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SEMISIMPLICITY MANIFESTING AS CATEGORICAL SMALLNESS

ALEXANDRU CHIRVASITU

ABSTRACT. For a compact group G, the functor from unital Banach algebras with
contractive morphisms to metric spaces with 1-Lipschitz maps sending a Banach algebra
A to the space of G-representations in A preserves filtered colimits. Along with this,
we prove a number of analogues: one can substitute unitary representations in C*-
algebras, as well as semisimple finite-dimensional Banach algebras (or finite-dimensional
C*-algebras) for G.

These all mimic results on the metric-enriched finite generation/presentability of finite-
dimensional Banach spaces due to Adamek and Rosicky. We also give an alternative
proof of that finite presentability result, along with parallel results on functors repre-
sented by compact metric, metric convex, or metric absolutely convex spaces.

Introduction

The smallness in the title is that of objects ¢ € C in a category, by now a mainstay of the
category-theory literature. There are several variations on the theme, but the common
essence is that functors of the form C(c,—) (the symbol means morphisms in C with
domain ¢) are required to preserve “sufficiently filtered” colimits (Section 1 contains a
brief recollection of filtration in the relevant sense).

e Frequently (e.g. [1, §I, p.84], [58, Paragraph following Theorem 12.2.2], [2, Definition
5.9]) to C(c, —) preserving certain transfinite chains of morphisms in a given class
(one often also speaks of compact objects in that context).

e In additive categories the term sometimes [48, §3.5, Proposition 5.1 and sentence
following it] means that C(c, —) preserves arbitrary coproducts (so filtered colimits
of split embeddings).

Thanks are due to M. Brannan for numerous enlightening exchanges and M. Reyes for invaluable
help in gaining access to some of the cited literature. I am also grateful for the anonymous referee’s
engagement and valuable feedback. This work is partially supported by NSF grant DMS-2001128.

Received by the editors 2023-12-17 and, in final form, 2024-05-03.

Transmitted by John Bourke. Published on 2024-05-07.

2020 Mathematics Subject Classification: 22C05; 46H05; 46H15; 16K99; 18A30; 18A35; 18D20;
46B04; 32KO05; 52A21; 461.05; 47B48; 47B01; 51F30; 46A19; 54E40; 54F45; 46A55; 18C15; 18C20.

Key words and phrases: compact group; Haar measure; Banach space; Banach algebra; semisimple;
C*-algebra; semiprojective; filtered colimit; representation; diagonal; averaging; finitely presentable;
finitely generated; enriched; small object; metric space; non-expansive map; Lipschitz; convex space;
absolutely convex space; monad.

(© Alexandru Chirvasitu, 2024. Permission to copy for private use granted.

470



SEMISIMPLICITY MANIFESTING AS CATEGORICAL SMALLNESS 471

e Then there are the related notions of finite generation (|4, Definition 1.67]: C(c, —)
preserves filtered colimits of monomorphisms |3, Definition 7.32|) or finite pre-
sentability ([4, Definition 1.1]: C(c, —) preserves all filtered colimits), and so forth.

We will here be concerned with enriched categories [58, §3.3|, i.e. those where hom
spaces have some additional structure (so that smallness or finite presentability or gener-
ation also extend appropriately [24, §4|). Specifically, the enrichment is mostly over the
category CMET of complete metric spaces with non-expansive maps as morphisms.

The goal here is to analyze a number of interrelated phenomena whereby objects
possessing some manner of representation-theoretic rigidity also acquire, by virtue of it,
the types of smallness properties discussed above. Concretely, those objects, in Section 2,
are compact groups on the one hand and (finite-dimensional) semisimple Banach algebras
on the other, with finite-dimensional C'*-algebras as a particular case thereof.

The semisimplicity of the paper’s title is the aforementioned representation-theoretic
rigidity: representations, in either case and in any reasonable sense, decompose as sums
of (automatically finite-dimensional) irreducible summands. Ultimately, this is a mani-
festation of a strong form of amenability |37, §5| or, in a reformulation, of one’s ability to
average [19]:

e against the Haar (probability) measure [59, §1, pp.7-10] for compact groups;

e and against the diagonal (|36, Definition 1.1.|, [20, Definition 1.9.19], [21, §7.2]) or
separability idempotent |23, §I1.1, Definition of Separability following Proposition
1.1] ee A® A for a semisimple Banach algebra A.

An aggregate of §2.4 and §2.5 presents as follows.
0.1. THEOREM.

(1) For a compact group G the functor

(BALG <1 := unital Banach algebras with contractions) Ree®5) , oMeT
preserves filtered colimits, as does the functor
(Cy := unital C*-algebras) Rep™(©,7) CMET,

with the asterisk denoting unitary representations.

