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Abstract. We construct a novel family of difference-permutation operators and prove

that they are diagonalized by the wreath Macdonald P-polynomials. Our operators

arise from the action of the horizontal Heisenberg subalgebra in the vertex representa-

tion of the quantum toroidal algebra.
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1 Introduction

Let XN = {x1, . . . , xN} be a set of variables and let YN be the set of partitions with at

most N parts. The Macdonald polynomials {Pλ[XN; q, t] | λ ∈ YN} are a basis of the ring

of symmetric polynomials Q(q, t)[XN ]
SN that can be characterized as eigenfunctions of

a commuting family of difference operators, the Macdonald operators: for 1 ≤ n ≤ N,

Dn(XN; q, t) := t
n(n−1)

2 ∑
J⊂{1,...,N}

|J|=n









∏
i∈J
j 6∈J

txi − xj

xi − xj









∏
i∈J

Tq,xi
(1.1)

Dn(XN; q, t)Pλ[XN; q, t] = en(q
λ1tN−1, qλ2tN−2, . . . , qλN)Pλ[XN; q, t] (1.2)

Here Tq,xi
is the q-shift operator Tq,xi

xj = qδi,j xj and en is the nth elementary symmetric

polynomial.

This paper is concerned with wreath Macdonald polynomials, a generalization of

the Macdonald polynomials defined by Haiman [1]. Let r be a positive integer and let

I = Z/rZ. Fix an r-core partition γ and a vector N• = (N0, N1, . . . , Nr−1) ∈ ZI
≥0 that
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is compatible with γ in the sense given by (3.5) below. Letting N = |N•| := ∑i∈I Ni, we

partition the variables x1, . . . , xN into r subsets:

XN• :=
r−1
⊔

i=0

{

x
(i)
l | 1 ≤ l ≤ Ni

}

= {x1, . . . , xN} . (1.3)

We call the index i the color of x
(i)
l . The product of symmetric groups SN• := ∏i∈I SNi

acts on the polynomial ring Q(q, t) [XN• ] whereby SNi
only permutes the variables of

color i. Let YN,γ be the set of partitions with r-core γ and at most N parts. The

wreath Macdonald polynomials {Pλ[XN• ; q, t] | λ ∈ YN,γ} are a basis of the space

Q(q, t) [XN• ]
SN• of color-symmetric polynomials. The original Macdonald polynomials

Pλ(XN; q, t) [2, p. VI.4] are the case r = 1.

Haiman’s definition characterizes Pλ[XN• ; q, t] using a pair of triangularity conditions.

In contrast with the usual Macdonald theory, we a priori do not have an analogous

characterization as the joint eigenfunction of an explicit family of difference operators.

The present work remedies this situation. For each p ∈ I and positive integer n, define

the operators Dp,n on Q(q, t)[XN• ] by

Dp,n(XN• ; q, t) :=
(−1)

n(n−1)
2

∏
n
k=1(1 − qkt−k)

× ∑
J∈Sh

[n]
p (XN• )

y

n

∏
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∏
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
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(1.4)

The notation used in this formula is defined in Section 4. Our main result is the follow-

ing,

Theorem 1.1. Let N• be compatible with γ and λ ∈ YN,γ. Then the number of 1 ≤ i ≤ N with

i − λi − 1 ≡ p mod r is equal to Np and Pλ[XN• ; q, t] satisfies the eigenfunction equation

Dp,n(XN• ; q, t)Pλ[XN• ; q, t] = en







N

∑
i=1

i−λi−1≡p mod r

qλi t−(N−i)






Pλ[XN• ; q, t]. (1.5)
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The eigenvalue uses plethystic notation: the Np variables of the elementary symmet-

ric polynomial are replaced by the summands of the form qatb. Our operators (1.4) are

much more complicated than the original Macdonald operators (1.1). In the case r = 1,

we do indeed obtain (1.1) after some simplification. When r > 1, the q-shift operator

Tq,xi
is replaced with what we call a cyclic-shift operator TJ

a
, which cyclically permutes

variables of different colors in addition to multiplying by a power of q.

