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Abstract

Traditional federated learning (FL) algorithms operate under the assumption that
the data distributions at training (source domains) and testing (target domain) are
the same. The fact that domain shifts often occur in practice necessitates equipping
FL methods with a domain generalization (DG) capability. However, existing
DG algorithms face fundamental challenges in FL setups due to the lack of sam-
ples/domains in each client’s local dataset. In this paper, we propose StableFDG, a
style and attention based learning strategy for accomplishing federated domain
generalization, introducing two key contributions. The first is style-based learn-
ing, which enables each client to explore novel styles beyond the original source
domains in its local dataset, improving domain diversity based on the proposed
style sharing, shifting, and exploration strategies. Our second contribution is an
attention-based feature highlighter, which captures the similarities between the
features of data samples in the same class, and emphasizes the important/common
characteristics to better learn the domain-invariant characteristics of each class in
data-poor FL scenarios. Experimental results show that StableFDG outperforms
existing baselines on various DG benchmark datasets, demonstrating its efficacy.

1 Introduction

Federated learning (FL) has now become a key paradigm for training a machine learning model
using local data of distributed clients [26, 19, 11]. Without directly sharing each client’s data to the
third party, FL enables the clients to construct a global model via collaboration. However, although
FL has achieved remarkable success, the underlying assumption of previous works is that the data
distributions during training and testing are the same. This assumption is not valid in various scenarios
with domain shifts; for example, although the FL clients only have data samples that belong to the
source domains (e.g., images on sunny days and rainy days), the trained global model should be
also able to make reliable predictions for the unseen target domain (e.g., images on snowy days).
Therefore, in practice, FL methods have to be equipped with a domain generalization (DG) capability.

Given the source domains in the training phase, DG aims to construct a model that has a generalization
capability to predict well on an unseen target domain. Various DG methods have been proposed in a
centralized setup [39, 21, 36, 38, 16, 15, 24, 23]. However, directly applying centralized DG schemes
to FL can potentially restrict the model performance since each client has limited numbers of data
samples and styles in its local dataset. The local models are unable to capture the domain-invariant
characteristics due to lack of data/styles in individual clients.
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Although several researchers have recently focused on DG for FL [25, 2, 35, 28], they still do not
directly handle the fundamental issues that arise from the lack of data and styles (which represent
domains) in individual FL clients. These performance limitations become especially prevalent when
federating complex DG datasets having large style shifts between domains or having backgrounds
unrelated to the prediction of class, as we will see in Sec. 4. Despite the practical significance of
federated DG, this field is still in an early stage of research and remains a great challenge.

Contributions. In this paper, we propose StableFDG, a style and attention based learning strategy
tailored to federated domain generalization. StableFDG tackles the fundamental challenges in
federated DG that arise due to the lack of data/styles in each FL client, with two novel characteristics:

• We first propose style-based learning, which exposes the model of each FL client to various
styles beyond the source domains in its local dataset. Specifically, we (i) design a style-sharing
method that can compensate for the missing styles in each client by sharing the style statistics
with other clients; (ii) propose a style-shifting strategy that can select the best styles to be
shifted to the new style to balance between the original and new styles; and (iii) develop style-
exploration to further expose the model to a wider variety of styles by extrapolating the current
styles. Based on these unique characteristics, our style-based learning handles the issue of the
lack of styles in each FL client, significantly improving generalization capability.

• We also propose an attention-based feature highlighter, which enables the model to focus
only on the important/essential parts of the features when making the prediction. Our key
contribution here is to utilize an attention module to capture the similarities between the
features of data samples in the same class (regardless of the domain), and emphasize the
important/common characteristics to better learn the domain-invariant features. Especially in
data-poor FL scenarios where models are prone to overfitting to small local datasets, our new
strategy provides advantages for complicated DG tasks by removing background noises that are
unrelated to class prediction and focusing on the important parts.

The two suggested schemes work in a complementary fashion, each providing one necessary compo-
nent for federated DG: our style-based learning improves domain diversity, while the attention-based
feature highlighter learns domain-invariant characteristics of each class. Experiments on various FL
setups using DG benchmarks confirm the advantage of StableFDG over (i) the baselines that directly
apply DG methods to FL and (ii) the baselines that are specifically designed for federated DG.

2 Related Works

Federated learning. FL enables multiple clients to train a shared global model or personalized
models without directly sharing each client’s data with the server or other clients. FedAvg [26] is a
well-known early work that sparked interest in FL in the machine learning community. Since then,
various FL strategies have been proposed to handle the communication burden issue [31, 9], data
heterogeneity issue [20, 12], adversarial attack issue [34, 29, 7], and personalization issue [3, 18, 5].
However, existing FL methods do not have generalization capabilities to predict well on an arbitrary
unseen domain. In other words, most prior FL methods are not able to handle the DG problem.

Domain generalization. DG is one of the emerging fields in the AI community due to its significance
in practical applications. Existing DG strategies based on domain alignment [17, 24, 23], meta-
learning [16, 4, 15, 37] and style/data-augmentation [39, 21, 36, 38] have shown great success in a
centralized setup where the whole dataset is accessible during training. Recently, style-augmentation
methods [39, 21, 36] including MixStyle [39] and DSU [21] are receiving considerable attention due
to their high compatibility with various tasks and model architectures. However, although existing
DG solutions work well in a centralized setup, they face challenges in FL scenarios; in data-poor FL
setups, prior works achieve relatively low performance due to the lack of data samples or domains in
each client, resulting in compromised generalization capabilities. The applications of meta-learning or
domain alignment methods could be also limited when domain labels are not accessible in each client.
Compared to these prior works focusing on a centralized DG setup, we develop a style and attention
based DG strategy tailored to FL. The advantages of our methodology against these baselines are
confirmed via experiments in Sec. 4.

Federated domain generalization. Only a few recent works [25, 2, 35, 28] have focused on the
intersection of FL and DG. Based on the training set distributed across clients, the goal of these works
is to construct a global model that is generalizable to an unseen target domain. In [2], the authors
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proposed to share the style statistics across different clients that could be utilized during local updates.
However, this method does not utilize the styles beyond the clients’ domains and shows limited
performance in specific datasets where the data samples are not well separated in the style space.
Moreover, it increases the computation and memory costs for generating new images in each client
using a pretrained style transfer. In our work, we handle these issues via style exploration and the
attention-based feature highlighter to train the model with novel styles while capturing the important
knowledge of each class. In [25], the authors proposed to exchange distribution information among
clients based on Fourier transform, especially targeting image segmentation tasks for medical data.
The authors of [35] proposed a strategy for federated DG based on the domain-invariant feature
extractor and an ensemble of domain-specific classifiers. Two regularization losses are developed in
[28] aiming to learn a simple representation of data during client-side local updates.

