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Abstract

Vertical decomposition is a widely used general technique for decomposing the cells of arrangements of
semi-algebraic sets in Rd into constant-complexity subcells. In this paper, we settle in the a�rmative a few
long-standing open problems involving the vertical decomposition of substructures of arrangements for d = 3, 4:
(i) Let S be a collection of n semi-algebraic sets of constant complexity in R3, and let U(m) be an upper
bound on the complexity of the union U(S 0) of any subset S 0 ✓ S of size at most m. We prove that the
complexity of the vertical decomposition of the complement of U(S) is O⇤(n2+U(n)) (where the O

⇤(·) notation
hides subpolynomial factors). We also show that the complexity of the vertical decomposition of the entire
arrangement A(S) is O⇤(n2 +X), where X is the number of vertices in A(S). (ii) Let F be a collection of n
trivariate functions whose graphs are semi-algebraic sets of constant complexity. We show that the complexity
of the vertical decomposition of the portion of the arrangement A(F) in R4 lying below the lower envelope of
F is O⇤(n3).

These results lead to e�cient algorithms for a variety of problems involving these decompositions, including
algorithms for constructing the decompositions themselves, and for constructing (1/r)-cuttings of substructures
of arrangements of the kinds considered above. One additional algorithm of interest is for output-sensitive
point enclosure queries amid semi-algebraic sets in three or four dimensions.

In addition, as a main domain of applications, we study various proximity problems involving points and
lines in R3: We first present a linear-size data structure for answering nearest-neighbor queries, with points,
amid n lines in R3 in O

⇤(n2/3) time per query. We also study the converse problem, where we return the
nearest neighbor of a query line amid n input points, or lines, in R3. We obtain a data structure of O⇤(n4) size
that answers a nearest-neighbor query in O(log n) time.

1 Introduction

Let S be a family of n semi-algebraic sets1 of constant complexity in Rd. The arrangement of S, denoted by A(S),
is the decomposition of Rd into maximal connected relatively open cells of all dimensions, so that all points within
a cell lie in the relative interior or boundary of the same subfamily of sets of S. Because of their wide range
of applications, arrangements of semi-algebraic sets have been extensively studied [14, 20]. The combinatorial
complexity of a cell in A(S) can be quite large, and its topology can be quite complex [14], so a fundamental
problem in the area of arrangements, for both combinatorial and algorithmic applications, is to decompose a cell of
A(S) into constant-complexity subcells, each homeomorphic to a ball. In some applications, we wish to decompose
all cells of A(S) while in others only a subset of cells of A(S).
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1Roughly speaking, a semi-algebraic set in Rd is the set of points in Rd that satisfy a Boolean formula over a set of polynomial

inequalities; the complexity of a semi-algebraic set is the number of polynomials defining the set and their maximum degree. See [20]
for formal definitions of a semi-algebraic set and its dimension.

Copyright c� 2024 by SIAM
Unauthorized reproduction of this article is prohibited150

D
ow

nl
oa

de
d 

10
/1

0/
24

 to
 1

52
.3

.4
3.

50
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



Vertical decomposition is a popular general technique (and perhaps the only general-purpose technique) for
constructing such a decomposition. Roughly speaking, vertical decomposition recurses on the dimension d. Let C
be a cell of A(S). For d = 2, the vertical decomposition of C is obtained by erecting a y-vertical segment up and
down from each vertex of C and from each point of vertical tangency on the boundary of C, and extending these
segments till they hit another edge of C, or else all the way to infinity. This results in a decomposition of C into
vertical pseudo-trapezoids (trapezoids, for short). For d = 3, we first erect, upwards and downwards, z-vertical
curtains from each edge of C and from the silhouette (the locus of points with z-vertical tangency) of each 2-face
of C, and extend them until they hit @C (or else all the way to infinity). The resulting subcells have a unique pair
of faces as their “floor” and “ceiling,” but their complexity can still be large. In the second decomposition phase,
we project each subcell onto the xy-plane, apply planar vertical decomposition to the projection, and lift each
resulting subcell (trapezoid) vertically up to R3 to the range between the floor and ceiling of the original subcell.
This results in a decomposition of C into vertical pseudo-prisms (prisms for short), each bounded by up to six
facets. This recursive scheme (on the dimension) can be generalized to higher dimensions, but it becomes more
involved as the dimension grows. In this work, though, we only use the three- and four-dimensional scenarios.
See [24, 36, 45].

Vertical decompositions, similar to some other geometric decomposition schemes, provide a mechanism for
constructing geometric cuttings of various substructures of arrangements of semi-algebraic sets [14], which in
turn leads to an e�cient divide-and-conquer mechanism for solving a variety of combinatorial and algorithmic
problems, as well as for constructing data structures for geometric searching problems [10]. The performance of
these algorithms and data structures depends on the complexity (number of prisms) of the vertical decomposition.
For d = 2, the size of the vertical decomposition of a cell C is proportional to the combinatorial complexity of C,
but already for d = 3, the size of the vertical decomposition of C can be ⌦(n2) even when the complexity of C
is O(n). A challenging problem is thus to obtain sharp bounds on the complexity of the vertical decomposition
of (the cells of) various substructures of A(S) for d � 3. Despite extensive work on this problem, see, e.g.,
[4, 5, 13, 22, 24, 36, 44] for a sample of results, several basic problems remain open. In this paper we settle some
of these problems in the a�rmative, obtaining sharp bounds on the complexity of the vertical decomposition of
various substructures of arrangements, and full arrangements, for d = 3, 4; see below for a list of our results. As a
major application of these results, we study proximity problems involving lines and points in R3; see below.

Related work. Collins [29] (see also [20, 43]) had proposed cylindrical algebraic decomposition (CAD) as
a general technique for decomposing the cells of A(S) into pseudo-prisms, in any dimension d. However, the

number of cells produced is n2O(d)

. Vertical decomposition can be viewed as an optimized version of CAD, with
much smaller complexity. Although vertical decompositions for d = 2, 3 have been used since the 1980’s [26, 28],
Chazelle et al. [24] described the construction of vertical decomposition in general, for arrangements of semi-
algebraic sets in Rd, and proved a bound of O⇤(n2d�3) for d � 3 (where the O⇤(·) notation hides subpolynomial
factors). They also showed that the vertical decomposition of A(S) can be computed in O⇤(n2d�3) expected time.
The bound was improved to O⇤(n2d�4), for d � 4, by Koltun [36]. These bounds are nearly optimal for d  4, and
are strongly suspected to be far from optimal for d � 5. Improving the bound, for d � 5, is a major 30-years-old
open problem in this area (which we do not address in this work).

In many applications, one is interested in computing the vertical decomposition of (the cells of) only a
substructure of A(S). In this case, the goal is to show that if the substructure under consideration has asymptotic
complexity o(nd), then so should be the complexity of its vertical decomposition. This statement is true in the plane,
as already mentioned, and has been shown to hold for arrangements of triangles in 3D [22, 47]. Notwithstanding a
few results on the vertical decompositions of substructures of 3D and 4D arrangements, see, e.g., [4, 5, 13, 44],
the aforementioned fundamental problem has remained largely open for d � 3. For example, even though the
complexity of the union of a set of objects in R3 in many interesting cases—such as a set of cylinders or a set
of fat objects—is known to be O⇤(n2) [15, 18, 30, 31], no subcubic bound was known on the size of the vertical
decomposition of the complement of their union. In R4, the complexity of the lower envelope of n trivariate
functions (whose graphs are semi-algebraic sets of constant complexity) is O⇤(n3) (see, e.g., [45]), however, no o(n4)
bound was known on the complexity of the corresponding vertical decomposition of the minimization diagram,
which is the xyz-projection of the lower envelope.

We conclude this discussion by noting that special-purpose decomposition schemes have been proposed for
decomposing cells in arrangements of hyperplanes, boxes, or simplices, using triangulations, binary space partitions,
or variants of vertical decomposition; see, e.g., [14, 16, 19, 33] and references therein. Some of these methods also
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work for arrangements of semi-algebraic sets using the so called linearization technique [10], albeit yielding in
general much weaker bounds.

Our contributions. The paper contains three sets of main results — (i) sharp bounds on the complexity of
vertical decompositions of substructures of arrangements in R3 and R4, (ii) e�cient algorithms for constructing
these decompositions and related structures, and (iii) as a major application domain, e�cient data structures for
line-point proximity problems in R3.

Vertical decomposition. We make significant progress on bounding the size of the vertical decomposition of
substructures of arrangements in R3 and R4, by establishing the following combinatorial bounds.

Union of semi-algebraic sets. Let S be a family of n semi-algebraic sets of constant complexity in R3, and let
U(m) be an upper bound on the complexity of the union U(S 0) of any subset S 0 ✓ S of size at most m, for any
m > 0. (Note that, by definition, U(m) is monotone increasing in m.) We show that the complexity of the vertical
decomposition of the complement of U(S) is O⇤(n2 + U(n)) (Section 2).

Lower envelopes. Let F be a collection of n trivariate functions whose graphs are semi-algebraic sets of
constant complexity, and let A(F) denote the arrangement (in R4) of their graphs. The lower envelope EF of F
is defined as EF (x) = minF2F F (x), for x 2 R3. We show that the complexity of the vertical decomposition of
the cell of2 A(F) lying below (the graph of) EF is O⇤(n3), thereby matching the general upper bound on the
complexity of lower envelopes in R4 [45] (Section 3).

Sparse arrangements. Let S be a collection of n semi-algebraic sets of constant complexity in R3, and let X
denote the number of vertices in A(S). We show that the complexity of the vertical decomposition of the entire
arrangement A(S) is O⇤(n2 +X) (Section 4).

Algorithms. There are a few immediate algorithmic consequences of our combinatorial results:

Computing vertical decompositions. All these vertical decompositions can be constructed, namely, the set of
pseudo-prisms in the vertical decomposition can be computed, in time comparable with their respective complexity
bounds. Section 5.2 describes the construction for the complement of the union of semi-algebraic sets in R3, as well
as for the lower envelopes (or rather minimization diagrams) of trivariate functions (whose graphs are semi-algebraic
sets of constant complexity); the same approach extends to sparse arrangements. We note that Agarwal et al. [4]
described a randomized algorithm for constructing the vertices, edges, and 2-faces of the minimization diagram of a
set of trivariate (constant-complexity semi-algebraic) functions in O⇤(n3) expected time. In addition, with O⇤(n3)
preprocessing, their technique can also compute, in O(log n) time, the function that appears on the lower envelope
for a query point ⇠ 2 R3. (Their algorithm can also compute, in O⇤(n2 + U(n)) expected time, the vertices, edges,
and 2-faces of the union of a collection S of semi-algebraic sets in R3, where U(m), as above, is the maximum
complexity of the union of a subset of S of size m.) However, their algorithm does not compute three-dimensional
cells of the minimization diagram, nor does it compute the vertical decomposition of the minimization diagram.
See also [13].