1.1 Integral formulas

Our strategy for deriving the eigenoperators (1.4) and establishing the eigenfunction

equation (1.5) uses work of the third author [5]. We study the wreath Macdonald poly-

nomials using the quantum toroidal algebra Ü = Uq,d(s̈lr) and its vertex representation W.

The aforementioned work proves that infinite-variable wreath Macdonald polynomials

can be naturally embedded inside W such that they diagonalize a large commutative

subalgebra of Ü known as the horizontal Heisenberg subalgebra. This alone is insufficient

for obtaining explicit formulas. We also need work of Negut, [3] realizing Ü as a shuf-

fle algebra. The shuffle algebra is a space of rational functions endowed with an exotic

product structure, and it is isomorphic to a part of Ü via a map that is morally (but not

precisely) an integration map. Writing its action on W and then specializing from infinite

to finite variables, we obtain integral formulas. Finally, to pin down the eigenvalues, we

use the twisted isomorphism established by Tsymbaliuk [4] between the vertex repre-

sentation and the Fock representation. We apply this process to the shuffle realizations of

well-chosen elements of the horizontal Heisenberg subalgebra which were found in [5].

1.2 Towards duality

In the case r = 1, the eigenfunction equation (1.2) is particularly interesting when juxta-

posed with the Pieri rules [2]. To make this apparent, introduce a continuous extension

of the discrete parameters λ = (λ1, . . . , λN): si := qλi tN−i, SN := {s1, . . . , sN}. We call

the variables XN the position variables and SN the spectral variables. It is natural to inter-

pret the q-shift Tq,si
Pλ[XN; q, t] by adding a box to row i of the partition λ. For a certain

renormalization P̃λ[XN; q, t] of Pλ[XN; , q, t], we can write the Pieri rules as

en(x1, . . . , xN)P̃λ[XN; q, t] = t
n(n−1)

2 ∑
I⊂{1,...,N}

|I|=n





∏
i∈I
j 6∈I

tsi − sj

si − sj





∏
i∈I

Tq,si
P̃λ[XN; q, t]. (1.6)

The fact that no shift operator Tq,si
appears more than once enforces the well known

support condition of the Pieri rules: the P̃µ[XN; q, t] that appear on the right hand side of

(1.6) are such that µ\λ contains no horizontally adjacent boxes. On the other hand, we
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can view the eigenfunction equation (1.2) as describing multiplication by en(s1, . . . , sN).
The similarity between (1.2) and (1.6) is reflective of a symmetry XN ↔ SN. One mani-

festation of this symmetry is the well-known evaluation duality [2]:

P̃λ(q
µ1tN−1, qµ2tN−2, . . . , qµN) = P̃µ(q

λ1tN−1, qλ2tN−2, . . . , qλN).

For the wreath case r > 1, the spectral variables should also have color. We assign

s
(i)
l to some b such that b − λb ≡ i + 1 mod r: s

(i)
l := qλb t|N•|−b. Here, we point out a

natural motivation for imposing our compatibility condition between the r-core of λ and

N•—it forces there to also be Ni spectral variables of color i. The eigenfunction equation

(1.5) then describes multiplication by en(s
(p)
1 , . . . , s

(p)
Np

). Note that adding a box to a row

will not only contribute a q-shift but also change the color, and that is precisely what the

cyclic-shift operators TJ
a

do. Work of the third author [5] provides one constraint on the

support of the wreath Pieri rules. Namely, for a box (a, b), if we call the class of b − a

mod r its color, then Pµ[XN• ; q, t] appears as a summand of en(xp,1, . . . , xp,Np)Pλ[XN• ; q, t]
only if µ\λ consists of n boxes of each color such that no boxes of color p and p + 1

are horizontally adjacent. One can check that the combinations of TJ
a

appearing in (1.4)

enforce this condition after swapping x
(i)
l ↔ s

(i)
l . Computer calculations done by the

second author also confirm a wreath analogue of evaluation duality. While we are still

a long way from establishing a wreath analogue of the XN ↔ SN symmetry, our strange

operators seem to go out of their way to say it must be true.