(2) For a finite-dimensional semisimple unital Banach algebra B the functor

BALGLgl BALG1(B,7) CMET
preserves filtered colimits, as does the functor
C¥(B,—
Cy — B2, cMET

iof B eCy is a finite-dimensional C*-algebra. [ |
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There are a few alternative arrangements of the complex of proofs in Section 2, em-
phasizing that either half of §0.1 is recoverable from the other. Either way, the substance
of the argument fits into the following sketchy mold:

(a) A representation
e —2 5 A=1limA,
e
7
into a filtered colimit (with e a group or an algebra, as appropriate) can be approx-
imated in the appropriate sense by a map e 2> A, for some i.

(b) Nevertheless, ¢; can be chosen so as to almost satisfy the requisite multiplicativity.

(c) Whence it is uniformly close to an actual representation e — A;, essentially by the
aforementioned averaging techniques afforded by the Haar measure and/or separa-
bility idempotents: [22, Proposition 4] for the compact-group case and [38, Theorem
3.1] for Banach or C*-algebras.

This last portion of the argument, incidentally, is an instance of what a vast literature
has come to refer to as Hyers-Ulam (or sometimes Hyers-Ulam-Rassias) stability (|11,
Chapter 1, discussion following Theorem 3 on p.4| and that book’s extensive references):
maps that are close to satisfying various constraints (multiplicativity, affineness, linearity,
etc.) are close in various ways to maps that actually satisfy said constraints. The phrase
is motivated by said authors” work [29, 30, 31, 55| laying the foundations of the subject,
and [22, 38| are both mentioned in the survey paper [32| on the topic.

The general shape of §0.1 places the discussion in the same circle of ideas as the CMET-
enriched finite generation |2, Proposition 7.6] and in fact presentability [62, Theorem 3.1|
of finite-dimensional Banach spaces. Having come thus close to the matter, §3.1 gives
an alternative proof of said [62, Theorem 3.1|, deducing finite presentability from finite
generation and proving the latter by an infinite-dimensional-analytic-manifold argument
that might be of some independent interest. The subsequent discussion is devoted to some
variations on the theme; a paraphrased §3.8:

0.2. THEOREM. In each of the following cases, the CMET-valued functor represented by
K, defined on the category BAN<, of Banach spaces with contractions and restricted to
morphisms taking values in (< D)-dimensional subspaces for some positive integer D,
preserves filtered colimits:

(1) K is a compact metric space and the morphisms are non-expansive maps.

(2) K is a compact metric convex space and the morphisms are affine non-expansive
maps (discussion preceding §3.5).

(3) K is compact metric absolutely convez space and the morphisms are absolutely affine
non-expansive (§3.6). |
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1. Preliminaries

While C*-algebras will of course be complex, we allow the not-uncommon ambiguity ([52,
p-953], |2, p.2], etc.) of either real or complex scalars for Banach spaces or algebras. Little
of the material depends substantively on the choice, and whatever does is easily adapted
from one setup to the other.

Some common symbols:

1.1. NOTATION.

(1) CMET is the category of complete metric spaces with short (or non-expanding |12,
Definition 1.4.1| with non-ezpansive as a variant, or I1-Lipschitz |28, Definition 1.1|) maps
as morphisms, i.e. those which do not increase distances:

dy (fz, fo') < dx(z,2)), VYao,2'e X for (X,dy) —1— (Y, dy).
This seems to be the most popular notion of morphism when metric spaces are treated

categorically: see [33, §1|, [2, §1], [24, §6], [61, §1] and so on.

Following [63, §1] or [61, §1], say, when metric spaces are allowed infinite distances we
decorate the respective category symbols with an ‘o0’ subscript: CMET,,, say. Infinite
distances are occasionally taken for granted anyway, as in [12, Definition 1.1.1].

(2) BAN is the category of Banach spaces and bounded linear maps:
BAN(E, F) := L(E, F) := {E 4, F| f bounded and hnear} .

BANgq, on the other hand, has the same objects and maps of norm < 1 as morphisms.
The latter is the better-behaved and in wide use in the vast literature: [49], [4, Example
1.48], BANy in [14, §3] and much other literature [52, 50, 53, 54, 51|, B4 in [27, paragraph
preceding Lemma 1.1|, [2, p.2]|, their references, etc.

(3) BALG and BALG; are the categories of Banach (unital) algebras respectively with
bounded, linear, multiplicative (unital) maps. Further ‘< 1’ subscripts indicate that we
only consider short maps (as in BALG; <1).

The norm is always assumed |21, Definition 1.1.2 and subsequent discussion| to satisfy

abl| < |a| - ||b] and |1/ =1 in the unital case.

