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ABSTRACT

We introduce and study the problem of detecting whether an agent is updating their prior beliefs
given new evidence in an optimal way that is Bayesian, or whether they are biased towards their
own prior. In our model, biased agents form posterior beliefs that are a convex combination of their
prior and the Bayesian posterior, where the more biased an agent is, the closer their posterior is to
the prior. Since we often cannot observe the agent’s beliefs directly, we take an approach inspired by
information design. Specifically, we measure an agent’s bias by designing a signaling scheme and
observing the actions they take in response to different signals, assuming that they are maximizing
their own expected utility; our goal is to detect bias with a minimum number of signals. Our main
results include a characterization of scenarios where a single signal suffices and a computationally
efficient algorithm to compute optimal signaling schemes.

1 Introduction

A bag contains two coins that look and feel identical, but one is a fair coin that, on a flip, comes up heads with
probability 0.5, and the other is an unfair coin with probability 0.9 of heads. You reach into the bag, grab one of the
coins and flip it once; it lands on heads. Since you are (hopefully) familiar with Bayes’ rule, you conclude that the
probability you are holding the fair coin is ≈ 0.36. Now suppose you are offered the following deal: if you pay $1,
you get to flip the same coin again, and if it comes up heads, you will receive $1.4. Since you now believe that the
probability of heads is 0.76, you take the deal (assuming you are risk neutral) and earn 6 cents in expectation.

If, by contrast, another risk-neutral person in the same situation decides to decline the same deal, they must believe
that the probability they are holding the fair coin is greater than 0.47. That is, their belief is still very close to the prior
of 0.5. We think of such a person as being biased, in the sense that they are unwilling to significantly update their
beliefs, despite evidence to the contrary.

Of course, failing to update one’s beliefs about coin flips is not the end of the world. But this example serves to
illustrate a broader phenomenon that, in our view, is both important and ubiquitous. In particular, the “stickiness” of
prior beliefs in the face of evidence plays a role in politics — think of the controversy over Russian collusion in the
2016 US presidential election or the existence of weapons of mass destruction in Iraq in 2003. It is also prevalent in
science, as exemplified by the polarized debate over the origins of the Covid pandemic [3].

Our goal in this paper is to develop algorithms that are able to detect bias in the form of non-Bayesian updating
of beliefs. To our knowledge, we are the first to formalize and analytically address this problem, and we aim to
build an initial framework that future work would build on. In the long term, we believe such algorithms could have
many applications, including understanding to what degree the foregoing type of bias contributes to disagreement and
polarization, and discounting the opinions of biased agents to improve collective decision making.



Our approach. The first question we need to answer is how to quantify bias. In this first investigation, we adopt a
linear model of bias that was proposed and used as a general belief updating model in economics [8, 10, 5]. If the prior
is µ0 and the correct Bayesian posterior upon receiving a signal (or evidence) s is denoted µs, we posit that an agent
with bias w ∈ [0, 1] adopts the belief wµ0 + (1 − w)µs. At the extremes, an agent with bias w = 0 performs perfect
Bayesian updating and an agent with bias w = 1 cannot be convinced to budge from the prior.

The bigger conceptual question is how we can infer an agent’s bias. To address it, we take an approach that is
inspired by the literature on information design [13]. In our context, suppose that we (the principal) and the agent
have asymmetric information: while both share a common (say public) prior about the state of the world, the principal
knows the true (realized) state of the world, but the agent does not. The principal publicly commits to a (randomized)
signaling scheme that specifies the probability of sending each possible signal given each possible realized state of the
world. Given their knowledge of the latter, the principal draws a signal from the specified distribution and sends it to
the agent. Upon receiving such a signal, the agent updates their beliefs about the state of the world (from the common
prior) and then takes an action that maximizes their expected utility according to a given utility function. Similarly to
the example we started with, it is the action taken by the agent that can (indirectly) reveal their degree of bias.

The challenge, then, is to design signaling schemes that test whether the agent’s bias is above or below some threshold.
(Through binary search, this makes it possible to estimate the level of bias.) We wish to do so in the most efficient
way, that is, using a minimum number of signals in expectation.

Our results. We design a polynomial-time algorithm that computes optimal signaling schemes, in Section 4. We
first show that constant algorithms, which repeatedly use the same signaling scheme, are as powerful as adaptive
algorithms, which can vary the scheme over time based on historical data (Lemma 4.1); we can therefore restrict
our attention to constant algorithms. In Lemma 4.5, we establish a version of the revelation principle for the bias
detection problem, which asserts that optimal signaling schemes need only use signals that can be interpreted as action
recommendations. Finally, building on these insights, we show that the optimal solution to our problem is obtained by
solving a “small” linear program (Algorithm 1 and Theorem 4.6).

In Section 5, we present a geometric characterization of optimal signaling schemes (Theorem 5.2), which sheds addi-
tional light on the performance of the algorithm. In particular, the characterization provides sufficient and necessary
conditions for the testability of bias, and also identifies cases where only a single sample is needed for this task.

Related work. There is a significant body of experimental work in the social sciences aiming to explain the failure
of partisans to reach similar beliefs on factual questions where there is a large amount of publicly available evidence.
The fact that biased belief updating occurs is undisputed (to our knowledge), and the focus is on understanding the
factors that play a role. In particular, a prominent line of work supports the (perhaps counterintuitive) hypothesis
that the more cognitively sophisticated a partisan is, the more politically biased is their belief update process [16, 17,
12, 11]. These results are challenged by more recent work by Tappin et al. [18], who found that greater analytical
thinking is associated with belief updates that are less biased, using an experimental design that explicitly measures
the proximity of belief updates to a correct Bayesian posterior. While these studies provide empirical underpinnings
for our theoretical model, their research questions are orthogonal to ours: we aim to measure the magnitude of bias
regardless of its source.

Classical work in information design [4, 13] studies how a principal can strategically provide information to induce
an agent to take actions that are beneficial for the principal, assuming a perfectly Bayesian agent. Various relaxations
of the perfectly Bayesian assumption have been investigated [1, 10, 7, 5, 9, 20, 14]. The closest to our work is that of
de Clippel and Zhang [5], who study biased belief update models including the linear model. However, their goal is to
maximize the principal’s utility with the agent’s bias fully known. In our problem the agent’s bias level is unknown,
and the principal’s goal is to infer the agent’s bias level instead of maximizing their own utility.

2 Model

Biased agent. Consider a standard Bayesian setting: the relevant state of the world is θ ∈ Θ, distributed according
to some known prior distribution µ0. If an agent were perfectly Bayesian, when receiving some new information
(“signal”) s and with the knowledge of the conditional distributions P (s|θ) for all θ, they would update their belief
about the state of the world according to Bayes’ Rule: µs(θ) = P (θ|s) = µ0(θ)P (s|θ)

P (s) . We refer to µs as the true
posterior belief induced by s. Being biased, the agent’s belief after seeing s, denoted νs, is a convex combination of
µs and µ0:

νs = wµ0 + (1− w)µs,
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where w ∈ [0, 1] is the unknown bias level, capturing the agent’s inclination to retain their prior belief in the presence of
new information. This linear model was proposed and adopted in economics for non-Bayesian belief updating [8, 10],
in order to capture people’s conservatism in processing new information and their tendency to protect their beliefs [19].