Geometric cuttings. Let S be a collection of n semi-algebraic sets of constant complexity in Rd. Let ⇧ be
a substructure of A(S), defined by a collection of cells of A(S) that satisfy certain properties (e.g., lying in the
complement of the union or lying below the lower envelope). For a parameter r > 1, a (1/r)-cutting of ⇧ (with
respect to S) is a set ⌅ of pseudo-prisms with pairwise-disjoint relative interiors that cover ⇧ such that the relative
interior of each pseudo-prism ⌧ 2 ⌅ is crossed by (intersected by but not contained in) at most n/r sets of S.
The subset of S crossed by ⌧ is called the conflict list of ⌧ . Our combinatorial results lead to the construction
of small-size (1/r)-cuttings of ⇧. Their size is dictated by our new bounds for the complexity of the vertical
decomposition of ⇧. For the case of the complement of the union of sets in R3, the bound is O⇤(r2 + U(r)). For
the case of the region below the lower envelope of trivariate functions in R4, the bound is O⇤(r3). For the case of
an entire three-dimensional arrangement of complexity X, we obtain a (1/r)-cutting of A(S), for any parameter
r  n, of total complexity O⇤(r2 + r3X/n3). The cuttings along with the conflict lists of all of its cells can be
constructed in O(n) expected time if r is a constant (Section 5.1).

Point-enclosure queries. Let S be a family of n semi-algebraic sets in R3, and let U(·) denote a bound on its
union complexity, as above. We obtain a data structure of size and preprocessing cost O⇤(n2 + U(n)) that, for a
query point q 2 R3, returns all k sets of S containing q in O⇤(1 + k) time. Similarly, for a given family F of n

2Even though this vertical decomposition is in R4, it is e↵ectively obtained from the vertical decomposition of the minimization
diagram of EF in R3; see below for details.
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semi-algebraic trivariate functions, we can construct a data structure of size O⇤(n3) that, for a query point q 2 R4,
can report, in O⇤(1 + k) time, all the k functions of F whose graphs lie below q. This part is not included in this
version, and can be found in the full version [8].

Proximity problems for points and lines in R3. In the third part, building on our vertical-decomposition
and geometric-cutting results, we present e�cient data structures and algorithms for various proximity problems
involving points and lines in R3.

Nearest line-neighbor to a query point. A set L of n lines in R3 can be preprocessed, in O(n log n) expected
time, into a data structure of size O(n), so that for a query point q 2 R3, the nearest neighbor of q in L can be
returned in O⇤(n2/3) time (Section 6). We note that a linear-size data structure with O⇤(n3/4) query time can be
obtained by mapping each line of L to a point in R4 and using four-dimensional semi-algebraic range searching
techniques [12]. We also note that a data structure of O⇤(n3) size and O(log n) query time can be obtained by
constructing and preprocessing the Voronoi diagram of the lines in L for point-location queries, following an
approach similar to that in [42].

Our data structure constructs a partition tree, as in [10, 46], using geometric cuttings. The main challenge
in adapting these preceding approaches to our setting is the construction of a so-called test set, namely, a small
set of representative queries (typically more involved than the usual queries) so that if the data structure can
answer those queries e�ciently then it can answer e�ciently the query for any point in R3. Our new results on
vertical decomposition of the lower envelope of trivariate functions and on geometric cuttings provide the missing
ingredients needed for constructing such test sets. See Section 6 for details.

Nearest point-neighbor to a query line. We can preprocess a set P of n points in R3, in expected O⇤(n4) time,
into a data structure of O⇤(n4) size, so that, for a query line ` in R3, its nearest neighbor in P can be returned in
O(log n) time (Section 7.1). The standard tools would yield a data structure of size O⇤(n5) for answering fast
queries.

Roughly speaking, after applying some geometric transformations, we reduce the nearest-neighbor query to a
point-location query in a sandwich region enclosed between two envelopes of trivariate functions. As we do not
know how to perform this task e�ciently in a direct manner, due to the lack of a good bound on the complexity of
the vertical decomposition of such a region (see [38], where this is stated as a major open problem), we use a more
involved scheme that achieves the desired e�ciency.

We note that a linear-size data structure with O⇤(n2/3) query time can be obtained by using known results on
3D semi-algebraic range searching [12]. Our new results on vertical decomposition of the complement of the union
of objects in R3 leads to a faster solution to a restricted version of this problem. That is, we can preprocess a set
of n points in R3 into a linear-size data structure that returns, in O⇤(n1/2) time, a point within distance at most 1
from a query line, if there exists one. This problem was recently studied in Agarwal and Ezra [7], and they had
obtained a more involved data structure with a similar bound. By combining our vertical-decomposition result
with some of their ideas, we obtain a significantly simpler data structure.

Nearest line-neighbor to a query line. We can preprocess a set L of n lines in R3, in O⇤(n4) expected time,
into a data structure of size O⇤(n4), so that the nearest neighbor in L of a query line can be computed in O(log n)
time (Section 7.2). Again, we note that a linear-size data structure with O⇤(n3/4) query time can be obtained by
using standard four-dimensional semi-algebraic range searching techniques [12], and that a structure of size O⇤(n5)
for the fast query regime can also be obtained by standard methods.

O✏ine nearest-neighbor queries. Let us now consider the case when all queries are given in advance. That is,
we have a set L of n lines and a set P of m points in R3, and the goal is to compute the nearest neighbor in P of
each line of L. We present a randomized algorithm with O⇤(m4/7n6/7 +m+ n) expected running time. We note
that by plugging our on-line algorithm with the standard space/query-time trade-o↵ techniques would lead to an
algorithm with the inferior O⇤(m8/11n9/11 +m+ n) expected running time. We have also studied the bichromatic
closest pair variant, where we wish to compute the closest line-point pair in L⇥ P . As it turns out, this problem
can be solved faster, in expected time O⇤(m3/5n4/5 +m+ n). This part is not included in this version, and can be
found in the full version [8].

2 Vertical Decomposition of the Complement of the Union

Let S be a collection of n semi-algebraic sets of constant complexity in R3. For any subset S 0 of S, let U(S 0)
denote the union of S 0, and let C(S 0) denote the complement of U(S 0). Let U(m) denote the maximum complexity
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of U(S0)—namely, the number of vertices, edges and 2-faces of the union boundary—over all subsets S 0 of size
at most m. Clearly U(m) = O(m3), but as mentioned in the introduction, U(m) = O⇤(m2) in many interesting
cases. Let VD(S) denote the vertical decomposition of C = C(S), and let C(n) denote the maximum complexity of
VD(S), where the maximum is taken over all collections of n semi-algebraic sets of constant complexity. Our goal
is to obtain a sharp bound on C(n).

A pair (e, e0) of edges of A(S) is called vertically visible if there exists a vertical line � that meets both e and
e0, so that the relative interior of the segment of � connecting e and e0 does not meet the boundary of any set of S,
and we refer to the pair of points (� \ e,� \ e0) as a vertical visibility. A pair (e, e0) of edges can give rise to more
than one but at most O(1) vertical visibilities. It is well known (see, e.g., [45]) that C(n) is proportional to U(n)
plus the number of vertical visibilities between pairs of edges of @U that occur within C, so it su�ces to bound the
latter quantity.

To bound the number of vertical visibilities, we fix an edge e of @U , regarding e as the lower edge in the
vertical visibilities that we seek,3 and erect a vertical curtain V (e) over e, which is the (two-dimensional) union of
all z-vertical rays emanating upwards from the points of e. The boundary of each set S 2 S (ignoring the two that
form e) intersects V (e) in a one-dimensional curve �S , which can be empty or disconnected, but is of constant
complexity. Note that none of the curves �S cross e, for such an intersection would be a vertex of the arrangement
of S and, by definition, e cannot contain such a vertex.

We form the lower envelope Ee of the curves �S , and note that each breakpoint a of Ee, at which two curves
meet, lies on some edge e0 of @U which forms a vertically visible pair with e, with the vertical visibility taking place
between a and e. The other breakpoints, formed at endpoints of connected portions of the curves, occur when a
vertical line (supporting a ray of the curtain V (e)) is tangent to some S 2 S; that is, the breakpoint occurs on the
vertical silhouette of S. It is easy to show that the overall number of vertical visibilities involving silhouettes is
only O⇤(n2). Indeed, there are O(n) silhouettes, each of constant complexity, and the vertical visibilities that they
are involved in correspond to breakpoints of lower or upper envelopes within the vertical curtains that they span.
As each envelope can be regarded as the lower envelope of univariate functions, it has O⇤(n) complexity [45], and
the claim follows.

To facilitate the forthcoming analysis, we turn the problem into a bipartite problem, where each set of S is
assigned at random a color red or blue, yielding a partition S = R [ B, where R (resp., B) is the set of all red
(resp., blue) sets, and our goal is to bound the number of vertical visibilities between red-red edges (edges formed
by the intersection of the boundaries of two red sets) and blue-blue edges (those formed by the intersection of the
boundaries of two blue sets). Note that a red-red edge e on the boundary of the union of R is not necessarily an
original edge of the boundary of U(S), as e may contain red-red-blue vertices (or even be fully contained in a blue
set). Still, if there exists a vertical visibility in C(S) whose lower endpoint b lies on e, then b lies on a portion
of e that forms an edge of @U(S). Of course, not all vertically visible pairs are captured in this coloring scheme.
Nevertheless, it is easily checked that the expected number of visible pairs with this coloring is 1/8 of the overall
number of visible pairs, so, up to this factor, there is no loss of generality in using this coloring scheme.

So the setup that we face is: We are given a set R of m red sets and a set B of n blue sets (in the above
scheme, both m and n are half the size of S in expectation), and our goal is to bound the number C(m,n) of
vertical visibilities between pairs (e, e0) of edges, where e is a red-red edge and e0 is a blue-blue edge, and the
vertical visibility takes place in the complement of U(R [ B).

