
Learning Social Welfare Functions

Kanad Shrikar Pardeshi
Carnegie Mellon University
kpardesh@andrew.cmu.edu

Itai Shapira
Harvard University

itaishapira@g.harvard.edu

Ariel D. Procaccia
Harvard University

arielpro@seas.harvard.edu

Aarti Singh
Carnegie Mellon University
aarti@andrew.cmu.edu

Abstract

Is it possible to understand or imitate a policy maker’s rationale by looking at past
decisions they made? We formalize this question as the problem of learning social
welfare functions belonging to the well-studied family of power mean functions. We
focus on two learning tasks; in the first, the input is vectors of utilities of an action
(decision or policy) for individuals in a group and their associated social welfare as
judged by a policy maker, whereas in the second, the input is pairwise comparisons
between the welfares associated with a given pair of utility vectors. We show that
power mean functions are learnable with polynomial sample complexity in both
cases, even if the comparisons are social welfare information is noisy. Finally, we
design practical algorithms for these tasks and evaluate their performance.

1 Introduction

Consider a standard decision making setting that includes a set of possible actions (decisions or
policies), and a set of individuals who assign utilities to the actions. A social welfare function
aggregates the utilities into a single number, providing a measure for the evaluation of actions with
respect to the entire group. Utilitarian social welfare, for example, is the sum of utilities, whereas
egalitarian social welfare is the minimum utility. Given two actions that induce the utility vectors
(3, 0) and (1, 1) for two individuals, the former is preferred when measured by utilitarian social
welfare, whereas the latter is preferred according to egalitarian social welfare.

When competent decision makers adopt policies that affect groups or even entire societies, they may
have a social welfare function in mind, but it is typically implicit. Our goal is to learn a social welfare
function that is consistent with the decision maker’s rationale. This learned social welfare function
has at least two compelling applications: first, understanding the decision maker’s priorities and ideas
of fairness, and second, potentially imitating a successful decision maker’s policy choices in future
dilemmas or in other domains.

As a motivating example, consider the thousands of decisions made by public health officials in
the United States during the Covid pandemic: opening and closing schools, restaurants, and gyms,
requirements for masking and social distancing, lockdown recommendations, and so on. Each
decision induces utilities for individuals in the population; closing schools, for instance, provides
higher utility to medically vulnerable individuals compared to opening them, but arguably has much
lower utility for students and parents. Assuming that healthcare officials were acting in the public
interest and (approximately) optimizing a social welfare function, which one did they have in mind?
Our goal is to answer such questions by learning from example decisions.

Another example we consider in this paper is that of allocating food resources in a community by a
US-based nonprofit to hundreds of recipient organizations. Working with a dataset of utility of 18

Table 1: A summary of our results regarding the sample complexity of various tasks. Here, ξ =
umax (umax − umin) and κ = log(umax/umin), with all d individual utilities assumed to be in the
range [umin, umax]. ρ ∈ [0, 1/2) is the probability of mislabeling for the i.i.d noise model, and τmax

is the maximum temperature of the logistic noise model.
Social Welfare Information Loss Known Weights Unknown Weights

Cardinal values ℓ2 O(ξ2) O(ξ2d log d)
Pairwise comparisons 0-1 O(log d) O(d log d)

Pairwise comparison with i.i.d noise 0-1 O
(

log d
(1−2ρ)2

)
O

(
d log d

(1−2ρ)2

)
Pairwise comparisons with logistic noise estimation Logistic O(τ2

maxκ
2) O(τ2

maxκ
2d log d)

different stakeholders such as donors, volunteers, dispatchers and recipient organizations [11], we
consider the task of learning the social welfare implicit in the decisions that may be made by the
nonprofit.

In order to formalize this problem, there are two issues we need to address. First, to facilitate
sample-efficient learnability, we need to make some structural assumptions on the class of social
welfare functions. We focus on the class of weighted power mean functions, which includes the most
prominent social welfare functions: the aforementioned utilitarian and egalitarian welfare, as well
as Nash welfare (the product of utilities). This class is a natural choice, as it is the only class of
functions feasible under a set of reasonable social choice axioms such as monotonicity, symmetry,
and scale invariance [19, 7].

Second, we need to specify the input to our learning problem. There are two natural options, and
we explore both: utility vectors coupled with their values under a target social welfare function,
or pairwise comparisons between utility vectors. We demonstrate sample complexity bounds for
both types of inputs, where the social welfare value or comparisons can be noiseless or corrupted by
noise. We note that estimating the utility vector associated with any particular decision or policy is
ostensibly challenging, but in fact this has been done in prior work and we have access to relevant
data, as we discuss in Section 6.

Our contributions. Learning weighted power mean functions is a non-standard regression or
classification problem due to the complex, highly nonlinear dependence on the power parameter
p, which is the parameter of interest. While one can invoke standard hyperparameter selection
approaches such as cross-validation to select p from a grid of values, the infinite domain of p does not
allow demonstration of a polynomial sample complexity without deriving an appropriate cover. We
derive statistical complexity measures such as pseudo-dimension, covering number, VC dimension
and Rademacher complexity for this function class, under both cardinal and ordinal observations
of the social welfare function. Our sample complexity bounds are summarized in Table 1. These
results may be of interest for other problems where weighted power mean functions are used, such as
fairness in federated learning [12].

We highlight some key contributions of this paper. We first establish the statistical learnability of
popular social welfare functions belonging to the weighted power mean functions family. We derive
a polynomial sample complexity of O(1) for learning using cardinal social welfare values under
ℓ2 loss, and O(log d) (where d denotes the number of individuals) for learning using comparisons
under 0− 1 loss in the unweighted/known weight setting. The upper bounds are a consequence of
the monotonicity of the target functions with p in the cardinal case, and analysis which reveals that
the target functions have O(log d) roots in the ordinal case. As expected, the ℓ2 loss is also sensitive
to the range (umax − umin). We also prove matching lower bounds for the ordinal case.

We also establish a polynomial sample complexity ofO(d log d) for both cardinal and ordinal tasks in
the setting when the individual weights are unknown. This result is intuitive, as learning an additional
d weight parameters incurs a proportional increase in the sample requirement.

We then analyze the sample complexity for the more practical ordinal task under different noise
models (independent and identically distributed, aka i.i.d, and logistic noise) and characterize the
dependence of sample complexity on the amount of noise. For the i.i.d setting, the sample complexity
increases with large noise (large ρ) and reduces to that of noiseless setting when ρ = 0. Unlike the
i.i.d setting where ρ is known, for the logistic noise, we also consider estimation of the noise level τ

2

and evaluate the likelihood with respect to the noisy distribution. Since the noise is harder to estimate
with increasing τ , the sample complexity increases with τ . Also, the likehood is sensitive to the range
of utilities κ.

Despite the non-convexity of the problem, we demonstrate a simple, practical algorithm for learning
weighted power means functions on the above tasks using simulated data and a dataset of utility
vectors for a food resource allocation task from Lee et al. [11], and observe good performance over a
range of parameters. Additionally, we verify the theoretical scaling of sample complexity through
simulations.