The agent can choose an action from a finite set A and has a state-dependent utility function U : A × Θ → R. They
receive utility U(a, θ) when taking action a in state θ. The agent will act according to their (biased) belief νs and
choose an action a that maximizes their expected utility:

a ∈ argmax
a∈A

Eθ∼νs
[U(a, θ)] = argmax

a∈A

∑
θ∈Θ

νs(θ)U(a, θ).

In the absence of any additional information, the agent operates based on the prior belief µ0 and will select an action
deemed optimal with respect to µ0. We introduce the following mild assumption to ensure the uniqueness of this
action:
Assumption 2.1. There is a unique action that maximizes the expected utility based on the prior belief µ0:
| argmaxa∈A{

∑
θ∈Θ µ0(θ)U(a, θ)}| = 1.

This assumption will be made throughout the paper. We denote the unique optimal action on the prior belief as
a0 = argmaxa∈A{

∑
θ∈Θ µ0(θ)U(a, θ)}, and call it the default action.

Bias detection. The principal, who knows the prior µ0 and the agent’s utility function U , seeks to infer the agent’s
bias level from their action as efficiently as possible. The principal has an informational advantage — they observe
the independent realizations of the state of the world at each time step. In other words, the principal knows θt, an
independent sample drawn according to µ0 at time t. The principal wants to design signaling schemes to strategically
reveal information about θt to the agent, hoping to influence the agent’s biased belief in a way that the agent’s chosen
actions reveal information about their bias level. Specifically, with a finite signal space S, the principal can commit to
a signaling scheme πt : Θ → ∆(S) at time t, where πt(s|θ) specifies the probability of sending signal s in state θ at
time t. After seeing a signal st, drawn according to πt(s|θt) at time t, the agent takes action at that is optimal for their
biased belief νst . The principal infers information about bias w from the history of signaling schemes, realized states,
realized signals, and agent actions Ht = {(π1, θ1, s1, a1), . . . , (πt, θt, st, at)}. We denote by Π an adaptive algorithm
that the principal uses to decide on the signaling scheme at time t+ 1 based on history Ht.

Given a threshold τ ∈ (0, 1), the principal wants to design Π to answer the following question:

Is the agent’s bias level w greater than or equal to τ or less than or equal to τ?1

An algorithm Π terminates as soon as it can output a deterministic answer to this question. The number of time steps
for Π to terminate, denoted by Tτ (Π, w), is a random variable. The sample complexity of Π is defined to be the
expected termination time in the worst case over w ∈ [0, 1]:
Definition 2.1 (sample complexity). The (worst-case) sample complexity of Π is defined as2

Tτ (Π) = max
w∈[0,1]

E[Tτ (Π, w)].

Our objective is to develop an algorithm Π that can determine whether w ≥ τ or w ≤ τ with minimal sample
complexity. Specifically, we want to solve the following minimax problem:

min
Π

max
w∈[0,1]

E[Tτ (Π, w)].

We say that an algorithm Π is constant if it keeps using the same signaling scheme repeatedly until termination.
Constant algorithms are a special case of non-adaptive algorithms, which may vary the signaling schemes over time
but remain independent of historical data.

Preliminaries. We now introduce the well-known splitting lemma from the information design literature [2, 13, 15].
It relates a signaling scheme with a set of induced true posteriors for a Bayesian agent and a distribution over the set
of true posteriors.

1One may want to test w ≥ τ or w < τ instead. But this requires assumptions on tie-breaking when the agent has multiple
optimal actions. Indifference at w = τ allows us to avoid such assumptions.

2Taking the worst case over w ∈ [0, 1] is not overly pessimistic. As we will show later, the worst case in fact happens at
w ∈ [τ − ε, τ + ε] for some ε > 0, which makes intuitive sense. Therefore, the sample complexity can be equivalently defined as
Tτ (Π) = maxw∈[τ−ε,τ+ε] E[Tτ (Π, w)].
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Lemma 2.1 (Splitting Lemma, e.g., [13]). Let π be a signaling scheme where each signal s ∈ S is sent with uncon-
ditional probability π(s) =

∑
θ∈Θ µ0(θ)π(s|θ) and induces true posterior µs. Then, the prior µ0 equals the convex

combination of {µs}s∈S with weights {π(s)}s∈S: µ0 =
∑

s∈S π(s)µs. Conversely, if the prior can be expressed as a
convex combination of distributions µ′

s ∈ ∆(Θ): µ0 =
∑

s∈S psµ
′
s, where ps ≥ 0,

∑
s∈S ps = 1, then there exists a

signaling scheme π where each signal s is sent with unconditional probability π(s) = ps and induces posterior µ′
s.

The splitting lemma is also referred as the Bayesian consistency condition. It allows one to think about choosing
a signaling scheme as choosing a set of true posteriors, {µs}s∈S , and a distribution over the set, {π(s)}s∈S , in a
Bayesian consistent way.

3 Warm-Up: A Two-State, Two-Action Example

How can the principal design a signaling scheme to learn the agent’s bias level? We use a simple two-state, two-action
example to demonstrate how inducing a specific true posterior belief will allow the principal to determine whether
w ≥ τ or w ≤ τ .

The two states of the world are represented as {Good, Bad}. The agent has two possible actions: Active and Passive.
Taking the Passive action always yields a utility of 0, independently of the state. For the Active action, the utility is a
if the state is Good and −b otherwise; a, b > 0. We use the probability of the Good state to represent a belief, so the
prior is a number µ0 ∈ [0, 1], which is only a slight abuse of notation. With belief µ ∈ [0, 1] for the Good state (and
1− µ for the Bad state), the agent’s expected utility for choosing the Active action is aµ− b(1− µ) = (a+ b)µ− b.
Thus, the Active action is better than the Passive action (so the agent will take Active) if

(a+ b)µ− b > 0 ⇐⇒ µ > b
a+b =: µ∗. (1)

Conversely, the Passive action is better if µ < µ∗. Here, µ∗ = b
a+b is an indifference belief where the agent is

indifferent between the two actions. We assume that the prior µ0 satisfies 0 < µ0 < µ∗, so the agent chooses the
Passive action by default.

Consider the following constant signaling scheme πτ with two signals {G,B}:

• If the state is Good, send signal G with probability one.

• If the state is Bad, send signal B with probability µ∗−µ0

(µ∗−τµ0)(1−µ0)
and signal G with the complement proba-

bility.

We will show that, by repeatedly using πτ , we can test whether the agent’s bias w is ≤ τ or ≥ τ . By Bayes’ Rule, the
true posterior beliefs (for the Good state) associated with the two signals are µB = 0 (i.e., on receiving B, the agent
knows the state is Bad) and

µG = P (Good|G) = µ0·πτ (G|Good)
µ0·πτ (G|Good)+(1−µ0)·πτ (G|Bad) =

µ∗−τµ0

1−τ .

Notably, the posterior µG satisfies the following property: if the agent’s bias level w is exactly equal to τ , then the
agent’s biased belief is equal to the indifference belief:

when w = τ , νG = τµ0 + (1− τ)µG = µ∗.

We also note the inequality µ0 < µ∗ < µG. As a result, if the agent’s bias level w is greater than τ , then the biased
belief will be smaller than µ∗, and otherwise the opposite is true:

for w > τ , wµ0 + (1− w)µG < µ∗; for w < τ , wµ0 + (1− w)µG > µ∗.