We estimate C(m,n) using an extension of the recursive analysis in [38, Section 2].4 We fix some su�ciently
large constant parameter k, and partition B arbitrarily into k subsets B1, . . . ,Bk, each of size n/k (ignoring
rounding issues). We solve the problem recursively for R and each Bi. Each subproblem yields at most C(m,n/k)
vertical visibilities. Note that these vertical visibilities are not necessarily vertical visibilities in the full red-blue
setup, because sets in other subsets Bj may show up between the edges in such a pair and destroy the vertical
visibility between them. Nevertheless, each original vertical visibility is either one of these recursively obtained
visibilities, or arises at a pair (e, e0) where e is a red-red edge and e0 is a blue-blue edge formed by the intersection
of two boundaries of sets in di↵erent subsets Bi, Bj . We now proceed to bound the number of pairs of the latter
kind.

3We assume that the two sets whose boundaries intersect at e lie locally below e, for otherwise e cannot play the role of the bottom
edge of a vertically visible pair in the complement of the union.

4We credit this work for providing us the initial inspiration that their technique can be adapted to apply in our settings too.
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To do so, fix a red-red edge e, and assume that e plays the role of the bottom edge in a vertically visible

pair. Consider the upward vertical curtain V (e) of e, and form within V (e) the k blue envelopes E(1)
e , . . . , E(k)

e ,

where E(i)
e is the lower envelope of the curves �S , for S 2 Bi, for i = 1, . . . , k. The breakpoints of the envelopes

(ignoring silhouette breakpoints) correspond to recursively obtained pairs (e, e0) (as noted, not all breakpoints
yield visibilities in the full setup), but we are also interested in the additional breakpoints of the overall lower
envelope Ee of these k envelopes.

Let M (i)
e denote the number of breakpoints of E(i)

e , for i = 1, . . . , k, and put Me =
P

i
M (i)

e . Notice

that
P

e
M (i)

e is the number of vertical visibilities between R and Bi, so it is at most C(m,n/k). ThusP
e
Me  kC(m,n/k).
Inspired by the analysis in [38], we follow a technique similar to one used by Har-Peled [34] in a di↵erent

context. Specifically, we partition V (e) into vertical sub-curtains V1(e), . . . , Vt(e) by upward vertical rays, so that
the overall number of breakpoints of the individual envelopes within each sub-curtain is k, except possibly for
the last sub-curtain, where the number is at most k, so t  1 +Me/k. Within each sub-curtain Vj(e) there are

only at most 2k blue curves �S that participate in the envelopes E(i)
e , of which k show up on the envelopes at an

extreme ray of Vj(e), and at most k others replace them along the various envelopes, within the sub-curtain. Hence,
within any fixed Vj(e), Ee is the lower envelope of at most 2k connected subarcs of boundary curves �S , so its
combinatorial complexity is at most �s(2k), where �s(m) is the near-linear maximum length of Davenport-Schinzel
sequences of order s on m symbols, for some constant parameter s that depends on the complexity of the sets of
S [45]. We write this bound as k�(k), for an appropriate near-constant extremely slowly growing function �(k),
and conclude that the number of breakpoints of Ee within each sub-curtain is at most k�(k), for a total of at
most kt�(k) = (k +Me)�(k) breakpoints. Summing over all red-red edges e, we obtain

C(m,n) 
 
X

e

(k +Me)

!
�(k)  k�(k)C(m,n/k) + k�(k)U(m).

We next switch the roles of red and blue, and apply the same analysis to each pair R, Bi of sets, keeping Bi

fixed and partitioning R into k subsets of size m/k each. (We now reverse the direction of the z-axis, considering
downward-directed vertical curtains erected from the edges formed by the sets of Bi.) The analysis proceeds more
or less verbatim, and yields the following bound on the number of vertical visibilities:

C(m,n)  k2�2(k)C(m/k, n/k) + k2�2(k)U(n/k) + k�(k)U(m)

If U(m) = O⇤(m2), we obtain the recurrence

C(m,n)  k2�2(k)C(m/k, n/k) + k�(k)O⇤(m2) + �2(k)O⇤(n2).

Note that the right-hand side of this recurrence also subsumes the number of O⇤(m2 + n2) vertical visibilities that
involve the silhouettes of the red and blue sets.

We solve this recurrence for the original setup, where m and n are both roughly half the total number of sets,
which we continue to denote by n, with some abuse of notation. By choosing k to be a su�ciently large constant,
the solution of the resulting recurrence is O⇤(n2). We thus conclude that the number of vertical visibilities between
pairs of edges of U(S) is O⇤(n2). A similar analysis applies when U(n) is superquadratic. In this case the bound
on the complexity of the vertical decomposition is O⇤(U(n)), as is easily checked. Putting everything together, we
obtain the following main result of this section.

Theorem 2.1. Let S be a collection of n constant-complexity semi-algebraic sets in R3
, with an upper bound

U(m) on the combinatorial complexity of the union of any subset of S of size m. Then the size of the vertical

decomposition of the complement of the union of S is O⇤(n2 + U(n)).

3 Vertical Decomposition of Lower Envelopes in R4

Let F be a collection of n trivariate semi-algebraic functions of constant complexity, let E = EF denote the lower
envelope of F , let E� = E�

F denote the portion of R4 below E, and let M = MF denote the minimization diagram
of E, namely the projection of E onto the xyz-space. Our goal is to estimate the combinatorial complexity of the
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vertical decomposition of M . This three-dimensional decomposition can then be lifted up in the w-direction to
induce a suitable decomposition of E�, which we refer to as the vertical decomposition of E. We note that the
complexity of (the undecomposed) E and of M is O⇤(n3) [45]. The main result of this section yields the same
asymptotic bound for their vertical decomposition:

Theorem 3.1. The complexity of the vertical decomposition of the lower envelope (that is, of the minimization

diagram) of a collection of n trivariate semi-algebraic functions of constant complexity is O⇤(n3).

Proof. We assume that the functions of F are in general position, continuous and totally defined. None of these
assumptions are essential, but they simplify the analysis. We identify each function of F with its three-dimensional
graph. We recall the way in which the vertical decomposition VD of M is constructed. We fix a function a
in F . For each function b 2 F \ {a}, we use �ab = �ba to denote the xyz-projection of the two-dimensional
intersection surface a \ b. The surface �ab partitions the xyz-space into the regions �+

ab
and ��

ab
, where �+

ab
(resp.,

��
ab
) consists or those points (x, y, z) for which a(x, y, z) � b(x, y, z) (resp., a(x, y, z)  b(x, y, z)). We observe that

the complement Ca of the union Ua :=
S�

�+
ab

| b 2 F \ {a}
 
is precisely the portion of the xyz-space over which a

attains the envelope E.
We now construct the three-dimensional vertical decomposition, denoted as VDa, of Ca, and repeat this

construction to each complement Ca, over a 2 F , observing that the regions Ca are pairwise openly disjoint. The
union of all these decompositions yields the vertical decomposition of MF , and, as mentioned above, the vertical
decomposition of EF is obtained by lifting this decomposition to EF (or to E�

F , see below), in a straightforward
manner.

We comment that, as already noted, we can also obtain by this approach the vertical decomposition of E�.
Each cell ⌧ in the decomposition of M is lifted to the semi-unbounded region

{(x, y, z, w) | (x, y, z) 2 ⌧ and w  E(x, y, z)}.

We have thus (almost) reduced the problem to that studied in Section 2. The di↵erence is that there we
assumed that the complexity of the union of any subcollection of at most m of the given objects is O⇤(m2), or at
least that we have some (subcubic) bound U(m) on that complexity. Here, though, this no longer holds. That is,
considering the entire collection F , and denoting by Ma the complexity of Ua, all we know is that

P
a
Ma = O⇤(n3),

so we have the bound O⇤(n2) only for the average value of Ma. To overcome this technicality, we modify the
previous analysis as follows.

Recall that in Section 2 we have reduced the problem to a bichromatic problem by assigning to each object
the color red or blue at random. Here we extend this technique to obtain a trichromatic reduction, by assigning to
each function the color red, blue or green at random. We now consider only unions Ua for green functions a, and
within the complement Ca of any of these unions, we only consider vertical visibilities between red-red edges and
blue-blue edges (technically, they are green-red-red and green-blue-blue edges), exactly as in Section 2. Again, any
vertical visibility that arises in the original decomposition has a constant probability to show up as a green-red-red
vs. green-blue-blue visibility in the trichromatic version.

For each green function a, the overhead terms that appear in the analysis can be written as M({a},R,B) and
M({a},R,Bi), where, for arbitrary sets G, R, B of green, red, and blue objects, respectively, M(G,R,B) denotes
the number of the green-red-red and green-blue-blue edges of the undecomposed envelope of G [R [ B. Here R,
B, and the Bi’s may be recursively obtained subsets of the original sets. Summing these quantities over a, we
obtain M(G,R,B) and M(G,R,Bi), respectively. We also use the notation M(u, v, w) to denote the maximum
value of M(G,R,B) for |G|  u, |R|  v and |B|  w.

Consider, say, a green-red-red edge e that appears on the boundary of (the complement Ca of) the union Ua

for some green function a (the same argument holds for green-blue-blue edges). If we replace G by a subset G0 that
contains a, Ca can only grow, since fewer regions �+

ab
form the union Ua. Hence e does not disappear, and can only

extend, possibly even merge with other edges formed by the same triple of functions. In particular, the number of
vertical visibilities in Ca between green-red-red edges and green-blue-blue edges can only increase.

We use this observation as follows. In the first two-step recursive round, as described in Section 2, we first
partition G into k subsets G1,G2, . . . ,Gk, each of size n/k, apply the analysis to each Gi and R and B, and then sum
up the resulting bounds for i = 1, . . . , k. Denote by C(u, v, w) the maximum number of vertical visibilities for sets of
at most u green, v red, and w blue functions. The overhead term will be at most O(M(u, v, w)) = O⇤((u+v+w)3),
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and the recursive term will be at most C(u/k, v/k, w/k) at each recursive subproblem. Therefore, by applying the
recursive relation from Section 2 on the number of red-blue vertical visibilities, we obtain the recurrence:

C(u, v, w) 
kX

i=1

k2�2(k)C(u/k, v/k, w/k) + k�(k)M(u/k, v, w),

which leads to the recursive relation:

C(u, v, w)  k3�2(k)C(u/k, v/k, w/k) + k2�(k)O⇤((u+ v + w)3).