1.3 Outline

Section 2 discusses the core-quotient combinatorics in detail. Section 3 defines wreath

Macdonald symmetric functions and their finitizations. Section 4 defines the ingredients

of the formula (1.4) of our wreath Macdonald eigenoperators.

2 Abaci, cores, quotients, and root lattice combinatorics

Fix a positive integer r and let I = Z/rZ.

2.1 Partitions and cores

Let Y be the set of all integer partitions. The diagram of a partition µ = (µ1, µ2, . . . ) ∈ Y

is by definition the French-style diagram D(µ) = {(a, b) ∈ (Z≥0)
2 : 0 ≤ a < µb+1}

which uses 0-based first quadrant Cartesian (x, y)-coordinates for the elements of D(µ).
The residue or color of (a, b) ∈ Z2 is the element b − a ∈ Z/rZ. This is the residue mod r

of the negative of Macdonald’s content of a cell [2, Ex. I.1.3].
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i · · · 5 4 3 2 1 0 −1 −2 −3 −4 −5 −6 · · ·
bi 0 0 0 1 1 0 0 1 0 1 0 1 1 1

charge(b) = 0 shape(b) =

Figure 1: The shape and charge of an edge sequence

For (a, b) ∈ D(µ) the hook length hµ(a, b) is the number of elements (a′, b′) ∈ D(µ)
that are in the same row as (a, b) and weakly to the right (that is, (a′, b′) = (a′, b) with

a′ ≥ a) or in the same column as (a, b) and weakly above (that is, (a′, b′) = (a, b′) with

b′ ≥ b). A partition µ ∈ Y is an r-core if hµ(a, b) 6= r for all (a, b) ∈ D(µ). We denote by

C = Cr the set of r-cores.

2.2 Edge sequences and partitions

A function b : Z → {0, 1} can be viewed as an infinite indexed binary word

· · · b(1)b(0)b(−1) · · · ;

notice that in writing such a word we index the positions in reverse order. An inversion

of b is a pair of integers i > j such that b(i) > b(j), a 1 to the left of a 0. An edge sequence

(or Maya diagram) is a function b : Z → {0, 1} such that b(i) = 0 for i � 0 and b(i) = 1

for i � 0, that is, b has finitely many inversions. Let ES denote the set of edge sequences.

The shape of b ∈ ES is the partition whose French partition diagram has boundary traced

out by the values of b from top left to bottom right, where 0 (resp. 1) indicates a vertical

downward (resp. horizontal rightward) unit vector. See Figure 1, in which the 0s and 1s
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of the edge sequence are written to the left and below their corresponding unit vectors,

and the index i of the bit b(i) is written to the right or above the unit vector.

The charge of b ∈ ES is the index of the unit vector that touches the main diagonal

from above and left, or equivalently the index of the rightmost 0 in the edge sequence

of the form · · · 0011 · · · obtained from b by repeatedly swapping adjacent pairs 10 to 01

until none remain. There is a bijection

ES → Z × Y, b 7→ (charge(b), shape(b)). (2.1)

2.3 Cores and quotients

Our goal is to define the bijection

Y ∼= Cr × Yr, λ 7→ (corer(λ), quotr(λ)) (2.2)

where corer is the r-core and quotr is the r-quotient map.

In the following diagram all horizontal maps are bijections and vertical maps are

inclusions.

Z × Y ES ESr Zr × Yr

{0} × Y ES0 (ESr)0 Q × Yr Cr × Yr

{0} × Cr Q ×∅
r

charge×shape c•×quotr

κ−1×id

κ

Elements b• = (b0, b1, . . . , br−1) ∈ ESr are called abaci. We may write them as

{0, 1, . . . , r − 1} × Z matrices with entries in {0, 1} where a 0 is a bead and a 1 is a

hole (position with no bead) and the i-th row represents the edge sequence bi and is the

i-th runner in the abacus.