4) C# is the category of unital C*-algebras.
1 gory g

(5) For a Banach algebra A we write A* for the multiplicative group of invertible elements
therein. If A is additionally C*, U(A) < A* is its unitary group. Both of these are
(typically infinite-dimensional) Banach Lie groups in the sense of [46, Definition IV.I] or
[43, §VI.5].
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We will frequently refer to (k-)filtered colimits in various categories C for cardinals k.
These are colimits of functors D — C whose domain category D is itself (k- )filtered. This,
in turn, means [4, Remark 1.21 | that D is non-empty, sets of < x objects map to some
common object (depending on the set), and sets of < k parallel morphisms ¢ — ¢ are
coequalized by some arrow ¢ — ¢”. Just plain filtered means Ng-filtered, i.e. all of the
above for finite sets of objects and morphisms (see also [44, §I1X.1]).

Unless specified otherwise, we will always assume the domain category D is a poset
with one morphism d — d’ precisely when d < d’. In that context the term directed (in
place of filtered) is also in wide use ([3, Example 11.28(4)|, for instance).

2. Smallness phenomena: compact groups and semisimple algebras

The following simple remark will be of repeated use either directly or in avatar forms, so
is worth singling out.

2.1. LEMMA. Let K be a compact Hausdorff space and (X,d) = lim (X.d;) a fillered
colimit in CMETy,. The canonical morphism

lim CONT(K, X;) — CONT(K, lim X;) = CONT(K, X) € CMET,. (2-1)

(2 (2

18 an isometric embedding.

PROOF. The non-expansivity of (2-1) is immediate, and makes no use of compactness
(indeed, it holds for any topological space K whatsoever). What we have to prove, then,
is that for

continuous K _ts X;
we have
sup d(vi fp, tigp) = inf sup d(vji fp, Ljigp) (2-2)
peK 12 peK

for the colimit structure maps
X,— X and X, —L X, i<j

(cf. [62, condition 2. in the proof of Theorem 3.1]). The non-expansivity of all of the

maps in the factorization
Xy
Xi— 55X
Li

Y

makes plain the ‘<’ half of (2-2). As for the opposite inequality ‘>’ a j-indexed net [69,

Definition 11.2]

pj € Xy, supd(uifp,tigp) < d(Ljifpj, Ljigp;) — € for some fixed € > 0
peK
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will have [69, Theorem 17.4] a subnet converging to some py € X;, whence the absurd
conclusion that

Sup d(vifp, vigp) < d(efpo, Ligpo) — €.
pE

2.2. REMARK. The aforementioned [62, Theorem 3.1, proof of (2)| appeals to Dini’s
theorem [39, Theorem 12.1|, to the effect that pointwise-convergent monotone sequences
of continuous functions on compact (metrizable, in that reference) spaces are uniformly
convergent. There are appropriate generalizations |67, Corollary 6| applicable to §2.1, but
the direct argument did not appear substantively longer.

As a follow-up to §2.1, we record a smallness result of sorts for compact spaces with
respect to maps into Banach spaces. Apart from whatever intrinsic interest the statement
might possess, the proof will illustrate techniques useful later.

2.3. THEOREM. For a compact Hausdorff space K the functor

ConT{K,—)

BAN¢ CMET

preserves filtered colimits.

PROOF. Consider a filtered colimit £ = h_r)mZ E; in BAN<; with structure maps E; 2 E.
§2.1 settles all but the surjectivity of the map

lim CONT(K, E;) —> CONT (K,li_n}Ei) = CONT(K, E),

(2 (2

which will thus be the focus of the proof. The claim, then, is that a continuous map
K % F is arbitrarily uniformly approximable by continuous maps K <> E;.

Consider, for each i and fixed ¢ > 0, the set-valued map (or correspondence |5, Defi-
nition 17.1])

(bs,i
Ksp {re B | |ep) —uz| <e} c B,

Each ®_; takes closed convex values, all non-empty if 7 is sufficiently large (no matter how
small an € > 0 we choose and fix to begin with). The usual triangle-inequality argument
also shows that ®. ; are lower hemicontinuous [5, Definition 17.2] (or sometimes [57, p.712]
semicontinuous): for every open U € E;,

{pe K| ®.;(p) nU # I} is open.

Michael selection (|5, Theorem 17.66] or [57, Theorem 1.1]) then shows that there is a
continuous map
K3sp— pi(p)e ., c E;

for sufficiently large i (again, for arbitrarily small € > 0 chosen initially). By construction,

the composition K > will be e-close to the original ¢. ]
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Throughout the sequel, representations of a topological group G into a topological
(mostly Banach) algebra A are understood to be continuous morphisms G— A* (always
with the obvious topology on the latter, i.e. that induced by the norm in the Banach
case). A variant is that of unitary representations, where one restricts the codomain to
the unitary group U(A) of a C*-algebra.