Although these prior works [25, 35, 28] improve DG performance, the authors do not directly handle
the issues that arise from limited styles and data in each client. Compared to these works, we take an
orthogonal approach based on style and attention based learning to effectively learn style-invariant
features while capturing common knowledge of classes. Experimental results in Sec. 4 reveals that
our scheme outperforms existing ideas tackling federated DG in practical data distribution setups.

3 Proposed StableFDG Algorithm
Problem formulation. We consider a FL setup with N clients distributed over the network. Let
Sn = {(xn

i
, y

n

i
)}ωn

i=1 be the local dataset of the n-th client, which consists of ωn pairs of data sample
x and the corresponding label y. Here, each client n can have data samples from either a single or
multiple source domains in its local dataset Sn. Previous works on FL focus on constructing a global
model that predicts well on the overall dataset S = {S1,S2, . . . ,SN} or personalized models that
work well on individual local datasets Sn. In contrast to the conventional FL setup, given the overall
dataset (or source domains) S , the goal of this work is to construct a shared global model w that has
a generalization capability to predict well on any unseen target domain T .

Background. Let s → RC↑H↑W be the feature of a sample which is obtained at a specific layer of
the neural network. Here, C, H , W denote the dimensions of channel, height, width, respectively.
Given the feature s of a specific data sample, the channel-wise mean µ(s) → RC and the channel-wise
standard deviation ε(s) → RC can be written as

µ(s)c =
1

HW

H∑

h=1

W∑

w=1

sc,h,w, ε
2(s)c =

1

HW

H∑

h=1

W∑

w=1

(sc,h,w ↑ µ(s)c)
2
, (1)

respectively. These variables are known as style statistics as they contain style information of an
image in CNNs [10]. Based on these style statistics, various style-augmentation schemes such as
MixStyle [39] or DSU [21] have been proposed in the literature targeting a centralized setup.

Unseen target domain

Source domain 1 Source domain 2 Source domain 3

Style sharing 
(Sec. 3.1)

Attention-based 
weighted averaging 

(Sec. 3.2) 

Local update

Style shifting and 
exploration (Sec. 3.1)

Figure 1: Overview of our problem setup and
algorithm for federated domain generalization.
Each client can have a single source domain as
described in Fig. 1, or even multiple source
domains in its local dataset.

Overview of approach. Fig. 1 provides an
overview of the problem setup and our StableFDG
algorithm. As in conventional FL, the training pro-
cess consists of multiple global rounds, which we
index t = 1, 2, . . . , T . In the beginning of round
t, a selected set of clients download the current
global model wt from the server. Before local
training begins, each client n computes its own
style information !n = [µn,εn,”n(µ),”n(ε)]
using its local dataset according to (2), which will
be clarified soon. This information is sent to the
server, and the server shares these information
with other clients to compensate for the lack of
styles or domains in each client. During the local
update process, each client selectively shifts the
styles of the original data in the mini-batch to the new style (received from the server) via adaptive
instance normalization (AdaIN) [10], to improve domain diversity (inner box in Fig. 2b). After this
style sharing and shifting process, each client performs style exploration via feature-level oversam-
pling to further expose the model to novel styles beyond the current source domains of each client
(outer box in Fig. 2b). Finally, at the output of the feature extractor, we apply our attention-based
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: Newly generated styles based on style augmentation

MixStyle DSU

: Original styles in the client

(a) Existing style-based DG baselines

New styles
(from another client)

Selective style shift

Original styles 
(in the client)

Style center 
(!"# or $"#) 

Style variance
(Σ&#(!) or Σ&#($))	

: Samples selected via k-means++

Style sharing and shifting

: New styles generated via style exploration (oversampled features)

Style exploration

: Samples shifted to new styles

Overall style 
center 

,

(b) Proposed style-based learning for federated DG

Figure 2: Proposed style-based learning strategy (Sec. 3.1): Compared to existing style-based
DG methods that rely on interpolation or style shift near the original style of each sample, our
style-based learning (i) effectively utilizes other FL clients’ styles based on style sharing and shifting,
and (ii) enables the model to further explore a wider style space via feature-level oversampling and
extrapolation, handling the issue of domain-limited FL settings.

feature highlighter to extract common/important feature information within each class and emphasize
them for better generalization (Fig. 3). When local updates are finished, the server aggregates the
client models and proceeds to the next round.

In the following, we first describe our style-based learning in Sec. 3.1, which determines how the
style information is shared and utilized in each FL client, and how style exploration is conducted, to
overcome the lack of styles in each client. In Sec. 3.2, we show how attention mechanism is utilized
to capture the essential characteristics of each class for better generalization in data-poor FL setups.

3.1 Style-based Learning for Federated DG

The main components of our style-based learning are style-sharing, selective style-shifting, and
style-exploration, each having its own role to handle the style limitation problem at each client. As
illustrated in Fig. 2, this fundamental challenge of federated DG is not directly resolvable using
existing style-augmentation DG methods that can only explore limited areas in the style-space.

Step 1: Style information sharing. Based on the data samples in its local dataset Sn, at a specific
layer of the model, each client n computes the average of channel-wise means, µn, and the variance
of the channel-wise means, ”n(µ), as follows:

µn =
1

ωn

ωn∑

i=1

µ(sn
i
), ”n(µ) =

1

ωn

ωn∑

i=1

(µn ↑ µ(sn
i
))2, (2)

where sn
i
→ RC↑H↑W is the feature of the i-th sample in the n-th client’s local dataset, and the square

operation (·)2 works in an element-wise manner. Similarly, the average and the variance of channel-
wise standard deviations are computed as εn = 1

ωn

∑
ωn

i=1 ε(s
n

i
), ”n(ε) =

1
ωn

∑
ωn

i=1(εn ↑ ε(sn
i
))2,

respectively. Here, µn and εn represent the center of the style statistics of client n, while ”n(µ) and
”n(ε) show how these style statistics of client n are distributed around the center. Now we define

!n = [µn,εn,”n(µ),”n(ε)] (3)

as the style information representing the domain identity of the n-th client in the style-space. Each
client n sends !n to the server, and the server randomly shares the style information to other clients
in a one-to-one manner; client n receives !n→ that belongs to client n↓ (n ↓= n

↓) without overlapping
with other clients. By compensating for the lack of styles in each FL client, this style-sharing process
is the first step that provides an opportunity for each model to get exposed to new styles (blue region
in Fig. 2b) beyond the client’s original styles (orange region in Fig. 2b).

Step 2: Selective style shifting. Suppose client n received !n→ from the server. Now the question is,
how should each client utilize this additional style information during training to improve domain/style
diversity? Our idea is to selectively shift the styles of the samples from the original style to the
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new style to effectively balance between the original/new source domains. To this end, given a
mini-batch with size B, each client runs k-means++ with k = B/2 in the style-space for one iteration
and selects B/2 cluster centers. This enables each client to choose the B/2 styles that are similar
to the remaining B/2 styles, so that the model can get exposed to new styles while not losing the
performance on the original styles. The selected B/2 samples keep their original styles, while for
the remaining B/2 samples, we shift the style of their feature s to the new style via AdaIN [10]
as f(s) = (εn→ + ϑε”n→(ε))

(
s↔µ(s)
ε(s)

)
+ (µn→ + ϑµ”n→(µ)), where f(s) is the new feature shifted

from s and ϑµ ↔ N (0,”n(µ)), ϑε ↔ N (0,”n(ε)) are the values sampled from normal distributions.
Then, the mini-batch applied with new styles in !n→ is forwarded to the next layer. The inner box in
Fig. 2b shows how style shifting is performed in client n based on the new style information !n→ .