There is a bijection ES → ESr sending b to (b0, b1, . . . , br−1) by letting bi select the

bits in b indexed by integers congruent to i mod r: bi(j) = b(rj + i) for 0 ≤ i < r and

j ∈ Z. The inverse map is given by interleaving the sequences b0, b1, . . . , br−1. This

bijection is charge-additive: charge(b) = ∑
r−1
j=0 charge(bj). The r-fold product of the

bijection (2.1) yields the bijection ESr ∼= Zr × Yr. Denote this by b• = (b0, . . . , br−1) 7→
((c0, . . . , cr−1), λ•). We write λ• = quotr(b

•); this is the r-quotient. Call (c0, . . . , cr−1) =
c•(b•) the charge vector. This indicates the position on each runner where the beads end

after pushing all beads to the left within each runner. This defines the bijections going

across the top row of the diagram.

We now restrict all these bijections. Let ES0 = {b ∈ ES | charge(b) = 0} and (ESr)0 =
{b• ∈ ESr | ∑

r−1
i=0 ci(b

•) = 0}. Then c•(b•) can be viewed as an element of the slr root
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lattice Q (and belongs to the zero lattice Q = 0 when r = 1). The second row of the

diagram (save the last map) is given by suitable restrictions of the top row of bijections.

Let γ ∈ Y and b ∈ ES with γ = shape(b). We see that the following are equivalent:

γ is an r-core; hγ(i, j) 6= r for all (i, j) ∈ γ; there is no index k such that b(k) = 1

and b(k + r) = 0; quotr(γ) is the empty multipartition (∅I). Therefore the bijection

{0} × Y ∼= Q × Yr restricts to the bijection {0} × Cr
∼= Q × (∅r), that is, Cr

∼= Q. We call

this bijection κ.

Example 2.1. Let b ∈ ES0 be as in the previous example. We have λ = shape(b) =
(4, 3, 2, 2). Set r = 3. We map b 7→ (b0, b1, b2) which are pictured in the matrix below.

Reading up the columns of the {0, 1, 2} × Z matrix we recover b. Each runner of the

abacus is an edge sequence; the corresponding shapes give the 3-quotient of (4, 3, 2, 2),
which is ((1),∅, (2)).

To get the 3-core of λ we move all beads to the left in each runner. This produces

the second abacus. Reading up columns we obtain the edge sequence · · · 0001|1011 · · · .

Therefore core3(4, 3, 2, 2) = (2). The charge sequence is (1,−1, 0) ∈ Q.

i · · · 5 4 3 2 1 0 −1 −2 −3 −4 −5 −6 · · ·
bi · · · 0 0 1 1 0 0 1 0 1 0 1 1 · · ·

2 1 0 -1 -2 -3

b0 0 1 0 1 1 1

b1 0 0 0 0 1 1

b2 0 0 1 1 0 1

· · ·

· · ·

· · ·

•

•

•

◦

•

•

•

•

◦

◦

•

◦

◦

◦

•

◦

◦

◦

· · ·

· · ·

· · ·

∅

· · ·

· · ·

· · ·

•

•

•

•

•

•

◦

•

•

◦

•

◦

◦

◦

◦

◦

◦

◦

· · ·

· · ·

· · ·

1

−1

0

core
i · · · 5 4 3 2 1 0 −1 −2 −3 −4 −5 −6 · · ·
ai 0 0 0 0 0 0 1 1 0 1 1 1 1 1

When considering a fixed r, we simply write core = corer and quot = quotr.
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2.4 Cores to root lattice

Recall that Q :=
{

(c0, . . . , cr−1) ∈ ZI
∣

∣∑i∈I ci = 0
}

denotes the slr root lattice (or Q = 0

in the case r = 1), realized as the zero sum elements in the lattice ZI . Let εi ∈ ZI be the

i-th coordinate vector. Then Q is the spanned by the elements {αi := εi−1 − εi | i ∈ I}.

We realize the simple roots of slr as the αi for i 6= 0.

Define the map κ : Y → Q by κ(µ) = −∑(p,q)∈µ αq−p. Then the restriction of κ to C is

the same as the bijection C ∼= Q constructed above.

Example 2.2. Let r = 3 and consider the 3-core γ = . We have κ( ) = −(α0 + α2) = α1,

which agrees with the charge sequence (1,−1, 0) ∈ Q computed above.