Related work. Conceptually, our work is related to that of Procaccia et al. [17]. They also study
the learnability of decision rules that aggregate individual utilities, but in their case, the individual
utilities are represented as rankings over a set of alternatives (rather than cardinal utilities, as in
our problem), and the rule to be learned is a voting rule mapping the input rankings of utilities to a
winning alternative. They provide sample complexity results with respect to two families of voting
rules, namely positional scoring rules and voting trees.

Basu & Echenique [1] derive bounds on VC dimension for additive, Choquet, and max-min expected
utility for decision-making under uncertainty, bounding the number of pairwise comparisons needed
to falsify a candidate decision rule and estabilishing learnability or non-learnability for these classes.
Note that here the decision rule operates on probability distributions instead of utility vectors, and
their results are very different from ours on a technical level; for instance, max-min is not learnable
in their setting (infinite VC dimension), whereas it is easily learnable in ours.

Kalai [10] studies the learnability of choice functions and establishes PAC guaranteees. Choice
functions are defined with respect to a fixed and finite set of alternatives X , with each sample being a
subset from X and the choice over this subset. By contrast, our work involves learning the behavior
of a function on an infinite number of actions for which the utilities are known.

Pellegrini et al. [16] conduct experiments on learning aggregation functions which are assumed to be
a composition of Lp means, observing that they perform favorably in various tasks such as scalar
aggregation, set expansion and graph tasks. Our analysis is of a more theoretical nature, establishing
the sample-efficient learnability of weighted power mean aggregation functions.

Melnikov & Hüllermeier [14] consider learning from actions with feature vectors and their global
scores, with local scores for each individual unavailable for learning. They learn both local and global
score functions, and consider the ordered weighted averaging operator for aggregating local scores.
While we assume that each individual’s local score is given, the aggregation function belongs to a
richer function family motivated by social choice theory.

2 Problem Setup

We assume that the decision-making process concerns d individuals. The decision-making setting we
consider has each action associated with a positive utility vector u ∈ [umin, umax]

d ⊂ Rd
+, which

describes the utilities derived from the d individuals.

We encode the impact of each individual i ∈ [d] on the decision-making process through a weight
value wi ≥ 0 such that

∑d
i=1 wi = 1. These weight values together form a weight vector w ∈ ∆d−1.

The weight vector might be a known or unknown quantity. A common instance in which the weight
vector is known is when all agents are assumed to have an equal say, in which case w = 1d/d. For
all settings we consider, we provide PAC guarantees for both known weights and unknown weights.

We assume that the decision-making process provides a cardinal social welfare value to each action.
However, this social welfare value can be latent and need not be available to us as data. For the first
task concerned with cardinal decision values, the social welfare values are available and can be used
for learning. For the second task, both actions in the pair have a latent social welfare which is not
available to us; however, the preferred action in the pair is known to us. We consider learning bounds
with the empirical risk minimization (ERM) algorithm for all the losses in this work, with p̂ being
learned when the weights are known, and (ŵ, p̂) being learned when the weights are unknown.

3

Power Mean. The (weighted) power mean is defined on p ∈ R ∪ {±∞}, and for u ∈ Rd
+,w ∈

∆d−1, it is

M(u;w, p) =


(∑d

i=1 wiu
p
i

)1/p
p ̸= 0∏d

i=1 u
wi
i p = 0

It is sometimes more convenient to use the (natural) log power mean than the power mean. Since∑d
i=1 wi = 1, in effect we have d variables, w1, . . . , wd−1 and p. We refer to the weighted power

mean family with known weight w asMw,d = {M(·;w, p)|p ∈ R}. If the weight is unknown, the
weighted power mean family is denoted byMd = {M(·;w, p)|p ∈ R,w ∈ ∆d−1}.
The power mean family is a natural representation for social welfare functions. Cousins [7, 6] puts
forward a set of axioms under which the set of possible welfare functions is precisely the weighted
power mean family. An unweighted version of these functions results in the family of constant
elasticity of substitution (CES) welfare functions [8], which are widely studied in econometrics.

To show the generality of this family of functions, we list a few illustrative cases:

• M(u;w, p = −∞) = mini∈d ui, which corresponds to egalitarian social welfare.

• M(u;w, p = 0) =
∏d

i=1 u
wi
i , which corresponds to a weighted version of Nash social

welfare.
• M(u;w, p = 1) =

∑
i=1 wiui, which corresponds to weighted utilitarian welfare.

• M(u;w, p =∞) = maxi∈d ui, which corresponds to egalitarian social malfare.

We note that for p = ±∞, the decision utility is independent of w. With wi = 1/d for all i ∈ [d], we
get the conventional interpretations of the welfare notions mentioned above.

The power mean family has some useful properties. An obvious one is that M(u,w, p) ∈ [u(1), u(d)],
where u(1) and u(d) denote the first and d-th order statistics of u = (u1, . . . , un). u(1) is attained at
p = −∞, and u(d) is attained at p =∞. A more general observation is the following:

Lemma 2.1. (a) M(u;w, p) is nondecreasing w.r.t. p for all u ∈ [umin, umax]
d, w ∈ ∆d−1.

(b) M(u;w, p) is monotonic w.r.t. wi, i ∈ [d− 1] for all u ∈ [umin, umax]
d, p ∈ R.

(c) M(u;w, p) and logM(u;w, p)− logM(v;w, p) are quasilinear w.r.t. w if p is fixed.

A proof for the above lemma is provided in Appendix A.1. This monotonicity of the power mean in
w and p was also noted by Qi et al. [18].

3 Cardinal Social Welfare

We first consider the case where we know the cardinal value of the social choice associated with each
action. Learning in this setting thus corresponds to regression. Formally, we assume an underlying
distribution D : [umin, umax]

d × [umin, umax] over the utilities and social welfare values. We receive
i.i.d samples {(ui, yi)}ni=1 ∼ Dn, ui being the utility vector and yi ∈ [ui(1), ui(d)] being the social
welfare value associated with action i.

We consider ℓ2 loss over M(ui;w, p) and yi. The true risk in this case is

R(w, p) = E(u,y)∼D

[
(M(u;w, p)− y)

2
]
.

To analyze the PAC learnability of this setting, we first provide bounds on the pseudo-dimensions of
Mw,d andMd. We begin by noting that M(u;w, p) can also be represented as u(d) ·M(r;w, p),
where r ∈ [d], ri = ui/u(d). Since M(r;w, p) ∈ [0, 1], we can find pseudo-dimensions of this
function class.

We now define the function classes Sw,d = {f(u;w, p) = M(r;w, p)|(w, p) ∈ ∆d−1 × R} and
Sd = {f(u;w, p) = M(r;w, p)|p ∈ R}. We then have the following bounds on pseudo-dimensions:
Lemma 3.1. (a) If w is known, then Pdim(Sw,d) = 1.

4

(b) If w is not known, then Pdim(Sd) < 8d(log2 d+ 1).

