)

+ L · diam(X0)

√

2(m+ n)

mn
ln

1

ϵ
,

where DX ,L depends only on X and L; D̄X0,L depends only on X0 and L, and is increasing in X0, i.e., D̄A1,L ≤ D̄A2,L

for A1 ⊂ A2;

2) If d = 1, then for any ϵ > 0 and m,n sufficiently large, we have with probability at least 1− ϵ,

∣

∣W (P,Q)−WΣ(Pm, Qn)
∣

∣ ≤ cL · diam(X0)

(

1√
m

+
1√
n

)

+ L · diam(X0)

√

2(m+ n)

mn
ln

1

ϵ
,

where c > 0 is an absolute constant independent of X and X0.

Before proving this theorem, we have the following lemmas.

Lemma A.3. Suppose the Σ-actions on X are 1-Lipschitz, i.e., ∥σx− σy∥2 ≤ ∥x− y∥2 for any x, y ∈ X and σ ∈ Σ, then

we have SΣ[Γ] ⊂ Γ, where Γ = LipL(X ).

Proof. For any x, y ∈ X and f ∈ Γ, we have

|SΣ(f)(x)− SΣ(f)(y)| =
∣

∣

∣

∣

∣

1

|Σ|
∑

σ∈Σ

f (σx)− 1

|Σ|
∑

σ∈Σ

f (σy)

∣

∣

∣

∣

∣

≤ 1

|Σ|
∑

σ∈Σ

|f (σx)− f (σy)|

≤ 1

|Σ|
∑

σ∈Σ

L ∥σx− σy∥2

≤ 1

|Σ|
∑

σ∈Σ

L ∥x− y∥2

= L ∥x− y∥2 .

Therefore, we have SΣ(f) ∈ Γ.
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Lemma A.4. For any γ ∈ LipL(X0), there exists ν ∈ R, such that ∥γ + ν∥∞ ≤ L · diam(X0).

Proof. Suppose γ ∈ LipL(X0) and ∥γ(x)∥∞ > L · diam(X0). Without loss of generality, we can assume supx∈X0
γ(x) >

L · diam(X0). Since γ is L-Lipschitz on X0, we have supx∈X0
γ(x)− infx∈X0

γ(x) ≤ L · diam(X0), so that

inf
x∈X0

γ(x) ≥ sup
x∈X0

γ(x)− L · diam(X0) > 0.

Hence we can select ν = − infx∈X0
γ(x)

2 , so that ∥γ + ν∥∞ < ∥γ∥∞.

We provide a variant of the Dudley’s entropy integral as well as its proof for completeness.

Lemma A.5. Suppose F is a family of functions mapping the metric space (X , ρ) to [−M,M ] for some M > 0. Also

assume that 0 ∈ F and F = −F . Let ξ = {ξ1, . . . , ξm} be a set of independent random variables that take values on

{−1, 1} with equal probabilities, i = 1, . . . ,m. x1, x2, . . . , xm ∈ X . Then we have

Eξ sup
f∈F

∣

∣

∣

∣

∣

1

m

m
∑

i=1

ξif(xi)

∣

∣

∣

∣

∣

≤ inf
α>0

4α+
12√
m

∫ M

α

√

lnN (F , δ, ∥·∥∞) dδ.

The proof of Lemma A.5 is standard using the dyadic path., e.g. see the proof of Lemma A.5. in (Bartlett et al., 2017).

Proof. Let N be an arbitrary positive integer and δk = M2−(k−1), k = 1, . . . , N . Let Vk be the cover achieving

N (F , δk, ∥·∥∞) and denote |Vk| = N (F , δk, ∥·∥∞). For any f ∈ F , let πk(f) ∈ Vk, such that ∥f − πk(f)∥∞ ≤ δk. We

have

Eξ sup
f∈F

∣

∣

∣

∣

∣

1

m

m
∑

i=1

ξif(xi)

∣

∣

∣

∣

∣

≤ Eξ sup
f∈F

∣

∣

∣

∣

∣

1

m

m
∑

i=1

ξi (f(xi)− πN (f)(xi))

∣

∣

∣

∣

∣

+

N−1
∑

j=1

Eξ sup
f∈F

∣

∣

∣

∣

∣

1

m

m
∑

i=1

ξi (πj+1(f)(xi)− πj(f)(xi))

∣

∣

∣

∣

∣

+ Eξ sup
f∈F

∣

∣

∣

∣

∣

1

m

m
∑

i=1

ξiπ1(f)(xi)

∣

∣

∣

∣

∣

.

The first on the right hand side is bounded by δN . Note that we can choose V1 = {0}, so that π1(f) is the zero function. For

each j, let Wj = {πj+1(f)− πj(f) : f ∈ F}. We have |Wj | ≤ |Vj+1| |Vj | ≤ |Vj+1|2. Then we have

N−1
∑

j=1

Eξ sup
f∈F

∣

∣

∣

∣

∣

1

m

m
∑

i=1

ξi (πj+1(f)(xi)− πj(f)(xi))

∣

∣

∣

∣

∣

=

N−1
∑

j=1

Eξ sup
w∈Wj

∣

∣

∣

∣

∣

1

m

m
∑

i=1

ξiw(xi)

∣

∣

∣

∣

∣

.