Overall, based on the shared style statistics in Step 1, our style shifting in Step 2 balances between
the original source domain and the new source domain via k-means++ for better generalization,
which cannot be achieved by previous methods in Fig. 2a that rely on interpolation or style-shift near
the original style. In the following, we describe our style exploration that can further resolve the
style-limitation problem based on feature-level oversampling and extrapolation.

Step 3: Feature-level oversampling. Let sn → RB↑C↑H↑W be a mini-batch of features in client n
at a specific layer, obtained after Steps 1 and 2 above. Here, we oversample the features by the mini-
batch size B in a class-balanced manner; the samples belonging to minority classes are compensated
as balanced as possible up to size B. For example, suppose that the number of samples for classes a,
b, c are 3, 2, 1, respectively in the mini-batch. Using oversampling size of 6, we oversample by 1, 2,
3 data points for classes a, b, c, respectively, to balance the mini-batch in terms of classes. Based on
this, we obtain a new oversampled mini-batch s̃

n with size B, and concatenate it with the original
mini-batch as follows: ŝn = [sn, s̃n]. This not only mitigates the class-imbalance issue in each client
but also provides a good platform for better style exploration; the oversampled features are utilized to
explore a wider style-space beyond the current source domains, as we will describe in Step 4. The
oversampling size can be adjusted depending on the clients’ computation/memory constraints.

Step 4: Style exploration. In order to further expose the model to a wider variety of styles, we
transfer the styles of tensors in s̃

n (i.e., the set of oversampled features) to novel styles beyond the
style of each client. Let s̃n

i
be the feature of i-th sample in the oversampled mini-batch s̃

n. We obtain
the new styles by extrapolating the original styles in s̃

n around the average of channel-wise mean
µn(ŝn) and the average of standard deviations εn(ŝn) computed on the concatenated mini-batch
ŝ
n = [sn, s̃n] as

µnew(s̃
n

i
) = µ(s̃n

i
) + ϖ · (µ(s̃n

i
)↑ µn(s

n)), (4)
εnew(s̃

n

i
) = ε(s̃n

i
) + ϖ · (ε(s̃n

i
)↑ εn(s

n)), (5)

where ϖ is the exploration level. We perform AdaIN to shift the style of s̃n
i

to the new style statistics
µnew(s̃ni ) and εnew(s̃ni ). If ϖ = 0, the styles remain unchanged, and as ϖ increases, the styles are
shifted farther from the center. The outer box in Fig. 2b describes the concept of our style exploration.

Step 5: Style augmentation. After style exploration, we can apply existing style-augmentation
methods during training. In this work, we mix the style statistics of the entire samples in ŝ

n to
generate diverse domains as in [39] as µnew(ŝni ) = ϱ · µ(ŝn

i
) + (1 ↑ ϱ) · µ(ŝn

j
) and εnew(ŝni ) =

ϱ · ε(ŝn
i
) + (1 ↑ ϱ) · ε(ŝn

j
), where ŝ

n

i
and ŝ

n

j
are arbitrary two samples in ŝ

n and ϱ is a mixing
parameter sampled from the beta distribution. Below, we wish to highlight two important points.

Remark 1 (Privacy). It is already well-known that there is an inherent clustering of samples based on
their domains in the style-space, regardless of their labels [39]. This indicates that label information is
not contained in the style statistics, resolving privacy issues. Note that some prior works on federated
DG [25, 2] also adopt sharing style information between clients, but in different ways (see Sec. 2).

Remark 2. By enabling the model to explore a wider region in the style space based on the exploration
level ϖ, our style exploration in Step 4 is especially beneficial when the target domain is significantly
far from the source domains (e.g., Sketch domain in PACS dataset). Existing style-based DG methods
(e.g., MixStyle, DSU) are ineffective in this case as they can explore only some limited areas near the
original styles in each client (Fig. 2a vs. Fig. 2b), which leads to performance degradation especially
in data-poor FL scenarios. It turns out that our scheme has significant performance improvements
over these baselines even with a rather arbitrarily chosen ϖ, as we will see in Sec. 4.3.
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3.2 Attention-based Feature Highlighter

In this subsection, we describe the second component of our solution, the attention-based feature
highlighter, which operates at the output of the feature extractor to tackle the remaining challenge
of federated DG: limited generalization in each client due to the lack of data. To handle this
issue, we start from our key intuition that the images from the same class have inherently common
characteristics regardless of domains to which they belong (e.g., Fig. 3). Based on this insight,
we take advantage of attention to find the essential characteristics of images in the same class and
emphasize them, which turns out to be very effective in data-poor FL scenarios.

Attention score. Consider the i-th data sample of client n. Given the feature z
n

i
→ RC↑H↑W

obtained from the output of the feature extractor, we flatten it to a two-dimensional tensorop Xi →
RC↑HW with a size of (C,HW ), where we omit the client index n for notational simplicity. Now
consider another Xj (j ↓= i) in a mini-batch that belongs to the same class as Xi, where the domains
of Xi and Xj can be either same or different. Inspired by the attention mechanism [32], we measure
the spatial similarity S → RHW↑HW between Xi and Xj as follows:

S := Sim(Xi, Xj) = (ςqXj)
T (ςkXi), (6)

where ςq → Rd↑C , ςk → Rd↑C are the learnable parameters trained to extract important information
in each class from the given samples and d is the embedding size of queries Q = ςqXj and

Attention
Module

Common/important part 
from the same class

Classifier

Query sample !
(Class: alarm clock)

Key sample "
(Class: alarm clock)

Training loss

Pooling

Important parts 
emphasized

Style shifting and 
exploration (Sec. 3.1)

#$%

&'

((#$%)

Concatenation
Feature 
Extractor

Weighted
Averaging

#+%
Feature 
Extractor

Figure 3: Proposed attention-based feature high-
lighter (Sec. 3.2): Our attention-based learning cap-
tures important characteristics within each class (re-
gardless of the domain) for better generalization.

keys K = ςkXi. Then, we reshape
S → RHW↑HW to Sr → RHW↑H↑W ; the
(m,n)-th spatial feature (→ RHW↑1↑1) of
Sr represents the similarity between the
(m,n)-th spatial feature of the key feature Xi

and the overall spatial feature of the query
feature Xj . Then by taking the mean of
Sr along the first dimension, we obtain the
attention score as, which represents how
the spatial feature at each location of key
Xi is similar to the overall features of query
Xj : as = mean(Sr) → RH↑W . A higher
score as indicates a higher similarity. Finally,
we normalize the attention score through
softmax function so that the total sum is one:
as ↗ softmax(as) → RH↑W .