By Equation (1), this means that the agent will take the Passive action if w > τ , and the Active action if w < τ (on
receiving G). Therefore, by observing which action is taken by the agent when signal G is sent, we can immediately
tell whether w ≤ τ or w ≥ τ . This leads to the following:

Theorem 3.1. In the two-state, two-action example, for any threshold τ ∈ [0, 1−µ∗

1−µ0
], the above constant signaling

scheme πτ can test whether the agent’s bias w satisfies w ≤ τ or w ≥ τ : specifically, whenever the signal G is sent,

• if the agent takes action Active, then w ≤ τ ,
• if the agent takes action Passive, then w ≥ τ .

The sample complexity of this scheme is µ∗−µ0

µ0(1−τ) + 1, which increases with τ .
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Proof. The range τ ∈ [0, 1−µ∗

1−µ0
] ensures that the probability πτ (B|Bad) = µ∗−µ0

(µ∗−τµ0)(1−µ0)
is in [0, 1]. The two

items in the theorem follow from the argument before the theorem statement. The sample complexity is equal to the
expected number of time steps until a G signal is sent, which is a geometric random variable with success probability
P (G) = µ0πτ (G|Good) + (1 − µ0)πτ (G|Bad) = µ0(1−τ)

µ∗−τµ0
. So the sample complexity is equal to the mean 1

P (G) =
µ∗−µ0

µ0(1−τ) + 1.

The main intuition behind this result is that in order to test whether w ≥ τ or w ≤ τ , we want to design a signaling
scheme where some of the signals induce posteriors under which the agent is indifferent between two actions if the
agent’s bias level is exactly τ . Then, the action actually taken by the agent will directly reveal whether w ≥ τ or
w ≤ τ . Such signals are useful signals, but not all signals are necessarily useful. The sample complexity is then
determined by the total probability of useful signals. This intuition will carry over to computing the optimal signaling
scheme for the general case in Section 4.

Finally, we remark that using the constant signaling scheme πτ constructed above to test w ≥ τ or w ≤ τ is in fact the
optimal adaptive algorithm, according to the results we will present in Section 4. So, the minimal sample complexity
to test whether w ≥ τ or w ≤ τ in this two-state, two-action example is exactly µ∗−µ0

µ0(1−τ) +1 as shown in Theorem 3.1.

4 Computing the Optimal Signaling Scheme in the General Case

In this section, we generalize the initial observations from the previous section to the case with any number of actions
and states and general utility function U . We will show how to compute the optimal algorithm (signaling scheme) to
test the agent’s bias level. There are three key ingredients. First, we prove that we can use a constant signaling scheme.
Second, we develop a “revelation principle” to further simplify the space of signaling schemes. Building on these two
steps, we show that the optimal signaling scheme can be computed by a linear program.

4.1 Optimality of Constant Signaling Schemes

In this subsection, we show that adaptive algorithms are no better than constant algorithms for the problem of testing
whether w ≥ τ or w ≤ τ . Therefore, to find the algorithm with minimal sample complexity, we only need to consider
constant algorithms/signaling schemes.
Lemma 4.1. Fix τ ∈ (0, 1). For the problem of testing whether w ≥ τ or w ≤ τ , the sample complexity of any
adaptive algorithm is at least that of the optimal constant algorithm (i.e., using a fixed signaling scheme repeatedly).

To prove this lemma, we introduce some notations. For any action a ∈ A \ {a0}, define vector

ca = (ca,θ)θ∈Θ =
(
U(a0, θ)− U(a, θ)

)
θ∈Θ

∈ R|Θ|, (2)

whose components are the utility differences between the default action a0 and any other action a at different states
θ ∈ Θ. Let Ra0

⊆ ∆(Θ) be the region of beliefs under which the agent strictly prefers a0 over any other action:

Ra0
=
{
µ ∈ ∆(Θ) | ∀a ∈ A \ {a0}, c⊤a µ > 0

}
. (3)

It is the intersection of |A| − 1 open halfspaces with the probability simplex ∆(Θ). As the agent strictly prefers a0 at
the prior µ0, we have µ0 ∈ Ra0

. The boundary of this region, ∂Ra0
, is the set of beliefs where the agent is indifferent

between a0 and at least one other action a ∈ A \ {a0} and a0 and a are both (weakly) better than any other action:

∂Ra0 =
{
µ ∈ ∆(Θ) | ∃a ∈ A \ {a0}, c⊤a µ = 0 and ∀a′ ∈ A \ {a0}, c⊤a′µ ≥ 0

}
. (4)

Lastly, the exterior of Ra0
, denoted as extRa0

, comprises the set of beliefs where the agent strictly prefers not to
choose a0:

extRa0
= ∆(Θ) \ (Ra0

∪ ∂Ra0
) =

{
µ ∈ ∆(Θ) | ∃a ∈ A \ {a0}, c⊤a µ < 0

}
. (5)

Given a signaling scheme π, we classify its signals into three types based on the location of the biased belief associated
with the signal with respect to the region Ra0

.
Definition 4.1. Let τ ∈ (0, 1) be a parameter. Let s ∈ S be a signal from a signaling scheme π, with associated true
posterior µs and τ -biased posterior µτ

s = τµ0 + (1− τ)µs. We say s is

• an internal signal if µτ
s ∈ Ra0 ;

• a boundary signal if µτ
s ∈ ∂Ra0

;
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• an external signal if µτ
s ∈ extRa0 .

The above classification helps to formalize the idea of whether a signal is “useful” for bias detection. A boundary
signal is useful because the action taken by the agent after receiving a boundary signal immediately tells whether
w ≥ τ or w ≤ τ :

Lemma 4.2. When a boundary signal is realized, the agent’s action immediately reveals whether w ≥ τ or w ≤ τ .
Specifically, if the agent chooses action a0, then w ≥ τ ; otherwise, w ≤ τ .

Proof. If the agent’s bias level satisfies w < τ , then the biased belief νs = wµ0 + (1 − w)µs must be inside Ra0

(because µτ
s = τµ0 + (1 − τ)µs is on the boundary of Ra0 and µ0 ∈ Ra0 ), so the agent strictly prefers the default

action a0. If w > τ , then the biased belief νs is outside of Ra0 , so the agent will not take action a0.

An external signal might also be useful in revealing whether w ≥ τ or w ≤ τ if the agent is indifferent between some
actions a1, a2 other than a0 at the τ -biased belief µτ

s . However, the following lemma shows that, in such cases, we
can always modify the signaling scheme to turn the external signal into a boundary signal. This modification will
increase the total probability of useful signals and hence reduce the sample complexity. The proof of this lemma is in
Appendix A.1.

Lemma 4.3. Suppose Π is an adaptive algorithm that uses signaling schemes with internal, boundary, and external
signals. Then, there exists another adaptive algorithm Π′ with equal or lower sample complexity that employs only
signaling schemes with internal and boundary signals.

An internal signal, on the other hand, is not useful for testing w ≥ τ or w ≤ τ , for the following reason. For an
internal signal, the biased belief with bias level τ , µτ

s , lies inside Ra0
. Since Ra0

is an open region, there must exist
a small number ε > 0 such that when the agent has bias level w = τ + ε or τ − ε, the biased belief with bias level
w, wµ0 + (1− w)µs, is also inside the region Ra0

, so the agent will take action a0. As the agent takes a0 under both
w = τ + ε and τ − ε, we cannot distinguish these two cases, so this signal is not helpful in determining w ≥ τ or
w ≤ τ . The following lemma (with proof in Appendix A.2) formalizes the idea that internal signals are not useful:

Lemma 4.4. To test whether w ≥ τ or w ≤ τ , any adaptive algorithm that uses signaling schemes with boundary
and internal signals cannot terminate until a boundary signal is sent.