In addition, we have

sup
w∈Wj

√

√

√

√

m
∑

i=1

w(xi)2

= sup
f∈F

√

√

√

√

m
∑

i=1

(πj+1(f)(xi)− πj(f)(xi))
2

≤ sup
f∈F

√

√

√

√

m
∑

i=1

(πj+1(f)(xi)− f(xi))
2
+ sup

f∈F

√

√

√

√

m
∑

i=1

(f(xi)− πj(f)(xi))
2

≤
√

m · δ2j+1 +
√

m · δ2j
=

√
m(δj+1 + δj)
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= 3
√
mδj+1.

By the Massart finite class lemma (see, e.g. (Mohri et al., 2018)), we have

Eξ sup
w∈Wj

∣

∣

∣

∣

∣

1

m

m
∑

i=1

ξiw(xi)

∣

∣

∣

∣

∣

≤ 3
√
mδj+1

√

2 ln |Wj |
m

≤ 6δj+1

√

ln |Vj+1|√
m

.

Therefore,

Eξ sup
f∈F

∣

∣

∣

∣

∣

1

m

m
∑

i=1

ξif(xi)

∣

∣

∣

∣

∣

≤ δN +
6√
m

N−1
∑

j=1

δj+1

√

lnN (F , δj+1, ∥·∥∞)

≤ δN +
12√
m

N
∑

j=1

(δj − δj+1)
√

lnN (F , δj , ∥·∥∞)

≤ δN +
12√
m

∫ M

δN+1

√

lnN (F , δ, ∥·∥∞) dδ.

Finally, select any α ∈ (0,M) and let N be the largest integer with δN+1 > α, (implying δN+2 ≤ α and δN = 4δN+2 ≤
4α), so that

δN +
12√
m

∫ M

δN+1

√

lnN (F , δj , ∥·∥∞) dδ ≤ 4α+
12√
m

∫ M

α

√

lnN (F , δ, ∥·∥∞) dδ.

We can easily extend Lemma 6 in (Gottlieb et al., 2017) to the following lemma by meshing on the range [−M,M ] rather

than [0, 1].

Lemma A.6. Let F be the family of L-Lipschitz functions mapping the metric space (X , ∥·∥2) to [−M,M ] for some

M > 0. Then we have

N (F , δ, ∥·∥∞) ≤ (
c1M

δ
)N (X ,

c2δ

L
),

where c1 ≥ 1 and c2 ≤ 1 are some absolute constants not depending on X , M , and δ.

Remark A.7. If X is connected, then the bound can be improved to N (F , δ, ∥·∥∞) ≤ eN (X ,
c2δ

L
) by the result in (Kol-

mogorov, 1961).

Lemma A.8 (Theorem 3 in (Sokolic et al., 2017)). Assume that X = Σ×X0. If for some δ > 0 we have

1) ∥σ(x)− σ′(x′)∥2 > 2δ, ∀x, x′ ∈ X0, σ ̸= σ′ ∈ Σ; and

2) ∥σ(x)− σ(x′)∥2 ≥ ∥x− x′∥2, ∀x, x′ ∈ X0, σ ∈ Σ,

then we have
N (X0, δ)

N (X , δ)
≤ 1

|Σ| .

In addition, we provide the following lemma for the scaling of covering numbers.

Lemma A.9. Let X be a subset of Rd and δ̄ > 0. Then there exists a constant Cd,δ̄ that depends on d and δ̄ such that for

δ ∈ (0, 1) we have

N (X , δ) ≤ Cd,δ̄ ·
N (X , δ̄)

δd
.

Proof. Let N := N (X , δ̄). Then X can be covered by N balls with radius δ̄. From Proposition 4.2.12 in (Vershynin, 2018),

we know that each ball with radius δ̄ can be covered by
(δ̄+δ/2)d

(δ/2)d
balls with radius δ. This implies that X can be covered by

N · (δ̄+δ/2)d

(δ/2)d
balls with radius δ, so that N ext(X , δ) ≤ N · (δ̄+δ/2)d

(δ/2)d
, where N ext(X , δ) is the exterior covering number of X

with radius δ. Therefore, N (X , δ) ≤ N ext(X , δ/2) ≤ N · (δ̄+δ/4)d

(δ/4)d
= N · ( 4δ̄δ + 1)d ≤ N · (4δ̄+1)d

δd
.
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Proof of Theorem A.2.

∣

∣W (P,Q)−WΣ(Pm, Qn)
∣

∣

=

∣

∣

∣

∣

sup
γ∈ΓΣ

{EP [γ]− EQ[γ]} − sup
γ∈ΓΣ

{EPm
[γ]− EQn

[γ]}
∣

∣

∣

∣

≤ sup
γ∈ΓΣ

∣

∣

∣

∣

∣

EP [γ]−
1

m

m
∑

i=1

γ(xi)−
(

EQ[γ]−
1

n

n
∑

i=1

γ(yi)

)∣

∣

∣

∣

∣

= sup
γ∈ΓΣ

∣

∣

∣

∣

∣

EP [γ]−
1

m

m
∑

i=1

γ (T0(xi))−
(

EQ[γ]−
1

n

n
∑

i=1

γ (T0(yi))

)∣

∣

∣

∣

∣

(a)

≤ sup
γ∈LipL(X0)

∣

∣

∣

∣

∣

EPX0
[γ]− 1

m

m
∑

i=1

γ (T0(xi))−
(

EQX0
[γ]− 1

n

n
∑

i=1

γ (T0(yi))

)∣

∣

∣

∣

∣

(35)

:= f(x1, . . . , xm, y1, . . . , yn),

where inequality (a) is due to the fact that EP [γ] = EPX0
[γ|X0 ] and EQ[γ] = EQX0

[γ|X0 ] since P and Q are both

Σ-invariant and γ ∈ ΓΣ, and the fact that if γ ∈ ΓΣ, then γ|X0 ∈ LipL(X0), where γ|X0 is the restriction of γ on X0.