2.4. THEOREM. Let G be a compact group.

(1) The functor

Rep(G,—)

BALG; < CMET

preserves filtered colimits.
(2) The same goes for the functor

ep* (G,—
Cy _ ReCD) CMET,

where the asterisk denotes unitary representations.

PROOF. §2.1 again frees us to focus on the surjectivity of the map

7

h_r)nRep(G,Al) - Rep <G7h_n>lAl> = Rep(G7 A)7

as we will throughout the proof, for a colimit

A —E 5 A= 11_I)nAZ in the appropriate category.

7

(1) Given a representation G % A, §2.3 provides maps G 25> A; (not necessarily repre-
sentations, a priori) with G =25 A close to .

I now claim further that for arbitrary 6 > 0, we can make ; (large 7) d-close to being
morphisms, in the sense |22, Définition 1] that

sup [pi(st) — wi(s)pi(t)] <. (2-3)

s,teG

Indeed, a sufficiently small ¢ in |i;¢0; — ¢| < € (and the assumed multiplicativity of ¢)
will ensure that the binary function

G? 3 (s,t) —> 150:(st) — Lip(s)Lipi(t) (2-4)
takes its values in the g—ball of A, whence

lesipi(st) — viip(s)ejipsi(t)| < 0, Vs, teG? (2-5)
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for large 7 = i: the left-hand side of (2-5) converges uniformly (on G?) to the norm of
(2-4). Now simply substitute G —25> A; for ¢;.

(2-3) in hand, |22, Proposition 4], whose metric estimates apply uniformly in i to the
A; embedded isometrically in the ambient A, ensures the existence of a representation
G — A; e-close to y; for arbitrarily small € provided § > 0 was chosen sufficiently small

to begin with.

(2) We now have #-structures both on the algebras A and A; and the spaces C(G, —) of
continuous maps G — A:

C(G,A)2p—¢*:=(Gas—— p(s)* € A),

as familiar in the context of x-algebras attached to (locally compact) groups ([45, §1.4],
[65, Example VI.1.2], |6, §11.10.1.3], [47, §7.1.2], etc.).

The unitary representations of G into a C*-algebra are precisely the self-adjoint ones for
said #-structure on Rep(G, A) (indeed, this is what justifies the notation Rep*(G, A) for
the space of unitary representations). The argument in part (1) simply goes through,
taking care to work with self-adjoint maps throughout. When first approximating ¢ €
Rep*(G, A) with ¢;, for instance, one can always replace an arbitrary ¢; with its “real
part” % to ensure self-adjointness and then run through (the proof of ) [22, Proposition
4] similarly enforcing self-adjointness.

This completes the proof as a whole. [

There is an algebra-representation version of §2.4, the second part of which generalizes
[16, Proposition 3.5] (from filtered colimits of C* embeddings to filtered colimits period).
Unbeknownst to us at the time, [16, Proposition 3.5] is also (essentially) [9, Lemma 2.3]:
the latter is phrased in terms of colimits of embedding sequences A; — Ay < ---, but
the proof goes through virtually unchanged for arbitrary filtered colimits.

2.5. THEOREM.
(1) For a finite-dimensional semisimple unital Banach algebra B € BALG, the functor

BALci1(B,—)

BALG <1 CMET

preserves filtered colimits.
(2) The same goes for the functor

C¥(B,—

cr —E2 oMt

if B eCy is a finite-dimensional C*-algebra.
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PROOF. We deduce the two statements from their respective compact-group counterparts
in §2.4. And as in that earlier result, it is enough to argue that a morphism

B—"— A =lim 4 (2-6)

(2

into a filtered colimit of isometric embeddings is approximable by morphisms into the
individual A;.

Because B is a finite-dimensional semisimple real algebra, it is a finite product of
matrix algebras over R, the quaternion division ring H, or C [42, Theorems 3.5 and
13.12]. Tt follows from this that B is spanned by a compact subgroup G < B* (indeed,
this characterizes semisimple real algebras among finite-dimensional ones [17, Lemma
3.8]). From §2.4 we have approximability of

G- L4 by G2 A4, (2-7)

so it will be enough to argue that said ¢; extend across to B linearly. Since ¢|¢ does so
extend by assumption, the conclusion follows from the fact that being sufficiently close,
the two maps (2-7) are mutual conjugates: by A* [22, Corollaire to Proposition 4] in (1)
and by the unitary group U(A) [45, Proposition 1.7] in (2). n

Deducing §2.5 from §2.4 was a matter of choice rather than necessity. To emphasize
the ties between the two branches of the discussion, it is perhaps worth noting that the
roles can be reversed, proving the former first and deducing the compact-group version.

PROOF (§2.5, ALTERNATIVE). We once more take it for granted that what needs proving
is the arbitrary approximability (in the norm of £(B, A)) by morphisms B — A;.

