
Fast Approximation Algorithms for Piercing Boxes by Points∗

Pankaj K. Agarwal
†

Sariel Har-Peled
‡

Rahul Raychaudhury
§

Stavros Sintos
¶

Abstract

Let B = {b1, . . . , bn} be a set of n axis-aligned boxes in Rd where d → 2 is a constant. The
piercing problem is to compute a smallest set of points N ↑ Rd that hits every box in B, i.e.,
N ↓bi ↔= ↗, for i = 1, . . . , n. The problem is known to be NP-Hard. Let p := p(B), the piercing
number be the minimum size of a piercing set of B. We first present a randomized O(log logp)-
approximation algorithm with expected running time O(nd/2 polylog(n)). Next, we show that
the expected running time can be improved to near-linear using a sampling-based technique, if
p= O(n1/(d→1)). Specifically, in the plane, the improved running time is O(n logp), assuming
p < n/ log!(1)

n. Finally, we study the dynamic version of the piercing problem where boxes
can be inserted or deleted. For boxes in R2, we obtain a randomized O(log logp)-approximation
algorithm with O(n1/2 polylog(n)) amortized expected update time for insertion or deletion of
boxes. For squares in R2, the update time can be improved to O(n1/3 polylog(n)).

Our algorithms are based on the multiplicative weight-update (MWU) method and require
the construction of a weak ω-net for a point set with respect to boxes. A key idea of our work
is to exploit the duality between the piercing set and independent set (for boxes) to speed up
our MWU. We also present a simpler and slightly more e!cient algorithm for constructing a
weak ω-net than in [Ezr10], which is of independent interest. Our approach also yields a simpler
algorithm for constructing (regular) ω-nets with respect to boxes for d = 2, 3.

1 Introduction

Problem statement A box is an axis-aligned box in Rd of the form
∏

d

i=1[ωi,εi]. A one
dimensional box is an interval , and a two dimensional box is a rectangle . Let B = {b1, . . . , bn}
be a set of n boxes in Rd. A subset N → Rd is a piercing set of B if N ↑ R ↓= ↔ for every
box b ↗ B. The piercing problem asks to find a piercing set of B of the smallest size, which we
denote by p := p(B) and call the piercing number of B. Although the piercing problem can
be defined over arbitrary geometric objects such as disks and halfspaces, here we focus on boxes.
The piercing problem is a fundamental problem in computational geometry and has applications in
facility location, sensor networks, etc.

∗
A full version of this paper is available on the [AHRS23].

†
Department of Computer Science, Duke University, Durham NC 27708. Work by Pankaj Agarwal was partially

supported by NSF grants IIS-18-14493, CCF-20-07556, and CCF-22-23870.

‡
Department of Computer Science; University of Illinois; 201 N. Goodwin Avenue; Urbana, IL, 61801, USA;

sariel@illinois.edu; http://sarielhp.org/. Work by Sariel Har-Peled was partially supported by a NSF AF

award CCF-1907400 and CCF-2317241.

§
Department of Computer Science, Duke University, Durham NC 27708.

¶
Department of Computer Science, University of Illinois at Chicago, Chicago IL 60607.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4892

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 1

52
.3

.4
3.

50
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

http://sarielhp.org/

The piercing problem is closely related to the classical geometric hitting-set problem: Given a
(geometric) range space ! = (X ,R), where X is a (finite or infinite) set of points in Rd and R ↘ 2X

is a finite family of ranges, defined by simply-shaped regions such as rectangles, balls, hyperplanes
etc. That is, each range in ! is of the form R ↑ X , where R ↗ R is a geometric shape (strictly
speaking, ! = (X , {R ↑ X | R ↗ R}) but with a slight abuse of notation we will use (X ,R) to
denote the range space). A subset H ↘ X is a hitting set of ! if H ↑ R ↓= ↔ for all R ↗ R. The
hitting-set problem asks for computing a minimum-size hitting set of !. The piercing problem is
a special case of the hitting-set problem in which ! = (Rd,B). Instead of letting the set of points
be the entire Rd, we can choose the set of points to be the set of vertices in A(B), the arrangement
of B,1 and the range space is now ! =

(
V, {b ↑ V | b ↗ B}

)
, where V := V(B) is the set of vertices

in A(B). It is easily seen that B has a piercing set of size p if and only if ! has a hitting set of
size p. Hitting set for general range spaces was listed as one of the original NP-complete problems
[Kar72]. Furthermore, the box piercing problem is NP-Complete even in 2D [FPT81], so our goal
is to develop an e”cient approximation algorithm for the piercing problem.

In many applications, especially those dealing with large data sets, simply a polynomial-time
algorithm is not enough, and one desires an algorithm whose running time is near-linear in |B|. In
principle, the classical greedy algorithm can be applied to the range space (V,B), but |V| = O(nd), so
it will not lead to a fast algorithm. Intuitively, due to the unconstrained choice of points with which
to pierce boxes of B, the piercing problem seems easier than the geometric hitting-set problem and
should admit faster solutions and better approximations. In this paper, we make progress towards
this goal for a set of boxes in both static and dynamic settings.

Related work The well-known shifting technique by Hochbaum and Maass [HM85] can be
used to obtain a PTAS when B comprises of unit-squares or near-equal-sized fat objects in any fixed
dimension. Efrat et al. [EKNS97] designed an O(1)-approximation algorithm for a set of arbitrary
“fat” objects that runs in near-linear time in 2d and 3d. Chan [Cha03] gave a separator-based

PTAS for arbitrary sized fat objects, with running time O(nω
→d

). Chan and Mahmood [CM05]
later gave a PTAS for a set of boxes with arbitrary width but unit height. All of the above results
consider a restricted setting of boxes. Surprisingly, little is known about the piercing problem
for a set of arbitrary axis-aligned boxes in Rd. By running a greedy algorithm or its variants
based on a multiplicative weight update (MWU) method, an O(logp)-approximation algorithm
with running time roughly O(nd) can be obtained for the box-piercing problem in Rd. Using
the weak ϑ-net result by Ezra [Ezr10] (see also [AES09]), the approximation factor improves to
O(log logp). An interesting question is what is the smallest piercing set one can find in near-linear
time. Nielsen [Nie00] presented an O(logd→1p)-approximation divide-and-conquer algorithm that
runs in O(n logd→1 n) time. We are unaware of any near-linear time algorithm even with O(logp)-
approximation ratio for d ≃ 3. We note that the piercing problem has also been studied in discrete
and convex geometry, where the goal is to bound the size of the piercing set for a family of objects
with certain properties. See e.g. [AK92, CSZ18].

We conclude this discussion by mentioning that there has been much work on the geometric
hitting-set problem. For a range space ! = (X ,R) and weight function ϖ : X ⇐⇒ R↑0, a subset
N ↘ X is an ϑ-net if for any R ↗ R with ϖ(R) ≃ ϑϖ(X), we have R ↑N ↓= ↔. The multiplicative
weight update (MWU) method assigns a weight to each point so that every range in R becomes

1
The arrangement of B, denoted by A(B), is the partition of Rd

into maximal connected cells so that all points

within each cell are in the interior/boundary of the same set of rectangles. It is well known that A(B) has O(n
d
)

complexity [Ede87].

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4893

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 1

52
.3

.4
3.