We list (in reverse lex order, which refines dominance order) the partitions with core

γ = and 3-quotient of size 2.

quot · · · · · · · ·

quot · · · · · · ·

3 Wreath Macdonald symmetric functions and finitization

3.1 Tensor symmetric functions

Let Λ be the algebra of symmetric functions over K = Q(q, t) [2, §I.2]. Denote by

ΛI = Λ⊗I the I-fold tensor power of Λ over K. For f ∈ Λ, we write f [X(i)] to indicate

the element of ΛI with 1 in tensor factors j 6= i and f in factor i. ΛI is a polynomial ring

over K with polynomial generators given by the power sums pk[X
(i)] for i ∈ I and k > 0.

We write X• for the I-tuple of alphabets (X(0), . . . , X(r−1)) and often denote by f [X•]
a generic element of ΛI . For an I-tuple of partitions λ• = (λ(0), λ(1), . . . , λ(r−1)) ∈ YI ,

define the tensor Schur function sλ• =
⊗

i∈I sλ(i) = ∏i∈I sλ(i) [X(i)]. The tensor Hall

pairing on ΛI is defined by the orthonormality of the tensor Schur basis: 〈sλ• , sµ•〉 =
δλ•,µ• for λ•, µ• ∈ YI .

For any a = a(q, t) ∈ K, define the K-algebra automorphism Pid−aχ−1 of ΛI by

Pid−aχ−1(pk[X
(i)]) = pk[X

(i)]− a(qk, tk)pk[X
(i−1)] for all i ∈ I and k > 0.
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3.2 Wreath Macdonald H and P functions

For λ ∈ Y let Hλ[X
•; q, t] be the wreath Macdonald H function [1], as defined in [5].

These are characterized by the conditions

Pid−qχ−1 Hλ[X
•; q, t] ∈ K×squot(λ) +

⊕

ν>λ
κ(ν)=κ(λ)

Ksquot(ν) (3.1)

Pid−t−1χ−1 Hλ[X
•; q, t] ∈ K×squot(λ) +

⊕

ν<λ
κ(ν)=κ(λ)

Ksquot(ν) (3.2)

〈s(n)[X
(0)], Hλ[X

•; q, t]〉 = 1. (3.3)

where n = |quot(λ)| and < is the (strict) dominance order on partitions [2, §I.1].

For any λ ∈ Y the wreath Macdonald P-function Pλ[X
•; q, t] is defined so that

Pλ[X
•; q, t−1] is the scalar multiple of Pid−t−1χ−1(Hλ[X

•; q, t]) in which the coefficient

of squot(λ) is 1. In particular, Pλ[X
•; q, t] satisfies the unitriangularity

Pλ[X
•; q, t] ∈ squot(λ) +

⊕

ν<λ
κ(ν)=κ(λ)

K squot(ν)

For any fixed α ∈ Q, {Pλ[X
•; q, t] | λ ∈ Y such that κ(λ) = α} is a homogeneous basis of

ΛI , with Pλ[X
•; q, t] having degree |quot(λ)|.

Example 3.1. For r = 1, Pλ[X
•; q, t] is the usual Macdonald P-function.

Example 3.2. If λ is an r-core than Hλ[X
•; q, t] = 1 and Pλ[X

•; q, t] = 1.

Example 3.3. Let r = 2 and λ = (1, 1). We have H11(X•; q, t) = s1[X
(0)] + ts1[X

(1)]. To

verify this we consider the partitions (2) D (1, 1). We need only check

Pid−t−1χ−1(s1[X
(0)] + ts1[X

(1)]) = s1[X
(0)]− t−1s1[X

(1) + t(s1[X
(1) − t−1s1[X

(0)])

= (t − t−1)s1[X
(1)].

and note that squot((1,1)) = s(∅,(1)) = s1[X
(1)]. It follows that P(1,1)[X

•; q, t−1] = s1[X
(1)].