The argument will parallel that in the proof of §2.4, applying the “Newton-approx-
imation” method in [38, proof of Theorem 3.1 and subsequent discussion| to first push ¢
to a linear map B—A; close to being a morphism, and then applying said approximation
method to further deform into an algebra morphism.

(I) : Approximating algebra morphisms B — A by linear maps B — A;. This
is indeed possible to do arbitrarily well: for sufficiently large i, some linear B 2 A; will
be ¢§'-close to B % A no matter how small ¢’ is.

In metric-enriched-category language the claim is that of approzimate Rg-generation |2,
Definition 5.16| of finite-dimensional Banach spaces with respect to isometries, and it is
proven in |2, Proposition 7.6] (in its formally stronger form, in BAN<; rather than BAN).

Furthermore, in case (2) of the theorem we can assume the approximating ¢; are self-
adjoint (because ¢ was) for the usual #-structure

*(b :zwb**forbeBandlinearBﬂAorAi
™ (

by simply replacing ¢; with their real parts @.
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(IT) : Further deforming into algebra morphisms. Being ¢'-close to the original ¢,
a linear map B i N A; fixed throughout the rest of the proof can be assumed d-close
to being multiplicative as in [38, §1] for arbitrarily small §: |7 < ¢ in the usual sense of
norming multidinear maps |20, §A.3, following Theorem A.3.35|, where

T(z,y) := T(xy) — T(2)t(y), w,y€ B.
Being (finite-dimensional) semisimple B has (|20, Theorem 1.9.21|, [21, Theorem 7.2.1]) a
diagonal [21, §7.2] (which can be chosen self-adjoint in the C* case, by simply substituting

*
€°-): an element

multiplication
_>

e:Ze'ﬁ®e'£’eB®B, B®B>se 1e B and be=eb, Ybe B.
¢

The aforementioned approximation technique of [38, Theorem 3.1| then proceeds by sub-
stituting for ¢ a series

(¢03=¢)+¢1+¢2+“':h,gn(q’n:woJr'“ern)’ (2-8)

with each new term 1, recoverable from the previous partial sum V¥, by “averaging”
against the integral e:

Yyt = ; U, (ep) ¥, (e, —), or B _—

That argument functions to produce (Banach or C*-)algebra morphisms (2-8) e-close to
the original merely linear ¢y = v, provided only the § > 0 was sufficiently small to begin
with; the estimates in question (g, d, etc.) can be chosen uniformly no matter which A,
we work in.

As for the announced implication reversal between the two theorems:

PROOF (§2.4 ASSUMING §2.5). More precisely, parts (1) and (2) of §2.4 reduce to their
respective counterparts in §2.5 once we observe that the given representation G — A
(unitary in (2)) factors through a finite-dimensional semisimple Banach (or C*) quotient
of the convolution algebra [59, pp.53-55] L'(G).

This last claim, in turn, follows from the fact that G % A* induces a norm-continuous
representation of G on

e the Banach space A in (1), with A* acting thereon by left multiplication;

e or a Hilbert space H for A embedded as a closed #-subalgebra of L(H) in (2).

Said norm continuity implies (by [15, Theorem 2.10| in general, also [40, p.257] for the
unitary case) that those representations have finitely many isotypic components, hence
the conclusion. -
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2.6. REMARKS.

(1) |7, Corollary 2.30] shows in particular that finite-dimensional C*-algebras are semipro-
jective (|7, Definition 2.10], |6, Definition 11.8.3.7]). In the language of the present paper,
this would be phrased as the requirement that

cr a9 B2, Ser
preserve colimits of surjection sequences, with the entire discussion typically restricted to
separable C*-algebras |6, §11.8.3.9].

The arguments delivering |7, Corollary 2.30] would presumably also go through for arbi-
trary filtered colimits; in any case, that result is a kind of opposite end of the spectrum to
[16, Proposition 3.5|: where the latter is concerned with embeddings, the former deals with
surjections instead. §2.5(2) (or rather §2.7(2)) encompasses both (for finite-dimensional
B; |7, Corollary 2.30] proves semiprojectivity for wider classes of C*-algebras).

(2) There is also the stronger notion |7, Definition 2.1| of projectivity for B € Cj: the
property that morphisms with domain B lift along surjections.

As the name suggests, this is equivalent to category-theoretic projectivity |3, §9.27 and
Definition 9.1]: the property that morphisms with the respective domain lift along epimor-
phisms |3, Definition 7.39]. Indeed, the epimorphisms in C§ are precisely the surjections
[56, Proposition 2|.

Projectivity truly is the stronger notion. C;-morphisms out of C? simply pick out pro-
jections and, as noted (say) in [8, paragraph preceding Proposition 2.5|, projections do
not generally lift along surjections (consider e.g. the surjection dual to the inclusion of a
disconnected compact Hausdorff space into a connected one). C? is thus not projective,
but it is semiprojective by |7, Proposition 2.18.].