Attention-based weighted averaging. Based on the attention score, we take the weighted average of
zi → RC↑H↑W to generate an attention feature A(zi) → RC in which the important parts of the key
image, having common characteristics with the query image (in the same class), are emphasized:

A(zi)c =
H∑

h=1

W∑

w=1

(as)h,w(zi)c,h,w. (7)

As shown in Fig. 3, this attention feature is concatenated with the last embedding feature (e.g.,
after the global average pooling in ResNet) before the classifier, and it goes through the classifier to
compute the loss during training. One important thing to note is that ςq and ςk are trained so that the
common features of query and key images become close in the embedding space while unimportant
factors such as backgrounds are effectively distanced (i.e., less emphasized).

When implementing attention-based weighted averaging in practice, instead of directly adopting
equation (6), we modify the similarity function using the query of its own as

Simmix(Xi, Xj) =

(
ςqXj + ςqXi

2

)T

(ςkXi), (8)

to avoid performance degradation when there is little commonality between key and query images.
In other words, StableFDG takes advantage of both cross-attention and self-attention, enabling the
model to extract and learn important characteristics across images (via cross-attention), and within
the image (via self-attention). A more detailed analysis on (8) can be found in Appendix.
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Inference. During testing, given a new test sample, we compute the spatial similarity of the test
sample itself as Sim(Xi, Xi) based on self-attention, take the weighted average, and concatenate the
features to make a prediction.

Remark 3. It is interesting to note that we can adopt self-attention during testing. This is because ςq

and ςk are trained to capture the essential characteristics of each class, which enables the attention
module to effectively find the important parts of individual samples via self-attention (e.g., see
heat map visualization in Fig. 3). Moreover, with only 0.44% of additional model parameters
for the attention module, this strategy turns out to be very effective in learning domain-invariant
characteristics of classes in data-poor FL setups, handling the key challenge of federated DG.

3.3 StableFDG

Finally, we put together StableFDG. In each FL round, the clients first download the global model
from the server and perform style sharing, shifting, and exploration according to 3.1, which are done
in the early layers of CNNs where the style information is preserved. Then, at the output of the
feature extractor, attention-based weighted averaging is applied according to Sec. 3.2. These two
components have their own roles and work in a complementary fashion to handle the challenging
DG problem in FL; our style-based strategy is effective in improving the domain diversity, while our
attention-based method can directly capture the domain-invariant characteristics of each class. After
the local update process, the server aggregates the client models and proceeds to the next round.

Remark 4 (Computational complexity). The computational complexity of StableFDG depends on
the oversampling size in Sec. 3.1 and the attention module size in Sec. 3.2, which could be controlled
depending on the resource constraints of clients. We show in Sec. 4 that StableFDG achieves the
state-of-the-art performance with (i) minimal oversampling size and (ii) negligible cost of attention
module. A more detailed discussion on the computational complexity is in Appendix.

4 Experimental Results
4.1 Experimental Setup
Datasets. We consider five datasets commonly adopted in DG literature: PACS [14], VLCS [6],
Digits-DG [38], Office-Home [33], and DomainNet [30]. PACS consists of 7 classes from 4 different
domains, while VLCS contains 4 domains with 5 classes. Digits-DG is composed of 4 different
digit datasets, MNIST [13], MNIST-M [8], SVHN [27], SYN [8], each corresponding to a single
domain. Office-Home consists of 65 classes from 4 domains, while DomainNet has 345 classes from
6 domains. The DomainNet results are reported in Appendix.

Data partitioning for FL. When evaluating the model performance, we follow the conventional
leave-one-domain-out protocol where one domain is selected as a target and the remaining domains
are utilized as sources. Compared to the centralized setup, in FL, the source domains are distributed
across the clients. We consider a setup with N = 30 clients and distribute the training set into
two different ways: single-domain data distribution and multi-domain data distribution scenarios.
In a single-domain setup, we let each client to have training data that belong to a single source
domain. Since there are three different source domains during training (except DomainNet), the
training data of each domain is distributed across 10 clients uniformly at random. In a multi-domain
distribution setup, each client can have multiple domains, but the domain distribution within each
client is heterogeneous. For each domain, we sample the heterogeneous proportion from Dirichlet
distribution with dimension N = 30 and parameter of 0.5, and distribute the train samples of each
domain to individual clients according to the sampled proportion. In Appendix, we also report the
results with N = 3 following the settings of prior works in federated DG [2, 28].

Implementation. Following [39], we utilize ResNet-18 pretrained on ImageNet as a backbone
while the results on ResNet-50 are reported in Sec. 4.3. The exploration level ϖ is set to 3 for all
experiments regardless of datasets. For our attention module, we set the embedding size d of queries
Q and keys K to 30, where Q and K matrices are extracted from the output of the last residual
block using 1↘ 1 convolution such that the channel size of each output is 30. When the attention
module is applied, the input dimension of the classifier becomes twice as large since we concatenate
the attention feature with the last embedding feature before the classifier. The number of additional
model parameters for the attention module is only 0.44% of the entire model. FL is performed for 50
global rounds and we trained the local model for 5 epochs with a mini-batch size of 32. Among a
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PACS VLCS

Methods Art Cartoon Photo Sketch Avg. Caltech LabelMe Pascal Sun Avg.

FedAvg [26] 73.67 70.87 90.27 55.70 72.63 93.75 59.30 70.05 69.90 73.25
FedBN [22] 78.42 70.9 90.96 54.07 73.59 94.81 58.59 72.06 70.36 73.96

MixStyle [39] 79.10 76.30 90.10 60.63 76.53 95.20 60.40 72.10 69.93 74.41
DSU [21] 80.43 75.70 92.60 69.87 79.65 96.13 58.77 71.80 71.87 74.64
CCST [2] 71.35 72.40 88.65 64.10 74.13 92.50 61.20 68.20 66.50 72.10

FedDG [25] 71.20 71.40 90.70 59.20 73.13 95.3 57.5 72.8 69.8 73.85
FedSR [28] 76.40 71.25 93.25 60.55 75.36 92.10 60.50 70.75 71.65 73.75

StableFDG (ours) 84.10 78.57 95.40 72.73 82.70 98.13 59.20 73.60 70.27 75.30

(a) PACS and VLCS datasets.

Office-Home Digits-DG

Methods Art Clipart Product Real Avg. MNIST MNIST-M SVHN SYN Avg.