Note that the quantity inside the absolute value in (35) will not change if we replace γ by γ + ν and we still have

γ+ ν ∈ LipL(X0) for any ν ∈ R. Therefore, by Lemma A.4, the supremum in (35) can be taken over γ ∈ LipL(X0), where

∥γ∥∞ ≤ L · diam(X0). The denominator in the exponent when applying the McDiarmid’s inequality is thus equal to

m

(

2L · diam(X0)

m

)2

+ n

(

2L · diam(X0)

n

)2

= 4L2 · diam(X0)
2m+ n

mn
. (36)

Denoting by X ′ = {x′
1, x

′
2, . . . , x

′
m} and Y ′ = {y′1, y′2, . . . , y′n} the i.i.d. samples drawn from PX0

and QX0
. Also note that

T0(x1), . . . , T0(xm) and T0(y1), . . . , T0(yn) can be viewed as i.i.d. samples on X0 drawn from PX0
and QX0

respectively,

such that the expectation

EX,Y f(x1, x2, . . . , xm, y1, y2, . . . , yn)

= EX,Y sup
γ∈LipL(X0)

∣

∣

∣

∣

∣

EPX0
[γ]− 1

m

m
∑

i=1

γ(T0(xi))−
(

EQX0
[γ]− 1

n

n
∑

i=1

γ(T0(yi))

)∣

∣

∣

∣

∣

can be replaced by the equivalent quantity

EX,Y sup
γ∈LipL(X0)

∣

∣

∣

∣

∣

EPX0
[γ]− 1

m

m
∑

i=1

γ(xi)−
(

EQX0
[γ]− 1

n

n
∑

i=1

γ(yi)

)∣

∣

∣

∣

∣

,

where X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn} are are i.i.d. samples on X0 drawn from PX0
and QX0

respectively.

Then we have

EX,Y sup
γ∈LipL(X0)

∣

∣

∣

∣

∣

EPX0
[γ]− 1

m

m
∑

i=1

γ(xi)−
(

EQX0
[γ]− 1

n

n
∑

i=1

γ(yi)

)∣

∣

∣

∣

∣

= EX,Y sup
γ∈LipL(X0)

∣

∣

∣

∣

∣

EX′

(

1

m

m
∑

i=1

γ(x′
i)

)

− 1

m

m
∑

i=1

γ(xi)− EY ′

(

1

n

n
∑

i=1

γ(y′i)

)

+
1

n

n
∑

i=1

γ(yi)

∣

∣

∣

∣

∣

≤ EX,Y,X′,Y ′ sup
γ∈LipL(X0)

∣

∣

∣

∣

∣

1

m

m
∑

i=1

γ(x′
i)−

1

m

m
∑

i=1

γ(xi)−
1

n

n
∑

i=1

γ(y′i) +
1

n

n
∑

i=1

γ(yi)

∣

∣

∣

∣

∣

= EX,Y,X′,Y ′,ξ,ξ′ sup
γ∈LipL(X0)

∣

∣

∣

∣

∣

1

m

m
∑

i=1

ξi (γ(x
′
i)− γ(xi))−

1

n

n
∑

i=1

ξ′i (γ(y
′
i)− γ(yi))

∣

∣

∣

∣

∣

≤ EX,X′,ξ sup
γ∈LipL(X0)

∣

∣

∣

∣

∣

1

m

m
∑

i=1

ξi (γ(x
′
i)− γ(xi))

∣

∣

∣

∣

∣

+ EY,Y ′,ξ′ sup
γ∈LipL(X0)

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ξ′i (γ(y
′
i)− γ(yi))

∣

∣

∣

∣

∣
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≤ inf
α>0

8α+
24√
m

∫ M

α

√

lnN (F0, δ, ∥·∥∞) dδ + inf
α>0

8α+
24√
n

∫ M

α

√

lnN (F0, δ, ∥·∥∞) dδ,

where F0 = {γ ∈ LipL(X0) : ∥γ∥∞ ≤ M} and M = L · diam(X0) by Lemma A.4.

For d ≥ 2, from Lemma A.6, we have lnN (F0, δ, ∥·∥∞) ≤ N (X0,
c2δ
L ) ln( c1Mδ ). We fix a δ̄ > 0 such that N (X , c2δ̄

L ) = 1,

and select δ∗ such that c2δ
∗

L ≤ 1 and c2δ
∗

L ≤ δ0; that is, δ∗ ≤ min
(

L
c2
, Lδ0

c2

)

, so that by Lemma A.8 and A.9, we have

N (X0,
c2δ

L
) ln(

c1M

δ
) ≤ N (X , c2δ

L )

|Σ| ln(
c1M

δ
) ≤ Cd,δ̄L

d

|Σ| cd2δd
ln(

c1M

δ
),

when δ < δ∗. Therefore, for sufficiently small α, we have

∫ M

α

√

lnN (F0, δ, ∥·∥∞) dδ

=

∫ δ∗

α

√

lnN (F0, δ, ∥·∥∞) dδ +

∫ M

δ∗

√

lnN (F0, δ, ∥·∥∞) dδ

≤
∫ δ∗

α

√

Cd,δ̄L
d

|Σ| cd2δd
ln(

c1M

δ
) dδ +

∫ M

δ∗

√

lnN (F0, δ, ∥·∥∞) dδ. (37)