§2.6(1) suggests natural augmentations to §§ 2.4 and 2.5: actual lifts (as opposed to
just approzimate lifts) when the connecting maps of the relevant colimits are surjections.
We record the result here, with part (2) recovering (the finite-dimensional branch of) |7,
Corollary 2.30] by different means, and divorced from some of the unnecessary assumptions
such as separability and the assumption that the colimits in question are along chained
sequences of surjections.

2.7. THEOREM.

(1) The functors

Rep(G,—)

BALG; < SET, G a compact group

and
BALG1(B,*)

BALG; <1 SET, B e BALG semisimple.

preserve filtered colimits of surjective morphisms.
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(2) The analogous statements hold in the C* setting, for

& G.—
Cy _ Rt SET, G a compact group

and .
Cy A BN SET, B e Cy semisimple.
PROOF. The back-and-forth passage between the group and algebra pictures is easily
effected, as in the alternative proofs of §§ 2.4 and 2.5, each relying on the other. It will
thus be enough (and convenient, for the purpose of fixing the notation) to focus on the
group versions.
Consider, then, a representation G 2 A* for a filtered colimit

L .
Ai - A = lim Az
onto _Z’

§2.4 provides representations G 2> A with ;¢ e-close to ¢ for arbitrarily small & > 0.
Now, by [22, Corollaire to Proposition 4| (or rather its proof via |22, Lemme 7|), for
arbitrarily small ¢’ > 0, we can find ¢ > 0 sufficiently small to ensure that

Lpi=u-@-u ", somewue A with |u— 1] <&’ (2-9)
Surjectivity will allow lifting u € A* to some u; € A;, and
|u; — 1 < 2¢’ for large j =4, w; = vj;(u;) € A;.

w; will in particular be invertible if ¢’ is small enough (2’ < 1 will do [18, §VIIL.2, Lemma
2.1]), and (2-9) shows that

o (w7 gy ) =9 for g

P

This all admits the obvious modifications in the C* case: one conjugates by unitaries
in place of arbitrary invertibles, using [45, Proposition 1.7| instead of |22, Lemme 7],
and passing (when and wherever necessary) from an invertible x (in A* or A) to the
corresponding unitary resulting from the polar decomposition |6, §11.3.2.9] z = u|z|. =

3. Banach-space finite presentability via almost affine maps

The brief detour taken in the course of the alternative proof of §2.5 into the Ry-generation
material of [2, §7] (and by extension, the generalizations thereof in [62, §3|) suggests a
closer examination of the links between the present material and those sources.

One aspect of this will be to recover the CMET-enriched finite presentability of |62,
Theorem 3.1] with a different proof, illustrating a technique that could have been applied
in Section 2 as well. Recall first the result, very much analogous to §§ 2.3 to 2.5:
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3.1. THEOREM. For a finite-dimensional Banach space F' the functor

Ban<i(F,—)

BANg CMET

preserves filtered colimits.

PROOF. As usual, let

be a filtered BAN<;-colimit.

The isometric embedding of §2.1 goes through for the closed unit ball K = F¢; of F
when restricting to morphisms of totally convexr spaces (|52, §2|, [4, Example 1.48]), i.e.
those satisfying

@ ( Z anmn> = Z anp(Ty), Vo, €K, VZ|an| <1

NEZ>0 NEZ>0

This again allows us to focus attention on surjectivity: an arbitrary linear non-expansive
F % E belongs to the image of the canonical map

h_H,lBANél(Fa E’L) - BAN<1 <F7 h_r)nEZ> = BANél(Fv E) (3_2)

(2 (2

There is furthermore no loss in assuming
F—*F (3-3)

embedded isometrically via ¢, and we henceforth will: we can always substitute the
inclusion of F'/ker ¢ with its metric inherited from the resulting embedding into E for
the original data.

The argument now branches.

(I) : Isometric connecting maps E; <%> E;. This is nothing but the (CMET-enriched)
finite generation of |2, Proposition 7.6], to which we can simply appeal. Alternatively, the
following argument might be of some independent interest.

The realization of E as the closed union of the E; < E implies in particular that the unit
ball F¢; will be contained in the e-neighborhood of the unit ball E; <; for some ¢ (for
arbitrarily small €). This means in particular that the Hausdorff distance [12, Definition
7.3.1]

dy(Fi<1,F<1) :=inf{r >0 | }

is small for some (d := dim F’)-dimensional subspace F; < E;. In particular, as explained
in [25, p.17|, F is in the closure of the subset

(F,<E; | diimF, =d:=dimF, iel}
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of the Grassmannian (Banach) manifold (|25, §2.1], |26, Example 2.21])
G(d, E) := {d-dimensional subspaces of E}.