The recurrence terminates when one of u, v, w  k. It can be verified that C(u, v, w) = O⇤((u + v + w)3).
It then follows that C(u, v, w) = O⇤((u + v + w)3) for any values of u, v, w, and this completes the proof of
Theorem 3.1. 2

4 Vertical Decomposition of Arrangements in R3

Let S be a set of n surfaces or surface patches in R3 in general position, each of which is semi-algebraic of constant
complexity, and let X denote the number of vertices of A(S). For simplicity, and with no loss of generality, we
assume that the surfaces are graphs of possibly partially defined continuous functions. This can be ensured by
cutting surfaces into surface patches at their silhouettes and at their curves of singularity. We show that the
complexity of the vertical decomposition of A(S) is O⇤(n2 +X).

As in Section 2, it su�ces to bound the number of vertical visibilities between pairs of edges of A(S). Again,
we randomly color each surface as either red or blue, and only consider visibilities between red-red edges and
blue-blue edges, in which the red-red edge lies below the blue-blue edge. An original vertical visibility has 1/8
probability to appear as a visibility of the desired kind under the coloring scheme. That is, up to a constant factor,
the bound that we seek is also an upper bound for the original uncolored case. Here too, each monochromatic edge
e may in general be the union of several original edges of A(S). Therefore the number of these monochromatic
edges is at most O(X). As before, we denote the subsets of red surfaces and blue surfaces as R and B, respectively,
and put m := |R|, n := |B|, slightly abusing the notation, as above.

The high-level analysis proceeds more or less as in Section 2. That is, we apply a two-step partitioning scheme,
in which we first partition the blue surfaces into k subsets B1, . . . ,Bk, each of n/k surfaces (in fact, the number of
these surfaces in each subcell is at most 2n/k—see below for the details of the analysis). Then, for each red-red
edge e, we form k separate lower envelopes of the blue surfaces, one for each Bi, within the (upward) vertical
curtain erected from e, and analyze the complexity of the lower envelope of all these envelopes.

Denote by C(m,n,X1, X2) the maximum number of vertical visibilities between red-red edges and blue-blue
edges in an arrangement of a set R of at most m red surfaces and a set B of at most n blue surfaces, so that the
complexity (number of vertices) of A(R) is at most X1 and the complexity of A(B) is at most X2. Observe that
X1 +X2  X.

A major new aspect of the analysis is in handling the parameter X, now replaced by X1 and X2. The issue is
that we have no control on how X1 and X2 are distributed over the subproblems that arise when we partition B
into k arbitrary subsets, and then do the same for R, as we did in Section 2.

We overcome this issue by partitioning each of R, B into k random subsets, say by choosing the subset to
which a surface belongs independently and uniformly at random. Specifically, consider the first partitioning step,
where B is split. We form a random partition of B into k subsets B1, . . . ,Bk, where a surface � 2 B is assigned
to a subset Bi, 1  i  k, which is chosen with probability 1/k, independent of the assignment of the remaining
surfaces in B. This probabilistic model obeys the multinomial distribution with k “categories”. In particular, this
implies that the size of each Bi is a binomial random variable with parameters n and 1/k. Similarly, when we apply
such a random partition to R at the second partitioning step, we obtain a partition into k subsets R1, . . . ,Rk,
where the size of each Rj is a binomially distributed random variable with parameters m and 1/k. We clearly
have E[|Bi|] = n/k, for each 1  i  k, and E[|Rj |] = m/k, for each 1  j  k.

Using standard probabilistic arguments, exploiting the multiplicative Cherno↵ bound [17], we conclude that,
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with high probability,

|Bi|  n/k

 
1 +O

 r
k

n
log n

!!
, for each 1  i  k, and

|Rj |  m/k

 
1 +O

 r
k

m
logm

!!
, for each 1  j  k.

By choosing k appropriately, we can assume that, with high probability, these upper bounds do not exceed 2n/k,
and 2m/k, respectively.

Moreover, at the first partitioning step, a blue-blue edge e0 is assigned to a specific subset Bi with probability
at most 1/k2 (here too, a blue-blue edge of A(Bi) may be the union of several original edges of A(B)). Specifically,
e0 is defined by at most four surfaces. That is, if e0 contains two endpoints (each of which is a vertex of the
arrangement obtained by the intersection of a triple of surfaces) then this number is four, if it has only one
endpoint then e0 is defined by three surfaces, otherwise, it is defined by a pair of surfaces (recall that we exclude
silhouette and singularity edges, in which case there is only a single surface defining an edge).

In the first two scenarios Bi has to contain the triple of surfaces defining an endpoint of e0 (or the quadruple
defining both endpoints), which occurs with probability at most 1/k3. In the latter scenario the pair of surfaces
defining e0 has to be assigned to Bi, which happens with probability 1/k2. Therefore the expected complexity
of the arrangement A(Bi) is O(n2/k2 +X2/k3). We comment that the events that edges show up in a specific
subset are not independent. However, we claim below that, with high probability, the complexity of A(Bi) is
O(n2/k2 +X2/k2), for each 1  i  k. This bound is slightly worse than the expected complexity, but it su�ces
for the analysis to proceed.

Indeed, since we have, with high probability, |Bi|  2n/k, for each 1  i  k, we immediately conclude that
the number of edges of A(Bi) that are formed by pairs of surfaces is O(n2/k2) (with high probability). Regarding
the number of edges that are formed by a triple (or a quadruple) of surfaces, their expected number Y is O(X2/k3),
as observed above. Using Markov’s inequality we conclude that the probability that the actual number of such
edges exceeds 2kY is at most 1/(2k). That is, with probability at least 1� 1/(2k), the number of such edges in
A(Bi) is at most O(X2/k2). Using the probability union bound, we obtain that this bound holds for all sets Bi,
1  i  k, with probability at least 1/2. We comment that this event is conditioned on the event that |Bi|  2n/k,
for each 1  i  k (which occurs with very high probability), so using the rule of conditional probability, we can
assume that with probability at least 1/4 the overall complexity of A(Bi) is at most O(n2/k2 +X2/k2), for each
1  i  k. By the probabilistic method [17] this implies that there exists such a partition B1, . . . ,Bk.

Hence, a suitable adaptation of the analysis in Section 2 yields the first-level recurrence (where c > 0 below is
an absolute constant):

C(m,n,X1, X2)  k�(k)C(m, 2n/k,X1, c(n
2/k2 +X2/k

2)) + k�(k)X1 +O⇤(mn),

for a suitable near-constant extremely slowly growing function �(k). The overhead term O⇤(mn) comes from
vertical visibilities that involve silhouettes and singularities, and follows by an argument similar to that in Section 2.

We next switch the roles of red and blue, and apply the same analysis to each pair R, Bi of surfaces, keeping
Bi fixed and partitioning R into k random subsets, as above, each of which is of size at most 2m/k (with high
probability). The analysis proceeds in a similar manner, and yields the bound

k2�2(k)C(2m/k, 2n/k, c(m2/k2 +X1/k
2), c(n2/k2 +X2/k

2)) +Ok(X1 +X2) +O⇤
k
(mn)

on the number of vertical visibilities, where the Ok(·) notation indicates that the constant of proportionality
depends on k. That is, we obtain the recurrence

C(m,n,X1, X2)  k2�2(k)C(2m/k, 2n/k, c(m2/k2 +X1/k
2), c(n2/k2 +X2/k

2)) +Ok(X1 +X2) +O⇤
k
(mn)

By choosing k to be a su�ciently large constant, the solution of the recurrence is easily seen to be

C(m,n,X1, X2) = O⇤(m2 + n2 +X1 +X2).

That is, replacing m and n by the original value of n, and X1, X2 by the original quantity X, we obtain the
following:
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Theorem 4.1. Let S be a collection of n constant-complexity semi-algebraic surfaces or surface patches in R3
, and

let X be the number of vertices in A(S). Then the complexity of the vertical decomposition of A(S) is O⇤(n2 +X).

5 Constructing Cuttings and Decompositions

5.1 Constructing cuttings Let S be a collection of n semi-algebraic sets of constant complexity in Rd. Let ⇧
be a substructure of A(S), say, defined by a collection of cells of A(S) that satisfy certain properties (e.g., lying in
the complement of the union or lying below the lower envelope). For a parameter r > 1, a (1/r)-cutting of ⇧ is a
set ⌅ of pseudo-prisms with pairwise-disjoint relative interiors that cover ⇧, such that the relative interior of each
pseudo-prism ⌧ 2 ⌅ is crossed by (intersected by but not contained in) at most n/r sets of S. The subset of S
crossed by ⌧ is called the conflict list of ⌧ .

It is well known that the random-sampling paradigm can be used to construct a (1/r)-cutting [1, 23, 35, 39].
Namely, set s = cr log r, where c is a su�ciently large constant. Let R ✓ S be a random subset of S of size s, and
let VD(R) be the vertical decomposition of A(R). For each cell ⌧ 2 VD(R), let S⌧ ⇢ S be the subset of S that
crosses ⌧ . By construction, S⌧ \R = ; and ⌧ is a semi-algebraic set of constant complexity, therefore using a
standard random-sampling argument [27, 35], it can be shown that |S⌧ |  n/r for all ⌧ 2 VD(R) with probability
at least 1/2 assuming the constant c is chosen su�ciently large. Therefore, to construct a (1/r)-cutting ⌅ of ⇧, we
only have to decide which of the cells of VD(R) should be included in ⌅ to ensure that they cover ⇧.

If S is a set of semi-algebraic sets in R3 and we wish to compute a (1/r)-cutting of C(S), the complement
of the union of S, we set ⌅ = {⌧ 2 VD(R) | ⌧ ✓ C(R)}. Since R ✓ S, C(S) ✓ C(R), and thus ⌅ is guaranteed
to cover C(S). By Theorem 2.1, |⌅| = O⇤(r2 + U(r)). In contrast, if we want to construct a (1/r)-cutting of
the entire A(S), we set ⌅ = VD(R). If A(S) has X vertices, then the expected number of vertices in A(R) is
O(r2 +Xr3/n3), and thus, by Theorem 4.1, the expected size of ⌅ is O⇤(r2 +Xr3/n3). (If the size of ⌅ is more
than twice its expected size, we discard ⌅ and repeat the construction.) Finally, if S represents graphs of a set of
trivariate functions in R4 and we wish to construct a (1/r)-cutting of the portion of A(S) lying below the lower
envelope of S, we set ⌅ to be the set of cells of VD(R) that lie below the lower envelope of R. By Theorem 3.1,
|⌅| = O⇤(r3). Hence, we conclude the following:5

Theorem 5.1. (i) Let S be a collection of n semi-algebraic sets of constant complexity in R3
, and let U(m) be

an upper bound on the complexity of the union of at most m objects of S. There exists a (1/r)-cutting of

C(S), the complement of the union of S, of size O⇤(r2 + U(r)).