50
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

“1/ep-heavy” and then one simply chooses a 1/ep-net. Using the MWU method and results on
ϑ-nets, Brönnimann and Goodrich [BG95] presented a polynomial-time O(logp)-approximation
algorithm for the hitting-set problem for range spaces with finite VC-dimension [VC71]. Later
Agarwal and Pan [AP20] presented a more e”cient implementation of the MWU method for
geometric range spaces. Their approach led to O ((|X|+ |R|) polylog(n)) algorithm with O(logp)-
approximation for many cases including a set of rectangles in Rd (see also [BMR18, CH20]). But it
does not lead to a near-linear time algorithm for the piercing problem because |X| = O(nd) in this
case. In another line of work, polynomial-time approximation algorithms for hitting sets based on
local search have also been proposed [MR10].

The MWU algorithm essentially solves and rounds the LP associated with the hitting-set
problem, see [Har11, Chapter 6]. Thus, the approximability of the problem is strongly connected
to the integrality gap of the LP. For the hitting-set problem of points with boxes for d ⇑ 3, Aronov
et al. [AES09] showed a rounding scheme with integrality gap O(log logp). Furthermore, Ezra
[Ezr10] showed the same gap holds in higher dimensions if one is allowed to use any point to do the
piercing. Surprisingly, Pach and Tardos [PT11] showed that this integrality gap is tight. While a
better approximation than the integrality gap can be obtained in a few cases [CH12, MR10], these
algorithms require a fundamentally di#erent approach. Thus, a major open problem is to obtain
an O(1)-approximation algorithm for the box-piercing problem.

Recently, Agarwal et al. [ACS+22] initiated a study of dynamic algorithms for geometric
instances of set-cover and hitting-set. Here the focus is on maintaining an approximately optimal
hitting-set (resp. set-cover) of a dynamically evolving instance, where in each step a new object
may be added or deleted. They introduced fully dynamic sublinear time hitting-set algorithms for
squares and intervals. These results were improved and generalized in [CHSX22, CH21]. Khan et al.

[KLR+23] proposed a dynamic data structure for maintaining a O(polylog(n))-factor approximation
of the optimal hitting-set for boxes under restricted settings, but no algorithm with sublinear update
time for the general setting is known.

Our results In this paper, we design an e”cient O(log logp)-approximation algorithm for
the box-piercing problem. Let B be a set of n boxes in Rd. A naive way to get an O(log logp)-
approximation is by using aforementioned MWU [AP20, BG95] based hitting-set algorithms on
the range space (V,B), and use Ezra’s [Ezr10] algorithm for computing a weak ϑ-net instead of
computing a strong ϑ-net. While this naive approach gives the desired approximation, it runs in
$(nd) time. We present the following results.

(A) A new MWU and its fast implementation. We present two algorithms in Section 2.
The first is essentially the one by Agarwal-Pan that computes a hitting set of the range space
(V,B) of size O(p log logp). We show that it can be implemented in O(n(d+1)/2 log3 n) expected
time (Theorem 2.1). To achieve the desired running time, we need a data structure to perform
all the required operations on V without ever explicitly constructing it. We present such a data
structure, which exploits the properties of the partitioning technique by Overmars and Yap [OY91].
For brevity, we include the details of this data structure in the full version of the paper [AHRS23].

Our main result is, however, a di#erent MWU algorithm tailored for boxes with
O(nd/2 log2d+3 n) expected running time (Theorem 2.2). It exploits the duality between the
piercing-set problem and the independent-set problem, along with fast approximation algorithms
for these two problems. The basic idea is to use the aforementioned approximation algorithm to
find a large set of independent boxes among the light boxes identified by the MWU algorithm in a
round. If the algorithm does not find such an independent set, then we can use a simple piercing-set
algorithm to compute a desired piercing set. Otherwise we double the weight of the boxes in the

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4894

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 1

52
.3

.4
3.

50
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

independent set. The idea of duality and approximation to speedup the MWU is critical to get a
near linear running time in the plane. As far as we are aware, the idea of quickly rounding the
dual problem and using it to speedup the primal algorithm, in the context of set-cover/hitting-
set/piercing-set for rectangles, was not used before.

(B) Piercing, clustering, and multi-round algorithms. We show that the natural
algorithm of first computing a piercing set P0 for a random sample of input boxes, and then piercing
the input boxes that are not pierced by P0 leads to an e”cient piercing algorithm. This algorithm
can be extended to run an arbitrary number of rounds. For clustering this idea was described by
Har-Peled [Har04] (but the idea is much older see e.g. [GRS98]). In particular, if the algorithm
runs ϱ rounds, then it needs to compute piercing sets ϱ times for sets of boxes of size (roughly)
p1→1/εn1/ε . By picking ϱ a su”ciently large constant, we obtain an O(ϱ log logp) approximation
algorithm that runs in near-linear expected time, provided that p= O(n1/(d→1)). See Theorem 3.1
and Corollary 3.1. For d = 2, this leads to the striking result that one can obtain an O(log logp)-
approximation algorithm with O(n logp) expected running time provided that p = O(n/ log15 n),
see Corollary 3.2.

(C) Dynamic Algorithms for Piercing. We consider the piercing problem for a set B of
boxes in R2 in the dynamic setting, i.e., at each step a new box is inserted into or deleted from B. Our
goal is to maintain an (approximately) optimal solution of the current set. We implement a dynamic
version of the multi-round sampling based algorithm in Section 3, and attain a randomized Monte
Carlo O(log logp)-approximation algorithm with O(n1/2 polylog(n)) amortized expected update
time. The update time improves to O(n1/3 polylog(n)) if B is a set of squares in R2. In principle,
our approach extends to higher dimensions but currently we face a few technical hurdles in its
e”cient implementation (Section 4).

(D) New constructions of (weak) ϑ-nets. We present a simpler and more e”cient
algorithm for constructing a weak ϑ-net then the one in [Ezr10]. In particular, given a set P of
n points in Rd, a weight function w : P ⇐⇒ R↑0, and a parameter ϑ ↗ (0, 1), it computes a set

N ↘ Rd of O(ϑ→1 log log ϑ→1) points (not necessarily a subset of P) in O(n + ϑ→1 logO(d2) ϑ→1)
expected time such that for any box b with ϖ(b ↑ P) ≃ ϑϖ(P), we have b ↑N ↓= ↔. The running
time can be improved to O((n + m + ϑ→1) logd ϑ→1) if we wish to guarantee above property for a
given set of m boxes, which is the case in our setting. Our technique also gives an e”cient algorithm
for constructing an ϑ-net of size O(ϑ→1 log log ϑ→1) for rectangles in d = 2, 3, which is somewhat
simpler than the one in [AES09]. We include the details of the construction in the full version of
the paper [AHRS23].

Building on the earlier work [AES09, Ezr10, PT11], our work brings the key insights of the
results to the forefront. Our main new ingredient is using poly-logarithmic di#erent grids to
“capture” the distribution of the point sets. This idea appears in the work of Pach and Tardos
[PT11] in the construction of the lower-bound, so it is not surprising that it is useful in the
construction itself (i.e., upper-bound).

2 Piercing set via multiplicative weight update (MWU) algorithm

We describe two multiplicative-weight-update (MWU) basedO(log logp)-approximation algorithms
for computing a piercing set for B. Let V = V(B) denote the set of vertices in the arrangement
A(B). As already mentioned, there is always an optimal piercing set N ↘ V of B. The basic idea
is to reweight the points of V such that all boxes become heavy. Specifically, we compute a weight
function ϖ : V ⇐⇒ Z+, such that for any box b ↗ B, we have ϖ(b ↑ V) =

∑
p↓b↔V ϖ(p) ≃ ϖ(V)/2pe.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4895

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 1

52
.3

.4
3.