For any s > 0, we can choose δ∗ to be sufficiently small, such that we have ln( c1Mδ ) ≤ 1
δs when δ ≤ δ∗. Therefore, if we

let DX ,L =

√

Cd,δ̄L
d

cd2
, we will have

∫ δ∗

α

√

Cd,δ̄L
d

|Σ| cd2δd
ln(

c1M

δ
) dδ ≤ DX ,L

∫ δ∗

α

√

1

|Σ| δd+s
dδ

≤ DX ,L

∫ ∞

α

√

1

|Σ| δd+s
dδ

=
DX ,L
√

|Σ|
· α

1− d+s
2

d+s
2 − 1

.

Notice that the second integral in (37) is bounded while the first integral diverges as α tends to zero, so we can optimize the

majorizing terms

8α+
24√
m

· DX ,L
√

|Σ|
· α

1− d+s
2

d+s
2 − 1

with respect to α, to obtain

α = (
9

m
)

1
d+s · (

D2
X ,L

|Σ| )
1

d+s ,

so that

inf
α>0

8α+
24√
m

∫ M

α

√

lnN (F0, δ, ∥·∥∞) dδ

≤ 8(
9

m
)

1
d+s · (

D2
X ,L

|Σ| )
1

d+s +
24

(d+s
2 − 1)

(
9

m
)

1
d+s · (

D2
X ,L

|Σ| )
1

d+s +
24√
m

∫ M

δ∗

√

lnN (F0, δ, ∥·∥∞) dδ.

Therefore, for sufficiently large m and n, we have

EX,Y sup
γ∈LipL(X0)

∣

∣

∣

∣

∣

EPX0
[γ]− 1

m

m
∑

i=1

γ(xi)−
(

EQX0
[γ]− 1

n

n
∑

i=1

γ(yi)

)∣

∣

∣

∣

∣
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≤
(

8 +
24

(d+s
2 − 1)

)





(

9D2
X ,L

|Σ|m

)
1

d+s

+

(

9D2
X ,L

|Σ|n

)
1

d+s





+

(

24√
m

+
24√
n

)∫ M

δ∗

√

lnN (F0, δ, ∥·∥∞) dδ.

For d = 1, the first integral in (37) in the one-dimensional case does not have a singularity at α = 0. On the other hand,

replacing the interval [0, 1] by an interval of length diam(X0) in Lemma 5.16 in (Van Handel, 2014), there exists a constant

c > 0 such that

N (F0, δ, ∥·∥∞) ≤ e
cL·diam(X0)

δ for δ < M = L · diam(X0).

Therefore, we have

8α+
24√
m

∫ M

α

√

lnN (F0, δ, ∥·∥∞) dδ ≤ 8α+
24√
m

∫ M

α

√

cL · diam(X0)

δ
dδ,

whose minimum is achieved at α = 9cL·diam(X0)
m . This implies that

inf
α>0

8α+
24√
m

∫ M

α

√

lnN (F0, δ, ∥·∥∞) dδ ≤ 72cL · diam(X0)

m
+

48L
√
c · diam(X0)√

m
− 144cL · diam(X0)

m

=
48L

√
c · diam(X0)√

m
− 72cL · diam(X0)

m
.

Hence, we have

EX,Y sup
γ∈LipL(X0)

∣

∣

∣

∣

∣

EPX0
[γ]− 1

m

m
∑

i=1

γ(xi)−
(

EQX0
[γ]− 1

n

n
∑

i=1

γ(yi)

)∣

∣

∣

∣

∣

≤ 48L
√
c · diam(X0)√

m
− 72cL · diam(X0)

m
+

48L
√
c · diam(X0)√

n
− 72cL · diam(X0)

n
.

Finally, by a simple change of variable for the probability provided in (36), we prove the theorem.

Remark A.10. Though we do not directly observe the effect under the group invariance in the case when d = 1 in

Theorem A.2, the upper bound can be improved in some special cases. Here we analyze Example 4.6 as an example.

Replacing the interval [0, 1] by X0 = [0, 1
|Σ| ) in Lemma 5.16 in (Van Handel, 2014), there exists a constant c > 0 such that

N (F0, δ, ∥·∥∞) ≤ e
cL
|Σ|δ for δ < M = L · diam(X0).

Therefore, we have

8α+
24√
m

∫ M

α

√

lnN (F0, δ, ∥·∥∞) dδ = 8α+
24√
m

∫ M

α

√

cL

|Σ| δ dδ,

whose minimum is achieved at α = 9cL
m|Σ| . This implies that

inf
α>0

8α+
24√
m

∫ M

α

√

lnN (F0, δ, ∥·∥∞) dδ =
72cL

|Σ|m +
48L

√
c

|Σ| √m
− 144cL

|Σ|m =
48L

√
c

|Σ| √m
− 72cL

|Σ|m.