With the above lemmas, we can now prove Lemma 4.1.

Proof of Lemma 4.1. By Lemma 4.3, the optimal adaptive algorithm only uses signaling schemes with boundary and
internal signals. By Lemma 4.4, the algorithm cannot terminate until a boundary signal is sent. By Lemma 4.2, the
algorithm terminates when a boundary signal is sent. We conclude that the termination time of any adaptive algorithm
cannot be better than the constant algorithm that keeps using the signaling scheme that maximizes the total probability
of boundary signals.

4.2 Revelation Principle

To compute the optimal constant signaling scheme, we need another technique that is similar to the revelation principle
in the information design literature [13, 6]. The revelation principle says that, in some information design problems, it
is without loss of generality to consider only “direct” signaling schemes where signals are recommendations of actions
for the agent, that is, the signal space is S = A, and when the principal sends signal a, it should be optimal for the
agent to take action a given the posterior belief induced by signal a.

Unlike classical information design problems where the agent is unbiased, our problem involves a biased agent, so we
need a different revelation principle: the signals are still action recommendations, but when the principal sends signal
a, action a is optimal for an agent with bias level exactly τ ; moreover, if a ̸= a0, then an agent with bias level τ will
be indifferent between a and a0. This insight is formalized in the following lemma:

Lemma 4.5 (revelation principle for bias detection). Let π be an arbitrary signaling scheme that can test w ≥ τ or
w ≤ τ . Then, there exists another signaling scheme π′ that can do so with signal space S = A such that:

(1) Given signal a ∈ A, action a is an optimal action for any agent with bias level w = τ .
(2) Given signal a ∈ A\{a0}, actions a and a0 are both optimal for any agent with bias level w = τ . As a corollary,

if the agent’s bias level w < τ , then the agent strictly prefers a over a0; and if w > τ , then the agent strictly
prefers a0 over any other actions.

(3) The sample complexity satisfies Tτ (π
′) ≤ Tτ (π).
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Algorithm 1: Linear program to compute the optimal signaling scheme
Input : prior µ0, utility function U , and the parameter τ ∈ (0, 1)
Variable: signaling scheme π, consisting of conditional probabilities π(a|θ) for a ∈ A, θ ∈ Θ

Denote ∆U(a, a′, θ) = U(a, θ)− U(a′, θ). Solve the following linear program:

Maximize
∑

a∈A\{a0}

∑
θ∈Θ

π(a|θ)µ0(θ) (6)

subject to: 

Optimality of a over other actions: ∀a ∈ A, ∀a′ ∈ A \ {a}∑
θ∈Θ

π(a|θ) · µ0(θ)
[
(1− τ)∆U(a, a′, θ) + τ

∑
θ′∈Θ

µ0(θ
′)∆U(a, a′, θ′)

]
≥ 0; (7)

Indifference between a and a0: ∀a ∈ A \ {a0},∑
θ∈Θ

π(a|θ) · µ0(θ)
[
(1− τ)∆U(a, a0, θ) + τ

∑
θ′∈Θ

µ0(θ
′)∆U(a, a0, θ

′)
]
= 0; (8)

Probability distribution constraints: ∀θ ∈ Θ,∑
a∈A

π(a|θ) = 1 and ∀a ∈ A, π(a|θ) ≥ 0.

In the above signaling scheme π′, every a ∈ A \ {a0} is a boundary signal (Definition 4.1), which is useful for testing
bias: given signal a ∈ A \ {a0}, if the agent takes action a0, then it must be w ≥ τ ; otherwise w ≤ τ . The signal a0
is internal and not useful for determining w ≥ τ or w ≤ τ . So, the sample complexity of π′ is equal to the expected
time steps until a signal in A \ {a0} is sent.

The high-level idea behind Lemma 4.5 is combination of signals. Suppose there is a signaling scheme that can
determine whether w ≥ τ or w ≤ τ with a signal space larger than A. There must exist two signals s and s′ under
which the agent is indifferent between a0 and some action a ̸= a0 if the agent’s bias level is exactly τ . Then, we can
combine the two signals into one signal s′′ under which the agent is still indifferent between a0 and a, obtaining a new
signaling scheme with a smaller signal space. We can do this until the signal space is reduced to size |A|. The full
proof is in Appendix A.3.

4.3 Algorithm for Computing the Optimal Signaling Scheme

Finally, we present an algorithm to compute the optimal (minimal sample complexity) signaling scheme to test whether
w ≥ τ or w ≤ τ . The revelation principle in the previous subsection ensures that we only need a direct signaling
scheme where signals are action recommendations. The optimal direct signaling scheme turns out to be solvable by a
linear program, detailed in Algorithm 1. In the linear program, the optimality constraint (7) ensures that whenever the
principal recommends action a ∈ A, it is optimal for an agent with bias level τ to take action a; this satisfies condition
(1) in the revelation principle (Lemma 4.5). The indifference constraint (8) ensures that when the recommended action
a is not a0, an agent with bias level τ is indifferent between a and a0; this satisfies condition (2) in the revelation
principle. The objective (6) is to maximize the probability of useful signals (those in A \ {a0}), hence minimize
the sample complexity. The resulting signaling scheme has the property that whenever the principal recommends an
action a other than a0, if the agent indeed follows the recommendation (or takes any other action than a0), then the
bias must be small (w ≤ τ ); if the agent takes a0 instead, the bias must be large (w ≥ τ ).

Theorem 4.6. Algorithm 1 finds a constant signaling scheme for testing w ≥ τ or ≤ τ that is optimal among all
adaptive signaling schemes.

The proof of Theorem 4.6 is in Appendix A.4.

The linear program in Algorithm 1 has a polynomial size in |A| (number of actions) and |Θ| (number of states), so it
is a polynomial-time algorithm.
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(a) A single sample

(0, 0, 1)

(1, 0, 0) (0, 1, 0)
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z
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Ia,τ

(b) Finite sample complexity

(0, 0, 1)

(1, 0, 0) (0, 1, 0)

x y

z

µ0

Ia
Ia,τ = ∅

(c) Cannot be solved

Figure 1: The three qualitatively different cases for detecting the level of bias, each illustrated within a simplex over
three states where µ0 is the prior belief. Each point within the simplex maps to an optimal action for the agent. The
green curves represent indifference curves between the default action a0 and another action, indicating where the
agent is indifferent between these two actions under the unbiased belief. The orange curves are translations of these
indifference curves; a posterior lying on these curves means that the agent’s biased belief (at bias level τ ) aligns exactly
with the green curves. τ increases from (a) to (c), so the orange curves are translated further. In Figure 1a, µ0 can be
expressed as a convex combination of points in the translated curves, and thus the bias level can be detected using a
single sample. In Figure 1b, only some signals are useful, and more than one sample is needed in the worst case. In
Figure 1c, the bias level cannot be tested against τ .

5 Geometric Characterization of the Testability of Bias

To complement the algorithmic solution presented in the previous section, this section provides a geometric character-
ization of the bias detection problem. We identify the conditions under which testing whether w ≥ τ or w ≤ τ can be
done in only one sample, in finite number of samples, or cannot be done at all (the scenario where the linear program
in Algorithm 1 is infeasible).