50
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Dim preprocessing Std. operations sample

d = 1 O(n log n) O(log n) O(log n)

d = 2 O(n3/2 log n) O(
⇓
n log n) O(log n)

d > 2 O(n(d+1)/2 log n) O(n(d→1)/2 log n) O(log n)

Figure 1: We describe a data structure for maintaining (implicitly) the vertices of an arrangement
of boxes, under operations weight, double, halve, insert, delete, see Definition 2.1.

We then compute a weak 1
2pe

-net N of the range space (V,B) with respect to the above weight
function. By definition N is a piercing set of B. The two algorithms di#er in how the weights are
updated. Before describing the algorithms, we give the specifications of a data structure used by
both algorithms.

For a multi-set S ↘ B of boxes, and a point p ↗ Rd, let S ⇔ p = {b ↗ S | p ↗ b} be the multi-set
of all boxes in S containing p, let

(2.1) wS(p) := 2|S↗p|

be the doubling weight of p. For a finite set of points X ↘ Rd, let wS(X) :=
∑
x↓X

wS(p).

Definition 2.1. (Implicit arrangement data structure) Let B be a set of axis-aligned

boxes in Rd
(known in advance). Let C ↘ B be a set of active boxes (initially empty) and let

V(C) be the set of vertices of the arrangement A(C). Let S ↘ B be a multi-set of update boxes

(initially empty). S induces a weight function on the vertices in V(C) using Eq. (2.1). Here, we

require a data structure that supports the following operations:

(I) weight(b): given a box b, compute wS(V(C) ↑ b).

(II) double(b): given a box b ↗ B, adds a copy of b to the multi-set of update boxes S.

(III) halve(b): given a box b ↗ B, removes a copy of b from the multi-set of update boxes S.

(IV) sample: returns a random point p ↗ V(C), with probability wS(p)/wS(V(C)).

(V) insert(b): inserts b into the set of active boxes C.

(VI) delete(b): removes b from the set of active boxes C.

Figure 1 summarizes the performance of the data structure. We defer the implementation of
the data structure to the full version [AHRS23]. Omitting the details, we obtain the following
lemma:

Lemma 2.1. Let B be a set of n axis-aligned rectangles in Rd
. A data structure can be constructed in

O(n(d+1)/2 log n) time that supports every operation specified in Definition 2.1 in O(n(d→1)/2 log n)
time except for sample, which takes only O(log n) time.

Note that the halve and delete operations are not used by the basic algorithm.

2.1 Basic MWU algorithm The algorithm is a small variant of the Agarwal-Pan algorithm
[AP20]. The algorithm performs an exponential search on a value k, and it stops when k ≃ p and

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4896

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 1

52
.3

.4
3.

50
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

k ⇑ 2p. Specifically, in the ith stage, k is set to 2i. We next describe such a stage for a fixed value
of k (and i).

In the beginning of the stage, ϖ(p) = 1 for all p ↗ V. Let ϑ = 2
3k . A box b is ϑ-light if

ϖ(V ↑ b) < ϑϖ(V), and ϑ-heavy otherwise. The algorithm proceeds in rounds. In each round, it
scans all the boxes in B trying to find an ϑ-light box. If an ϑ-light box b is found, the algorithm
performs a doubling operation on its points. That is, it doubles the weight of each of the points in
V ↑ b. The algorithm performs the doubling on b repeatedly until b becomes ϑ-heavy (in relation
to the updated weight ϖ(V)). The algorithm then resumes the scan for ϑ-light boxes (over the
remaining boxes). Importantly, the algorithm never revisits a box during a round (thus a box that
becomes heavy during a round might become light again in that round). Let ς = ↖1/ϑ↙ ⇑ 2k. If ς
doubling operations are performed in a round, the algorithm aborts the round, and proceeds to the
next round. If a round was completed without ς weight-doubling being performed, the algorithm
computes a weak (ϑ/e)-net N of (V,B) using the algorithm described in Section 6 of [AHRS23].

Finally, if the number of rounds exceeds φ = c ln(|V|/k) at any stage, where c > 0 is a suitably
large constant, the algorithm decides the guess for k as too small, doubles the value of k, and
continues to the next stage, till success.

In order to implement the above algorithm, we use the implicit arrangement data structure
from Definition 2.1. At the beginning of each stage, we build an instance of the data structure on B

and add all the boxes to the active set using the insert operation. The doubling step with a box b
is performed using double(b) and the ϑ-lightness of a box is tested using the weight(b) operation.

Analysis The following lemma proves the correctness of the algorithm.

Lemma 2.2. ([AP20]) If k ↗ [p/2,p], then the algorithm returns a piercing set for B, of size

O(p log logp), where p= p(B) is the size of the optimal piercing set of B.

Proof. This claim is well known [AP20, Lemma 3.1], but we include a proof for the sake of
completeness.

Initially, the weight W0 of all the vertices of V is m= |V| = O(nd). Let Wi be the weight of V
after the ith doubling operation, and observe that

p2↘i/p≃
⇑ Wi ⇑ (1 + ϑ)iW0 ⇑ mexp(ϑi).

The lower bound follows as every doubling operation must double the weight of one of the p points
in the optimal piercing set (and to minimize this quantity, this happens in a round robin fashion).
The upper bound follows readily from the ϑ-lightness of the box being doubled. Taking i = tp, and
taking the log of both sides (in base 2), we have

logp+ t ⇑ logm+ ϑtp log e ⇑ logm+
2

3k
tp · 1.45 ⇑ logm+ 0.97t

p

k
.

Assuming k ≃ p, this readily implies that t = O(log m
k
). Namely, the algorithm performs at most

φ = O(k log(m/k)) doubling operations in a stage, if the guess k ≃ p.
Since every round performs exactly ς = ↖1/ϑ↙ = ↖3k/2↙ ≃ k doubling operations in each round,

except the last one, it follows that the algorithm performs at most φ/k = O(log m
k
) rounds.

So consider the last round. Assume the weight of V at the start of the round was W . At the
end of the round, the total weight of V is at most (1 + ϑ)ϑW ⇑ exp(ϑ ↖1/ϑ↙)W ⇑ eW . Every box
during this round, must have been heavy (at least for a little while), which implies that it had
weight ≃ ϑW , as weights only increase during the algorithm execution. This implies that all the

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4897

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 1

52
.3

.4
3.

50
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

boxes are ϑ/e-heavy at the end of the round. Thus, the weak ϑ/e-net the algorithm computes must
pierce all the boxes of B.

The above lemma shows that the algorithm succeeds if it stops, and it must stop in a stage if
k is su”ciently large.

Theorem 2.1. Let B be set of n axis-aligned boxes in Rd
, for some fixed d ≃ 2, and let p= p(B)

be the piercing number of B. The above algorithm computes, in O(n(d+1)/2 log3 n) expected time, a

piercing set of B of size O(p log logp).

Proof. The above implies that if the algorithm outputs a piercing set, then it is of the desired size
(it might be that the algorithm stops at an earlier stage than expected with a guess of k that
is smaller than p). Thus, it must be that if the guess for the value of k is too small, then the
algorithm double weights in vain, and performs too many rounds (i.e., their number exceeds φ),
and the algorithm continues to the next stage.

Let h = ∝logp′ and m= |V|. Overall, the algorithm performs at most

(2.2)
h∑

i=1

O(2i logm) = O(p logm) = O(pd log n)

doubling operations (i.e., double). Every round requires n weight operations. There are O(logm)
rounds in each stage, and there are h stages. We conclude that the algorithm performs

O(n logmlogp) = O(n log2 n)

weight operations. Thus, the overall running time (including preprocessing and activating all
boxes), is

O(n(d+1)/2 log n+ n · n(d→1)/2 log n · log2 n) = O(n(d+1)/2 log3 n).