Per the same sources [25, §2.1] and/or |26, Example 2.21], having fixed a supplement E’
of F < F in the sense that £ = F'@® E’, there is an identification

L(F,E") 3 L+~ (I'y :=graph of L) € G(d, F).

In particular, for F; as above sufficiently close to F', we have F; = I';, for small-norm
linear F 2> E'. It follows that F l—tL—% F; is a linear isomorphism close to 1, so a small

rescaling will turn it into a contraction F = F;, < FE; that approximates the original
inclusion F' < FE.

(I) : Reduction to the case of surjective E; —» E;. Apply step (I) to the filtered
diagram consisting of the embeddings

to conclude that ¢ is well approximable with an embedding into one such Ej;, and then
replace the original diagram with that consisting of the images of F; N E; for j = i; the
connecting maps are by construction surjections.

(IIT) : Conclusion. Having reduced the problem to filtered diagrams of surjections, we
relegate that case to §3.2.

3.2. LEMMA. For finite-dimensional F' € BAN the functor

Ban<i(F,—)

CMET

BANg

preserves filtered colimits of surjective morphisms.

PROOF. As always, the issue is the surjectivity of (3-2), which however in the present
context (of surjective connecting maps E; LN E;) is almost immediate. Harmlessly
assuming F <% E to be an isometric embedding (as in the proof of §3.1), lift F to some
F; < E; mapped onto it isomorphically by E; <» E (possible, by surjectivity and the
finite-dimensionality of F'), and replace the original diagram

b5
Ej — by ;

The colimit

Lot
with (FJ — j/) . Fyi=0i(F).
<j' i<j<y’

F,—— F=limF
-
j
now consists of linear isomorphisms whose inverses’ norms approach 1. Now take the
desired approximate lift to be the inverse of some ¢; for j large, slightly rescaled so as to
ensure non-expansivity. [
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Note, incidentally, that the obvious parallel to §2.7 does not hold in the context of

§3.2:

Ban<i(F,—)

BANg SET

does not, in general, preserve filtered colimits of surjective morphisms, for reasons evident
in the very last step of the proof of §3.2: there is a scaling required to correct for possible
expansivity. This is the case even if one restricts attention to sequential chains of linear
isomorphisms:

3.3. EXAMPLE. By the usual (e.g. [66, Propositions 1.1.6 and 1.1.8]) correspondence
between norms and their unit balls, a Banach space structure on R? is determined by the
convex, origin-symmetric convex body that is to be that structure’s unit ball, and any
such will do. There is thus a colimit

RQZ:F@'&FZH_H}E;RQ

1

with the unit balls of F; being, respectively, the convex hulls of the (2i)" roots of unity

and that of F' being the usual unit disk. Naturally, F 9, F does not split through any
non-expansive linear F'— Fj.

3.4. REMARK. As alluded to above, the same strategy (as in §3.1) could have been em-
ployed in §§ 2.4 and 2.5, of settling the isometric- and surjective-connecting-map cases
separately and conjoining them. The C* case, for instance, could have been pieced to-
gether from

e the isometric-embedding version of §2.5(2), i.e. [16, Proposition 3.5] or |9, Lemma
2.3] (taking it for granted, in the latter, that the sequence statement carries over to
arbitrary filtered colimits);

e and the surjective version, say |7, Corollary 2.30|, again taking care to transport
that discussion from sequences of chained C* surjections to arbitrary filtered colimits of
such.

By way of recycling the Grassmannian argument employed in the proof of §3.1 (part
(I) of that proof) we list a few variants thereof after introducing the requisite notation.

First, for a positive integer D, a left-hand ‘< D’ subscript on a space of maps into a
vector space indicates that each of the said maps takes values in a subspace of dimension
< D. Example, for a topological space K and a topological vector space E:

<pCONT(K, E) := {continuous KLE | dimspanim f < D}.

We will also consider (typically compact) metric spaces equipped with an abstract
convez structure, i.e. what [13, Definition 1] (following [10, §2|) refers to as a convex-like
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structure. The definition is guessable enough: the metric space (X, d) also admits finite
convex combinations, i.e. a ternary operation

[0,1] x X x X 3 (N, x¢, 1) — Azg+ (1 — Nz € X

with the expected arithmetic properties, plus metric compatibility in the sense that

d (Z i, Z)\Zx;) < Z)\id(xi,x;) for x;,2ie X, X\ =0, Z)\i =1.

Recall [13, Theorem 9| also that when complete such structures are precisely the closed
convex subsets of real Banach spaces. We write CMET®V* for the resulting category of
complete metric convex spaces, with (as expected) non-expansive affine maps X 5 Y as
morphisms:

©o(Azg + (1 — N)z1) = dp(xo) + (1 — Nep(x1), VAe[0,1], Vz; e X.