A detailed proof is provided in Appendix A.3. We highlight the fact that p and w are the parameters
of the log power mean function family, which calls for the novel bounds provided in this work. These
bounds on the pseudo-dimensions can now be used to obtain PAC bounds.
Theorem 3.2. Given a set of samples {(ui, yi)}ni=1 drawn from a distribution Dn, for any δ > 0,
the following holds with probability at least 1− δ with respect to the ℓ2 loss function:

(a) If w is known, then

R(w, p̂)− inf
p∈R

R(w, p) ≤ 16ξ

(√
2 log 2 + 2 log n

n
+

c√
n

)
+ 6

√
log(4/δ)

2n

(b) If w is unknown, then

R(ŵ, p̂)− inf
(w,p)∈∆d−1×R

R(w, p) ≤16ξ

(√
2 log 2 + 16(d log2 d+ 1) log n

n
+

c√
n

)

+ 6

√
log(4/δ)

2n

where ξ = umax (umax − umin).

Proof Sketch. We first use the pseudo-dimensions found above to bound the Rademacher complexity
ofMd andMw,d in Lemma A.7. Since M(ui;w, p) ∈ [umin, umax] and yi ∈ [umin, umax], the ℓ2
loss function in this case has domain [umin − umax, umax − umin]. It is Lipschitz continuous in this
domain with Lipschitz constant 2ξ. Using Lemma A.7 and Talagrand’s contraction lemma, we obtain
the bounds R̂(ℓ ◦Mw,d) ≤ 2(umax − umin)R̂(Mw,d) and R̂(ℓ ◦Md) ≤ 2(umax − umin)R̂(Md).
These Rademacher complexity bounds are then used to obtain the uniform convergence bounds
above.

These bounds are distribution-free, with the only assumption being that all utilities and social welfare
values are in the range [umin, umax]. They also imply an O(1) and O(d log d) dependence of sample
complexity on d for known and unknown weights respectively. Moreover, we observe the dependence
of the upper bound on umax − umin for the ℓ2 loss. We note that when umax = umin = u0, all
utilities and social welfare function values are also u0. In this case, the Rademacher complexity
bound is also zero, which is expected.

Computationally, M(u;w, p) is non-convex in w and p, which means that the ℓ2 loss is also non-
convex. However, we observe that from Lemma (c), M(u;w, p) is quasilinear w.r.t. w with fixed p,
which makes the ℓ2 loss function quasi-convex for all (u, y). We use this fact to construct a practical
algorithm. A detailed explanation of the quasi-convexity of ℓ2 loss is provided in Appendix A.1.1.

A shortcoming of this setting is that decision-makers are required to provide a social welfare value
for each action. A more natural setting might be when decision-makers only provide their preferences
between actions — potentially just their revealed preferences, i.e., the choices they have made in the
past — and we address this case next.

4 Pairwise Preference Between Actions

For this setting, we assume an underlying distribution D : [umin, umax]
d × [umin, umax]

d × {±1} .
We obtain i.i.d. samples {((ui,vi), yi)}ni=1 ∼ Dn, where (ui,vi) are the utilities for the i-th pair of
actions, and yi is a comparison between their (latent) social choice values. We encode the comparison
function as C : [umin, umax]

d × [umin, umax]
d → {±1}, with

C((u,v);w, p) = sign (logM(u;w, p)− logM(v;w, p)) .

We denote the family of above functions by Cw,d = {C((u,v);w, p) : p ∈ R} when the weights
are known, and Cd = {C((u,v);w, p) : p ∈ R,w ∈ ∆d−1} when the weights are unknown. We
consider learning with 0− 1 loss over C((ui,vi);w, p) and yi. The true risk in this case is

R(w, p) = E((u,v),y)∼D

[
(1 + y · C((u,v);w, p))

2

]
.

To provide convergence guarantees for the above setting, we bound the VC dimension of the
comparison-based function classes mentioned above

5

Lemma 4.1. (a) If w is known, then VC(Cw,d) < 2(log2 d+ 1).
(b) If w is unknown, then VC(Cd) < 8(d log2 d+ 1).
(c) (Lower bounds): VC(Cd) ≥ log2 d+ 1, and VC(Cw,d) ≥ d− 1

The detailed proof of the above lemma is related to Appendix A.6. We find the asymptotically tight
lower bound for the known weights case rather surprising, as it is a priori unclear that the correct
bound should be superconstant and scale with d.

The finiteness of VC dimension guarantees PAC learnability, and we get uniform convergence bounds
using the VC theorem.
Theorem 4.2. Given samples {((ui,vi), yi)}ni=1 ∼ Dn and for 0-1 loss and any δ > 0, with
probability at least 1− δ,

(a) If w is known, then

R(w, p̂)− inf
p∈R

R(w, p) ≤ 16

√
2(log2 d+ 1) log(n+ 1) + log(8/δ)

n

(b) If w is unknown, then

R(ŵ, p̂)− inf
(w,p)∈∆d−1×R

R(w, p) ≤ 16

√
8(d log2 d+ 1) log(n+ 1) + log(8/δ)

n

We note that unlike the bounds on ℓ2 loss of Theorem 3.2, these bounds on 0-1 loss are independent
of the range of utility values and only depend on d. They provide sample complexity bounds which
depend on d as O(log d) and O(d log d) for known and unknown weights respectively. Despite
these PAC guarantees, empirical risk minimization can be particularly difficult in this case, since
the loss function as well as the function class logM(u;w, p)− logM(v;w, p) can be non-convex.
To illustrate this non-convexity, we plot the value of the above function for two pairs of utility
vectors with respect to p in Figure 6, with d = 6 and w = 1d/d. However, the quasilinearity of
logM(u;w, p)− logM(v;w, p) with fixed p can be used to design efficient algorithms.

4.1 Convergence Bounds Under I.I.D Noise

Decision making can be especially challenging if two actions are difficult to compare, and the
preference data we obtain can potentially be noisy. We first consider each comparison to be mislabeled
in an i.i.d. manner with known probability ρ ∈ [0, 1/2). We make use of the framework developed
by Natarajan et al. [15], and we consider convergence guarantees under 0-1 loss.

Specifically, the unbiased estimator of ℓ0−1 is

ℓ̃0−1(t, y) = ((1− ρ)ℓ0−1(t, y)− ρℓ0−1(t,−y))/(1− 2ρ).

We conduct ERM with respect to ℓ̃0−1 to obtain (ŵ, p̂) ∈ ∆d−1 × R (only learning p if weights
are known). We observe that ℓ0−1(t, y) = (1 + ty)/2 is 1/2-Lipschitz in t, ∀t, y ∈ {±1}. Using
Theorem 3 of Natarajan et al. [15], we get the following convergence bounds:
Theorem 4.3. Given samples {((ui,vi), yi)}ni=1 ∼ Dn, ∀δ > 0, ∀ρ ∈ [0, 1/2), with probability at
least 1− δ with respect to 0-1 loss,

(a) If w is known, then

R(ŵ, p̂)− inf
p∈R

R(w, p) ≤ 8

1− 2ρ

√
(log2 d+ 1) log(n+ 1)

n
+ 2

√
log(1/δ)

2n

(b) If w is unknown, then

R(ŵ, p̂)− inf
(w,p)∈∆d−1×R

R(w, p) ≤ 16

1− 2ρ

√
(d log2 d+ 1) log(n+ 1)

n
+ 2

√
log(1/δ)

2n

A detailed proof of the above theorem is provided in Appendix A.7. We note that although ERM
is conducted with respect to ℓ̃0−1 on the noisy distribution, the risks are defined on the underlying
noiseless distribution. This givesO(log d/(1− 2ρ)2) andO(d log d/(1− 2ρ)2) sample complexities

6

for the known and unknown weights cases respectively. We note that when ρ = 0, the above bounds
reduce to the noiseless bounds in Theorem 4.2. Since the noise level ρ is usually not known to us, it
can be estimated using cross-validation as suggested by Natarajan et al. [15].