(ii) Let F be a collection of n trivariate semi-algebraic functions of constant complexity. There exists a (1/r)-
cutting of the region below the lower envelope of F of size O⇤(r3).

(iii) Let S be a collection of n constant-complexity semi-algebraic surfaces or surface patches in R3
, so that the

number of vertices in A(S) is X. Then there exists a (1/r)-cutting for S of size O⇤(r2 + r3X/n3).
For contestant values of r, these cuttings, along with the conflict lists of their cells, can be computed in O(n)

expected time (where the constant of proportionality depends on r).

5.2 Constructing vertical decompositions We now describe algorithms for constructing vertical decompo-
sitions for the cases studied in Sections 2–4.

Complements of unions in R3
. Let S be a collection of n semi-algebraic sets (each of constant complexity)

in R3 such that the maximum complexity of the union of any subset S 0 of S of at most m  n sets is U(m). Let
C(S 0) denote the complement of U(S 0).

We present below an algorithm that constructs, in O⇤(n2 + U(n)) expected time, the vertical decomposition
of C(S). More precisely, it constructs the set of pseudo-prisms in the vertical decomposition of C(S). As a main
step of the algorithm, we perform the subtask of reporting all the vertical visibilities, within C(S), between pairs
of edges (e, e0) that lie on @U(S). By Theorem 2.1, the number of these vertical visibilities is O⇤(n2 + U(n)). We
also compute the vertices, edges, and 2-faces of U(S) in O⇤(n2 + U(n)) expected time, e.g., using the randomized
incremental algorithm described in [4]. Then the pseudo-prisms in VD(S) can be computed in a fairly standard

5It is possible to reduce the size of the cuttings by a polylogarithmic factor using a two-level sampling scheme as described
in [11, 23, 25, 39]. Since we are using O

⇤() notation and are ignoring subpolynomial factors, we described a simpler, albeit slightly
weaker, construction.
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(though somewhat tedious) manner by traversing all the faces and edges of @U(S) and tracking their vertical
visibilities. We omit the details from here in the interest of brevity, and refer the reader to [22], where a similar
method was used for computing the vertical decomposition of an arrangement of triangles in R3.

We follow a randomized divide-and-conquer scheme to compute vertical visibilities. Let 1  r  n be a
su�ciently large constant parameter. If |S|  n0, where n0 is a constant that depends on r, we report all pairs of
vertical visibilities between the edges on @C(S) in a brute-force manner. Otherwise, we recursively construct a
(1/(2r))-cutting ⌅ of C(S) of size O⇤(r2 + U(r)), using Theorem 5.1 (i). (We comment that the actual reporting
is done only at the bottom of the recurrence.) For each cell ⌧ 2 ⌅, let S⌧ ⇢ S be its conflict list, the family of
input sets that cross the relative interior of ⌧ , plus the O(1) input sets that define the cell ⌧ . By construction,
|S⌧ |  n/(2r) + O(1)  n/r. As is easily verified, any edge pair (e, e0) (that lie on @C(S)) of vertical visibility
within C(S) must be reported during this process, since the vertical segment ⇢ connecting e and e0 must be
contained in some prism cell of ⌅. Otherwise, this would imply that one of the input sets crosses ⇢, but this
violates the definition of vertical visibility. The overall expected running time T (n) to report all pairs of vertical
visibility obeys the recurrence:

T (n) = O⇤(r2 + U(r))T (n/r) +O⇤(n),

where the overhead term accounts for computing ⌅ and the conflict lists of all the cells of ⌅. Using induction, it
can be verified that the solution is T (n) = O⇤(n2 + U(n)). We have thus shown:

Theorem 5.2. Let S be a collection of n constant-complexity semi-algebraic sets in R3
, such that the complexity

of the union of any subset of S of size m is U(m). Then the vertical decomposition of C(S) can be constructed in

O⇤(n2 + U(n)) randomized expected time.

Arrangements in R3
. Let S be a collection of n semi-algebraic sets (each of constant complexity) in R3 such

that A(S) has X vertices. The above approach for computing the vertical decomposition of C(S) can be extended
to compute the vertical decomposition of A(S). The only di↵erence is that we now compute a (1/(2r))-cutting
of A(S) of size O⇤(r2 + r3X/n3) using Theorem 5.1 (iii). Omitting the straightforward details, we conclude the
following result.

Theorem 5.3. Let S be a collection of n constant-complexity semi-algebraic sets in R3
such that the arrangement

A(S) has X vertices. Then the vertical decomposition of A(S) can be constructed in O⇤(n2 + X) randomized

expected time.

Lower envelopes in four dimensions. Let F be a collection of n trivariate semi-algebraic functions of
constant complexity. Our goal is to construct the vertical decomposition of E�, the portion of A(F) lying below
the lower envelope E of F .

We briefly recall how the vertical decomposition is defined. We iterate over the functions of F . For each
function a 2 F , we form the 2D intersection surfaces a \ b, for b 2 F \ {a}, which we denote for short as ab. We
project these surfaces onto the xyz-space, and construct the vertical decomposition of the complement Ca of the
union Ua as defined in Section 3. As in the basic construction in Section 2, the key step is to find all the vertical
visibilities within Ca. Each such visibility is between two edges, each of which is the intersection of two of the
surfaces ab (for a fixed). We denote for short the intersection curve of ab and ac as abc. That is, we need to
find all the 5-tuples (a, b, c, d, e) of distinct functions of F , such that abc and ade form a vertical visibility (in
the z-direction) within Ca. Once we have found all these 5-tuples, completing the representation of the vertical
decomposition can be carried out in a routine manner, similar to that used in the three-dimensional case reviewed
earlier, which, for this setting, takes overall O⇤(n3) time.

To construct the above visibilities, we proceed as above. Namely, we construct a (1/(2r))-cutting ⌅ of E� of
size O⇤(r3) using Theorem 5.1 (ii). For each prism ⌧ 2 ⌅, let F⌧ be its conflict list plus the O(1) functions that
define ⌧ . We process recursively each prism cell ⌧ , where at the bottom of the recursion we report all pairs of
vertical visibilities between the edges of F⌧ in a brute force manner.

We claim that, for each vertical visibility (in the full collection F) defined by a 5-tuple (a, b, c, d, e), all five
functions appear in the conflict list of the same prism ⌧ 2 ⌅, so the visibility will be found in the corresponding
recursive step (in fact, as just described, it will be found at some leaf of the recursion). Indeed, let ⇣ be the
z-vertical segment in the xyz-space that defines the visibility, with endpoints on abc and on ade. Let ⇣+ be the
lifting of ⇣ to the graph of a. Then ⇣+ is fully contained in Ea, and in fact no function graph crosses the downward
vertical curtain erected (in the w-direction) from ⇣+.
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We claim that ⇣+ is fully contained in a prism ⌧ 2 ⌅, from which the previous claim follows readily. Suppose
to the contrary that this is not the case, so ⇣+ crosses the boundary of such a prism. Since ⇣+, or rather ⇣, is in the
z-direction, it follows that ⇣ must hit the floor or the ceiling, in the z-direction, of a prism of the three-dimensional
decomposition of the minimization diagram, which, by construction, lies on some (xyz-projection of an) intersection
surface, say uv. This however is impossible, since no such surface can cross the interior of ⇣, which is fully contained
in Ca, which is disjoint from all such surface projections. This establishes the correctness of the procedure and
yields the following:

Theorem 5.4. Let F be a collection of n trivariate semi-algebraic functions of constant complexity. Then the

vertical decomposition of portion of A(F) lying below the lower envelope of F can be constructed in randomized

expected time O⇤(n3).

6 Nearest Neighbor Searching amid Lines in R3

We now turn our attention to nearest-neighbor-searching problems involving points and lines in R3. In this section,
we present a linear-size data structure for preprocessing a set L of n lines in R3 into a data structure so that for a
query point p 2 R3, the line of L nearest to p can be reported quickly (more quickly than what can be obtained by
the standard machinery). Using standard techniques (e.g., parametric search) [1, 9], a nearest-neighbor query,
referred to as an NN query on L, can be reduced to answering O⇤(1) sphere-intersection-detection queries on L.
That is, we want to preprocess L into a data structure that can e�ciently determine whether a query sphere �
intersects any of the lines in L.

Overall data structure. Our overall data structure is based on the following technical property, originally
proved by Mohaban and Sharir [42]. Let ` be a line in R3, and let �p be a sphere, centered at a point p. Let V` be
the vertical plane that contains `, and let H` be the plane that contains ` and is orthogonal to V`. We say that `
is lower (resp., higher) than �p if p lies above (resp., below) H`; see Figure 1.

p

V`

�p

`

`�

H`

Figure 1: Illustration of condition (ii-) of Lemma 6.1. Here ` is lower than �p.

Lemma 6.1. ([42]) Assuming that ` is lower than �p (using the above notation), ` intersects �p if and only if the

following two conditions hold:

(i) The xy-projections of ` and of �p intersect, and

(ii-) ` lies above the parallel line `� that lies in V` and is tangent to �p from below.

Symmetrically, assuming that ` is higher than �p, ` intersects �p if and only if (i) holds and

(ii+) ` lies below the parallel line `+ that lies in V` and is tangent to �p from above.

We describe a linear-size data structure that, for a query sphere �, determines whether any line of L that is
lower than � intersects �. (A similar data structure can be constructed for detecting whether any line of L that is
higher than � intersects �.) We thus need a data structure that, for a query sphere �, returns Yes if a line in `
satisfies the following three conditions, as in Lemma 6.1:

Copyright c� 2024 by SIAM
Unauthorized reproduction of this article is prohibited161

D
ow

nl
oa

de
d 

10
/1

0/
24

 to
 1

52
.3

.4
3.

50
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



(C1) the xy-projections of ` and � intersect,

(C2) ` is lower than �, and

(C3) ` lies above the parallel line `� that lies in V` and is tangent to �p from below.