FedAvg [26] 57.27 48.23 72.77 74.60 63.22 98.05 70.95 68.95 86.40 81.09
FedBN [22] 57.56 48.13 72.65 74.57 63.23 97.33 72.68 71.77 85.36 81.79

MixStyle [39] 56.05 51.55 70.95 73.25 62.95 97.75 74.25 70.85 85.50 82.09
DSU [21] 58.55 52.60 71.60 73.15 63.98 98.10 75.60 70.47 85.80 82.49
CCST [2] 51.3 51.75 70.2 70.3 60.89 95.10 62.80 56.60 74.90 72.35

FedDG [25] 57.6 48.1 72.55 74.33 63.15 97.97 72.13 71.03 87.87 82.25
FedSR [28] 57.8 48.1 72.1 74.2 63.05 98.00 73.00 68.50 86.70 81.55

StableFDG (ours) 57.57 54.30 72.33 74.97 64.79 97.23 74.53 72.95 85.85 82.64

(b) Office-Home and Digits-DG datasets.

Table 1: Main result 1 (single-domain data distribution): Each client has one source domain in its
local data. The proposed StableFDG achieves the best generalization, underscoring its effectiveness.

total of N = 30 clients, 10 clients participate in each global round. All reported results are averaged
over three random seeds.

Where to apply style-based modules. Inspired by [39, 21], we apply our style-based modules with
a probability of 0.5 at specific layers. In particular, style sharing and shifting are executed at the first
residual block of ResNet with a probability 0.5, while the style exploration module is performed at the
first or second or third residual blocks independently with probability 0.5 after style sharing/shifting.

Baselines. (i) FL baselines: First, we consider FedAvg [26] and FedBN [22], which are the basic FL
baselines not specific to DG. (ii) DG baselines applied to each FL client: We apply MixStyle [39]
during the local update process of each client and aggregate the model via FedAvg. Similarly, we also
apply DSU [21] at each client and then perform FedAvg to compare with our work. (iii) Federated
DG baselines: Among DG schemes tailored to FL, we implement the recently proposed CCST
[2], FedDG [25], FedSR [28] and evaluate the performance. For a fair comparison, we reproduced
all the baselines in accordance with our experimental setup. The augmentation level in CCST, a
hyperparameter that controls the amount of augmented images, is set to 3 as in the original paper [2].
The hyperparameters in FedSR, that control the regularization losses, are tuned to achieve the best
performance in our setup. Except for these, we adopted the parameter values in the original papers.

4.2 Main Experimental Results

Single-domain data distribution. Table 1 shows our results in a single-domain data distribution
setup. We have the following observations. Compared to the previous results provided in the
centralized DG works [39, 21], the performance of each method is generally lower. This is due to
the limited numbers of styles and data samples in each FL client, which restricts the generalization
performance of individual client models. It can be seen that most of the baselines perform better than
FedAvg and FedBN that do not tackle the DG problem. The proposed StableFDG achieves the best
average accuracy for all benchmark datasets, where the gain is especially large in PACS having large
shifts between domains. In contrast to our scheme, the prior works [2, 25, 28] targeting federated
DG show marginal performance gains relative to FedAvg in our practical experimental setup with (i)
more clients (which results in less data in each client) and (ii) partial client participations.

Multi-domain data distribution. In Table 2, we report the results in a multi-domain data distribution
scenario. Compared to the results in Table 1, most of the schemes achieve improved performance in
Table 2. This is because each client has multiple source domains, and thus providing a better platform
for each client model to gain generalization ability. The proposed StableFDG still performs the best,
demonstrating the effectiveness of our style and attention based learning strategy for federated DG.
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Office-Home VLCS

Methods Art Clipart Product Real Avg. Caltech LabelMe Pascal Sun Avg.

FedAvg [26] 57.70 48.30 72.87 75.33 63.55 93.65 61.10 72.55 65.40 73.18
FedBN [22] 57.07 48.32 72.31 74.57 63.07 94.34 62.61 69.89 69.04 73.97

MixStyle [39] 55.87 52.03 71.10 74.20 63.30 95.20 60.77 73.90 66.73 74.15
DSU [21] 58.60 52.80 71.63 74.00 64.26 96.87 60.23 72.97 68.97 74.76
CCST [2] 52.2 52.2 70.6 72.3 61.83 96.70 60.40 71.40 65.00 73.38

FedDG [25] 57.9 48.6 73.2 75.0 63.68 96.2 60.7 72.4 67.3 74.15
FedSR [28] 58.1 48.2 72.5 75.4 63.55 92.60 60.80 72.15 68.30 73.46

StableFDG (ours) 57.87 54.20 73.10 75.00 65.04 98.50 60.07 74.40 69.43 75.60

(a) Office-Home and VLCS datasets.

Art Cartoon Photo Sketch Avg.

FedAvg [26] 74.87 74.53 95.30 63.37 77.02
FedBN [22] 77.00 76.83 95.45 67.01 79.07

MixStyle [39] 80.07 77.53 96.23 67.40 80.31
DSU [21] 80.53 76.30 95.37 70.93 80.78
CCST [2] 75.53 75.80 93.53 71.13 79.00

FedDG [25] 75.35 75.85 95.65 61.05 76.98
FedSR [28] 73.83 74.83 95.53 66.03 77.56

StableFDG (ours) 83.97 79.10 96.27 75.67 83.75

(b) PACS dataset.

Table 2: Main result 2 (multi-domain data distribution): Each client has multiple source domains
in its local dataset. The results are consistent with the single-domain scenario in Table 1.

4.3 Ablation Studies and Discussions

Methods Art Cartoon Photo Sketch Avg.

MixStyle [39] 80.07 77.53 96.23 67.40 80.31
DSU [21] 80.53 76.30 95.37 70.93 80.78

StableFDG (only style) 82.62 79.01 95.57 74.47 82.92
StableFDG (only attention) 79.98 78.58 95.75 71.35 81.41

StableFDG (both) 83.97 79.10 96.27 75.67 83.75

Table 3: Effect of each component of StableFDG.

Effect of each component. To see the ef-
fect of each component of StableFDG, in
Table 3, we apply our style-based learn-
ing and attention-based learning one-by-
one in a multi-domain data distribution
setup using PACS. We compare our re-
sults with style-augmentation DG base-
lines, MixStyle [39] and DSU [21]. By applying only our style-based learning, StableFDG already
outperforms prior style-augmentation methods. Furthermore, by adopting only one of the proposed
components, our scheme performs better than all the baselines in Table 2. Additional ablation studies
using other datasets are reported in Appendix.
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Figure 4: Effects of exploration level ϖ (left) and
oversampling size (right) in StableFDG.

Effect of hyperparameters. In DG setups, it
is generally impractical to tune the hyperpa-
rameter using the target domain, because there
is no information on the target domain during
training. Hence, we used a fixed exploration
level ϖ = 3 throughout all experiments without
tuning. In Fig. 4, we observe how the hyperpa-
rameters affect the target domain performance
on PACS. In the first plot of Fig. 4, if ϖ is too
small, the performance is relatively low since
the model is not able to explore novel styles beyond the client’s source domains. If ϖ is too large, the
performance could be slightly degraded because the model would explore too many redundant styles.
The overall results show that StableFDG still performs better than the baselines with an arbitrarily
chosen ϖ, which is a significant advantage of our scheme in the DG setup where hyperparameter
tuning is challenging. The second plot of Fig. 4 shows how the oversampling size (introduced in
Step 3 of Sec. 3.1) affects the DG performance. StableFDG still outperforms the baseline with mini-
mal oversampling size, indicating that other components of our solution (style sharing/shifting and
attention-based components) are already strong enough. The size of oversampling can be determined
depending on the clients’ computation/memory constraints, with the cost of improved generalization.