However, conducting ERM on ℓ̃0−1 might be prohibitively difficult due to the non-convex nature of
the function. An i.i.d noise model might also be inappropriate in certain settings; we next consider a
more natural noise model.

5 Pairwise Preference With Logistic Noise

Intuitively, we expect that two actions would be harder to compare if their social welfare values are
closer to each other. We formalize this intuition in the form of a noise model inspired by the BTL
noise model [4, 13]. Let w∗ and p∗ be the true power mean parameters, and let τ∗ ∈ [0, τmax] be a
temperature parameter. For an action pair (u,v), we assume that the probability of u being preferred
to v is

P (y = 1|(u,v);w∗, p∗, τ∗) =
1

1 + exp (−τ∗ (logM(u;w∗, p∗)− logM(v;w∗, p∗))
(1)

We see that a larger difference between the log power means of u and v translates to a higher
probability of u being preferred. If u and v lie on the same level set of logM(·;w∗, p∗), the
probability becomes 0.5, which matches the intuition of both actions being equally preferred. We
also note the dependence of the probability on τ∗: a higher τ∗ corresponds to more confidence in the
preferences, with τ∗ = 0 meaning indifference for all pairs of actions. The mislabeling probability is
also invariant to scaling of u and v.

Our learning task now becomes estimating w, p and τ given data. We denote the function family
in this case by Tw,d = {τ (logM(·;w, p)− logM(·;w, p)) |τ, p} when the weights are known, and
Td = {τ (logM(·;w, p)− logM(·;w, p)) |τ,w, p} when the weights are unknown. A natural loss
function to consider in this case is negative log likelihood, and we consider PAC learnability with this
loss. Using the framework developed in Section 3, we obtain the following PAC bounds:

Theorem 5.1. Given samples {((ui,vi), yi)}ni=1 ∼ Dn and for negative log likelihood loss, for all
δ > 0, with probability at least 1− δ,

(a) If w is known, then

R(w, p̂)− inf
p∈R

R(w, p) ≤ 16τmaxκ

(√
2 log 2 + 2 log n

n
+

c√
n

)
+ 6

√
log(4/δ)

2n

(b) If w is unknown, then

R(ŵ, p̂)− inf
(w,p)∈∆d−1×R

R(w, p) ≤ 16τmaxκ

√
2 log 2 + 16(d log2 d+ 1) log n

n

+ 16τmaxκ
2c√
n
+ 3

√
log(4/δ)

2n

where κ = log(umax/umin).

We derive this result in detail in Appendix A.8. This gives us sample complexity bounds of O(1) and
O(d log d) with respect to d for the known and unknown weights cases respectively, thus establishing
PAC learnability. An important distinction between Theorem 4.3 and the above theorem is that
Theorem 4.3 bounds risk with respect to 0-1 loss, while the above theorem bounds risk with respect
to logistic loss which is continuous and hence easier to control. Moreover, we estimate the noise level
τ in the logistic case along with w and p, whereas 4.3 is concerned with estimating w and p.

As with the previous cases, non-convexity in this setting also makes global optimization with respect
to w and p (and hence ERM) difficult. We observe that logistic loss is quasilinear in w with fixed p,
and this observation can be used to construct an effective algorithm. A detailed explanation of this
fact is provided in Appendix A.1.2.

7

50 100 200 400 800
Number of samples

10 6

10 5

10 4

10 3

10 2

Te
st

 lo
ss

(a) Test loss

50 100 200 400 800
Number of samples

10 4

10 3

10 2

10 1

100

KL
 d

iv
er

ge
nc

e

(b) KL(w∗∥ŵ)

50 100 200 400 800
Number of samples

2.65

2.70

2.75

2.80

2.85

Va
lu

e
of

 p

(c) Learnt p

0.0 0.001 0.01 0.1 0.167

Figure 1: Results for cardinal case with number of samples. Different lines show results for different
values of added noise ν. Solid lines correspond to values for learned parameters, whereas dotted lines
correspond to values for real parameters. All plots are on log-log scale.

6 Empirical Results

We conduct several simulations on semi-synthetic data to gain additional insight into sample complex-
ity and demonstrate an empirically effective algorithm. The implementation also serves to demonstrate
the practicability of our approach, including the availability of individual utility functions.

Data. The dataset we rely on (which is not publicly available) comes from the work of Lee et al.
[11] with a US-based nonprofit that operates an on-demand donation transportation service supported
by volunteers. WeBuildAI is a participatory framework that enables stakeholders, including donors,
volunteers, recipient organizations, and nonprofit staff, to collaboratively design algorithmic policies
for allocating donations. Donors provide food donations, volunteers transport the donations, recipient
organizations receive and distribute the food, and dispatchers (nonprofit staff) manage the allocation
and logistics. The “actions” are hundreds of recipient organizations that may receive an incoming
donation. As part of this framework, Lee et al. [11] learned a (verifiably realistic) utility function
over the actions for each of 18 stakeholders from the different groups based on 8 features: travel
time between donors and recipients, recipient organization size, USDA-defined food access levels in
recipient neighborhoods, median household income, poverty rates, the number of weeks since the last
donation, the total number of donations received in the last three months, and the type of donation
(common or uncommon).

In our simulations, we use the values of these stakeholder utility functions learned by Lee et al.
[11] as the utility vectors. We fix a p∗ and weight vector w∗ to generate the social welfare values
M(u;w, p). We use noisy versions of these social welfare values in the cardinal case, whereas noisy
pairwise comparisons between random pairs of utility vectors are used in the ordinal case.

Algorithm. As noted in previous sections, ℓ2 and logistic losses are quasiconvex with respect to w
for single samples when p is fixed. Although the sum of quasiconvex functions is not guaranteed
to be quasiconvex, we empirically observe that gradient descent on the loss function applied to the
data can still lead to convergence to a minimum which has empirical risk comparable to that of the
true parameters. As our simulations show, this minimum increasingly resembles w∗ (the real weight)
with decreasing noise. Thus, our algorithm consists of performing a grid search on p and conducting
gradient descent on w for each p. We provide more details about the algorithm in Appendix B.

Cardinal case. We consider p∗ = 2.72 and a random weight w∗. We then add Gaussian noise with
standard deviation

(
ui(d) − ui(1)

)
· ν to each sample, where ν corresponds to the noise level. The

Gaussian noise is clipped to stay within
[
ui(1), ui(d)

]
. Finally, we learn p and w using our algorithm,

and we present the results in figure 1.