3.5. REMARK. The symbol CMET®"* is meant as reminiscent of the notation C* for the
(Eilenberg-Moore) category of T-algebras [44, §VI1.2] for a monad |44, V1.1, Definition| on
a category C.

Metrics aside, abstract convex set [34, Definition 3| are precisely [34, Theorem 4| the
algebras over the distribution monad (|34, equation (4)], [35, §3.1]) D on SET:

DX := {formal convex combinations of finite tuples in X}

~ {finitely-supported probability measures on X} .

Said monad lifts straightforwardly to MET (plain metric spaces) and thence restricts to
CMET, by equipping DX with the Kantorovich-Rubinstein distance |68, Particular Case
6.2 of Definition 6.1 and Remark 6.5]:

j fdu —j fdu'|, Lip(f):=inf{C > 0| f is C-Lipschitz} .
X X

d(p, p') :=sup

Lip(f)<1
(3-4)
The aforementioned lifting means that we have diagrams
D/> CMET \F"ORGET FORGET _ C'MET \FORGET
CMET Sgr and hence  copppP SET
FORGET\) SET /D7 FORGET SETD /FORGET

of categories and functors, commutative up to the obvious natural isomorphisms. To come
back full circle, it will be a simple exercise to verify that the resulting Eilenberg-Moore
category CMET? is nothing but CMET®; the preference for ‘CvX’ over ‘D’ stems from
the former’s being somewhat more descriptive.

Mutatis mutandis:
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ACVX

3.6. DEFINITION. The monad SET —— SET associates to a set its collection of finitely-
supported complex-valued measures p of total variation [64, §6.1] < 1:

Hre X | p(x) #0} <o and ) |u(x)| <1.

The monad lifts to (complete) metric spaces much as the distribution monad did, with
(3-4) as the distance between measures.

The categories of (complete, metric) absolutely convex spaces are the resulting Eilenberg-
Moore categories SET*V, CMET*?Y¥, etc.

We will occasionally also refer to morphisms of absolutely convex spaces as absolutely
affine, by analogy to plain convex structures.

3.7. REMARKS.

(1) The (plain, non-metric) absolutely convex spaces are the absolutely convexr modules of
[51, §2] and finitely totally convez spaces of |52, Definition 2.9]. They are equipped with
binary operations

X xX> (330,.1'1) —> Qoo + a1 € X for |a0| + |(11| <1
satisfying the expected arithmetic constraints.

(2) The terminology matches that in common use in the literature on topological vector
spaces: [41, §15.10] or |60, §I.1, discussion preceding Lemma 1|, say. Per the latter source,
the absolutely convex structure can be recovered from plain convexity together with the
scaling operations x — ax, |a|] < 1 (sets closed under said scaling are sometimes called
balanced).

3.8. THEOREM.

(1) For a compact metric space (K,dk) and a positive integer D the functor

SDCMET(K,—)

BANg CMET
preserves filtered colimits.

(2) For a compact metric conver space (K, dg) and a positive integer D the functor

<pCOMET*(K,—)

BANg CMET

preserves filtered colimits.

(3) For a compact metric absolutely convex space (K,dr) and a positive integer D the

functor
< pCMETY (K, )

BAN¢ CMET

preserves filtered colimits.
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PROOF. As observed repeatedly, the fact that the canonical map from the colimit of
hom spaces to the hom space into the colimit is an isometric embedding is immediate by
restricting §2.1 to the appropriate spaces of maps (non-expansive, affine, etc.). What is
at issue, rather, is the surjectivity of

K3 (2

EH}CxJ(aZQ) —C <}(7EEEZE{) ::C(](vl;)
for the various categories C and a Banach-space filtered colimit (3-1).

All claims, at this point, follow from §3.1: a morphism K — FE with the requisite
affineness properties factors through the isometric embedding span ¢(K) < E, to which
§3.1 applies. [

ACVX ¢
, 1

3.9. REMARK. |52, §6] equips every absolutely convex space (i.e. object of SET
the notation of §3.6) with a seminorm | - |: defined as one usually does [41, §14.1] on
vector spaces, except that scaling by A is only allowed for |A| < 1. This will make every
such space (X, say) pseudometric |69, Definition 2.1| via

n

d(z,z") = |z| + ||2||, Vo, 2" € X.

Upon identifying points not distinguished by that pseudometric, we obtain a convex metric
space. All in all, we have an adjunction

— T
SETACVX J_ METACVX
f\_/

FORGET

(the tail of the T pointing towards the left adjoint, as customary |3, Definition 19.3|).
Functoriality, for instance follows from the fact [52, Lemma 6.3] that morphisms in
SET*“Y* are automatically || - |-contractive.

One can then also complete distances to push the adjunction further into CMET*V*.
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