Hence, we have

EX,Y sup
γ∈LipL(X0)

∣

∣

∣

∣

∣

EPX0
[γ]− 1

m

m
∑

i=1

γ(xi)−
(

EQX0
[γ]− 1

n

n
∑

i=1

γ(yi)

)∣

∣

∣

∣

∣

≤ 48L
√
c

|Σ| √m
− 72cL

|Σ|m +
48L

√
c

|Σ| √n
− 72cL

|Σ|n .

This matches the numerical result in Figure 3 where the ratio curves are around 4, since our group sizes are |Σ| =
1, 4, 16, 64, 256, increasing by a factor of 4,
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A.2. (fα,Γ)-divergence

We assume Assumption A.1 also holds in this case.

Theorem A.11. Let X = Σ×X0 be a subset of Rd equipped with the Euclidean distance, f(x) = fα(x) =
xα−1

α(α−1) , α > 1

and Γ = LipL(X ). Suppose P and Q are Σ-invariant distributions on X . We have

1) if d ≥ 2, then for any s > 0 and m,n sufficiently large, we have with probability at least 1− ϵ,

∣

∣

∣DΓ
fα(P∥Q)−DΓΣ

fα
(Pm∥Qn)

∣

∣

∣ ≤
(

8 +
24

(d+s
2 − 1)

)





(

9D2
X ,L

|Σ|m

)
1

d+s

+

(

9D2
X ,L′

|Σ|n

)
1

d+s





+
24D̄X0,L√

m
+

24D̄X0,L′√
n

+

√

2(M2
1m+M2

0n)

mn
ln

1

ϵ
,

where DX ,L depends only on X and L, and DX ,L′ depends only on X , L and α; D̄X0,L depends only on X0 and L, and

D̄X0,L′ depends only on X0 and L and α, and both are increasing in X0; M0 and M1 both only depend on X , L and α;

2) if d = 1, for any ϵ > 0 and m,n sufficiently large, we have with probability at least 1− ϵ,

∣

∣

∣DΓ
fα(P∥Q)−DΓΣ

fα
(Pm∥Qn)

∣

∣

∣ ≤ 48L
√
c · diam(X0)√

m
− 72cL · diam(X0)

m
+

48L′√c · diam(X0)√
n

− 72cL′ · diam(X0)

n

+

√

2(M2
1m+M2

0n)

mn
ln

1

ϵ
,

where c > 0 is an absolute constant independent of X0; L′ depends only on X , L and α; M0 and M1 both only depend on

X , L and α.

Before proving this theorem, we first provide the following lemma.

Lemma A.12. DΓ
fα
(P∥Q) = DF

fα
(P∥Q), where

F =
{

γ ∈ LipL(X ) : ∥γ∥∞ ≤ (α− 1)−1 + L · diam(X )
}

,

and P and Q are probability distributions on X that are not necessarily Σ-invariant.

Proof. For any fixed γ ∈ Γ, let h(ν) = EP [γ + ν] − EQ[f
∗
α(γ + ν)]. We know that supx∈X γ(x) − infx∈X γ(x) ≤

L · diam(X ), so interchanging the integration with differentiation is allowed by the dominated convergence theorem:

h′(ν) = 1− EQ[f
∗′
α (γ + ν)], where

f∗′
α (y) = (α− 1)

1
α−1 y

1
α−11y>0.

If infx∈X γ(x) > (α − 1)−1, then h′(0) < 0. So there exists some ν0 < 0 such that EP [γ + ν0] − EQ[f
∗
α(γ + ν0)] =

h(ν0) > h(0) = EP [γ] − EQ[f
∗
α(γ)]. This indicates the supremum in DΓ

f (P∥Q) is attained only if supx∈X γ(x) ≤
(α−1)−1+L·diam(X ). On the other hand, if supx∈X γ(x) < 0, then there exists ν0 > 0 that satisfies supx∈X γ(x)+ν0 < 0
such that EP [γ + ν0]−EQ[f

∗
α(γ + ν0)] = EP [γ] + ν0 > EP [γ] = EP [γ]−EQ[f

∗
α(γ)]. This indicates that the supremum

in DΓ
f (P∥Q) is attained only if infx∈X γ(x) ≥ −L · diam(X ). Therefore, we have that the supremum in DΓ

f (P∥Q) is

attained only if ∥γ∥∞ ≤ (α− 1)−1 + L · diam(X ).

Proof of Theorem A.11. Similar to the beginning of the proof of Theorem A.2, we have by Lemma A.12 that

∣

∣

∣DΓ
fα(P∥Q)−DΓΣ

fα
(Pm, Qn)

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

sup
γ∈ΓΣ

∥γ∥∞≤M0

{EP [γ]− EQ[f
∗
α(γ)]} − sup

γ∈ΓΣ

∥γ∥∞≤M0

{EPm
[γ]− EQn

[f∗
α(γ)]}

∣

∣

∣

∣

∣

∣

∣
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≤ sup
γ∈ΓΣ

∥γ∥∞≤M0

∣

∣

∣

∣

∣

EP [γ]−
1

m

m
∑

i=1

γ(xi)−
(

EQ[f
∗
α(γ)]−

1

n

n
∑

i=1

f∗
α (γ(yi))

)∣

∣

∣

∣

∣

= sup
γ∈ΓΣ

∥γ∥∞≤M0

∣

∣

∣

∣

∣

EP [γ]−
1

m

m
∑

i=1

γ (T0(xi))−
(

EQ[f
∗
α(γ)]−

1

n

n
∑

i=1

f∗
α (γ(T0(yi)))