Finally, the algorithm in [AHRS23] for computing a weak ϑ-net first chooses a random sample Q

of V of size O(ϑ→1 log ϑ→1) and then computes a weak ω

2 -net of (Q,B). Using sample, Q can be
computed in O(|Q| log n) time. Combining this with Lemma 6.12 in [AHRS23], we conclude that

a ϑ/e-net of (V,B) of size O(p log logp) can be computed in O
(
(n+ ϑ→1) logd n

)
time, which is

dominated by the data structure’s overall running time.

2.2 An improved MWU algorithm We now present an alternative algorithm for piercing
that exploits LP duality. Operationally, the improved algorithm di#ers from the basic one in a
few ways. The algorithm does not use the implicit arrangement data structure to maintain the
weights on V directly. Moreover, instead of doubling the weight of light boxes one at a time, the
algorithm performs “batch doubling”, i.e., it doubles the weights of a collection of boxes at the same
time. The algorithm also does not compute the weights of boxes exactly. Instead, it approximates
the weights using a suitable sample. This sample is periodically recomputed by a process we call
“batch sampling” that uses the implicit arrangement data structure in R(d→1). Before describing
the improved algorithm, we explore the duality between piercing sets and independent sets, and
discuss the details of batch sampling.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4898

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 1

52
.3

.4
3.

50
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

p⇐(B) =min
∑

v↓V
xv

∞b ↗ B

∑

v↓b↔V
xv ≃ 1

∞v ↗ V xv ≃ 0.

i⇐(B) =max
∑

b↓B
yb

∞v ↗ V

∑

b↓B:v↓b

yb ⇑ 1

∞b ↗ B yb ≃ 0.

The LP for the fractional piercing number. The dual LP for the fractional independence
number.

Figure 2: LPs for the piercing and Independence problems. By duality, we have p⇐(B) = i⇐(B).

LP duality, piercing and independence numbers Let B be a set of boxes in Rd, and let V
be the set of vertices of the arrangement A(B). A subset X ↘ B is an independent set if no pair of
boxes of X intersect. The independence number of B, denoted by i(B), is the size of the largest
independent set X ↘ B. Observe that i(B) ⇑ p(B), as each box in an independent set must be
pierced, but no point can pierce more than one box in the independent set. Let p⇐ = p⇐(B) denote
the fractional piercing number of B, i.e., this is the minimum piercing number of B when solving
the associated LP, see Figure 2. The dual LP, is the fractional independence LP – it computes
(fractionally) a maximum independent set of boxes in B. The value of this LP i⇐ := i⇐(B) is the
fractional Independence number of B. By LP duality p⇐ = i⇐, see Figure 2. It is known, and
also implied by Lemma 2.2, that p⇐

⇑ p⇑ c1p⇐ log logp⇐, for some constant c1 > 0. This implies
that p⇐

≃ p/(c1 log logp).
We need the following standard algorithms for computing independent set and piercing set

of boxes. Better results are known [CC09, GKM+22, Mit21], but they are unnecessary for our
purposes.

Lemma 2.3. ([AvKS97]) Let B be a set of n boxes in Rd
. An independent subset of boxes of B

of size $(i⇐/ logd→1 n) can be computed in O(n logd→1 n) time, where i⇐ = i⇐(B) is the fractional

independence number of B.

Proof. This algorithm is well known and we sketch it here for completeness – it works by induction
on the dimension. For d = 1, a greedy algorithm picking the first interval with the minima right
endpoint computes the optimal independent set — the running time of this algorithm is O(n) after
sorting. It is straightforward to verify that one can assume that the LP solution in this case is
integral, and thus i⇐ = i(B).

For d = 2, compute the vertical line such that its x-coordinate is the median of the x-coordinates
of the endpoints of the boxes. Compute the optimal independent set of rectangles intersecting this
line (which is just the one dimensional problem), and now recurse on the two subsets of rectangles
that do not intersect the median line. This results in a partition of the set of rectangles B into
O(log n) sets, such that for each set, we have the optimal (fractional) independent set. Clearly, one
of them has to be of size $(i⇐/ log n).

For d > 2, the same algorithm works by approximating the optimal solution along the median
of the first coordinate (i.e., d⇐ 1 subproblem), and then recursively on the two subproblems. The
bounds stated readily follows.

The piercing problem can be solved exactly by the greedy algorithm in one dimension (i.e.,
add the leftmost right endpoint of an input interval to the piercing set, remove the intervals that

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4899

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 1

52
.3

.4
3.

50
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

intersect it, and repeat). For higher dimensions, one can perform the same standard divide and
conquer approach, used in Lemma 2.3, and get the following.

Lemma 2.4. ([Nie00]) Let B be a set of n boxes in Rd
for d ≃ 2. A piercing set P of B of size

O(p⇐ logd→1 n) can be computed in O(n logd→1 n) time.

Corollary 2.1. Let B be a set of n boxes in Rd
for d ≃ 2. Then the following two sets can be

computed in O(n logd→1 n) time:

(i) An independent set B
⇒
↘ B of B of size $

(p
logd→1 n log logn

)
, and

(ii) a piercing set P ↘ Rd
of B of size O(p logd→1 n).

Proof. By Lemma 2.3, an independent set B⇒ of size $
(

i↑

logd→1 n

)
can be computed in O(n logd→1 n)

time, and by Lemma 2.4, a piercing set P of size O(p logd→1 n) can be computed in O(n logd→1 n)
time. By Lemma 2.2, we have

|B
⇒
| = $

(
i⇐

logd→1 n

)
= $

(
p

logd→1 n log log n

)
,

Batch sampling For the purposes of our improved algorithm, we need to support the following
“batch sampling” operation. Given a set B of n boxes in Rd, a multiset (i.e., list) S ↘ B of boxes
such that |S| = O(n log n), and a parameter r > 0 such that r = O(n log n), the task at hand
is to compute a random subset R of r vertices of A(B), where each vertex v ↗ A(B) is sampled
independently with probability wS(p)/wS(V), see Eq. (2.1). This procedure can be implemented
using the data structure described in Definition 2.1, but one can do better, by sweeping along the
xd-axis and constructing the data structure in one lower dimension, as follows.

Let B⇑ be the collection of (d⇐ 1)-dimensional projections of the boxes in B, to the hyperplane
xd = 0. Let V ⇒ be the set of vertices in A(B⇑), the arrangement of B⇑ in Rd→1. Let F be the set of
xd-coordinates of all the vertices of the boxes of B.

Build D, an instance of the (d ⇐ 1)-dimensional data structure of Definition 2.1 on B⇑.
Importantly, initially all the boxes of B⇑ are inactive. Observe that V ↘ V

⇒
∈ F . Assume F is

sorted and the ith point (in sorted order) is denoted by ei. We perform two space-sweeps along
the xd-axis. In step i of a sweep, D represents the point-set Ji := (V ⇒

∈ {ei}) ↑ V lying on a
R(d→1)-dimensional subspace, and we compute ω(i), the total weight of vertices in Ji

At any step i of the first sweep, for every box b ↗ B that starts (resp. ends) at ei call insert(b)
(resp. delete(b)). This activates/deactivates all the vertices on the boundary on b. Similarly, for
every b ↗ S that begins (resp. ends) at ei, use double(b) (resp. halve(b)) operation on D to double
(resp. halve) the weight of the points in Ji ↑ b. Next, use the weight operation on D to get the
weight of all the points in Ji and store it in ω[i]. At the end of the first sweep, independently sample

r numbers from the set {1, ..., 2n} where the integer j is sampled with probability ω(j)/
2n∑
i=1

ω(i).