In Figure 1a, we observe that the test loss for learned parameters decreases with decreasing noise
and increasing number of samples. We also observe that the test loss for learned parameters closely
matches that for real parameters in Figure 1a. In Figure 1b, we observe that KL divergence between
the true and learnt weights decreases uniformly with decreasing noise and increasing number of
samples. This supports the fact that our algorithm is indeed able to find the correct minimum. We
also plot the trend of mean learned p in Figure 1c, and we observe that the learned p increasingly

8

500 1000 2000 4000 8000
Number of samples

10 1

100

Te
st

 lo
ss

(a) Test loss

500 1000 2000 4000 8000
Number of samples

10 2

10 1

100

101

KL
 d

iv
er

ge
nc

e

(b) KL(w∗∥ŵ)

500 1000 2000 4000 8000
Number of samples

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y
(n

oi
se

le
ss

)

(c) Noiseless test accuracy

0.1 1.0 10.0 40.0 100.0

Figure 2: Results for ordinal case with number of samples. Different lines show results for different
values of noise level τ . Solid lines correspond to values for learned parameters, whereas dotted lines
correspond to values for real parameters. All plots except accuracy are on log-log scale.

resembles the real p∗ with lower noise and greater number of samples. Plots for train loss and loss on
noiseless test data are provided in Appendix C.

Ordinal case. We consider p∗ = −1.62 and a random weight w∗. We compare each sample in the
considered training data with 10 other randomly chosen samples, with the comparisons being noised
according to the logistic noise model in Equation (1). We then learn w and τ for each p in the chosen
grid and then choose the best p. Our results are shown in Figure 2.

In Figure 2a we observe that the test loss for learned parameters matches that for real parameters
for small τ∗ and large number of training samples. The relative deviation between test losses
progressively increases for smaller number of samples and smaller τ∗. We note that small τ∗
corresponds to more noise in the comparisons, which results in higher losses. However, the deviation
between learnt loss and true loss is smaller as we are also estimating the noise parameter which is
easier to estimate for small τ∗, since the logistic function has larger gradient. We observe a uniform
decrease in KL divergence between w and w∗ for larger number of samples and smaller τ∗, which
again points to the effectiveness of the algorithm. We also observe that test accuracy on noiseless
data increases with more samples and higher τ∗. Interestingly, for τ∗ = 0.1 and τ∗ = 1, the test
accuracy on noiseless data (Figure 2c) is significantly higher than that on (noisy) test data, which
is another indicator of effective ERM being conducted by the algorithm. In Figure 4b in Appendix
C, we observe that there is a greater variation in learned p when compared to the cardinal case. A
possible reason behind this is that changes in p result in smaller changes in losses for negative p
than for positive p. This hypothesis is supported by simulations for the ordinal case conducted for
p = 1.62, whose results are presented in Figure 5. In Figure 5e, we observe that learned p is much
more consistent with the real p as τ∗ decreases.

We also conduct simulations on fully synthetic data to study the effect of d, and we present the results
in Appendix E. We verify the theoretical O(d log d) scaling of error with unknown weights for the
ordinal case in figure 8.

7 Discussion

Our work has (at least) several limitations, which can inspire future work. First, as seen in Section 6,
we are able to gain access to realistic utility vectors, in this case ones based on models that were
learned from pairwise comparisons. Utilities are also routinely estimated for other economically-
motivated algorithms — say, Stackelberg security games [20]. However, these estimates are of course
not completely accurate. It is an interesting direction of future work to extend our results to the
setting where the utility vectors need to be estimated, either by an outside expert, or using input from
the individuals themselves.

Although our experiments demonstrate convergence of the algorithm to the correct minimum, rigorous
theoretical analysis about the nature of minima for the ℓ2 and logistic loss functions is still needed
and could lead to algorithmic improvements. One issue is that scaling the algorithm to the national
scale – d = 108, say, can be prohibitively expensive.

9

Finally, our work only applies to weighted power mean functions. While we have argued that
this family is both expressive and natural, it would be exciting to obtain results for even broader,
potentially non-parametric families of social welfare functions.

The ability to learn social welfare functions can enable us to understand a decision maker’s priorties
and ideas of fairness, based on past decisions they have made. This has direct societal impact as
these notions can be used to both understand biases and inform the design of improved fairness
metrics. A second potential application is to imitate a successful decision maker’s policy choices in
future dilemmas or in other domains. This may pose some ethical questions if the learning model
is misspecified; however, the restriction of the function class to weighted power means, which is
inspired by natural social choice theory axioms, mitigates this risk.

10

References
[1] Basu, P. and Echenique, F. On the falsifiability and learnability of decision theories. Theoretical

Economics, 15(4):1279–1305, 2020.

[2] Bhat, G. S. and Savage, C. D. Balanced Gray codes. the Electronic Journal of Combinatorics,
3(1):R25, 1996.

[3] Boyd, S. and Vandenberghe, L. Convex Optimization. Cambridge University Press, 2004.

[4] Bradley, R. A. and Terry, M. E. Rank analysis of incomplete block designs: I. the method of
paired comparisons. Biometrika, 39:324, 1952.

[5] Condat, L. Fast projection onto the simplex and the l 1 ball. Mathematical Programming, 158
(1):575–585, 2016.

[6] Cousins, C. An axiomatic theory of provably-fair welfare-centric machine learning. Advances
in Neural Information Processing Systems, 34:16610–16621, 2021.

[7] Cousins, C. Revisiting fair PAC learning and the axioms of cardinal welfare. In International
Conference on Artificial Intelligence and Statistics, pp. 6422–6442, 2023.

[8] Goel, A., Hulett, R., and Plaut, B. Markets beyond Nash welfare for Leontief utilities. In 15th
International Conference on Web and Internet Economics, 2019.

[9] Jameson, G. J. Counting zeros of generalised polynomials: Descartes’ rule of signs and
Laguerre’s extensions. The Mathematical Gazette, 90(518):223–234, 2006.

[10] Kalai, G. Statistical learnability and rationality of choice. Technical report, Institute of
Mathematics and Center for Rationality, The Hebrew University of Jerusalem, 2001.

[11] Lee, M. K., Kusbit, D., Kahng, A., Kim, J. T., Yuan, X., Chan, A., See, D., Noothigattu, R.,
Lee, S., Psomas, A., et al. WeBuildAI: Participatory framework for algorithmic governance.
Proceedings of the ACM on human-computer interaction, 3(CSCW):1–35, 2019.

[12] Li, T., Sanjabi, M., Beirami, A., and Smith, V. Fair resource allocation in federated learning. In
8th International Conference on Learning Representations, 2020.

[13] Luce, R. Individual Choice Behavior: A Theoretical Analysis. Dover, 2005.

[14] Melnikov, V. and Hüllermeier, E. Learning to aggregate: Tackling the aggrega-
tion/disaggregation problem for OWA. In Proceedings of The Eleventh Asian Conference
on Machine Learning, volume 101 of Proceedings of Machine Learning Research, pp. 1110–
1125, 2019.

[15] Natarajan, N., Dhillon, I. S., Ravikumar, P. K., and Tewari, A. Learning with noisy labels.
Advances in Neural Information Processing Systems, 26, 2013.

[16] Pellegrini, G., Tibo, A., Frasconi, P., Passerini, A., and Jaeger, M. Learning aggregation
functions. In Proceedings of the 30th International Joint Conference on Artificial Intelligence,
pp. 2892–2898, 2021.

[17] Procaccia, A. D., Zohar, A., Peleg, Y., and Rosenschein, J. S. The learnability of voting rules.
Artificial Intelligence, 173(12):1133–1149, 2009.