By Assumption 2.1 (a0 is strictly better than other actions at prior µ0), we have:

c⊤a µ0 =
∑
θ∈Θ

µ0(θ)
(
U(a0, θ)− U(a, θ)

)
> 0, ∀a ∈ A \ {a0}, (9)

where ca is as defined in Equation (2). Define Ia as the set of indifference beliefs between action a and a0, which is
the intersection of the hyperplane {x|c⊤a x = 0} and the probability simplex ∆(Θ):

Ia := {µ ∈ ∆(Θ) | c⊤a µ = 0}.

Given a parameter τ ∈ (0, 1), for which we want to test whether w ≥ τ or w ≤ τ , let Ia,τ be the set of posterior
beliefs for which, if the agent’s bias level is exactly τ , then the agent’s biased belief will fall within the indifference
set Ia:

Ia,τ := {µ ∈ ∆(Θ) | (1− τ)µ+ τµ0 ∈ Ia}.
Lemma 5.1. Ia,τ is equal to the intersection of the probability simplex ∆(Θ) and a translation of the hyperplane
{x | c⊤a x = 0}: Ia,τ =

{
µ ∈ ∆(Θ) | c⊤a µ = − τ

1−τ c
⊤
a µ0

}
.

The proof of this lemma is in Appendix B.1. With this representation of Ia,τ in hand, we can now present a geometric
characterization of the testability of bias.

Theorem 5.2 (geometric characterization). Fix τ ∈ (0, 1). The problem of testing w ≥ τ or w ≤ τ

• Can be solved with a single sample (the sample complexity is 1) if and only if the prior µ0 is in the convex hull
formed by the translated sets Ia,τ for all non-default actions a ∈ A \ {a0}:

µ0 ∈ ConvexHull

( ⋃
a∈A\{a0}

Ia,τ

)
. (10)

• Can be solved (with finite sample complexity) if and only if Ia,τ ̸= ∅ for at least one a ∈ A \ {a0}.
• Cannot be solved if Ia,τ = ∅ for all a ∈ A \ {a0}.
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Figure 1 illustrates the three cases of Theorem 5.2. In the first case, the solution of the linear program in Algorithm 1
satisfies

∑
a∈A\{a0}

∑
θ∈Θ π(a|θ)µ0(θ) = 1, meaning that useful signals are sent with probability 1, which allows

us to tell whether w ≥ τ or w ≤ τ immediately. In the second case, the total probability of useful signals satisfies∑
a∈A\{a0}

∑
θ∈Θ π(a|θ)µ0(θ) < 1, so the sample complexity is more than 1. In the third case, the linear program

in Algorithm 1 is not feasible, so w ≥ τ or w ≤ τ cannot be determined; importantly, this is not a limitation of our
particular algorithm, but a general impossibility in our model. The proof of Theorem 5.2 is in Appendix B.2.

6 Discussion

Our approach has some limitations; here we discuss the two that we view as most significant.

First, we have assumed a linear model of bias. While the linear model is common in the literature [8, 10, 5], we also
consider a more general model of bias (in Appendix C): as the bias level w increases from 0 to 1, the agent’s belief
changes from the true posterior µs to the prior µ0 according to some general continuous function ϕ(µ0, µs, w). We
show that, as long as the bias function ϕ satisfies a certain single-crossing property (as w increases, once the agent
starts to prefer the default action a0, they will not change the preferred action anymore), our results regarding the
optimality of constant signaling schemes, the revelation principle, and the geometric characterization still hold, while
the linear program algorithm no longer works because ϕ is not linear. We consider it an interesting challenge to come
up with more general models of bias that are still tractable, in the sense that one can efficiently design good signaling
schemes with reasonable sample complexity bounds.

Second, we have assumed that the agent’s prior is the same as the real prior from which states of the world are
drawn. But what if the agent’s prior is different? Our results directly extend to the case where the agent has a wrong,
known prior. If the agent’s prior is unknown, then our problem becomes significantly more challenging. In fact, we
believe it may be flat-out impossible to measure bias, as the case of a slightly wrong prior with large bias may be
indistinguishable from the case of a very wrong prior with small bias.

Despite these limitations, we view our paper as making significant progress on a novel problem that seems fundamen-
tal. Our results suggest that practical algorithms for detecting bias in belief update are within reach and, in the long
term, may lead to new insights on issues of societal importance. In particular, we anticipate future research in more
complex situations such as combining decisions of many experts (human or AI) after measuring and accounting for
their individual biases.
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A Missing Proofs from Section 4

A.1 Proof of Lemma 4.3

Proof. Suppose that, during its operation, Π selects a signaling scheme π that includes an external signal s ∈ S. By
definition, for an external signal, the τ -biased belief µτ

s = τµ0 + (1 − τ)µs is in extRa0
. This implies that the true

posterior µs, derived from the signaling scheme π and the prior µ0, also lies in extRa0
. Consequently, the line segment

connecting µs and µ0, represented as {(1− t)µs + tµ0 | t ∈ [0, 1]}, must intersect the boundary ∂Ra0
at some point.

Denote this intersection by µ∗ = (1− t∗)µs + t∗µ0 ∈ ∂Ra0 .

We will adjust the original signaling scheme π. To do so, define µ̃s as the belief whose τ -biased version equals µ∗:

τµ0 + (1− τ)µ̃s = µ∗ ⇐⇒ µ̃s =
(t∗ − τ)µ0 + (1− t∗)µs

1− τ
.

Under the original signaling scheme π, according to the splitting lemma (Lemma 2.1), the prior µ0 can be represented
as a convex combination of µs and the posteriors associated with other signals s′ ∈ S \ {s}:

µ0 = psµs +
∑

s′∈S\{s}

ps′µs′ .

If we change µs to µ̃s, then we obtain a new convex combination (this is valid because µ̃s is on the line segment from
µs to µ0):

µ0 = p̃sµ̃s +
∑

s′∈S\{s}

p̃s′µs′ ,

where
p̃s =

ps
1− t∗ + t∗ps

and ∀s′ ∈ S \ {s}, p̃s′ =
1− t∗

1− t∗ + t∗ps
ps′ .

Then, by the splitting lemma (Lemma 2.1), there exists a signaling scheme π′ with |S| signals where signal s induces
posterior µ̃s and other signals s′ induces µs′ . Note that the τ -biased version of µ̃s satisfies τµ0 + (1 − τ)µ̃s = µ∗ ∈
∂Ra0 , so s is a boundary signal under signaling scheme π′.

Since s is a boundary signal, we can immediately tell whether w ≥ τ or w ≤ τ according to Lemma 4.2 when s is
sent and end the algorithm. If any signal s′ other than s is sent, the induced posterior µs is the same as the posterior in
the original signaling scheme π, so the agent will take the same action, and we can just follow the rest of the original
algorithm Π. But we note that the probability of signal s being sent under the new signaling scheme π′ is larger than
or equal to the probability under the original signaling scheme π:

p̃s =
ps

1− t∗ + t∗ps
≥ ps. (11)

So, in expectation, we can end the algorithm faster by using π̃ than using π. Hence, by repeating the above procedure
to replace all the signaling schemes in the original algorithm Π that use external signals, we obtain a new algorithm
Π′ that only uses boundary and internal signals with smaller or equal sample complexity.