)∣

∣

∣

∣

∣

≤ sup
γ∈LipL(X0)
∥γ∥∞≤M0

∣

∣

∣

∣

∣

EPX0
[γ]− 1

m

m
∑

i=1

γ(T0(xi))−
(

EQX0
[f∗

α(γ)]−
1

n

n
∑

i=1

f∗
α (γ(T0(yi)))

)∣

∣

∣

∣

∣

:= g(x1, . . . , xm, y1, . . . , yn),

where T0 is the same as defined in (23). The denominator in the exponent when applying the McDiarmid’s inequality is thus

equal to

m

(

2M0

m

)2

+ n

(

2M1

n

)2

=
4M2

0

m
+

4M2
1

n
,

where M0 = (α− 1)−1 +L · diam(X ), M1 = f∗
α(M0), since for any γ such that ∥γ∥∞ ≤ M0, we have ∥f∗

α ◦ γ∥∞ ≤ M1.

Denoting by X ′ = {x′
1, x

′
2, . . . , x

′
m} and Y ′ = {y′1, y′2, . . . , y′n} the i.i.d. samples drawn from PX0 and QX0 . Also note that

T0(x1), . . . , T0(xm) and T0(y1), . . . , T0(yn) can be viewed as i.i.d. samples on X0 drawn from PX0
and QX0

respectively,

such that the expectation

EX,Y g(x1, x2, . . . , xm, y1, y2, . . . , yn)

= EX,Y sup
γ∈LipL(X0)
∥γ∥∞≤M0

∣

∣

∣

∣

∣

EPX0
[γ]− 1

m

m
∑

i=1

γ(T0(xi))−
(

EQX0
[f∗

α(γ)]−
1

n

n
∑

i=1

f∗
α (γ(T0(yi)))

)∣

∣

∣

∣

∣

can be replaced by the equivalent quantity

EX,Y sup
γ∈LipL(X0)
∥γ∥∞≤M0

∣

∣

∣

∣

∣

EPX0
[γ]− 1

m

m
∑

i=1

γ(xi)−
(

EQX0
[f∗

α(γ)]−
1

n

n
∑

i=1

f∗
α (γ(yi))

)∣

∣

∣

∣

∣

,

where X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn} are are i.i.d. samples on X0 drawn from PX0
and QX0

respectively.

Then we have

EX,Y sup
γ∈LipL(X0)
∥γ∥∞≤M0

∣

∣

∣

∣

∣

EPX0
[γ]− 1

m

m
∑

i=1

γ(xi)−
(

EQX0
[f∗

α(γ)]−
1

n

n
∑

i=1

f∗
α (γ(yi))

)∣

∣

∣

∣

∣

= EX,Y sup
γ∈LipL(X0)
∥γ∥∞≤M0

∣

∣

∣

∣

∣

EX′

(

1

m

m
∑

i=1

γ(x′
i)

)

− 1

m

m
∑

i=1

γ(xi)− EY ′

(

1

n

n
∑

i=1

f∗
α (γ(y′i))

)

+
1

n

n
∑

i=1

f∗
α (γ(yi))

∣

∣

∣

∣

∣

≤ EX,Y,X′,Y ′ sup
γ∈LipL(X0)
∥γ∥∞≤M0

∣

∣

∣

∣

∣

1

m

m
∑

i=1

γ(x′
i)−

1

m

m
∑

i=1

γ(xi)−
1

n

n
∑

i=1

f∗
α (γ(y′i)) +

1

n

n
∑

i=1

f∗
α (γ(yi))

∣

∣

∣

∣

∣

= EX,Y,X′,Y ′,ξ,ξ′ sup
γ∈LipL(X0)
∥γ∥∞≤M0

∣

∣

∣

∣

∣

1

m

m
∑

i=1

ξi (γ(x
′
i)− γ(xi))−

1

n

n
∑

i=1

ξ′i (f
∗
α (γ(y′i))− f∗

α (γ(yi)))

∣

∣

∣

∣

∣

≤ EX,X′,ξ sup
γ∈LipL(X0)
∥γ∥∞≤M0

∣

∣

∣

∣

∣

1

m

m
∑

i=1

ξi (γ(x
′
i)− γ(xi))

∣

∣

∣

∣

∣

+ EY,Y ′,ξ′ sup
γ∈LipL(X0)
∥γ∥∞≤M0

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ξ′i (f
∗
α (γ(y′i))− f∗

α (γ(yi)))

∣

∣

∣

∣

∣

≤ inf
α>0

8α+
24√
m

∫ M0

α

√

lnN (F0, δ, ∥·∥∞) dδ + inf
α>0

8α+
24√
n

∫ M1

α

√

lnN (F1, δ, ∥·∥∞) dδ,
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where F0 = {γ ∈ LipL(X0) : ∥γ∥∞ ≤ M0} and F1 = {γ ∈ LipL′(X0) : ∥γ∥∞ ≤ M1}, since for any γ ∈ F0,

∥f∗
α ◦ γ∥∞ ≤ M1 and

∣

∣

∣

d
dyf

∗
α(y)

∣

∣

∣ ≤ (α − 1)
1

α−1 (M0)
1

α−1 for |y| ≤ M0 such that f∗
α ◦ γ is L′-Lipschitz, where

M1 = f∗
α(M0) and L′ = L(α− 1)

1
α−1 (M0)

1
α−1 . Then the rest of the proof follows from the proof of Theorem A.2.