[18] Qi, F., Mei, J.-Q., Xia, D.-F., and Xu, S.-L. New proofs of weighted power mean inequalities
and monotonicity for generalized weighted mean values. Mathematical Inequalities and
Applications, 3:377–, 09 2000.

[19] Roberts, K. W. S. Interpersonal comparability and social choice theory. The Review of Economic
Studies, 47(2):421–439, 1980.

[20] Tambe, M. (ed.). Security and Game Theory: Algorithms, Deployed Systems, Lessons Learned.
Cambridge University Press, 2012.

11

A Deferred Proofs

A.1 Proof of Lemma 2.1

Proof of Lemma 2.1 Part (a). Let p > 0. Define ti = ui

umax
for all i ∈ [n]. Since ti ≤ 1 for all i ∈ [n]

and given that
∑n

i=1 wi = 1, it follows that
∑n

i=1 wit
p
i ≤

∑n
i=1 wi = 1. Therefore, log(wit

p
i) ≤ 0

for each i. Given p > q > 0, we obtain

0 ≤ log

(
d∑

i=1

wit
p
i

)(
p−1 − q−1

)
= p−1 log

(
d∑

i=1

wit
p
i

)
− q−1 log

(
d∑

i=1

wit
p
i

)

≤ p−1 log

(
d∑

i=1

wit
p
i

)
− q−1 log

(
d∑

i=1

wit
q
i

)

=

(
umax + p−1 log

d∑
i=1

wit
p
i

)
−

(
umax + q−1 log

d∑
i=1

wit
q
i

)
= logM(u;w, p)− logM(u;w, q),

This derivation similarly holds for the case 0 > p > q, demonstrating the monotonicity of
logM(u;w, p) with respect to p. The continuity of logM(u;w, p) with respect to p at p = 0
ensures the monotonicity for all p ∈ R. Since log is a strictly increasing function, this guarantees the
monotonicity of M(u;w, p).

Proof of Lemma 2.1 Part (b). Since
∑d

i=1 wi = 1, we express wd = 1 −
∑d−1

i=1 wi and consider
d− 1 variables. For p ̸= 0, we have

logM(u;w, p) = p−1 log

(
d−1∑
i=1

wiu
p
i + up

d

(
1−

d−1∑
i=1

wi

))

=⇒ ∂ logM(u;w, p)

∂wi
= p−1

 up
i − up

d∑d−1
i=1 wiu

p
i + up

d

(
1−

∑d−1
i=1 wi

)


=

(
up
i − up

d∑d
i=1 wiu

p
i

)
p−1

∑d
i=1 wiu

p
i is positive since it is a positive weighted sum of utilities. We aim to show that p−1(up

i −
up
d) is positive. Suppose ui > ud. If p > 0, then up

i −u
p
d > 0. Conversely, if p < 0, then up

i −u
p
d < 0,

but since p−1 is also negative, the product remains positive. Thus, if ui > ud, the log-norm increases
with wi. A similar argument shows that the log-norm decreases if ui < ud.

For p = 0, we have

∂ logM(u;w, 0)

∂wi
=

∂

∂wi

(
d−1∑
i=1

wi log ui +

(
1−

d−1∑
i=1

wi

)
log ud

)

= log

(
ui

ud

)
= lim

p→0

∂ logM(u;w, p)

∂wi

This indicates that for ui > ud, the derivative is positive, implying an increase, and negative for
ui < ud, implying a decrease. Thus, the function is monotonic for all wi ∈ [d− 1]. Since log is a
strictly increasing function, this guarantees the monotonicity of M(u;w, p).

12

Proof of Lemma 2.1 Part (c). We prove that logM(u;w, p) − logM(v;w, p) is quasilinear. The
proof for M(u;w, p) follows by setting v = 1d.

As noted in [3], the fraction of two linear functions is quasilinear when the denominator is greater
than zero. As ⟨w,vp⟩ > 0∀w ∈ ∆d−1, we have that

f(w) =
⟨w,up⟩
⟨w,vp⟩

is a quasilinear function. Moreover, we note that f(w) > 0∀w ∈ ∆d−1. We note that for x > 0,
x1/p is a monotone function for p ∈ R \ {0}. Since a monotone function preserves quasilinearity,
M(u;w, p)/M(v;w, p) = f(w)1/p is a quasilinear function. Since g(x) = log(x) is also a
monotone function, quasilinearity is preserved, which makes logM(u;w, p) − logM(v;w, p) a
quasilinear function as well.

A.1.1 Quasiconvexity of ℓ2 loss

Since M(u; ,w, p) is quasilinear according to Proposition 2.1 (c), f(w) = M(u;w, p)− y is also
quasilinear. For w1,w2 ∈ ∆d−1, we thus have

min {f(w1), f(w2)} ≤ f(λw1 + (1− λ)w2) ≤ max {f(w1), f(w2)}
=⇒ f(λw1 + (1− λ)w2)

2 ≤ max
{
f(w1)

2, f(w2)
2
}

Thus, f(w2)
2 = (M(u;w, p)− y)

2 is quasiconvex.

A.1.2 Quasilinearity of logistic loss

From Proposition 2.1 (c), we know that logM(u;w, p)− logM(v;w, p) is quasilinear. We consider
two cases:

• y = 1: Since − log σ(x) = log(1 + exp(−x)) is a monotonic function, it preserves
quasilinearity.

• y = 0: Since− log(1−σ(x)) = log(1+exp(−x))+x is a monotonic function, it preserves
quasilinearity.

Using the above two properties, we conclude that−y log σ(x)−(1−y) log(1−σ(x)) is a quasilinear
function.

A.2 Lemma A.1

We state an important property: the log power mean can be expressed using another log power mean
with individual utilities in a fixed range.

Lemma A.1. Let q = p log
(
u(d)/u(1)

)
, and r ∈ [1, e]d such that ri =

exp
(
log(ui/u(1))/ log(u(d)/u(1))

)
Then,

logM(u;w, p) = log u(1) + log

(
u(d)

u(1)

)
logM(r;w, q)

We note that since ri ∈ [1, e] for any i ∈ [d], logM(r;w, q) ∈ [0, 1].

13

Proof.

logM(u;w, p) =
log
(∑d

i=1 wiu
p
i

)
p

=
log
(
up
(1)

(∑d
i=1 wi

(
ui

u(1)

)p))
p

= log u(1) +
log
(∑d

i=1 wi exp
(
p log

(
ui

u(1)

)))
p

= log u(1) +
1

p
log

(
d∑

i=1

wi exp

(
p log

(
u(d)/u(1)

) log
(
ui/u(1)

)
log
(
u(d)/u(1)

)))

Let r ∈ [0, e]d such that

ri = exp

(
log(ui/u(1))

log(u(d)/u(1))

)
and q = p log(u(d)/u(1)). We then have

logM(u;w, p) = log u(1) +
1

p
log

(
d∑

i=1

wir
(p log(u(d)/u(1)))
i

)

logM(u;w, p) = log u(1) + log

(
u(d)

u(1)

)
1

q
log

(
d∑

i=1

wir
q
i

)

A.3 Proof of Lemma 3.1

We differentiate between two representations of Rademacher complexity:

R̂(F) = 1

n
Eϵ

[
sup
f∈F

n∑
i=1

ϵif(xi)

]

R̂abs(F) =
1

n
Eϵ

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

ϵif(xi)

∣∣∣∣∣
]

It is clear that R̂(F) ≤ R̂abs(F). We now list a few results related to Pollard’s pseudo-dimension.
Definition A.2. (Pseudo-shattering) LetH be a set of real valued functions from input space X . We
say C = (x1, . . . , xm) is pseudo-shattered if there exists a vector r = (r1, . . . , rm) such that for all
b ∈ {±1}m = (b1, . . . , bm), there exists hb ∈ H such that sign (hb(xi)− ri) = bi.
Definition A.3. The pseudo-dimension Pdim(H) is the cardinality of the largest set pseudo-shattered
byH.