A.2 Proof of Lemma 4.4

Proof. Let Π be any adaptive algorithm using signaling schemes with boundary and internal signals. Let Ht =
{(π1, θ1, s1, a1), . . . , (πt, θt, st, at)} be any history that can happen during the execution of Π. If no boundary signal
has been sent, then every realized signal sk is an internal signal in the respective signaling scheme πk, with the τ -biased
posterior satisfying µτ

sk
= τµ0 + (1− τ)µsk ∈ Ra0 . Because Ra0 =

{
µ ∈ ∆(Θ) | ∀a ∈ A \ {a0}, c⊤a µ > 0

}
is an

open region, there must exist some εk > 0 such that the ℓ1-norm ball Bεk(µ
τ
sk
) = {µ ∈ ∆(Θ) : ∥µ− µτ

sk
∥1 ≤ εk} is

a subset of Ra0
. Let ε = mintk=1 εk > 0. Then Bε(µ

τ
sk
) ⊆ Ra0

for every k = 1, . . . , t. Suppose the agent’s bias level
w is in the range [τ − ε

2 , τ +
ε
2 ]. Then, for every signal sk, the agent’s biased belief νsk = wµ0+(1−w)µsk satisfies:

∥νsk − µτ
sk
∥1 = ∥(w − τ)(µ0 − µsk)∥1 ≤ |w − τ | · ∥µ0 − µsk∥1 ≤ ε.

This means
νsk ∈ Bε(µ

τ
sk
) ⊆ Ra0

.

So, the agent should take action a0 given signal sk. Note that this holds for every k = 1, . . . , t and any w ∈
[τ − ε

2 , τ +
ε
2 ]. So we cannot determine whether w ≥ τ or w ≤ τ so far. We have to run the algorithm until a boundary

signal is sent.
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A.3 Proof of Lemma 4.5

Proof. Let π be a signaling scheme that can test whether w ≥ τ or w ≤ τ . According to Lemma 4.3, π can be assumed
to only use boundary and internal signals. Recall that a signal s is boundary if the τ -biased belief µτ

s = τµ0+(1−τ)µs

lies on the boundary set ∂Ra0
. For a ∈ A \ {a0}, let Ba be the set of beliefs under which the agent is indifferent

between a and a0 and a and a0 are both better than other actions:

Ba = {µ ∈ ∆(Θ) | c⊤a µ = 0 and ∀a′ ∈ A, c⊤a′µ ≥ 0}. (12)

The boundary set ∂Ra0
can be written as the union of Ba for a ∈ A \ {a0}:

∂Ra0
=

⋃
a∈A\{a0}

Ba. (13)

Then, we classify the boundary signals into |A| − 1 sets {Sa}a∈A\{a0} according to which Ba sets their τ -biased
beliefs belong to: namely, the set Sa contains boundary signals s under which

τµ0 + (1− τ)µs ∈ Ba. (14)

We then combine the signals in Sa. Specifically, consider the normalized weighted average of the true posterior beliefs
associated with the signals in Sa, denoted by µa:

µa =
∑
s∈Sa

π(s)∑
s′∈Sa

π(s′)
µs. (15)

Note that the τ -biased version of µa is also in the set Ba because Ba is a convex set:

τµ0 + (1− τ)µa =
∑
s∈Sa

π(s)∑
s′∈Sa

π(s′)

(
τµ0 + (1− τ)µs

)
∈ Ba. (16)

This means that if a signal a induces true posterior µa, then this signal is a boundary signal.

After defining µa as above for every a ∈ A \ {a0}, let’s consider the set of internal signals of the signaling scheme π,
which we denote by SI . For each internal signal s ∈ SI , the τ -biased belief satisfies

τµ0 + (1− τ)µs ∈ Ra0
. (17)

Similar to above, we combine all the signals in SI : define µa0
to be the normalized weighted average of the posteriors

associated with all internal signals:

µa0
=
∑
s∈SI

π(s)∑
s′∈SI

π(s′)
µs. (18)

Then, the τ -biased version of µa0
must be in Ra0

because Ra0
is a convex set:

τµ0 + (1− τ)µa0 =
∑
s∈SI

π(s)∑
s′∈SI

π(s′)

(
τµ0 + (1− τ)µs

)
∈ Ra0

. (19)

This means that, if a signal induces posterior µa0
, then this signal is internal.

From the splitting lemma (2.1), we know that the convex combination of the original posteriors
∑

s∈S π(s)µs is equal
to the prior µ0. This means that the following convex combination of the new posteriors {µa}a∈A\a0

and µa0 is also
equal to the prior:∑

a∈A\a0

∑
s′∈Sa

π(s′)µa +
∑
s′∈SI

π(s′)µa0 =
∑

a∈A\a0

∑
s∈Sa

π(s)µs +
∑
s∈SI

π(s)µs =
∑
s∈S

π(s)µs = µ0

where the convex combination weight of µa is
∑

s′∈Sa
π(s′) for every a ∈ A\{a} and the convex combination weight

of µa0 is
∑

s′∈SI
π(s′). One can easily verify that the weights sum to 1. Then, by the splitting lemma (2.1), there

exists a signaling scheme π′ with signal space of size |A| (so we simply denote the signal space by A) where each
signal a ∈ A induces posterior µa. We show that this new signaling scheme π′ satisfies the properties in Lemma 4.5:

• Signal a0 induces posterior µa0
whose τ -biased version satisfies τµ0 + (1 − τ)µa0

∈ Ra0
. So, given signal

a0, action a0 is the optimal action for an agent with bias level τ .

12



• For each signal a ∈ A \ {a0}, the induced posterior µa satisfies τµ0 + (1− τ)µa ∈ Ba ⊆ ∂Ra0 . So, by the
definition of Ba, an agent with bias level τ is indifferent between actions a and a0 and these two actions are
better than other actions. Also, this signal is a boundary signal by Definition 4.1, which satisfies the following
according to Lemma 4.2: if the agent’s bias level w < τ , then the agent strictly prefers a over a0; if w > τ ,
then the agent strictly prefers a0 over a.

• The sample complexity of π′ is the same as π because: (1) the sample complexity is equal to the inverse of the
total probability of boundary signals (as a corollary of Lemma 4.4), and (2) the total probability of boundary
signals of the two signaling schemes are the same:∑

a∈A\{a0}

π′(a) =
∑

a∈A\{a0}

∑
s′∈Sa

π(s′) =
∑

s∈∪a∈A\{a0}Sa

π(s). (20)

So, Tτ (π
′) = Tτ (π).

A.4 Proof of Theorem 4.6

The proof needs an additional lemma:
Lemma A.1. Given a signaling scheme π = (π(a|θ))a∈A,θ∈Θ and an agent’s bias level w, after a signal a is sent,
the agent strictly prefers action a1 over action a2 under the biased belief if and only if:∑

θ∈Θ

π(a|θ) · µ0(θ)
[
(1− w)∆U(a1, a2, θ) + w

∑
θ′∈Θ

µ0(θ
′)∆U(a1, a2, θ

′)
]
> 0.

Proof. The agent’s biased belief under signal a and bias level w is given by

(1− w)
µ0(θ)π(a|θ)∑

θ′∈Θ µ0(θ′)π(a|θ′)
+ wµ0(θ), ∀θ ∈ Θ.

The condition for the agent to strictly prefer a1 over a2 is that the expected utility under the biased belief when
choosing a1 is greater than when choosing a2:∑

θ∈Θ

(
(1− w)

µ0(θ)π(a|θ)∑
θ′∈Θ µ0(θ′)π(a|θ′)

+ wµ0(θ)

)
∆U(a1, a2, θ) > 0,

where ∆U(a1, a2, θ) = U(a1, θ)− U(a2, θ). Multiplying by
∑

θ′∈Θ µ0(θ
′)π(a|θ′), we obtain:

(1− w)
∑
θ∈Θ

µ0(θ)π(a|θ)∆U(a1, a2, θ) + w
∑
θ∈Θ

µ0(θ)
∑
θ′∈Θ

µ0(θ
′)π(a|θ′)∆U(a1, a2, θ) > 0.