Performance in a centralized setup. Although our scheme is tailored to federated DG, the ideas of
StableFDG can be also utilized in a centralized setup. In Table 4a, we study the effects of our style
and attention based strategies in a centralized DG setting using PACS, while the other settings are
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Methods Art Cartoon Photo Sketch Avg.

MixStyle [39] 81.61 78.83 96.77 72.29 82.38
DSU [21] 78.84 79.56 95.21 79.39 83.25
StableFDG (ours) 85.02 79.65 96.38 78.35 84.85

(a) Performance in a centralized DG setup.

Methods Art Cartoon Photo Sketch Avg.

MixStyle [39] 87.51 81.12 97.48 68.39 83.63
DSU [21] 86.48 81.22 97.21 73.99 84.73
StableFDG (ours) 90.01 83.29 98.02 79.47 87.70

(b) Performance using ResNet-50.

Table 4: The applicability of StableFDG in a centralized DG setup (Table 4a) and performance using
a larger model (Table 4b) on the PACS dataset.

the same as in the FL setup. The results demonstrate that the proposed ideas are not only specific to
data-poor FL scenarios but also have potentials to be utilized in centralized DG settings.

Performance with ResNet-50. In Table 4b, we also conduct experiments using ResNet-50 on PACS
dataset in the multi-domain data distribution scenario. Other settings are exactly the same as in Table
2. The results further confirm the advantage of StableFDG with larger models.

Figure 5: Visualization of attention score maps
of each input image (left: bed, right: radio).

Attention score visualization. To gain an intuitive
understanding of the effect of our attention-based
learning, in Fig. 5, we visualize the score maps
obtained via our attention module at testing. The
score maps are interpolated so that it has the same
size as the original image. A warmer color indicates
a higher value. It can be seen that our attention
module highlights important parts of each class even in the presence of unrelated backgrounds.

Additional results. Other implementation details, comprehensive ablation studies for each compo-
nent, discussions on complexity, and results on DomainNet dataset are in Appendix.

5 Conclusion

Despite the practical significance, the field of federated domain generalization is still in the early
stage of research. In this paper, we proposed StableFDG, a new training strategy tailored to this
unexplored area. Our style-based strategy enables the model to get exposed to various novel styles
beyond each client’s source domains, while our attention-based method captures and emphasizes
the important/common characteristics of each class. Extensive experimental results confirmed the
advantage of our StableFDG for federated domain generalization with data-poor FL clients.
Limitations and future works. StableFDG requires 0.45 % more communication load compared
to FedAvg for sharing the attention module and style statistics, which is the cost for a better DG
performance. Further developing our idea to tailor to centralized DG and extending our attention
strategy to segmentation/detection DG tasks are also interesting directions for future research.
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A Results on DomainNet Dataset

To demonstrate the effectiveness of our StableFDG on a larger dataset, we performed experiments on
DomainNet dataset in a single-domain data distribution scenario. To this end, we utilize ResNet-50
pretrained on ImageNet. The number of global rounds and mini-batch size are set to 60 and 64,
respectively. The remaining settings are the same as those in our main paper. The results in Table 5
show that our StableFDG consistently outperforms not only the centralized DG works but also the
prior works on federated DG even with a more complex dataset.

Methods Clipart Inforgraph Painting Quickdraw Real Sketch Avg.

FedAvg [26] 61.52 24.75 50.83 12.08 60.00 49.92 43.18
FedBN [22] 60.23 24.40 50.43 11.99 59.57 49.66 42.71
MixStyle [39] 61.39 24.33 51.41 13.07 57.90 51.40 43.25
DSU [21] 62.43 24.30 51.87 13.65 58.75 52.40 43.90
FedDG [25] 62.49 23.71 48.42 12.45 61.44 49.11 42.94
FedSR [28] 61.91 25.37 50.54 11.59 62.03 50.13 43.60
StableFDG 62.58 24.12 52.23 14.87 60.60 52.50 44.48

Table 5: Results on DomainNet dataset in a single-domain data distribution scenario.

B Discussion on Computational and Communication Costs

Table 6 compares the communication, computation, and average accuracy of different schemes on
PACS in a multi-domain data distribution scenario. ResNet-18 is adopted as in our main manuscript.
We first compare the uplink communication load of each client in a specific global round. Compared
to FedAvg that only transmits the model in each round, our scheme requires additional communication
burden for transmitting the style statistics and the attention module, which are negligible. We also
compare the computation time by measuring the time required for local update at each client using
an GTX 1080 Ti GPU. CCST [2] and FedDG [25] require large computation due to the increased
amounts of data samples or multiple backpropagations for meta training. Our scheme requires
additional computation caused by style exploration, attention module update, etc., which are the costs
for better generalization to the unseen domain.

Methods Communication load Computation time Achievable average accuracy

FedAvg [26] 44.98 MB 4.57 sec 77.02 %
CCST [2] 44.98 MB 9.03 sec 79.00 %
FedDG [25] 44.98 MB 22.44 sec 76.98 %
FedSR [28] 44.98 MB 4.59 sec 77.56 %
StableFDG 45.00 MB 7.39 sec 83.75 %

Table 6: Computation and communication cost comparison.

C Experiments with Three Clients

Different from the prior works [2, 28] for federated DG adopting the usual setting where the number
of clients equals the number of source domains, in our main paper, we introduce a more practical
experimental setting for federated DG where the source data is distributed to more clients than
the number of source domains. For a comparison with them in the same setting, we also provide
additional experimental results in the setup with number of clients = number of source domains.
Table 7 shows the results on PACS and Office-Home datasets with three clients in a single-domain
data distribution scenario. It is confirmed from the results that our StableFDG also achieves better
performance compared to the existing works [2, 28] in this simple setting.
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Methods Art Cartoon Photo Sketch Avg.

CCST [2] 81.25 73.34 95.21 80.27 82.52
FedSR [28] 83.20 76.00 93.80 81.90 83.70
StableFDG 83.01 79.31 94.85 79.76 84.23

(a) Results on PACS dataset.

Methods Art Clipart Product Real Avg.

CCST [2] 59.05 50.06 72.97 71.67 63.56
FedSR [28] 57.93 50.45 73.33 75.51 64.31
StableFDG 57.19 57.94 72.76 72.16 65.01

(b) Results on Office-Home dataset.

Table 7: Results in a single-domain data distribution scenario with three clients.