We use a multi-level partition tree [1, 2] for answering queries of this kind. In particular, we construct a
3-level partition tree, each of whose nodes v stores a “canonical” subset Lv ✓ L. The first-level tree identifies the
subset of lines that satisfy condition (C1) for the given query. Since a line in R2 requires two parameters, (C1) can
be formulated as a two-dimensional semi-algebraic range query of a very simple nature—the inequality that we
need to test just involves the absolute value of a linear expression. Thus the first level is a 2-dimensional partition
tree for semi-algebraic range queries of this simple kind [12, 41]. As shown in [42], and easy to see, (C2) just
amounts to testing whether the center of the sphere lies above the respective planes H`, so it can be formulated
as a 3-dimensional halfspace range query. For each node u of the first-level tree, we construct a 3-dimensional
partition tree for halfspace range searching, on the subset of lines Lu associated with u, as a second-level tree.
Finally, for each node v of every second-level tree, we construct a third-level partition tree on Lv, the subset of
lines associated with v, which tests for (C3). We present below a linear-size data structure that can test condition
(C3) in O⇤(n2/3) time (actually, in O⇤(|Lv|2/3) time). For a query sphere �, the first two levels of the partition
tree return the subset of lines that satisfy conditions (C1) and (C2) as the union of a few canonical subsets (see
below for a precise statement). For each of these canonical subsets Lv, the third-level tree constructed on Lv is
used to test whether any line in Lv satisfies (C3). If the answer is Yes, then we conclude that � intersects a line
of Lv and return Yes. Since the query time at each level is O⇤(n2/3) (it is actually smaller for the first level),
the properties of multi-level partition trees (see, e.g., Theorem A.1 in the appendix of [2]), imply that the overall
query time is also O⇤(n2/3). The overall size of the data structure is O(n).6

Sphere-intersection query for lines lower than the sphere. Let L be a set of n lines in R3. We wish
to preprocess L into a linear-size data structure that, for a query sphere � satisfying conditions (C1) and (C2) for
all lines in L, can determine in O⇤(n2/3) time whether � intersects any line of L. We work in the 4-dimensional
parametric space of lines, denoted by L, where a line ` is represented by the point `⇤ = (a, b, c, d) and the equations
defining ` are y = ax+ c, z = bx+d; L is thus identified7 with R4. Put L⇤ = {`⇤ | ` 2 L}. A sphere � is associated
with a surface (patch) �� ⇢ L, which is the locus of points `⇤ such that the corresponding line ` is tangent to
� from below. Let �+

�
be the set of points lying on or above �� in the d-direction; �+

�
is a semi-algebraic set of

constant complexity. It is easily seen that a line ` satisfying conditions (C1) and (C2) intersects � if and only if `⇤

lies in �+
�
. Let � be the collection of all sets �+

�
such that � satisfies (C1) and (C2) for all lines in L. Thus the

sphere-intersection query for a sphere � in our setting reduces to semi-algebraic range-emptiness query in L⇤ with
�+
�
2 �. Using the known and standard partition tree mechanism [12, 41], this query can be answered in O⇤(n3/4)

time, but we show how to improve the query time to O⇤(n2/3).
We follow the approach of Matoušek [40] and of Sharir and Shaul [46] for answering the range-emptiness query.

We need a couple of definitions. Let P ⇢ L be a set of n points. For a parameter k � 0, we call a semi-algebraic
set � ⇢ L, which semi-unbounded in the negative d-direction, k-shallow if |P \ �|  k. For a parameter r � 1,
we call a family ⇧ = {(P1,�1), . . . , (Pu,�u)} a (1/r)-partition for P if (i) {P1, . . . , Pu} is a partition of P , (ii)
n/2r  |Pi|  n/r, and (iii) Pi ⇢ �i where �i ✓ L is a semi-algebraic set of constant complexity, referred to as a
cell of ⇧. The crossing number of ⇧ for a semi-algebraic set ⌧ , denoted by �(⇧, ⌧), is the number of cells of ⇧
intersected by the boundary of ⌧ . The crossing number of ⇧ for a family ⌅ of semi-algebraic sets, denoted by
�(⇧,⌅), is defined as max⌧2⌅ �(⇧, ⌧).

A major ingredient of the approach in [40, 46] is to construct a so-called test set � of a small number of
semi-algebraic sets, which represent well all query semi-algebraic sets that are shallow. The following lemma of
Sharir and Shaul [46, Theorem 3.2] summarizes the key property:

6A straightforward application of the multi-level data-structure framework leads to a data structure of size O
⇤(n). But, using well

known machinery, the size can be improved to O(n) while keeping the query time O
⇤(n2/3) by constructing secondary structures only

at some of the nodes.
7For convenience (and with no loss of generality if one assumes general position), we ignore the fact that this space is actually

projective.
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Lemma 6.2. ([46]) Let P be a set of n points in Rd
, for some d � 1, and let � be a (possibly infinite) family of

semi-algebraic sets of constant complexity. Let r � 1 be a parameter, and let � be another finite collection (not

necessarily a subset of �) of semi-algebraic sets of constant complexity with the following properties:

(i) Every set in � is (n/r)-shallow with respect to P .

(ii) The complement of the union of any m sets of � can be decomposed into at most ⇣(m) “elementary cells”

(semi-algebraic sets of constant complexity) for any m � 1, where ⇣(m) is a suitable monotone increasing

superlinear function of m.

(iii) Any (n/r)-shallow set � 2 � can be covered by the union of at most � ranges of �, where � is a constant

(independent of r).

Then there exists a (1/r)-partition ⇧ of P such that for any (n/r)-shallow range � 2 �, �(⇧, �) =
O(r/⇣�1(r) + log r log |�|) if ⇣(r)/r1+"

is monotonically increasing for some (arbitrarily small) constant " > 0,
and �(⇧, �) = O(r log r/⇣�1(r) + log r log |�|) otherwise. Furthermore, ⇧ can be constructed in (|�| + n)rO(d)

expected time assuming � is given.

As shown in [40, 46], using Lemma 6.2 and assuming that |�| = rO(d), one can construct a partition tree of
linear-size that can determine in O⇤(n/⇣�1(n)) time whether � \P 6= ;, for any query range � 2 �. We present an
algorithm below for constructing a test set � of size rO(1) for our setup so that ⇣(m) = O⇤(m3) and � = 1, which
in turn yields a linear-size data structure for sphere intersection queries with O⇤(n2/3) query time, as desired.

Constructing a test set. To construct the test set, we also use the 4-dimensional parametric space S of
spheres in R3, where a sphere � of radius r centered at a point p is mapped to the point �⇤ = (p, r) 2 S; S can
thus be identified with R4. A line ` in R3 is mapped to a surface !`, consisting of all points �⇤ 2 S that represent
spheres that touch ` from above. As is easily verified, these surfaces are monotone over the xyz-subspace, so that
a point �⇤ lies above the surface !` if and only if ` intersects �, assuming � and ` satisfy (C1) and (C2).8

Let ⌦ = {!` | ` 2 L} denote the collection of these surfaces. We take a random subset R ✓ ⌦ of s = cr log r
surfaces, for some su�ciently large constant r, and construct the vertical decomposition VD(R) of the arrangement
A(R); VD(R) has O⇤(r4) cells [36]. By a standard random-sampling argument [35], each cell of VD(R) is crossed
by at most n/r surfaces of ⌦ with probability at least 1/2. If this is not the case, we discard R and choose another
random subset, until we find one with the desired property. We choose a subset ⌅ of VD(R), namely, those cells
that have at most n/r surfaces of ⌦ passing fully below them. By construction, these cells cover the lowest n/r
levels of A(⌦), and are contained in the at most 2n/r lower levels of A(⌦).

Let ⌧ be a cell of ⌅. We now switch to the parametric line-space L, where each point �⇤ 2 ⌧ becomes the
surface ��. We construct the lower envelope of the (infinitely many) surfaces �� over all �⇤ 2 ⌧ . Let �⌧ ⇢ L be
the set of points lying above the lower envelope. Since ⌧ has constant complexity, �⌧ is a semi-algebraic surface
of constant complexity. A point `⇤ 2 L⇤ lies in �⌧ if and only if there is a surface ��, with �⇤ 2 ⌧ , that passes
below `⇤. This happens when, back in S, the surface !` (corresponding to the line `) crosses ⌧ or lies below ⌧ . By
construction, there are at most n/r + n/r = 2n/r such surfaces. Consequently, �⌧ is (2n/r)-shallow with respect
to the points of L⇤.

Set � = {�⌧ | ⌧ 2 ⌅}. � is a family of O⇤(r4) constant-complexity semi-algebraic surfaces9 in L, each of
which is (2n/r)-shallow with respect to L⇤. This is our desired test set, as stated in the following lemma. The
proof of the lemma is an immediate consequence of our construction.

Lemma 6.3. Let � be a sphere that satisfies (C1) and (C2) with respect to the lines of L and that is (n/r)-shallow
with respect to L. Then there exists a semi-algebraic set of � that contains �⇤

.

Plugging Lemma 6.3 into Lemma 6.2, � is a test set for L⇤ with respect to the semi-algebraic ranges in �, with
� = 1 and ⇣(m) = O⇤(m3). The bound on ⇣(m) follows from Theorem 3.1. Putting everything together, we thus
obtain:

Theorem 6.1. A set L of n lines in R3
can be preprocessed, in O⇤(n) expected time, into a data structure of size

O(n) so that for any query point p 2 R3
, the line of L nearest to p can be computed in O⇤(n2/3) time.

8Informally, this is why we have to distinguish between lines that pass below the sphere and lines that pass above.
9By construction, as in [46], these semi-algebraic sets do not correspond to spheres any more, but they are nevertheless semi-algebraic

sets of constant complexity.
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7 Nearest-Neighbor Queries with Lines in R3

In this section we consider the converse situation, where queries are lines in R3. We first consider in Section 7.1 a
simpler, yet challenging, case where the input is a set of points in R3, and then, in Section 7.2, consider the case
where the input is a set of lines in R3. We are interested in a data structure that answers NN queries in O⇤(1)
time using as little storage as possible.