A.3. MMD

We assume the kernel k(x, y) satisfies Assumption 4.9. Furthermore, let ϕ(x) be the evaluation functional at x in H:

⟨ϕ(x), ϕ(y)⟩H = k(x, y), ∀x, y ∈ H.

Theorem A.13. Let X = Σ×X0 be a subset of Rd(d ≥ 1) and H be a RKHS on X whose kernel satisfies Assumption 4.9.

Suppose P and Q are Σ-invariant distributions on X . Then for m,n sufficiently large and any ϵ > 0 we have with

probability at least 1− ϵ,

∣

∣MMD(P,Q)− MMDΣ(Pm, Qn)
∣

∣ < 2K
1
2 [1 + c(|Σ| − 1)]

1
2

(

1
√

|Σ|m
+

1
√

|Σ|n

)

+

√

2K(1 + c(|Σ| − 1)) ln( 1ϵ )

|Σ|

√

1

m
+

1

n
,

where K and c are the constants in Assumption 4.9.

Before proving the theorem, we provide the following lemma.

Lemma A.14. Suppose the kernel in an RKHS satisfies Assumption 4.9, and ξ = {ξ1, . . . , ξm} is a set of independent

random variables, each of which takes values on {−1, 1} with equal probabilities. Then we have

Eξ sup
∥γ∥H≤1

∣

∣

∣

∣

∣

∣

1

m |Σ|
m
∑

i=1

ξi

|Σ|
∑

j=1

γ(σjxi)

∣

∣

∣

∣

∣

∣

≤ (1 + c(|Σ| − 1))K
1
2

√

|Σ|m
.

Proof. Since the witness function to attain the supremum is explicit, we can write

Eξ sup
∥γ∥H≤1

∣

∣

∣

∣

∣

∣

1

m |Σ|
m
∑

i=1

ξi

|Σ|
∑

j=1

γ(σjxi)

∣

∣

∣

∣

∣

∣

= Eξ

∥

∥

∥

∥

∥

∥

1

m |Σ|
m
∑

i=1

ξi

|Σ|
∑

j=1

ϕ(σjxi)

∥

∥

∥

∥

∥

∥

H

=
1

m |Σ|Eξ





m
∑

i,i′=1

ξiξi′

|Σ|
∑

j,j′=1

k(σjxi, σj′xi′)]





1
2

≤ 1

m |Σ|



Eξ

m
∑

i,i′=1

ξiξi′

|Σ|
∑

j,j′=1

k(σjxi, σj′xi′)]





1
2

=
1

m |Σ|



Eξ

m
∑

i=1

(ξi)
2

|Σ|
∑

j,j′=1

k(σjxi, σj′xi)]





1
2

≤ 1

m |Σ|
[

m ·
(

|Σ|K + c(|Σ|2 − |Σ|)K
)]

1
2

=
K

1
2 [1 + c(|Σ| − 1)]

1
2

√

|Σ|m
.

Proof of Theorem A.13. The proof below is a generalization of the proof of Theorem 7 in (Gretton et al., 2012), which does

not need the notion of covering numbers due to the structure of RKHS.
∣

∣MMD(P,Q)− MMDΣ(Pm, Qn)
∣

∣
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=
∣

∣MMD(P,Q)− MMD(SΣ[Pm], SΣ[Qn])
∣

∣

=

∣

∣

∣

∣

∣

sup
∥γ∥H≤1

{EP [γ]− EQ[γ]} − sup
∥γ∥H≤1

{ESΣ[Pm][γ]− ESΣ[Qn][γ]}
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

sup
∥γ∥H≤1

{EP [γ]− EQ[γ]} − sup
∥γ∥H≤1

{ 1

m |Σ|
m
∑

i=1

|Σ|
∑

j=1

γ(σjxi)−
1

n |Σ|
n
∑

i=1

|Σ|
∑

j=1

γ(σjyi)}

∣

∣

∣

∣

∣

∣

≤ sup
∥γ∥H≤1

∣

∣

∣

∣

∣

∣

EP [γ]− EQ[γ]−
1

m |Σ|
m
∑

i=1

|Σ|
∑

j=1

γ(σjxi) +
1

n |Σ|
n
∑

i=1

|Σ|
∑

j=1

γ(σjyi)

∣

∣

∣

∣

∣

∣

:= f(x1, x2, . . . , xm, y1, y2, . . . , yn).

Now we estimate the upper bound of the difference of f if we change one of xi’s.

|f(x1, . . . , xi, . . . , y1, . . . , yn)− f(x1, . . . , x̃i, . . . , y1, . . . , yn)|

≤ sup
∥γ∥H≤1

∣

∣

∣

∣

∣

∣

1

m |Σ|

|Σ|
∑

j=1

γ(σjxi)− γ(σj x̃i)

∣

∣

∣

∣

∣

∣

=
1

m |Σ|

∥

∥

∥

∥

∥

∥

|Σ|
∑

j=1

ϕ(σjxi)− ϕ(σj x̃i)

∥

∥

∥

∥

∥

∥

H

(38)

≤ 1

m |Σ|





∥

∥

∥

∥

∥

∥

|Σ|
∑

j=1

ϕ(σjxi)

∥

∥

∥

∥

∥

∥

H

+

∥

∥

∥

∥

∥

∥

|Σ|
∑

j=1

ϕ(σj x̃i)

∥

∥

∥

∥

∥

∥

H



 .