Factoring out the terms, this can be rewritten as:∑
θ∈Θ

π(a|θ)µ0(θ)

(
(1− w)∆U(a1, a2, θ) + w

∑
θ′∈Θ

µ0(θ
′)∆U(a1, a2, θ

′)

)
> 0.

This final expression is positive if and only if the agent to strictly prefer a1 over a2.

Proof of Theorem 4.6. According to Lemma 4.1 (constant algorithms are optimal) and Lemma 4.5 (revelation princi-
ple), to find an optimal adaptive algorithm we only need to find the optimal constant signaling scheme that satisfies
the conditions in Lemma 4.5. We verify that the signaling scheme computed from the linear program in Algorithm 1
satisfies the conditions in Lemma 4.5:

• The optimality constraint (7) in the linear program, together with Lemma A.1, ensures that: whenever signal
a ∈ A is sent, action a is better than any other action for an agent with bias level w = τ . This satisfies the
first condition in Lemma 4.5.

• The indifference constraint (8), together with Lemma A.1, ensures that: whenever a ∈ A \ {a0} is sent, the
agent is indifferent between action a and a0 if the bias level w = τ . This satisfies the second condition in
Lemma 4.5.
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We then argue that the solution of the linear program is the optimal signaling scheme that satisfies the conditions of
Lemma 4.5. According to our argument after Lemma 4.5, only the signals in A\{a0} are useful signals, so the sample
complexity is equal to the expected number of time steps until a signal in A\{a0} is sent. The probability that a signal
in A \ {a0} is sent at each time step is equal to∑

a∈A\{a0}

π(a) =
∑

a∈A\{a0}

∑
θ∈Θ

µ0(θ)π(a|θ).

The expected number of time steps is the inverse 1∑
a∈A\{a0}

∑
θ∈Θ µ0(θ)π(a|θ) (because the number of time steps is

a geometric random variable). The linear program maximizes the probability
∑

a∈A\{a0}
∑

θ∈Θ µ0(θ)π(a|θ), so it
minimizes the sample complexity.

B Missing Proofs from Section 5

B.1 Proof of Lemma 5.1

Proof. For µ ∈ ∆(Θ), by convexity of ∆(Θ), we have (1− τ)µ+ τµ0 ∈ ∆(Θ). Then,

µ ∈ Ia,τ ⇐⇒ (1− τ)µ+ τµ0 ∈ Ia ⇐⇒ c⊤a ((1− τ)µ+ τµ0) = 0

⇐⇒ (1− τ)c⊤a µ+ τc⊤a µ0 = 0

⇐⇒ c⊤a µ = − τ

1− τ
c⊤a µ0.

B.2 Proof of Theorem 5.2

We first prove the first part of Theorem 5.2, then prove the the second and third parts.

B.2.1 Proof of Part 1 of Theorem 5.2

We want to prove that w ≥ τ or w ≤ τ can be tested with a single sample if and only if the prior µ0 is in the convex
hull formed by the translated sets Ia,τ for all non-default actions a ∈ A \ {a0}: µ0 ∈ ConvexHull

(
∪a∈A\{a0} Ia,τ

)
.

The “if” part. Suppose µ0 ∈ ConvexHull
(
∪a∈A\{a0} Ia,τ

)
, namely, there exist a set of positive weights {ps}s∈S

and a set of posterior beliefs {µs}s∈S such that

µ0 =
∑
s∈S

psµs,

where each µs ∈ Ia,τ for some a ∈ A \ {a0}. By definition, the τ -biased belief τµ0 +(1− τ)µs is in the indifference
set Ia. Recall the definition of the boundary set ∂Ra0

(Equation 4), which is the set of beliefs under which the agent
is indifferent between a0 and some other action and these two actions are better any other actions. The τ -biased belief
τµ0 + (1 − τ)µs ∈ Ia may or may not belong to ∂Ra0

, depending on whether a and a0 are better than any other
actions:

• If τµ0 + (1 − τ)µs ∈ ∂Ra0
, then s is a boundary signal (by Definition 4.1) and hence useful for testing

whether w ≥ τ or w ≤ τ (Lemma 4.2). Denote µ′
s = µs in this case.

• If τµ0 + (1 − τ)µs /∈ ∂Ra0
, then there must exist some action a′ that is strictly better than a and a0 for the

agent at the τ -biased belief, hence τµ0+(1− τ)µs ∈ extRa0
(so s is an external signal). Then, according to

the argument in Lemma 4.3, we can find another belief µ′
s on the line segment between µs and µ0 such that

the τ -biased version of µ′
s lies exactly on the boundary set ∂Ra0 :

τµ0 + (1− τ)µ′
s ∈ ∂Ra0 , µ′

s = tµs + (1− t)µ0 for some t ∈ [0, 1]. (21)

After the above discussion, we have found a µ′
s that is either equal to µs or on the line segment between µs and µ0,

for every s ∈ S. So, µ0 can be written as a convex combination of {µ′
s}s∈S :

µ0 =
∑
s∈S

p′sµ
′
s. (22)
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Moreover, the µ′
s defined above satisfies τµ0 + (1 − τ)µ′

s ∈ ∂Ra0 . So, a signal inducing true posterior µ′
s will be a

boundary signal and useful for testing w ≥ τ or w ≤ τ (Lemma 4.2). Finally, by the splitting lemma (Lemma 2.1), we
know that there must exist a signaling scheme π′ with signal space S where each signal s ∈ S indeed induces posterior
µ′
s. Such a signaling scheme sends useful (boundary) signals with probability 1. Hence, the sample complexity of it is

1.

The “only if” part. Suppose whether w ≥ τ or w ≤ τ can be tested with a single sample. This means that
the optimal signaling scheme obtained from the linear program in Algorithm 1 must satisfy

∑
a∈A\{a0} π(a) =∑

a∈A\{a0}
∑

θ∈Θ π(a|θ)µ0(θ) = 1, namely, the total probability of useful signals (signals in A \ {a0}) is 1. Then,
by the splitting lemma, the prior µ0 can be expressed as the convex combination

µ0 =
∑

a∈A\{a0}

π(a)µa (23)

where π(a) =
∑

θ∈Θ µ0(θ)π(a|θ) is the unconditional probability of signal a and µa is the true posterior induced by
signal a. Moreover, the indifference constraint (8) in the linear program ensures that the agent is indifferent between
a and a0 upon receiving signal a if the agent has bias level τ : mathematically, τµ0 + (1 − τ)µa ∈ Ia. This means
µa ∈ Ia,τ by definition. So, we obtain

µ0 ∈ ConvexHull

( ⋃
a∈A\{a0}

Ia,τ

)
. (24)

B.2.2 Proof of Parts 2 and 3 of Theorem 5.2

We first prove that, if whether w ≥ τ or w ≤ τ can be tested with finite sample complexity, then Ia,τ ̸= ∅ for at least
one a ∈ A \ {a0}.