The following lemma connects pseudo-dimensions to VC dimensions:
Lemma A.4.

The following lemma bounds the Rademacher complexity using pseudo-dimension and covering
numbers.
Lemma A.5. For F ⊆ [0, 1]X with Pdim(F) ≤ d,

N (ϵ,F , dn) ≤
(c
ϵ

)2d
where dn(f, g) =

(
1
n

∑n
i=1 (f(xi)− g(xi))

2
)1/2

14

We also have the following covering number bound for Rademacher complexity:
Lemma A.6. For F ⊆ [0, 1]X ,

R̂abs(F) ≤ inf
ϵ>0

(√
2 log 2N (ϵ,F , dn)

n
+ ϵ

)

We now turn to bounding the complexity for the unknown and known weights cases.:

Proof of Lemma 3.1 Part (a). The function class is:

Mw,d = {M(r;w, p)|p ∈ R}
Moreover, from 2.1, it follows that for a fixed u ∈ Rd, M(u;w, p) is a non-decreasing function
with respect to p. Consequently, there exists a p∗ ∈ R ∪ {±∞} such that for any y ∈ (umin, umax),
we have M(u;w, p) < y for all p < p∗, and M(u;w, p) ≥ y for all p ≥ p∗. This implies that
BM (u, y) = sign(M(u;w, p)− y) changes its sign exactly once as p increases.

We note that for BM (x, y), one point can be shattered (by choosing p < p∗ and p > p∗). However,
for two points u and v, the number of times a sign change occurs with increasing p for either u or v
is at most twice, meaning that only 3 labels can be achieved. Thus, 2 points cannot be shattered.

Proof of Lemma 3.1 Part (b). The function class is:

Md = {M(·;w, p)|p ∈ R}
We note that

BM (u, y) = sign (M(u;w, p)− y)

= sign (logM(u;w, p)− log y)

= sign (logM(u;w, p)− logM(y · 1d;w, p))

which, we observe, is exactly the expression in the noiseless comparison-based setup for the unknown
weights case. We show in Lemma 4.1 (b) that the VC dimension for this expression is upper bounded
by 8(d log2 d+ 1). Thus, our result is proved.

A.4 Lemma A.7: Rademacher complexity bound for cardinal case
Lemma A.7. (a) If w is known, then

R̂(Mw,d) ≤ umax

(√
2 log 2 + 2 log n

n
+

c√
n

)
(b) If w is unknown, then

R̂(Mw,d) ≤ umax

(√
2 log 2 + 16(2 log2 d+ 1) log n

n
+

c√
n

)
,

where c > 0 is a constant.

Proof. We prove the result for unknown weights - the result for known weights follows by replacing
the pseudo-dimension bound of Sd by that of Sw,d from Lemma 3.1. Let dp denote the pseudo-
dimension for the unknown weights case.

R̂(Md) = Eϵ

[
1

n
sup

(w,p)∈∆d−1×R

n∑
i=1

ϵiM(ui;w, p)

]

= Eϵ

[
1

n
sup

(w,p)∈∆d−1×R

n∑
i=1

ϵiumax ·M(ri;w, p)

]

= umaxEϵ

[
1

n
sup

(w,p)∈∆d−1×R

n∑
i=1

ϵiM(ri;w, p)

]

≤ umaxEϵ

[
1

n
sup

(w,p)∈∆d−1×R

n∑
i=1

|ϵiM(ri;w, p)|

]
= umaxR̂abs(Sd)

15

From Lemmas A.5 and A.6, and since logM(r;w, q) ∈ [0, 1], we have

N (ϵ,Sd, dn) ≤
(c
ϵ

)2
dp

=⇒ R̂abs(Sd) ≤ inf
ϵ>0

(√
2 log 2 + 4dp log(c/ϵ)

n
+ ϵ

)

≤
√

2 log 2 + 2dp log n

n
+

c√
n

(setting ϵ = c/
√
n)

We thus have

R̂(Md) = umax

(√
2 log 2 + 2dp log n

n
+

c√
n

)
Replacing dp = 8(d log2 d+ 1) gives us the required bound

We observe that the above lemma provides O(
√

log(n)/n) and O(
√
d log(d) log(n)/n) bounds on

the Rademacher complexity for unknown and known weights respectively. An important aspect of the
above bounds is their dependence on umax. Intuitively, this means that the richness of the function
class increases as the maximum possible utility value increases.

A.5 Proof for Theorem 3.2

Proof. We prove the result for the unknown weights case - the result for known weights follows a
similar process. For ℓ2 loss, our function class is

L2 =
{
ℓ2(M(u;w, p), y) = (y −M(u;w, p))2|(w, p) ∈ ∆d−1 × R

}
As M(u;w, p), yi ∈ [ui(1), ui(d)] ⊆ [umin, umax], we have y−M(u;w, p) ∈ [umin−umax, umax−
umin]. Over a bounded range [−γ, γ], ℓ2(t, y) = (t− y)2 is 2γ Lipschitz continuous w.r.t. t. Thus,
using Talagrand’s contraction lemma and Lemma A.7, we have

R̂(L2) = R̂(ℓ2 ◦Md) ≤ 2(umax − umin)R̂(Md)

We then use the uniform convergence bounds for Rademacher complexity to get

sup
(w,p)∈∆d−1×R

∣∣∣R̂n(w, p)−R(w, p)
∣∣∣ ≤ 8(umax − umin)R̂(Md) + 3

√
log(4/δ)

2n
= ϵ

Thus,

R(ŵ, p̂)−R(w, p) =
(
R̂n(ŵ, p̂)− R̂n(w, p)

)
+
(
R̂n(w, p)−R(w, p)

)
+
(
R(ŵ, p̂)− R̂n(ŵ, p̂)

)
≤ 0 + ϵ+ ϵ = 2ϵ

= 16(umax − umin)R̂(Md) + 6

√
log(4/δ)

2n

Replacing R̂(Md) from Lemma A.7 provides us with the required bounds.

A.6 Proof of Lemma 4.1

First, we state a lemma from Jameson [9]:

Lemma A.8 (Jameson [9], Theorem 4.6). Let f : R→ R be defined as f(p) =
∑n

i=1 ai exp(bix),
where b1 > b2 > . . . > bn and

∑n
i=1 ai = 0. Define Aj :=

∑j
i=1 ai and denote by S(Aj) the

number of sign changes in the sequence {Ai}ji=1. Then, the number of unique zeros of f is at most
S(An) + 1.