To bound

∥

∥

∥

∑|Σ|
j=1 ϕ(σjxi)

∥

∥

∥

H
, we have

∥

∥

∥

∥

∥

∥

|Σ|
∑

j=1

ϕ(σjxi)

∥

∥

∥

∥

∥

∥

H

=





|Σ|
∑

j=1

k(σjxi, σjxi) +
∑

j ̸=l

k(σjxi, σlxi)





1
2

=





|Σ|
∑

j=1

k(σjxi, σjxi) +
∑

σj ̸=id

k(σjxi, xi)





1
2

≤
[

|Σ| ·K +
(

|Σ|2 − |Σ|
)

· cK
]

1
2

.

The upper bound of the difference of f if we change one of yi’s can be derived in the same way. To apply the McDiarmid’s

inequality, the denominator in the exponent is thus

m ·
4
[

|Σ| ·K +
(

|Σ|2 − |Σ|
)

· cK
]

m2 |Σ|2
+ n ·

4
[

|Σ| ·K +
(

|Σ|2 − |Σ|
)

· cK
]

n2 |Σ|2

≤ 4K(
1

m
+

1

n
) · 1 + c(|Σ| − 1)

|Σ| .

Moreover, we can extend inequality (16) in (Gretton et al., 2012) to take into account the group invariance. Denoting

by X ′ = {x′
1, x

′
2, . . . , x

′
m} and Y ′ = {y′1, y′2, . . . , y′n} the i.i.d. samples drawn from P and Q, and ξ = {ξ1, . . . , ξm},

ξ′ = {ξ′1, . . . , ξ′n} sets of independent random variables, each of which takes values on {−1, 1} with equal probabilities, we

have

EX,Y f(x1, x2, . . . , xm, y1, y2, . . . , yn)
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= EX,Y sup
∥γ∥H≤1

∣

∣

∣

∣

∣

∣

EP [γ]− EQ[γ]−
1

m |Σ|
m
∑

i=1

|Σ|
∑

j=1

γ(σjxi) +
1

n |Σ|
n
∑

i=1

|Σ|
∑

j=1

γ(σjyi)

∣

∣

∣

∣

∣

∣

= EX,Y sup
∥γ∥H≤1

∣

∣

∣

∣

∣

EX′





1

m |Σ|
m
∑

i=1

|Σ|
∑

j=1

γ(σjx
′
i)



− EY ′





1

n |Σ|
n
∑

i=1

|Σ|
∑

j=1

γ(σjy
′
i)



− 1

m |Σ|
m
∑

i=1

|Σ|
∑

j=1

γ(σjxi)

+
1

n |Σ|
n
∑

i=1

|Σ|
∑

j=1

γ(σjyi)

∣

∣

∣

∣

∣

≤ EX,Y,X′,Y ′ sup
∥γ∥H≤1

∣

∣

∣

∣

∣

∣

1

m |Σ|
m
∑

i=1

|Σ|
∑

j=1

(γ(σjx
′
i)− γ(σjxi))−

1

n |Σ|
n
∑

i=1

|Σ|
∑

j=1

(γ(σjy
′
i)− γ(σjyi))

∣

∣

∣

∣

∣

∣

= EX,Y,X′,Y ′,ξ,ξ′ sup
∥γ∥H≤1

∣

∣

∣

∣

∣

∣

1

m |Σ|
m
∑

i=1

ξi

|Σ|
∑

j=1

(γ(σjx
′
i)− γ(σjxi))−

1

n |Σ|
n
∑

i=1

ξ′i

|Σ|
∑

j=1

(γ(σjy
′
i)− γ(σjyi))

∣

∣

∣

∣

∣

∣

≤ EX,X′,ξ sup
∥γ∥H≤1

∣

∣

∣

∣

∣

∣

1

m |Σ|
m
∑

i=1

ξi

|Σ|
∑

j=1

(γ(σjx
′
i)− γ(σjxi))

∣

∣

∣

∣

∣

∣

+ EY,Y ′,ξ′ sup
∥γ∥H≤1

∣

∣

∣

∣

∣

∣

1

n |Σ|
n
∑

i=1

ξ′i

|Σ|
∑

j=1

(γ(σjy
′
i)− γ(σjyi))

∣

∣

∣

∣

∣

∣

≤ 2

[

K
1
2 [1 + c(|Σ| − 1)]

1
2

√

|Σ|m
+

K
1
2 [1 + c(|Σ| − 1)]

1
2

√

|Σ|n

]

,

where the last inequality is due to Lemma A.14. Therefore, by the McDiarmid’s theorem, we have

P

(

∣

∣MMD(P,Q)− MMDΣ(Pm, Qn)
∣

∣− 2K
1
2 [1 + c(|Σ| − 1)]

1
2

(

1
√

|Σ|m
+

1
√

|Σ|n

)

> ϵ

)

≤ exp

(

− ϵ2mn |Σ|
2K(m+ n)(1 + c(|Σ| − 1))

)

.

By a change of variable, we have with probability at least 1− ϵ,

∣

∣MMD(P,Q)− MMDΣ(Pm, Qn)
∣

∣ < 2K
1
2 [1 + c(|Σ| − 1)]

1
2

(

1
√

|Σ|m
+

1
√

|Σ|n

)

+

√

2K(1 + c(|Σ| − 1)) ln( 1ϵ )

|Σ|

√

1

m
+

1

n
.
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