According to Lemma 4.1, if we can test whether w ≥ τ or w ≤ τ with finite sample complexity using adaptive
algorithms, then we can do this using a constant signaling scheme. Lemma 4.3 further ensures that we can do this using
a constant signaling scheme π with only boundary and internal signals. But according to Lemma 4.4, internal signals
are not useful for testing w ≥ τ or w ≤ τ . So, the signaling scheme π must send some boundary signal s with positive
probability. Let µs be the true posterior induced by s. By the definition of boundary signal, τµ0 + (1− τ)µs ∈ ∂Ra0 ,
implying that the agent is indifferent between a0 and some action a ∈ A \ {a0} if their belief is τµ0 + (1− τ)µs (and
a0 and a are better than any other actions). This means τµ0 + (1 − τ)µs ∈ Ia, so µs ∈ Ia,τ by definition. Hence,
Ia,τ ̸= ∅.

We then prove the opposite direction: if Ia,τ ̸= ∅ for at least one a ∈ A \ {a0}, then whether w ≥ τ or w ≤ τ can be
tested with finite sample complexity.

Let a1 ∈ A \ {a0} be an action for which Ia1,τ ̸= ∅. We claim that:

Claim B.1. There exists a state θ1 ∈ Θ for which the agent weakly prefers action a1 over action a0 if the true
posterior is state θ1 with probability 1 and the agent has bias level τ . In notation, let eθ1 ∈ ∆(Θ) be the vector whose
θ1th component is 1 and other components are 0. The agent weakly prefers action a1 over action a0 under belief
τµ0 + (1− τ)eθ1 .

Proof. Suppose on the contrary that no such state θ1 exists. Then the agent strictly prefers a0 over a1 under belief
τµ0+(1− τ)eθ for every state θ ∈ Θ. This implies that, for any belief µ ∈ ∆(Θ), the agent should also strictly prefer
a0 over a1 under the belief τµ0 + (1− τ)µ, due to linearity of the agent’s utility with respect to the belief. The agent
strictly preferring a0 over a1 implies τµ0 + (1 − τ)µ /∈ Ia, so µ cannot be in Ia,τ by definition. This holds for any
µ ∈ ∆(Θ), so Ia,τ = ∅, a contradiction.

Let θ1 be the state in the above claim. The prior µ0 can be trivially written as the convex combination of eθ1 and eθ
for other states θ:

µ0 = µ0(θ1)eθ1 +
∑

θ∈Θ\{θ1}

µ0(θ)eθ. (25)

Since the agent does not prefer a0 under belief τµ0 + (1− τ)eθ1 , the belief τµ0 + (1− τ)eθ1 cannot be in the region
Ra0

. The prior µ0 is in the region Ra0
. Consider the line segment connecting eθ1 and the prior µ0. There must exist
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a point µ′ = teθ1 + (1 − t)µ0 on the line segment such that the τ -biased belief τµ0 + (1 − τ)µ′ lies exactly on the
boundary of Ra0 . Clearly, the prior can also be written as a convex combination of µ′ and eθ for θ ∈ Θ \ {θ1}:

µ0 = p′µ′ +
∑

θ∈Θ\{θ1}

p′θeθ. (26)

Then by the splitting lemma (Lemma 2.1), there exists a signaling scheme with |Θ| signals where one signal induces
posterior µ′ and the other signals induce posteriors {eθ}θ∈Θ\{θ1}. In particular, the signal inducing µ′ is a boundary
signal since τµ0+(1−τ)µ′ ∈ ∂Ra0

by construction. By Lemma 4.2, that signal is useful for testing w ≥ τ or w ≤ τ .
When that signal is sent (which happens with positive probability p′ > 0 at each time step), we can tell w ≥ τ or
w ≤ τ . This finishes the proof.

The two directions proved above together prove the parts 2 and 3 of Theorem 5.2.

C A More General Bias Model

We define a more general model of biased belief than the linear model. The agent’s bias is captured by some function
ϕ : ∆(Θ)×∆(Θ)× [0, 1] → ∆(Θ). Given prior µ0 ∈ ∆(Θ), true posterior µs ∈ ∆(Θ), and bias level w ∈ [0, 1], the
agent has biased belief ϕ(µ0, µs, w). The linear model is the special case where ϕ(µ0, µs, w) = wµ0 + (1 − w)µs.
We make the following natural assumptions on ϕ:
Assumption C.1.

• ϕ(µ0, µs, 0) = µs (no bias), ϕ(µ0, µs, 1) = µ0 (full bias).

• ϕ(µ0, µs, w) is continuous in µ0, µs, w.

We then make some joint assumptions on the bias model ϕ and the agent’s utility function U . Recall that the notation
Ra0

=
{
µ ∈ ∆(Θ) | ∀a ∈ A \ {a0}, c⊤a µ > 0

}
is the region of beliefs under which the agent strictly prefers action

a0, ∂Ra0
is the boundary of Ra0

, and extRa0
is the exterior of Ra0

where the agent strictly not prefers a0.
Assumption C.2. When receiving no information, the agent will take the default action: ∀µ0 ∈ ∆(Θ), ∀w ∈ [0, 1],
ϕ(µ0, µ0, w) ∈ Ra0

.
Definition C.1. We say that a posterior belief µ ∈ ∆(Θ) satisfies single-crossing if the curve {ϕ(µ0, µ, w) : w ∈
[0, 1]} passes the boundary ∂Ra0 only once: namely, there exists w ∈ [0, 1] such that

∀w ∈ [0, w), ϕ(µ0, µ, w) ∈ extRa0
;

ϕ(µ0, µ, w) ∈ ∂Ra0 ;

∀w ∈ (w, 1], ϕ(µ0, µ, w) ∈ Ra0 .

(27)

We assume that all posteriors outside Ra0
satisfy single-crossing, and all posteriors inside Ra0

do not cross the bound-
ary when the bias level varies in [0, 1]:
Assumption C.3.

• Any µ /∈ Ra0 satisfies single-crossing.

• For any µ ∈ Ra0
, any w ∈ [0, 1], ϕ(µ0, µ, w) ∈ Ra0

.

Under the above general bias model with the stated assumptions, our results regarding the optimality of constant
signaling schemes (Lemma 4.1) and the revelation principle (Lemma 4.5) still hold. The geometric characterization
of testability of bias (Theorem 5.2) holds after redefining some notations. Let Ia = {µ ∈ ∆(Θ) | c⊤a µ = 0} still be
the set of beliefs where the agent is indifferent between actions a and a0. Let Ia,τ still be the set of posterior beliefs
for which an agent with bias level τ will be indifferent between a and a0, but with a more general expression than the
linear model:

Ia,τ := {µ ∈ ∆(Θ) | ϕ(µ0, µ, τ) ∈ Ia}. (28)
With the above definition of Ia,τ , Theorem 5.2 still holds. We omit the proofs because they are almost identical to the
proofs for the linear model.

The linear program algorithm for computing the optimal signaling scheme (Algorithm 1 and Theorem 4.6) does not
apply to the general bias model because ϕ is not linear. We view designing an efficient algorithm for the general bias
model an interesting future direction.

16


	Introduction
	Model
	Warm-Up: A Two-State, Two-Action Example
	Computing the Optimal Signaling Scheme in the General Case
	Optimality of Constant Signaling Schemes
	Revelation Principle
	Algorithm for Computing the Optimal Signaling Scheme

	Geometric Characterization of the Testability of Bias
	Discussion
	Missing Proofs from Section 4
	Proof of Lemma 4.3
	Proof of Lemma 4.4
	Proof of Lemma 4.5
	Proof of Theorem 4.6

	Missing Proofs from Section 5
	Proof of Lemma 5.1
	Proof of Theorem 5.2
	Proof of Part 1 of Theorem 5.2
	Proof of Parts 2 and 3 of Theorem 5.2


	A More General Bias Model