3.3 Symmetric polynomials

Recall the sets of variables (1.3). There is a restriction map

πN• : ΛI → ΛI
N•

:=
⊗

i∈I

K

[

x
(i)
1 , . . . , x

(i)
Ni

]SNi (3.4)

given by the tensor product πN• = ⊗i∈IπNi
, where πN : Λ → K[x1, . . . , xN ]

SN is the

standard projection to symmetric polynomials. We also write πN•( f ) = f [XN• ].
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Let γ be an r-core and κ(γ) = (c0, c1, . . . , cr−1) ∈ Q ⊂ ZI . We say that N• ∈ ZI
≥0 is

compatible with γ if

Ni − Ni−1 = (α∨i , κ(γ)) = ci−1 − ci, for all i ∈ I, (3.5)

where (−,−) : Q∨ × Q → Z is the standard pairing between slr root and coroot lattices.

All N• compatible with a given γ differ from each other by a vector in Z(1r).

Example 3.4. In the setting of Example 2.2, the core is γ = (2) and κ(γ) = (1,−1, 0). The

smallest N• compatible with γ is N• = (0, 2, 1) = −κ(λ) + (1, 1, 1). To this we can add

the vector (1, 1, 1) any number of times to obtain the other N• compatible with γ.

Lemma 3.5. Let γ be an r-core and N• ∈ ZI
≥0 be compatible with γ. Then

1. The quantity N = |N•| := ∑i∈I Ni is divisible by r.

2. For all λ ∈ YN,γ and all p ∈ I,

Np = | {1 ≤ i ≤ N : i − λi − 1 ≡ p mod r} |.

In particular, quot(λ) = λ• satisfies `(λ(i)) ≤ Ni for all i ∈ I.

3. For any λ• ∈ YI satisfying `(λ(i)) ≤ Ni for all i, the unique partition λ with core γ and

quotient λ• satisfies λ ∈ YN,γ.

An immediate consequence of parts (2) and (3) of Lemma 3.5 is the following:

Proposition 3.6. Let γ be an r-core and N• be compatible with γ. Then {Pλ[XN• ; q, t] | λ ∈
YN,γ} forms a basis of the space of color symmetric polynomials ΛI

N•
.

4 Wreath Macdonald eigenoperators

Fix an r-core γ and compatible N• ∈ ZI
≥0. As before, let XN• be the variables as in (1.3)

satisfying (3.5). Define a shift pattern of XN• to be a subset of XN• that contains no more

than one variable of each color. A shift pattern contains the color p ∈ I if it contains a

variable of color p. Let Shp(XN•) denote the set of all shift patterns containing p.

For a shift pattern J, let J ⊂ I denote the set of colors of the variables in J. We denote

the variables in J by x
(i)
J , so J = {x

(i)
J }i∈J . To J we associate the following:

1. Gap labels: For i ∈ I let iO ∈ J be the first element less than or equal to i in the cyclic

order. We stipulate that 0 ≤ i − iO ≤ r − 1. Define

x
(i)

JO
= q(i−iO)x

(iO)
J .

In particular x
(i)

JO
= x

(i)
J if i ∈ J. Thus, while J gives a list of variables colored by

J ⊂ I, we ‘fill in the gaps’ for values i ∈ I\J with q-shifts of the elements of J.
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2. A cyclic-shift operator: For i ∈ J, let iH ∈ J be the first element strictly less than i in

the cyclic order. We set 1 ≤ i − iH ≤ r, where r occurs if and only if |J| = {i}. We

then define the operator TJ on K[XN• ] as the K-algebra map induced by

TJ(x
(i)
l ) =

{

q(i−iH)x
(iH)
J if i ∈ J and xl = x

(i)
J

x
(i)
l otherwise.

For an n-tuple J = (J
1
, . . . , J

n
) of shift patterns and 0 ≤ k ≤ n, we denote

|J| = J
1
∪ · · · ∪ J

n
⊂ XN• , |J|≤k = J

1
∪ · · · ∪ J

k
⊂ XN• , |J|≥k = J

k
∪ · · · ∪ J

n
⊂ XN• .

If J is an n-tuple of shift patterns all containing color p, we say J is p-distinct if the

p-colored variables x
(p)
J

k
are all distinct. Let Sh

[n]
p (XN•) denote the set of all p-distinct

n-tuples of shift patterns containing color p.