D Effect of Each Component of StableFDG

As mentioned in the main manuscript, we provide further ablation studies on the effect of each
component in StableFDG using VLCS dataset. Table 8 shows that each component individually
brings performance gain compared to FedAvg. Using both strategies achieves greater performance
gains, confirming that the two proposed schemes work in a complementary fashion.

Methods Caltech Labelme Pascal Sun Avg.

FedAvg [26] 93.65 ± 1.59 61.10 ± 2.08 72.55 ± 0.90 65.40 ± 0.28 73.18 ± 0.27
StableFDG (only style) 98.19 ± 0.81 58.93 ± 1.16 75.19 ± 0.67 68.69 ± 0.73 75.25 ± 0.20
StableFDG (only attetnion) 94.10 ± 1.22 62.02 ± 1.55 72.26 ± 0.78 66.16 ± 2.58 73.64 ± 0.89
StableFDG (both) 98.50 ± 0.17 60.07 ± 0.79 74.40 ± 1.88 69.43 ± 1.11 75.61 ± 0.71

Table 8: Effect of each component on VLCS dataset in a multi-domain data distribution scenario.
The reported results indicate (mean ± 95% confidence interval) over 3 random trials.

E Ablation Studies on Style-Based Learning

E.1 Randomness in style sharing

In our style based learning, style sharing among clients is performed at random. However, one can
think of the strategy where client n receives the style information !n→ that has the largest distance
with its own style information !n→ in the style space. Table 9 shows the corresponding result using
PACS dataset in a multi-domain data distribution setup. Interestingly, it can be seen that the random
selection adopted in this paper performs better, since most of the users generally tend to receive the
same style statistics when using the largest distance strategy.

Methods Art Cartoon Photo Sketch Avg.

Random sharing (current manuscript) 83.97 ± 1.25 79.10 ± 0.45 96.27 ± 0.36 75.67 ± 0.58 83.75 ± 0.23
Large distance 83.01 ± 1.43 78.33 ± 0.51 96.19 ± 0.76 74.63 ± 0.65 83.04 ± 0.30

Table 9: Random sharing vs receiving the style that has the largest distance in style space. The
reported results indicate (mean ± 95% confidence interval) over 3 random trials.

E.2 Effect of the number of shared styles

We also compare the effect of number of styles received at each client in Table 10 using PACS dataset
in a multi-domain data distribution setup. The performance increases as the number of received styles
increases, with small additional communication load (the vector length of the style information is
128, which is negligible compared to the number of model parameters, which is 11,180,103).
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Methods Art Cartoon Photo Sketch Avg.

No style sharing 83.16 ± 0.18 78.54 ± 1.11 95.56 ± 0.92 74.64 ± 1.06 82.97 ± 0.36
Receive 1 style (current manuscript) 83.97 ± 1.25 79.10 ± 0.45 96.27 ± 0.36 75.67 ± 0.58 83.75 ± 0.23
Receive 3 styles 84.55 ± 1.20 78.67 ± 0.59 95.75 ± 0.58 76.77 ± 0.27 83.94 ± 0.07

Table 10: Effect of the number of shared styles. The reported results indicate (mean ± 95% confidence
interval) over 3 random trials.

E.3 Effect of k-means++ in style shifting

In Section 3.1, we utilized the k-means++ as a tool for facilitating our key idea in style shifting,
which is to effectively balance between the original source domain and the new source domain for
better generalization; k-means++ plays a role to select the B/2 styles that are similar to the remaining
B/2 styles in the mini-batch. By doing so, the model can explore new styles while not losing the
performance on the original styles. To see this effect, we compare k-means++ vs. random sampling
when selecting B/2 samples to be shifted, in Table 11. The results show that strategically selecting
the B/2 samples to be shifted achieves better performance especially in the Sketch domain (1.89%
gain) that has a large style gap with other domains. We believe that these results motivate and justify
our design choice.

Methods Art Cartoon Photo Sketch Avg.

Shifting B/2 random styles 83.69 79.61 95.99 73.78 83.27
Shifting B/2 styles via k-means++ 83.97 79.10 96.27 75.67 83.75

Table 11: Effect of k-means++ in style shifting on PACS dataset.

E.4 Effect of class-balanced oversampling

In our main paper, we performed the class-balanced oversampling in the feature space to alleviate the
class-imbalance issue during style exploration. To confirm the effectiveness of the class-balanced
oversampling, we compare it with random oversampling under the same condition where only the
style exploration is applied without other components. Table 12 shows the results on Office-Home
dataset, where the class distribution is highly imbalanced in a multi-domain data distribution scenario.
It can be seen that our class-balanced oversampling achieves higher performance over the simple
random sampling, which validates the efficacy of mitigating the class imbalance problem in FL
clients.

Methods Art Cartoon Photo Sketch Avg.

Random oversampling 56.21 54.43 69.37 72.29 63.08
Class-balanced oversampling 57.20 53.15 71.2 74.23 64.10

Table 12: Effect of the class-balanced oversampling on Office-Home dataset in a multi-domain data
distribution scenario.

E.5 Effect of the operation probability in style-based learning

We conduct additional ablation studies on the probability value (defined as p here) utilized to control
the operation of the style sharing/shifting and style exploration modules. Larger p means that our
scheme is more likely to be activated. In Table 13, we provide results on various probability values in
a single-domain data distribution scenario using PACS dataset. From the results, it is confirm that for
all p values, the proposed StableFDG outperforms existing baselines, demonstrating that our scheme
can work well with an arbitrarily chosen probability p. In detail, when p ranges from 0.3 to 0.7,
the high performance is maintained while the performance decreases at both extreme probabilities
(p = 0.1 and 0.9). Therefore, it is recommended for practitioners to select the p in an appropriate
range, avoiding extreme cases.
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Methods Art Cartoon Photo Sketch Avg.

MixStyle [39] 79.10 76.30 90.10 60.63 76.53
DSU [21] 80.43 75.70 92.60 69.87 79.65
StableFDG (p = 0.1) 82.70 78.30 95.30 75.30 82.90
StableFDG (p = 0.3) 84.50 79.50 96.00 75.70 83.93
StableFDG (p = 0.5) 83.10 79.50 96.40 76.00 83.75
StableFDG (p = 0.7) 82.40 78.10 95.70 76.30 83.13
StableFDG (p = 0.9) 81.40 78.80 95.90 73.60 82.70

Table 13: Effect of the probability value in our style-based learning on PACS in a single-domain data
distribution scenario.

E.6 Where to apply the style module

For implementation, style-based learning is applied only in the 1st, 2nd, 3rd blocks among 4 residual
blocks in ResNet-18. Note that at the output of the 4th block, label information is dominant rather
than style information, which results in degraded performance when style-based schemes are applied.
This is confirmed by our new experiments in the table below. It can be seen from the results that if
we consider the 4th residual block to apply our style-based learning, the performance gets degraded.
This result confirms the intuition that style-based learning should be conducted at the earlier layers
where style information is preserved.