Let ↼(j) denote the number of times j was sampled.
Next, reset D and begin the second sweep. In step i of the second sweep, perform the same

operations except replace the weight-computing step with taking ↼(i) independent samples from Ji

using the sample operation on D.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4900

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 1

52
.3

.4
3.

50
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Observe that at the end of the first sweep ω(i)/
2n∑
j=1

ω(j) is the total probability mass of all the

points in Ji. Using this fact, it is easy to verify that at the end of the second sweep the sampled
points correspond to the desired subset R.

Initializing D takes O(nd/2 log n) time, and performing each step of the sweep takes

O(n(d→2)/2 log n)

time. Each sweep handles O(|S|) = O(n log n) events, hence, R can be computed in O(nd/2 log2 n)
time. We thus obtain the following:

Lemma 2.5. Let B be a set of n boxes in Rd
, and let S be a multiset of boxes such that

|S| = O(n log n). Let ϖ be the doubling weight function induced by S over the vertices V of A(B),
see Eq. (2.1). Given a parameter r > 0 such that r = O(n log n), a random subset R → V of size

r, where each vertex of V is sampled with probability proportional to its weight, can be computed in

O(nd/2 log2 n) time.

The new MWU algorithm As in the previous algorithm, the algorithm performs an
exponential search on k until k ⇑ 2p. For a particular guess k, the new algorithm also works
in rounds. The di#erence is how each round is implemented. Instead of doubling the weight of a
light box as soon as we find one, we proceed as follows. Let ϖ : V ⇒ R↑0 be the weight function at
the beginning of the current round. Observe that for any point p ↗ V, ϖ(p) = wS(p) where S is the
multi-set of boxes that doubled their weights so far, see Eq. (2.1). At the beginning of each round,
we process B and S to generate a random subset R → V of size O(k log n), such that for a box b ↗ B

one can determine whether it is light, i.e., ϖ(b) ⇑ ϖ(V)/4k by checking if |b ↑ R| ⇑ |R|/4k. By
processing R into an orthogonal range-counting data structure [Aga04], we can compute |b ↑ R|,
in O(logd→1 n) time, for any b ↗ B, by querying the data structure with b. By repeating this for all
boxes of B, we compute a set L ↘ B of light boxes.

Next, we compute an independent set of boxes I ↘ L using Lemma 2.3. There are several
possibilities:

• If |I| ≃ 2k, then the guess for k is too small. We double the value of k, and restart the
process.

• If |I| < c1k/ log
2d→1 n, then by Corollary 2.1, a piercing set P of L of O(k) points can be

computed in O(n logd→1 n) time. The remaining boxes of H = B \ L are (say) 1/4.01k-heavy.
By applying Lemma 6.12 in [AHRS23] to H and R, we compute a weak 1/4.01k-net N for
these boxes of size O(k log log k) in O(n logd n) expected time. The set P ∋N is the desired
piercing set of B of size O(p log logp).

• If |I| ≃ c1k/ log
2d→1 n, then we update S, the multi-set of boxes doubled so far, to S = S ∋I.

The algorithm now continues to the next round.

Remark 2.1. It is interesting to observe that the batch doubling operation in the above algorithm

corresponds to merely updating the list S. The actual work associated with the doubling is in

regenerating the sample R at the beginning of the next round. This is done by batch sampling as

described below.

Computing the random sample R in each round Let ϖ : V ⇒ R↑0 be the weight function
in the beginning of a particular round. Our goal is to compute a sample R → V , such that we can

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4901

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 1

52
.3

.4
3.

50
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

check if a box b ↗ B is light by checking if |b ↑ R| ⇑ |R|/4k. Recall that S denotes the list of
boxes for which the MWU algorithm had doubled the weights. Moreover, recall that the weight of
a vertex v ↗ V is 2|S↗v|, where |S ⇔ v| denotes the number of boxes in S that contain v. We use
the concept of relative approximations.

Definition 2.2. Let ! = (X ,R) be a finite range space, and R → X , and let ϖ : X ⇐⇒ R↑0 be a

weight function. For a range r ↗ R, let m(r) = ϖ(r ↑ X)/ϖ(X) and s(r) = |r ↑R| /|R|. Then, R is

a relative (p, ϑ)-approximation of ! if for each r ↗ R we have:

(i) If m(r) ≃ p, then (1⇐ ϑ)m(r) ⇑ s(r) ⇑ (1 + ϑ)m(r).

(ii) If m(r) ⇑ p, then s(r) ⇑ (1 + ϑ)p.

It is known [HS11, Har11] that if the VC-dimension of ! is d, then a random sample R of size
O
(

1
ω2p

[
d log 1

p
+ log 1

ϖ

])
, where each point is chosen with probability proportional to its weight, is

a relative (p, ϑ)-approximation with probability ≃ 1⇐ ↽. In view of this result, we can detect light
boxes of B (with respect to S) as follows. Set ϑ = 0.01, p = ω

20k , ↽ = 1
nO(1) . We chose a random

subset R ↘ V of r = O(k

ω2
log n) points. Then we have the following property for each box b ↗ B.

(I) If m(b) = ϖ(b ↑ V)/ϖ(B) ≃ (ϑ/20k) then 0.99m(b) ⇑ s(b) ⇑ 1.01m(b).

(II) If m(b) ⇑ ϑ/20k then s(b) ⇑ 1.01/20k.

Therefore to check if a box is b is light, it su”ces to check |b↑R|. As for computing the sample
R, observe that this is exactly what batch sampling is designed for, see Lemma 2.5.

Analysis The correctness of the new MWU follows from the previous one. We now analyze
the running time. Each round except the last round doubles the weight of $(k/ log2d n) boxes.
Since the total number of weight-doubling operations performed by the algorithm is O(p log n),
see [AP20], the algorithm stops within O(log2d n) rounds. In a particular round, the algorithm
uses batch sampling to recompute the random subset R which it uses to identify the set L ↘ B of
light boxes. Lemma 2.5 shows that the cost of batch sampling is bounded by O(nd/2 log2 n) time.
As discussed above, once R is computed, L can be identified in O(n logd→1 n) time. Finding an
independent set I ↘ L using Lemma 2.3 also takes O(n logd→1 n) time. Updating the multi-set S
of boxes whose weights have been doubled so far also takes O(n) time. The algorithm computes
a piercing set and a weak net only in the last round. Together, they take O(n logd n) time. The
running time for these steps is dominated by the the time for the batch sampling in each round.
Considering the need to do an exponential search for p, we obtain the following:

Theorem 2.2. Let B be set of n axis-aligned boxes in Rd
, for d ≃ 2, and let p = p(B) be the

piercing number of B. A piercing set of B of size O(p log logp) can be computed in O(nd/2 log2d+3 n)
expected time.

3 Multi-round piercing algorithm

Let B be a set of (closed) boxes in Rd, and let V = V(B) be the set of vertices of the arrangement
A(B). When considering a piercing set for B, one can restrict the selection of piercing points to
points of V. Two point sets Q,Q⇒ are equivalent for B if for all faces (of all dimensions) f of the
arrangement of B, we have that |Q↑ f| = |Q

⇒
↑ f|. Since |V| = O(nd), it follows that the number of

non-equivalent (i.e., distinct) piercing sets of size ⇑ t is bounded by O(ndt).
The key insight is that a piercing set for a su”ciently large, but not too large, sample is a

piercing set for almost all the boxes.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4902

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 1

52
.3

.4
3.

50
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Lemma 3.1. Let B be a set of n boxes in Rd
, ↼ ↗ (0, 1) and t > 0 be parameters, and let S ↘ B be

a random sample of size O(dt
ϱ
log n). If S can be pierced by a set Q of t points, then at most ↼n

boxes of B are not pierced by Q, and this holds with probability ≃ 1⇐ 1/nO(d)
.