Finally, if a1, a2, . . . , an are operators then define

y

n

∏
j=1

aj := a1 ◦ a2 ◦ · · · ◦ an. This com-

pletes the definition of the operators Dp,n in (1.4).

Example 4.1. Let r = 1, p = 1, N• = (2, 1, 0), and λ = (3, 1, 1). In this case, λ is a 3-core

and by Example 3.2 Pλ[X
•; q, t] = 1 so that Pλ[XN• ; q, t] = 1. There are three shift patterns

containing 1: J
1
= {x

(1)
1 }, J

2
= {x

(0)
1 , x

(1)
1 }, and J

3
= {x

(0)
2 , x

(1)
1 }. We have

D1,1(XN• ; q, t) = q

(

qtx
(1)
1 − x

(0)
1

q2x
(1)
1 − x

(0)
1

)(

qtx
(1)
1 − x

(0)
2

q2x
(1)
1 − x

(0)
2

)

TJ
1

(4.1)

+ (1 − qt−1)q

(

qtx
(1)
1 − x

(0)
2

x
(0)
1 − x

(0)
2

)(

qtx
(1)
1

x
(0)
1 − q2x

(1)
1

)

TJ
2

(4.2)

+ (1 − qt−1)q

(

qtx
(1)
1 − x

(0)
1

x
(0)
2 − x

(0)
1

)(

qtx
(1)
1

x
(0)
2 − q2x

(1)
1

)

TJ
3
. (4.3)

The cyclic-shift operators act trivially on Pλ(XN• ; q, t) = 1. After a miraculous simplifi-

cation one obtains D1,1(XN• ; q, t)Pλ[XN• ; q, t] = qPλ[XN• ; q, t].

Example 4.2. Let r = 2, p = 0, N• = (1, 1), and λ = (1, 1). We have P(1,1)[X
•; q, t] =

s1[X
(1)] from Example 3.3. Finitizing we obtain Pλ[XN• ; q, t] = x

(1)
1 . There are two shift

patterns containing 0: J
1
= {x

(0)
1 }, J

2
= {x

(0)
1 , x

(1)
1 }. We then have

D0,1(XN• ; q, t) = q

(

tx
(0)
1 − x

(1)
1

qx
(0)
1 − x

(1)
1

)

TJ
1
+ (1 − qt−1)

x
(1)
1

x
(0)
1

(

tx
(0)
1

x
(1)
1 − qx

(0)
1

)

TJ
2
.
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Observe that TJ
1
x
(1)
1 = x

(1)
1 and TJ

2
x
(1)
1 = qx

(0)
1 . Altogether then,

D0,1(XN• ; q, t)Pλ[XN• ; q, t] = q

(

tx
(0)
1 − x

(1)
1

qx
(0)
1 − x

(1)
1

)

x
(1)
1 + (1 − qt−1)

x
(1)
1

x
(0)
1

(

tx
(0)
1

x
(1)
1 − qx

(0)
1

)

qx
(0)
1

= qx
(1)
1

(

tx
(0)
1 − x

(1)
1 − (t − q)x

(0)
1

qx
(0)
1 − x

(1)
1

)

= qPλ[XN• ; q, t].

Example 4.3. Let r = 2, p = 1, N• = (0, 2), and λ = (1). Because λ is a 2-core,

Pλ[XN• ; q, t] = 1. There are only two shift patterns containing 1: J
1
= {x

(1)
1 }, J

2
= {x

(1)
2 }.

Note that TJ
1
x
(1)
1 = q2x

(1)
1 , TJ

1
x
(1)
2 = x

(1)
1 , TJ

2
x
(1)
1 = x

(1)
1 , TJ

2
x
(1)
2 = q2x

(1)
2 . Therefore,

D1,1(XN• ; q, t)Pλ[X•; q, t] =
(−1)(1 − qt−1)

1 − q2t−2

{

qtx
(1)
2 − q2x

(1)
1

x
(1)
1 − x

(1)
2

+
qtx

(1)
1 − q2x

(1)
2

x
(1)
2 − x

(1)
1

}

=
(−1)(1 − qt−1)(−qt − q2)

1 − q2t−2
= qtPλ[XN• ; q, t].
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