Methods Art Cartoon Photo Sketch Avg.

Style exploration at 1st, 2nd, 3rd layers (main manuscript) 84.10 78.57 95.40 72.73 82.70
Style exploration at 1st, 2nd, 3rd, 4th layers 82.99 78.54 94.13 73.35 82.25

Table 14: Ablation experiments on applying style-based learning at different layers (PACS dataset).

F Ablation Studies on Attention-based Feature Highlighter

F.1 Effect of adopting both cross-attention and self-attention

In our main paper, the similarity metric in equation (6) adopts cross-attention, while the metric in
equation (8) combines cross-attention and self-attention. When applying only the cross-attention-
based metric in equation (6), we found that the similarity value could become low even when the two
samples belong to the same class, in special cases. We handled this issue by adding the self-attention
component as in equation (8). Intuitively, by doing this, the attention module is learning to extract the
important features across images (via cross-attention), and within the image (via self-attention). Table
15 compares the performance of our StableFDG when using (i) self-attention alone, (ii) cross-attention
alone (equation (6)), and (iii) both self and cross attentions at the same time (equation (8)), confirming
the advantage of using self-attention and cross-attention together.

Methods Clipart Infograph Painting Quickdraw Real Sketch Avg.

StableFDG (with self-attention alone) 61.77 24.88 48.28 14.15 59.78 52.41 43.55
StableFDG (with cross-attention alone) 61.24 24.97 50.55 14.67 61.12 50.44 43.83
StableFDG (with self + cross) 62.58 24.12 52.23 14.87 60.60 52.50 44.48

Table 15: Effects of similarity metrics using DomainNet dataset in a multi-domain data distribution
scenario.

F.2 Comparison using the same model size

Our attention module requires 0.44% of additional model parameters to perform the attention-based
learning. For a fair comparison to see the effect of our attention-based learning, we consider a
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different baseline with the same model size but without attention-based learning. Specifically, the
baseline computes the attention score map using only additional convolutional operations and take
the weighted average of the feature zi based on the attention score map. Table 16 shows the results
using PACS dataset in a single-domain data distribution scenario. The results demonstrate that our
attention-based learning achieves performance improvements on all four domains while playing a
key role in capturing essential parts of the features.

Methods Art Cartoon Photo Sketch Avg.

Baseline (same model size) 78.88 69.03 91.74 60.77 75.11
Attention-based learning 79.54 72.48 92.51 64.71 77.31

Table 16: Ablation study on attention-based learning using PACS dataset in a single-domain data
distribution scenario.

F.3 Effect of attention in a centralized setup

Now we provide answer to the following question: Instead of the FL setup we focused on, can
attention provide benefits in the centralized DG setup? Table 17 shows the results with/without
attention module in a centralized setup using PACS dataset. The results show that attention still
provides performance improvements in the centralized setup by learning domain-invariant features,
although the gain is slightly lower than the gain in the FL setup as shown in Table 3 of the main
manuscript. These results indicate that the proposed attention-based learning indeed captures the
domain-invariant characteristics of samples, while the scheme provides more benefits in the FL setup
where each client is prone to overfitting due to lack of data.

Methods Art Cartoon Photo Sketch Avg.

StableFDG (centralized setup, without attention) 84.15 79.45 96.21 77.09 84.23
StableFDG (centralized setup, with attention) 85.02 79.65 96.38 78.45 84.88

Table 17: Effect of proposed attention-based feature highlighter in a centralized DG setup using
PACS dataset.

G Other Implementation Details

Our code is built upon the official code of [39] and [1]. During the local update process, we use
SGD as an optimizer with a momentum of 0.9 and a weight decay of 5e↔4. For PACS, Office-Home
and VLCS, the learning rate is set to 0.001 and the cosine annealing is used as a scheduler. For
Digits-DG, we set the learning rate to 0.02 and the learning rate is decayed by 0.1 every 20 steps. For
our attention-based feature highlighter, at least two samples are required to be in the mini-batch of
every client. When this condition is not met, additional samples are extracted from the corresponding
client’s local dataset to facilitate cross-attention.

More detailed description on oversampling: Let sn → RB↑C↑H↑W be a mini-batch of features in
client n at a specific layer, obtained after Steps 1 and 2 in the main manuscript. Now given a fixed
oversampling size, we oversample the features in the mini-batch to obtain s̃

n, so that the concatenated
mini-batch ŝ

n = [sn, s̃n] becomes class-balanced as much as possible. Consider a toy example where
the number of samples for classes a, b, c are 3, 2, 1, respectively in the mini-batch s

n. In this example,
if the oversampling size is 3, we randomly choose one data point from class b and two data points
from class c (in this case, the same data point is selected for two times with duplication) to obtain s̃

n,
so that the concatenated mini-batch ŝ

n = [sn, s̃n] becomes class-balanced. If the oversampling size
is 1, we oversample one data point in class c to make the concatenated mini-batch to be balanced as
much as possible. If the oversampling size is 6, we oversample 1, 2, 3 samples from classes a, b, c,
respectively to construct s̃n. The concatenated mini-batch ŝ

n = [sn, s̃n] is utilized for style-based
learning and updating the model. This process not only mitigates the class-imbalance issue in each
client but also provides a good platform for style exploration by oversampling the features. In our
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work, we reported the results with oversampling size of B (which is equal to the mini-batch size),
while the effect of the oversampling size is also reported in Fig. 4 of the main manuscript: A larger
oversampling size leads to a better performance, and more importantly, our StableFDG outperforms
the baseline even without any oversampling.

H Visualization of Attention Score Maps

Finally in Fig. 6, we visualize the attention score maps of different input images during testing. The
results confirm the effectiveness of our attention-based feature highlighter to focus on the important
parts of each image from the unseen domain.

Figure 6: Visualization of attention score maps of each input image.

I Pseudo Code Algorithm of Stable FDG

Algorithm 1 summarizes the overall process of our StableFDG.

Algorithm 1 StableFDG
Input: Initialized model w0, Output: Global model wT

1: for each global round t = 0, 1, ..., T ↑ 1 do
2:
3: Stage 1. Model download and style sharing
4: The server samples a set of participating clients Mt and sends the global model wt to the

clients in Mt

5: for each device n → Mt do
6: Compute style information !n according to the Step 1 in Sec. 3.1
7: Transmit !n to the server
8: end for
9: The server shares {!n}n↗M to the clients in Mt according to the Step 1 in Sec. 3.1

10:
11: Stage 2. Local updates and model aggregation
12: for each device n → Mt do
13: for local epoch = 1, 2..., E do
14: (i) Style shifting according to the Step 2 in Sec. 3.1,
15: (ii) Style exploration according to the Step 3 and 4 in Sec. 3.1
16: (iii) Attention based weighted averaging according to Sec. 3.2
17: Loss computation and model update
18: end for
19: The server updates the global model by aggregating the client models
20: end for
21:
22: end for
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