Proof. Let F be the collection of all piercing sets of B with at most t points, where no two sets
in F are equivalent for B. Let F

⇒ =
{
X ↗ F

∣∣ |B \X| ≃ ↼n
}
be all the “bad” piercing set in F

that fail to stab ≃ ↼n boxes of B, where B \X = {b ↗ B | b ↑X = ↔}. By the above, we have that
m = |F

⇒
| ⇑ O(ndt). Fix a “bad” set X ↗ F

⇒. Let u = cdt
ϱ
lnn be the size of |S|, where c is a

su”ciently large constant. The probability that the set X is a piercing set for the sample S is at
most

⇀ = (1⇐ ↼)u ⇑ exp(⇐↼u) = exp(⇐c · d · t · lnn) =
1

ncdt
.

In particular, by the union bound, the probability that any set of F ⇒ will be a valid piercing set for
S is at most |F ⇒

|⇀ < 1/nO(d), for c su”ciently large.

3.1 A piercing algorithm via sampling Lemma 3.1 suggests a natural algorithm for piercing
– pick a random sample from B, compute (or approximate) a piercing set for it, compute the boxes
this piercing set misses, and repeat the process for several rounds. In the last round, hopefully,
the number of remaining boxes is su”cient small than one can apply the piercing approximation
algorithm directly to B. We thus get the following.

Lemma 3.2. Let B be a set of n boxes in Rd
, and let ϱ > 1 be a parameter. Furthermore, assume

that we are given an algorithm Pierce that for m boxes, can compute a O(log logp) approximate

to their piercing set in TP(m) time, where p is the size of the optimal piercing set for the given

set. Then, one can compute a piercing set for B of size O(ϱp log logp) in expected time

O
(
ϱTP

(
p1→1/εn1/ε log n

)
+ n logd→1p

)
.

Proof. We assume that we have a number k such that p ⇑ k ⇑ 2p, where p is the size of the
optimal piercing set for B. To this end, one can perform an exponential search for this value, and
it is easy to verify that this would not e#ect the running time of the algorithm.

The algorithm performs ϱ rounds. Let B0 = B. Let ↼ = (k/n)1/ε . In the ith round, for
i = 1, . . . , ϱ ⇐ 1, we pick a random sample Si from Bi→1 of size

m = O
(
dk↼→1 log n

)
= O

(
dk1→1/εn1/ε log n

)
= O

(
p1→1/εn1/ε log n

)
.

In the ϱth round, we set Sε = Bε→1. Now, we approximate the optimal piercing set for Si, by calling
Qi △ Pierce(Si). If the piercing set Qi is too large – that is, |Qi| ▽ k log log k, then the guess
for k is too small, and the algorithm restarts with a larger guess for k. Otherwise, the algorithm
builds a range tree for Qi, and streams the boxes of Bi→1 through the range tree, to compute the set
Bi = Bi→1 \ Qi, the boxes in Bi→1 not pierced by Qi. By Lemma 3.1, we have |Bi| ⇑ ↼ |Bi→1| ⇑ ↼in
with high probability. If |Bi| > ↼ |Bi→1|, we repeat round i, so assume |Bi| ⇑ ↼ |Bi→1|. In particular
|Sε | = |Bε→1| ⇑ ↼ε→1n ⇑ p1→1/εn1/ε . Therefore, the total time spent by Pierce(.) in ϱ rounds is
O(ϱTP(p1→1/εn1/ε log n)). Finally, during the first ϱ ⇐ 1 iterations, computing Bi takes

ε→1∑

i=1

O(|Bi→1| log
d→1

|Qi|) =
ε→1∑

i=1

O(↼in logd→1(p log logp)) = O(n logd→1p)

time. Clearly, ∋iQi is the desired piercing set.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4903

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 1

52
.3

.4
3.

50
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

We can use the algorithm of Theorem 2.2, for the piercing algorithm. For this choice,

TP(m) = O(md/2 log2d+3 m).

We then get an approximation algorithm with running time

O

(
ϱ
(
p1→1/εn1/ε

)d/2
polylog(n) + n logd→1p

)
.

We thus get our second main result.

Theorem 3.1. Let B be a set of n axis-aligned boxes in Rd
, for d ≃ 2, and let ϱ > 0 be an integer.

A piercing set of B of size O(ϱp log logp) can be computed in

O
(
ϱpd/2→d/2εnd/2ε polylog(n) + n logd→1p

)
.

expected time, where p= p(B) is the size of the optimal piercing set.

The above algorithm provides a trade-o# between the approximation factor and the running
time. It readily leads to a near linear time algorithm if the piercing set is su”ciently small. For
example, by choosing ϱ = d, we obtain the following:

Corollary 3.1. Let B be a set of n axis-aligned boxes in Rd
for some fixed d ≃ 2, and assume

p(B) = O(n1/(d→1)). Then, a piercing set of B of size O(dp log logp) can be computed in

O(n polylog(n)) expected time.

If the piercing set is slightly sublinear, the above leads to an approximation algorithm with
running time O(n log n).

Corollary 3.2. Let B be a set of n axis-aligned rectangles in R2
for some fixed d ≃ 2, and assume

that it can be pierced by p = O(n/ log15 n) points. Then, a piercing set of B of size O(p log logp)
can be computed in O(n logp) expected time.

Proof. Pick a random sample S ↘ B of size O(n/ log7 n). The algorithm of Theorem 2.2 yields in
O(n) time a piercing set Q for S, of size u = O(p log logp). Preprocess Q for orthogonal range
emptiness queries – this takes O(p log2p) time, and one can decide if a rectangle is not pierced by
Q in O(logp) time. Lemma 3.1 implies that at most ↼n rectangles unpierced by Q, where

↼ =
p log8 n

n
.

Namely, the unhit set has size ↼n = O(n/ log7 n). Running time algorithm of Theorem 2.2 on
this set of rectangles, takes O(n) time, and yields a second piercing set Q

⇒ of size O(p log logp).
Combining the two sets results in the desired piercing set.

4 Dynamic Algorithm for piercing

We present a data structure for maintaining a near-optimal piercing set for a set B of boxes in
R2 as boxes are inserted into or deleted from B. By adapting the multi-round sampling based
algorithm described in Section 3, we obtain a Monte Carlo algorithm that maintains a piercing
set of O(p log logp) size with high probability and that can update the piercing set in O⇐(n1/2)
amortized expected time per update. (The O⇐() notation hides polylogarithmic factors). The
update time can be improved to O⇐(n1/3) if B is a set of squares in R2.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4904

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 1

52
.3

.4
3.

50
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Overview of the Algorithm We observe that the size of the optimal piercing set changes by
at most one when a box is inserted or deleted. We periodically reconstruct the piercing set using a
faster implementation of the multi-round sampling based algorithm in Section 3, as described below.
More precisely, if s is the size of the piercing set computed during the previous reconstruction, then
we reconstruct the piercing set after ∝s/2′ updates. To expedite the reconstruction, we maintain B

in a data structure as follows. We map a box b = [a1, a2]∈ [b1, b2] to the point b⇐ = (a1, b1, a2, b2) in
R4, and let B⇐ be the resulting set of points in R4. We store B⇐ into a 4-dimensional dynamic range
tree T , which is a 4-level tree. Each node v of T is associated with a canonical subset B

⇐
v
↘ B

⇐ of
points. Let Bv be the set of boxes corresponding to B

⇐
v
. For a box ↭ in R4, ↭↑B

⇐ can be represented
as the union of O(log4 n) canonical subsets, and they can be computed in O(log4 n) time. The size
of T is O(n log4 n), and it can be updated in O(log4 n) amortized time per insertion/deletion of
point. See [dBCvKO08].