7.1 Nearest-point queries with lines in R3 Let P be a set of n points in R3. Since we are aiming for an
O⇤(1) query time, we work in the 4-dimensional parametric space L of (query) lines (the same parametric space
used in the previous section), where a line ` in R3, given by the equations y = ax+ c and z = bx+ d, is represented
as the point `⇤ = (a, b, c, d) 2 L. We begin by describing the distance function between a point and a line in R3

and the Voronoi diagram that the points of P induce in L.
Distance function, lower envelope, Voronoi diagram. Let `⇤ = (a, b, c, d) 2 L. For a fixed pair a, b 2 R,

the (unnormalized) direction of `, (1, a, b), is fixed. Let H be the plane that is orthogonal to ` (i.e., with normal
direction (1, a, b)) and passes through the origin. Redefine the representation of ` so that (c, d) is actually the
intersection of ` with H, in a suitable canonical coordinate frame within H (we omit here the easy details of
specifying this frame, noting that it does depend on (a, b)). Write u = (1, a, b).

For a point p 2 P , let p# denote its projection onto H. Concretely, write p# = p+ tu. The condition for p# to
lie in H is that p+ tu be orthogonal to u (recall that H passes through the origin). That is, we require that

(p+ tu) · u = p · u+ t|u|2 = 0, or t = �p · u
|u|2 .

That is, we have

p# = p� p · u
|u|2 u.

Write p# = (xp(a, b), yp(a, b)); clearly, these coordinates depend on (a, b). The distance between p and `, denoted
by dist(p, `), is then the distance between p# and (c, d). That is,

dist2(p, `) = (xp(a, b)� c)2 + (yp(a, b)� d)2

= (x2
p
(a, b) + y2

p
(a, b))� 2cxp(a, b)� 2dyp(a, b) + (c2 + d2).(7.1)

For a query line `, our goal is to compute argminp2P dist2(p, `), the point p 2 P that is closest to `, i.e., minimizes
(7.1). Since c2 + d2 is common to all points p, we can drop it, and seek the point p that minimizes

(7.2) fp(a, b, c, d) = gp(a, b)� 2cxp(a, b)� 2dyp(a, b),

where gp(a, b) = x2
p
(a, b) + y2

p
(a, b). Let F = {fp | p 2 P} be the resulting set of n 4-variate functions. Consider

the lower envelope E : L ! R of F defined as

E(a, b, c, d) = min
p2P

fp(a, b, c, d).

The projection of the graph of E onto L, denoted by M := M(P ), is called the minimization diagram of F . M
induces a partition of L, to which we refer as the Voronoi diagram of P in L. Each cell ⌧ of M is associated with
a point p 2 P that is the nearest neighbor of all lines whose dual points lie in the cell ⌧ . For a query line `, we
wish to locate the cell of M containing `⇤ = (a, b, c, d). However, currently we do not know how to preprocess
four-dimensional minimization diagrams, like M, into a data structure of size O⇤(n4) for answering point-location
queries in O⇤(1) time. We manage to address this problem by exploiting the additional structure of the Voronoi
cells of M.

Structure of Voronoi cells. For each point p 2 P , let Mp denote the region of L where fp attains E, i.e.,
the set of cells of M that are associated with p. Let Ep denote the graph of E restricted to Mp, which is a suitable
subset of the graph of fp.

For each q 2 P , q 6= p, let �p,q denote the intersection surface of fp and fq, which is a three-dimensional
surface that is disjoint from the relative interior of Ep, and does not pass below any point on Ep. It is defined by
the equation

gp(a, b)� 2cxp(a, b)� 2dyp(a, b) = gq(a, b)� 2cxq(a, b)� 2dyq(a, b).
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Assuming yq(a, b) 6= yp(a, b), we define a trivariate function  p,q : L(d) ! R, where L(d) ⇢ L is the 3-dimensional
hyperplane d = 0, as follows:

(7.3) d =  p,q(a, b, c) :=
gq(a, b)� gp(a, b)

2(yq(a, b)� yp(a, b))
� xq(a, b)� xp(a, b)

yq(a, b)� yp(a, b)
c.

The surface �p,q partitions L into the two regions

K(d+)
p,q

= {`⇤ 2 L | fp(`⇤)  fq(`
⇤)} and K(d�)

p,q
= {`⇤ 2 L | fp(`⇤) � fq(`

⇤)}.

Then Mp =
T

q2P\{p} K
+
p,q

. By (7.3), we can write K(d+)
p,q as

K(d+)
p,q

= {(a, b, c, d) 2 L | yq(a, b)� yp(a, b) � 0, d   p,q(a, b, c)}
[

{(a, b, c, d) 2 L | yq(a, b)� yp(a, b)  0, d �  p,q(a, b, c)}.

To simplify this representation, we define two functions  +
p,q

, �
p,q

: L(d) ! R by:

 (d+)
p,q

(a, b, c) =

(
 p,q(a, b, c) yq(a, b)� yp(a, b) � 0

+1 otherwise

 (d�)
p,q

(a, b, c) =

(
 p,q(a, b, c) yq(a, b)� yp(a, b)  0

�1 otherwise.

(7.4)

Then we can write

(7.5) K(d+)
p,q

= {(a, b, c, d) 2 L |  (d�)
p,q

(a, b, c)  d   (d+)
p,q

(a, b, c)}.

In other words, Mp is the sandwich region between the lower envelope (with respect to the d-direction) E(d�)
p of

the functions  (d+)
p,q and the upper envelope E(d+)

p of the functions  (d�)
p,q , for q 2 P \ {p}. See Figure 2 for an

illustration.

d

Ep

M�
p

M+
p

 �
p,q1

 +
p,q2

E+
p

E�
p

`⇤

Figure 2: The structure of the decomposition of the lower envelope and the minimization diagram of the sample.
To simplify the figure, the superscripts (d+) and (d�) have been suppressed.

We can thus write Mp as M(d�)
p \M(d+)

p , where M(d�)
p (resp., M(d+)

p ) is the region below the lower envelope

E(d�)
p (resp., above the upper envelope E(d+)

p ) in the d-direction.
Note that the above construction is symmetric in c and d, as each function fp is linear in both c and d. We

can therefore repeat the whole construction, switching between c and d. The analysis is fully symmetric, with
obvious modifications, such as having xq(a, b)� xp(a, b) in the denominators in (7.2), and similar straightforward

changes. Mp can now be written as M(c�)
p \M(c+)

p , where M(c�)
p (resp., M(c+)

p ) is the region below (resp., above),
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in the c-direction, the lower envelope E(c�)
p (resp., upper envelope E(c+)

p ) of the corresponding set of trivariate

functions  (c�)
p,q (resp.,  (c+)

p,q ) defined analogously to  (d�)
p,q (resp.,  (d+)

p,q ).
We conclude this discussion with the following observation, which will be the key to the performance of our

data structure and the query procedure.

Lemma 7.1. Let `⇤ = (`a, `b, `c, `d) 2 L, and let p be a point of P . Let ⇢(d) (resp., ⇢(c)) denote the line in the

d-direction (resp., c-direction) in L passing through `⇤, and let �(d) (resp., �(c)) denote the curve on (the graph

of) fp traced over the line ⇢(d) (resp., ⇢(c)). Let q be a point of P that is nearer to ` than p, assuming that such

a point exists, i.e., fq(`⇤) < fp(`⇤). Then fq intersects either �(d) or �(c). Furthermore if fq intersects �(d) at

a point w = (wa, wb, wc, wd) such that wd > `d (resp., wd < `d) then we have wd =  (d�)
p,q (wa, wb, wc) (resp.,

wd =  (d+)
p,q (wa, wb, wc)). A similar property holds if fq intersects �(c).

Proof. Suppose fq does not intersect �(d). Then we would have, using (7.2),

gq(a, b)� 2cxq(a, b)� 2dyq(a, b) < gp(a, b)� 2cxp(a, b)� 2dyp(a, b)

for every d. Since a, b, c are fixed along �(d), this can happen only when yq(a, b) = yp(a, b). Repeating the same
argument for �(c), if fq does not intersect �(c), then xq(a, b) = xp(a, b). Therefore, if fq does not intersect either of
these curves then we also have, by definition, gq(a, b) = gp(a, b), which implies that fq(`⇤) = fp(`⇤), i.e., p and q
are equidistant from `. This contradicts the assumption that q is (strictly) nearer to ` than p.

Thus fq intersects one of the curves, say, for specificity, that it intersects �(d). Again, by (7.2), fq intersects
�(d) at a unique point w = (wa, wb, wc, wd), with wd =  p,q(wa, wb, wc). If wd > `d (resp., wd < `d), then by (7.4),

we must have wd =  (d�)
p,q (wa, wb, wc) (resp., wd =  (d+)(wa, wb, wc)). This completes the proof of the lemma. 2

We are now ready to describe the data structure based on the above lemma.
Overall data structure. Fix some su�ciently large constant parameter r > 0. We choose a random subset

R ✓ P of cr log r points, for a suitable absolute constant c > 0. We construct the Voronoi diagram M(R) of R.

For every point p 2 R, we construct M(d�)
p ,M(d+)

p ,M(c�)
p ,M(c+)

p , as defined above (with respect to M(R)). Let

⌅(d�)
p = VD(M(d�)

p ) be the vertical decomposition of M(d�)
p . Similarly define, ⌅(d+)

p ,⌅(c�)
p ,⌅(c+)

p . Let ⌅ be the set
of cells in all these 4|R| vertical decompositions. By Theorem 3.1, |⌅| = O⇤(r · r3) = O⇤(r4), and by Theorem 5.4,
⌅ can be constructed in a total of O⇤(r4) expected time.

We define a conflict list L⌧ for every ⌧ 2 ⌅, as follows. For each point p 2 R and each cell ⌧ of ⌅(d�)
p (resp.,

⌅(d+)
p ), we define P⌧ ⇢ P to be the subset of points q 2 P for which the surface d =  (d+)

p,q (resp., d =  (d�)
p,q )

crosses ⌧ . With a suitable choice of c, the size of each conflict list is at most n/r, with high probability, because, by

construction, for a cell ⌧ of M(d�)
p (resp., M(d+)

p ), none of the surfaces d =  +
p,u

(resp., d =  �
p,u

), for u 2 R \ {p},
intersect ⌧ [35]. Similarly we define the conflict lists of cells in ⌅(c�)

p ,⌅(c+)
p ; their sizes are also all at most n/r,

with high probability.
For each cell ⌧ 2 ⌅, we recursively build the data structure on P⌧ . The recursion stops when the size of a

subproblem becomes smaller than some fixed absolute constant n0. Since there are O⇤(r4) subproblems of size at
most n/r each, a straightforward analysis shows that the size of the overall structure is O⇤(n4), and that it can be
constructed in O⇤(n4) expected time.