Between two consecutive reconstructions, we use a lazy approach to update the piercing set, as
follows: Let P be the current piercing set. When a new box b is inserted, we insert it into T . If
P ↑ b = ↔, we choose an arbitrary point p inside b and add p to P. When we delete a box b, we
simply delete b⇐ from T but do not update P. If ∝s/2′ updates have been performed since the last
reconstruction, we discard the current P and compute a new piercing set as described below.

We show below that a piercing set of size s := O(p log logp) of B can be constructed in

O⇐
(
(pn)1/2 +min{p2, n}

)

expected time, where p is the size of the optimal piercing set of B. This implies the amortized
expected update time is O⇐ ((n/p)1/2 +min{p, n/p}

)
, including the time spent in updating T .

The second term is bounded by n1/2, so the amortized expected update time is O⇐(n1/2).
Reconstruction algorithm Here is how we construct the piercing set of boxes in R2. Let B

be the current set of boxes. We follow the algorithm in Theorem 3.1 and set the number of rounds
to 2. More precisely, perform an exponential search on the value of k, the guess for the size of the
optimal piercing set, every time we reconstruct the piercing set. For a fixed k, the reconstruction
algorithm consists of the following steps:

(I) Choose a random sample B1 of B of size r = c1(kn)1/2, where c1 is a suitable constant.
(II) Construct a piercing set P1 of B1 of size s = O(k log log k) in O⇐(r) time using the algorithm

in Section 2.2.
(III) Compute B2 ↘ B, the subset of boxes that are not pierced by P1. If |B2| > c2(kn)

1/2, where
c2 is a suitable constant, we return to Step 1. As described below, this step can be computed
in O⇐(min{k2, n}+ (kn)1/2) time.

(IV) Compute a piercing set P2 of B2, again using the algorithm in Section 2.2.
(V) Return P1 ∋ P2.

The expected running time of this algorithm is O⇐(min{k2, n}+ (kn)1/2), as desired.
Computing B2 We now describe how to compute B2 e”ciently using T . If p ≃ n1/2, then

we simply preprocess P into a 2-dimensional range tree in O(s log s) time. By querying with
each box in B, we can compute B2 in O(n log n) time [dBCvKO08]. The total time spent is
O(n log n). So assume p < n1/2. For a point p = (xp, yp) ↗ R2, let Qp → R4 be the orthant
Qp = {(x1, x2, x3, x4) | x1 ⇑ xp, x2 ⇑ yp, x3 ≃ xp, x4 ≃ yp}. Then, a box b → R2 contains p if
and only if B⇐

↗ Qp. Therefore, an input box b ↗ B is not pierced by P1 if b⇐ ↓↗
⋃

p↓P
Qp. Let

K = R4
\

⋃
p↓P

Qp. It is well known that the complexity of K is O(s2). Furthermore, K can be

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4905

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 1

52
.3

.4
3.

50
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

partitioned into O(s2) boxes with pairwise-disjoint interiors, as follows.
Let Q = {Qp | p ↗ P}, and let P̂ = {(xp, yp, xp, yp) | p ↗ P} be their corners. We sort P̂ by the

x4-coordinates of its points. Let % be an x4-interval between the x4-coordinates of two consecutive
points of P̂. For any value a ↗ %, the cross-section Qa of Q with the hyperplane ha : x4 = a is
a collection of s 3-dimensional octants, and Ka := K ↑ ha is the complement of the union of Qa.
Furthermore, the cross-section Ka remains the same for any value of a ↗ %. It is well known that
the complexity of Ka is O(s), and that it can be partitioned into a set Ra of 3-dimensional boxes in
O⇐(s) time. Hence, we can partition K inside the slab R3

∈% by the set R! = {R∈% | R ↗ Ra}.
By repeating this procedure for all x4-intervals between two consecutive points of P̂, we partition
K into a family R of O(s2) boxes.

Next, we query T with each box R ↗ R. The query procedure returns a set VR of O(log4 n)
nodes of T such that B

⇐
↑ R =

⋃
v↓VR

B
⇐
v
. We thus obtain a set V of O(s2 log4 n) nodes of T such

that B
⇐
2 =

⋃
v↓V

B
⇐
v
. If

∑
v↓V

|B
⇐
v
| ⇑ c2(kn)

1/2, we return
⋃

v↓V

Bv as B2. Otherwise, we return NULL.

The total time spent by this procedure is O⇐(min{n, k2} + (kn)1/2). Putting everything together
we obtain the following.

Theorem 4.1. A set B of n boxes in R2
can be stored in a data structure so that a piercing set

of B of size O(p log logp) can be maintained with high probability under insertion and deletion of

boxes with amortized expected time O(n1/2 polylog(n)) per insertion or deletion; p is the piercing

number of B.

Dynamic algorithm for squares in 2D If we have squares instead of boxes, then the
reconstruction time reduces to O⇐(p2/3n1/3), which leads to an amortized update time of
O⇐((n/p)1/3) = O⇐(n1/3). We proceed in a similar manner as before. There are two di#erences.
First, we now choose a random sample of size O(k2/3n1/3), and the algorithm works in three rounds.
After the first round, we have a piercing set P1 of size O(p log logp), and we need to represent
the set of squares not pierced by P1 as O⇐(p) canonical subsets, so that we can choose a random
sample B2 from this subset of squares. After the second round, we have a piercing set P2 of B2

of size O(p log logp). Finally, we find the subset B3 ↘ B of squares not pierced by P1 ∋ P2 and
compute a piercing set of B. It su”ces to describe how we compactly represent the set B2.

We map a square, which is centered at a point c and of radius (half side length) a, to the point
b⇐ = (c, a) ↗ R3. A point p = (xp, yp) ↗ R2 is now mapped to the cone Cp = {(x, y, z) ↗ R3

|

̸(x, y)⇐ p̸⇓ ⇑ z, z ≃ 0} with the square cross-section and p its apex; Cp is the graph of the
L⇓-distance function from p. It is easily seen that p ↗ b if and only if b⇐ ↗ Cp. Hence, a box
b ↗ B2 if it lies below all the cones of C = {Cp | p ↗ P1}. Using a 3D orthogonal range-searching
data structure, we can compute B2 as the union of O⇐(k) canonical subsets. We omit the details
from here and obtain the following.

Theorem 4.2. A set B of n squares in R2
can be stored in the data structure described above so

that a piercing set of B of size O(p log logp) can be maintained with high probability under insertion

and deletion of boxes in O(n1/3 polylog(n)) amortized expected time per insertion or deletion.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4906

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 1

52
.3

.4
3.

50
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

References

[ACS+22] Pankaj K. Agarwal, Hsien-Chih Chang, Subhash Suri, Allen Xiao, and Jie Xue. Dynamic
geometric set cover and hitting set. ACM Trans. Algorithms, 18(4):40:1–40:37, 2022.

[AES09] Boris Aronov, Esther Ezra, and Micha Sharir. Small-size epsilon-nets for axis-parallel rectangles
and boxes. In Michael Mitzenmacher, editor, Proceedings of the 41st Annual ACM Symposium on
Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 639–648.
ACM, 2009.

[Aga04] Pankaj K. Agarwal. Range searching. In J. E. Goodman and J. O’Rourke, editors, Handbook of
Discrete and Computational Geometry, chapter 36, pages 809–838. CRC Press LLC, Boca Raton, FL,
USA, 2nd edition, 2004.

[AHRS23] Pankaj K. Agarwal, Sariel Har-Peled, Rahul Raychaudhury, and Stavros Sintos. Fast approxi-
mation algorithms for piercing boxes by points, 2023. https://arxiv.org/abs/2311.02050.

[AK92] Noga Alon and Daniel J. Kleitman. Piercing convex sets. In David Avis, editor, Proc. 8th Annu.
Sympos. Comput. Geom. (SoCG), pages 157–160. ACM, 1992.

[AP20] Pankaj K. Agarwal and Jiangwei Pan. Near-linear algorithms for geometric hitting sets and set
covers. Discrete Comput. Geom., 63(2):460–482, 2020.

[AvKS97] Pankaj K. Agarwal, Marc J. van Kreveld, and Subhash Suri. Label placement by maximum
independent set in rectangles. In Proceedings of the 9th Canadian Conference on Computational
Geometry, Kingston, Ontario, Canada, August 11-14, 1997, 1997.

[BG95] Hervé Brönnimann and Michael T. Goodrich. Almost optimal set covers in finite vc-dimension.
Discrete Comput. Geom., 14(4):463–479, 1995.

[BMR18] Norbert Bus, Nabil H. Mustafa, and Saurabh Ray. Practical and e!cient algorithms for the
geometric hitting set problem. Discret. Appl. Math., 240:25–32, 2018.

[CC09] Parinya Chalermsook and Julia Chuzhoy. Maximum independent set of rectangles. In Claire
Mathieu, editor, Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2009, New York, NY, USA, January 4-6, 2009, pages 892–901. SIAM, 2009.

[CH12] Timothy M. Chan and Sariel Har-Peled. Approximation algorithms for maximum independent set
of pseudo-disks. Discrete Comput. Geom., 48:373–392, 2012.

[CH20] Timothy M. Chan and Qizheng He. Faster approximation algorithms for geometric set cover. In
Sergio Cabello and Danny Z. Chen, editors, Proc. 36th Int. Annu. Sympos. Comput. Geom. (SoCG),
volume 164 of LIPIcs, pages 27:1–27:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[CH21] Timothy M. Chan and Qizheng He. More dynamic data structures for geometric set cover with
sublinear update time. In 37th International Symposium on Computational Geometry, SoCG 2021,
June 7-11, 2021, Bu!alo, NY, USA (Virtual Conference), volume 189 of LIPIcs, pages 25:1–25:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[Cha03] Timothy M. Chan. Polynomial-time approximation schemes for packing and piercing fat objects.
J. Algorithms, 46(2):178–189, 2003.

[CHSX22] Timothy M. Chan, Qizheng He, Subhash Suri, and Jie Xue. Dynamic geometric set cover,
revisited. In Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022,
Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages 3496–3528. SIAM, 2022.

[CM05] Timothy M. Chan and Abdullah-Al Mahmood. Approximating the piercing number for unit-height
rectangles. In Proc. 17th Canad. Conf. Comput. Geom. (CCCG), pages 15–18, 2005.

[CSZ18] Maria Chudnovsky, Sophie Spirkl, and Shira Zerbib. Piercing axis-parallel boxes. Electron. J.
Comb., 25(1):1, 2018.

[dBCvKO08] Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational
geometry: algorithms and applications. Springer, 3rd edition, 2008.

[Ede87] Herbert Edelsbrunner. Algorithms in combinatorial geometry, volume 10. Springer Science &
Business Media, 1987.

[EKNS97] Alon Efrat, Matthew J. Katz, Frank Nielsen, and Micha Sharir. Dynamic data structures for

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4907

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 1

52
.3

.4
3.

50
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

https://arxiv.org/abs/2311.02050

fat objects and their applications. In Frank K. H. A. Dehne, Andrew Rau-Chaplin, Jörg-Rüdiger
Sack, and Roberto Tamassia, editors, Algorithms and Data Structures, 5th International Workshop,
WADS ’97, Halifax, Nova Scotia, Canada, August 6-8, 1997, Proceedings, volume 1272 of Lect. Notes
in Comp. Sci., pages 297–306. Springer, 1997.

[Ezr10] Esther Ezra. A note about weak epsilon-nets for axis-parallel boxes in d-space. Inf. Process. Lett.,
110(18-19):835–840, 2010.

[FPT81] Robert J. Fowler, Mike Paterson, and Steven L. Tanimoto. Optimal packing and covering in the
plane are np-complete. Inf. Process. Lett., 12(3):133–137, 1981.

[GKM+22] Waldo Gálvez, Arindam Khan, Mathieu Mari, Tobias Mömke, Madhusudhan Reddy Pittu,
and Andreas Wiese. A 3-approximation algorithm for maximum independent set of rectangles. In
Joseph (Se!) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022,
pages 894–905. SIAM, 2022.

[GRS98] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. CURE: an e!cient clustering algorithm
for large databases. In SIGMOD 1998, Proceedings ACM SIGMOD International Conference on
Management of Data, June 2-4, 1998, Seattle, Washington, USA, pages 73–84. ACM Press, 1998.

[Har04] Sariel Har-Peled. Clustering motion. Discrete Comput. Geom., 31(4):545–565, 2004.
[Har11] Sariel Har-Peled. Geometric Approximation Algorithms, volume 173 of Math. Surveys & Mono-

graphs. Amer. Math. Soc., Boston, MA, USA, 2011.
[HM85] Dorit S. Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing

problems in image processing and VLSI. J. Assoc. Comput. Mach., 32(1):130–136, 1985.
[HS11] Sariel Har-Peled and Micha Sharir. Relative (p, ω)-approximations in geometry. Discrete Comput.

Geom., 45(3):462–496, 2011.
[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and

James W. Thatcher, editors, Proceedings of a symposium on the Complexity of Computer Compu-
tations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights,
New York, USA, The IBM Research Symposia Series, pages 85–103. Plenum Press, New York, 1972.

[KLR+23] Arindam Khan, Aditya Lonkar, Saladi Rahul, Aditya Subramanian, and Andreas Wiese. Online
and dynamic algorithms for geometric set cover and hitting set. In 39th International Symposium on
Computational Geometry, SoCG 2023, June 12-15, 2023, Dallas, Texas, USA, volume 258 of LIPIcs,
pages 46:1–46:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

[Mit21] Joseph S. B. Mitchell. Approximating maximum independent set for rectangles in the plane. In
62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA,
February 7-10, 2022, pages 339–350. IEEE, 2021.

[MR10] Nabil H. Mustafa and Saurabh Ray. Improved results on geometric hitting set problems. Discrete
Comput. Geom., 44(4):883–895, 2010.

[Nie00] Frank Nielsen. Fast stabbing of boxes in high dimensions. Theor. Comput. Sci., 246(1-2):53–72,
2000.

[OY91] Mark H. Overmars and Chee-Keng Yap. New upper bounds in klee’s measure problem. SIAM J.
Comput., 20(6):1034–1045, 1991.

[PT11] János Pach and Gábor Tardos. Tight lower bounds for the size of epsilon-nets. In Proceedings of
the twenty-seventh annual symposium on Computational geometry, pages 458–463, 2011.

[VC71] Vladimir N. Vapnik and Alexey Ya. Chervonenkis. On the uniform convergence of relative
frequencies of events to their probabilities. Theory of Probability & Its Applications, 16(2):264–280,
1971.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4908

D
ow

nl
oa

de
d

10
/1

0/
24

 to
 1

52
.3

.4
3.

50
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

	Introduction
	Piercing set via multiplicative weight update (MWU) algorithm
	Basic MWU algorithm
	An improved MWU algorithm

	Multi-round piercing algorithm
	A piercing algorithm via sampling

	Dynamic Algorithm for piercing