Query procedure. A query with a line ` is processed as follows. We compute the nearest neighbor of ` in

R, which we call p. Next, we compute the cells ⌧ (d�), ⌧ (d+), ⌧ (c�), ⌧ (c+) of M(d�)
p ,M(d+)

p ,M(c�)
p ,Mc+)

p , respectively,
that contain `⇤. All this is done in brute force and takes O⇤(1) time. If P contains a point q that is nearer to
` than p, then by Lemma 7.1, fq intersects either the curve �(d) or �(c). Suppose fq intersects �(d) at a point
w = (wa, wb, wc, wd). Again, by Lemma 7.1, if wd � `d, then wd =  �

p,q
(wa, wb, wc), implying that w 2 ⌧d+ and

thus q belongs to the conflict list P⌧d+ . Similarly, if wd < `d, then q belongs to the conflict list P⌧d� . A symmetric
analysis applies when fq intersects �(c). In summary, if q is closer to ` than p then q lies in the conflict lists of one
of ⌧ (d�), ⌧ (d+), ⌧ (c�), ⌧ (c+). Hence, we need to search recursively in these four subproblems, and return the nearest
point among p and the points returned by these four recursive subproblems.

Since we recurse in four subproblems, each of size at most n/r (and r can be chosen to be a su�ciently large
constant), the total query time is O⇤(1) (it is not polylogarithmic, though). We thus obtain the following result:

Theorem 7.1. A given set P of n points in R3
can be preprocessed, in O⇤(n4) expected time, into a data structure

of size O⇤(n4), so that, for any query line ` 2 R3
, the point of P nearest to ` can be computed in O⇤(1) time.
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7.2 Nearest-line queries with lines in R3 Next, we show that the machinery in the preceding subsection
can be extended (with a couple of twists—see below) to obtain a line NN-searching data structure, with the same
asymptotics performance, when the input is a set L of n lines in R3, and we want to find the line nearest to a
query line. We first describe the two new challenges we face in dealing with lines as input, and explain how to
address them, and then describe the overall data structure.

We use the same representation (a, b, c, d) for the query line `, using the orthogonal plane H as before. Thus `
is represented as the same point `⇤ 2 L. For a line � 2 L, let �# denote the projection of � onto H. A crucial
observation, which is easy to verify, is that

f�(`
⇤) := dist(`,�) = dist(`,�#) = dist((c, d),�#).

The equation of �#, in the canonical coordinate frame within H, is of the form

⇠�(a, b)x+ ⌘�(a, b)y + ⇣�(a, b) = 0,

where we normalize the coe�cients so that ⇠2
�
(a, b) + ⌘2

�
(a, b) = 1. Hence,

(7.6) f�(a, b, c, d) = |⇠�(a, b)c+ ⌘�(a, b)d+ ⇣�(a, b)| .

Except for the absolute value, (7.6) is linear in c and d, as in the preceding analysis, a property that has been
crucial for the analysis there, and will be crucial for the analysis here too.

We handle the absolute value as follows. Orient each line � 2 L in an arbitrary (but fixed) manner, say in the
positive x-direction, and similarly orient each query line `. If we know the relative orientation of ` and �, then we
also know the sign in the expression for f�(`⇤). In fact, we can reduce the setup in such a way that allows us
to assume that the sign is positive if and only if the relative orientation is positive. For a line � 2 L, we define
the surface �� ⇢ L, which is the locus of all points `⇤ 2 L such that ` touches �. It partitions L space into two
portions, one consisting of points representing lines that are positively oriented with respect to �, and the other
consists of points with negative orientations. We construct a data structure on these surfaces that, for a query
(oriented) line `, partitions the set of all lines of L into O(log n) “canonical” subsets such that, for every canonical
subset, either all its lines are positively oriented with respect to ` or all of them are negatively oriented.

In view of the above discussion, let us assume that the query line has positive orientation with respect to all
lines in L, and that this corresponds to a positive sign of the expression in (7.6). We construct a data structure
on L using, more or less, the same machinery as in Section 7.1, exploiting the double linearity (in c and d) of
the distance functions. Here we face the second challenge. Recall that we basically showed in Lemma 7.1 that
if fp and fq do not cross along the lines ⇢d, ⇢c, then we have xp(a, b) = xq(a, b) and yp(a, b) = yq(a, b), and thus
the free terms gp(a, b) and gq(a, b) are also equal, implying that p and q are equidistant from the query line `.
Here, in contrast, if f�, f�0 , for two distinct lines �,�0 2 L, do not cross along ⇢c, ⇢d, we can show, using the same
reasoning as before, but based on (7.6), that ⇠�(a, b) = ⇠�0(a, b) and ⌘�(a, b) = ⌘�0(a, b) (actually, one equality
su�ces, because of our normalization). However, now it no longer follows that ⇣�(a, b) = ⇣�0(a, b). That is, the
projected lines (on H(a, b)) could be parallel, and �0 could still be (strictly) nearer to ` than �.

To address this issue we proceed as follows. For each pair of lines �, �0 in L, let ��,�0 denote the one-dimensional
locus of all (a, b) for which the projections of � and �0 onto H are parallel; this is the curve ⇠�(a, b) = ⇠�0(a, b). For
each � in the sample R, we construct the two-dimensional arrangement A� of the curves in {��,�0 | �0 2 L \ {�}},
in the (a, b)-plane. For a query dual point `⇤ = (`a, `b, `c, `d), we locate the point (`a, `b) in A� and find the set
Lpar of the curves ��,�0 that contain the point (`a, `b) to determine the lines of L whose projections onto H(a, b)
are parallel to �. (See below how the algorithm handles sets Lpar of large size.)

We now describe the overall data structure and the query procedure by incorporating these observations in
the data structure described in Section 7.1.

Overall data structure. We build a three-level data structure. Let ⌃ = {�� | � 2 L}. At the top-level, we
construct a tree data structure T (1) for answering point-enclosure queries on ⌃, using the algorithm in [3]. Each
node u of T (1) is associated with a canonical subset Lu ✓ L of lines. For a query line `, querying with `⇤ in T (1)

partitions the lines of L into O(log n) canonical subsets, each associated with one of its nodes, such that all lines
in one subset are either positively oriented with respect to ` or all of them are negatively oriented.

For each node v of T (1), we construct two second-level data structures T (2+)
v , T (2�)

v on the canonical subset
Lv—one assuming that the sign in (7.6) is positive and the other assuming that it is negative. These structures are
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constructed by following and adapting the construction in Section 7.1, using the expressions in (7.6) (without the
absolute value) instead of those in (7.2), following both the c- and d-directions, and using partial lower envelopes

within the minimization diagram. Each of T (2+)
v , T (2�)

v essentially consists of several tree data structures. Each
node w of T (2+) or T (2�) is also associated with a subset Lw ✓ Lv of lines. We choose a random subset Rw ⇢ Lw

of size cr log r, for some constant c � 1, and construct, as in Section 7.1, a total of O⇤(r4) subproblems, each of
size at most |Lw|/r. In addition, we now store the following third-level structure at w: For each line � 2 R, we
construct the two-dimensional arrangement A� of the curves B� = {��,�0 | �0 2 Lw \Rw} and preprocess it for
point-location queries. If the input lines are in general position, then at most two curves of B� pass through any
point (a, b), and we simply store them. Otherwise, many curves of B� may pass through a vertex � = (�a,�b) of
A�. Let L� ✓ Lw \Rw be the subset of lines whose curves are incident on �. We store L� in a sorted order (by
the ordering of their projections on the plane H(�a,�b)) so that for a query line ` of the form `⇤ = (�a,�b, `c, `d),
we can find the line in L� nearest to ` in O(log n) time. The total size of this third-level data structure over all
lines of R is |R| ·O(|Lw|2) = O(|Lw|2). Using the properties of multi-level data structures, one can show that the
overall size of the data structure is O⇤(n4) and that it can be constructed in O⇤(n4) expected time.

Query procedure. For a query line `, we first search in T (1) with `⇤ and compute a partition of L into
O(log n) canonical subsets, each associated with a node of T (1), such that each subset is positively oriented or
negatively oriented with respect to `. For each such node v, if the lines in Lv have positive (resp., negative)

orientation with respect to `, we search in T (2+)
v (resp. T (2�)

v ) with `⇤, as in Section 7.1. At each second-level
node w visited by the query procedure, if � is the nearest neighbor of ` in Rw, we recursively search in the four
corresponding children of v as in the previous section. In addition, we locate the point (`⇤

a
, `⇤

b
) in the arrangement

A� to find, in O(log n) time, the nearest neighbor of ` among the line of Lw \R whose projections on H(`a, `b) are
parallel to that of �, if any such lines exist. Following the same analysis as above, the overall query time remains
O⇤(1). Putting everything together, we obtain the following result:

Theorem 7.2. A given set L of n lines in R3
can be preprocessed, in O⇤(n4) expected time, into a data structure

of size O⇤(n4), so that, for any query line ` 2 R3
, the line of L nearest to ` can be computed in O⇤(1) time.

8 Conclusion

In this paper, we settled in the a�rmative a few long-standing open problems involving the vertical decomposition
of various substructures of arrangements in d = 3, 4 dimensions. In particular, we obtained sharp bounds on
the vertical decomposition of the complement of the union of a family of semi-algebraic sets in R3 of constant
complexity, and of the lower envelope of a family of semi-algebraic trivariate functions of constant complexity. We
also obtained an output-sensitive bound on the size of the vertical decomposition of the full arrangement of a family
of semi-algebraic sets in R3 of constant complexity. These results lead to e�cient algorithms for constructing the
vertical decompositions themselves, for constructing (1/r)-cuttings of the above substructures of arrangements,
and for answering point-enclosure queries. Finally, we applied these results to obtain faster data structures for
various basic proximity problems involving lines and points in R3.

We conclude by mentioning a few open problems:

• The major open question is, of course, to improve the complexity of the vertical decomposition of the
arrangement of a family of semi-algebraic sets in Rd for d � 5. But an immediate open question is
whether the techniques developed in this paper can be extended to obtain improved bounds on the vertical
decomposition of various substructures of arrangements (besides lower or upper envelopes) in R4.

• No non-trivial lower bounds are known for nearest-neighbor data structures involving lines in R3. This raises
the question whether the data structures presented in Sections 6 and 7 are (almost) best possible, or whether
one can obtain significantly faster data structures. For example, can the nearest neighbor of a line amid a
set of points in R3 be returned in O(log n) time using an O⇤(n3) size data structure?
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