16

Consider the function f(p) =
∑d

i=1 wiu
p
i −

∑d
i=1 wiv

p
i for u,v ∈ Rd with disjoint entries:

f(p) =
d∑

i=1

wiu
p
i −

d∑
i=1

wiv
p
i =

d∑
i=1

wi exp(p log ui)−
d∑

i=1

wi exp(p log vi)

Applying Lemma A.8, if wi = w for all i, the sequence {Aj}, consisting of sums of w or −w, can
have at most d − 1 sign changes. A sign change at index k implies Ak−1 = 0, and the next sign
change cannot occur before index k + 2. Therefore, f(p) has at most d zeros in this case. In the
general case, where wi ̸= wj for some i ̸= j, a sign change in {Aj} can occur at any index except
the first and the last. Thus, f(p) can have at most 2d− 1 roots, as sign changes are possible at all
intermediate indices. We conclude that Mp(u;w, p)−Mp(v;w, p), defined over R ∪ {±∞}, can
change sign as a function of p at most d− 1 times if wi =

1
d , and up to 2d− 1 times in the general

case.

Lemma A.9. Let r, q : R → R be two polynomials such that c := r(x) − q(x) is a constant for
all x ∈ R, and the sets of roots {x1, . . . , xd} and {y1, . . . , yd} of r and q respectively are disjoint,
positive and of size d. Then, for k = 0, 1, . . . , d− 1, the k-th power sums of the roots x1, . . . , xd and
y1, . . . , yd are equal, i.e.:

d∑
i=1

xk
i =

d∑
i=1

yki .

Proof. Given that r − q = c, both polynomials have the same non-constant coefficients. According
to Vieta’s formulas, the k-th elementary symmetric polynomial of x, ek(x), is the sum of all products
of k distinct xi’s, and similarly ek(y) for y. If r − q = c, it implies that the symmetric polynomials
derived from the roots of r and q are equal, ek(x) = ek(y).

Newton’s identities relate the elementary symmetric polynomials and the power sums as follows:

kek(x) =
k∑

i=1

(−1)i−1ek−i(x)pi(x), kek(y) =
k∑

i=1

(−1)i−1ek−i(y)pi(y).

where pi(x) is the i-power sums of the roots. Given that ek(x) = ek(y), we can equate the right-hand
sides of the above identities to obtain the power sums pi(x) and pi(y). This yields pk(x) = pk(y) for
each k, due to the recursive nature of Newton’s identities and the fact that the elementary symmetric
polynomials of x and y are equal for all k ≤ d.

Hence, pk(x) = pk(y) for all k = 0, . . . , d− 1, which concludes the proof.

Given f(p) as defined above, Lemma A.9 implies there exists disjoint u,v ∈ Rd such that
Mp(u;w, p) = Mp(v;w, p), for d − 1 unique values of p and for wi = 1/d. Moreover, suppose
that for a set {pi}i∈[d] there exist u,v ∈ Rd and w ∈ ∆d−1 such that Mp(u;w, pi) = Mp(v;w, pi).
Then, for any λ > 0, there exist u′,v′ ∈ Rd such that Mp(u

′;w, λpi) = Mp(v
′;w, λpi).

Lemma A.10 (Jameson [9], Theorem 3.4). For any k < d and p1 < . . . < pk ∈ R, there exist
u,v ∈ Rd

+ and w ∈ ∆d−1 such that Mp(u;w, pi) = Mp(v;w, pi) for each i ≤ k. Furthermore,
the difference Mp(u;w, pi)−Mp(v;w, pi) does not change sign within any interval (pi, pi+1).

We now proceed to the proof of Lemma 4.1, which bounds the VC dimensions of the function classes
Cw,d and Cd.

Proof of Lemma 4.1 Part (a). As there are at most 2d− 1 roots to f(p), there can be at most 2d− 1
sign changes as p varies from−∞ to∞. Consequently, the hypothesis class defined by all p (denoted
asMw,d) is a subset of the hypothesis class that consists of at most 2d− 1 sign changes on the real
line. This larger hypothesis class is denoted byHd, and we have VC(Mw,d) ≤ VC(Hd).

Let us consider m samples {ui,vi}mi=1. For each sample, sign changes occur at most 2d− 1 times,
and hence the total number of changes in labeling over the entire real line is bounded by (2d− 1)m
(as p changes, each change in labeling corresponds to a change in sign for at least one of the samples).
This implies that the total number of possible labelings is (2d− 1)m+ 1.

17

If the set of m samples is shattered, the upper bound derived above should be at least as large as the
total number of labelings possible. We thus have:

(2d− 1)m+ 1 ≥ 2m

We can show that m = 2(⌈log2 d⌉+ 1) points cannot be shattered. Consider

2m − (2d− 1)m− 1 = 22(⌈log2 d⌉+1) − 2(2d− 1)(⌈log2 d⌉+ 1)− 1

≥ 22(log2 d+1) − 4d⌈log2 d⌉+ 2⌈log2 d⌉ − 4d+ 1

= 4d2 − 4d⌈log2 d⌉+ 2⌈log2 d⌉ − 4d+ 1

= 4d(d− ⌈log2 d⌉)− 4d+ 2⌈log2 d⌉+ 1

≥ 4d− 4d+ 2⌈log2 d⌉+ 1 (d− ⌈log2 d⌉ ≥ 1∀d ∈ N)
= ⌈2 log2 d⌉+ 1 > 0

Thus, m > 2(log2 d+ 1) points cannot be shattered, meaning that V C(Hd) < 2(log2 d+ 1).

We now bound the VC dimension for the unknown weight case. Consider p ̸= 0. In this case, a
hypothesis C((u,v);w, p) can be expressed as

sign

 log
(∑d

i=1 wiu
p
i

)
− log

(∑d
i=1 wiv

p
i

)
p

 = sign (p) sign

(
log

(
d∑

i=1

wiu
p
i

)
− log

(
d∑

i=1

wiv
p
i

))

= sign (p) sign

((
d∑

i=1

wiu
p
i

)
−

(
d∑

i=1

wiv
p
i

))
(log is increasing)

= sign (p) sign (⟨w,up − vp⟩) = sign (⟨w, sign (p) (up − vp)⟩)

where up = (u
p
1 · · · up

d)
T . Thus, for a fixed p, the set of viable w’s spans a halfspace. We note

that each component of sign (p) (up − vp) is continuous, which means that ⟨w, sign (p) (up − vp)⟩
is a continuous function in w and p.

For n > d samples {((ui,vi), yi}ni=1, we define hi(p) = sign (p) (up − vp) , i ∈ [n], p ̸= 0. For a
fixed p, we note that the set of possible labelings for w ∈ ∆d−1 is a subset of the set of possible
labelings for w ∈ Rd, which in turn is the set of labelings generated by n hyperplanes. Since this
problem has VC dimension d, the number of possible labelings for a fixed p is upper bounded by
(n+ 1)d. Let B(p) denote the set of possible labelings for hyperplanes defined by {hi(p)}ni=1 for a
particular p.

Lemma A.11. Let p1 and p2 have the same sign, with a labeling ℓ ∈ {±1}n such that ℓ ̸∈ B(p1)
but ℓ ∈ B(p2). Then, there is a p ∈ [p1, p2] such that there is a set of d linearly dependent vectors
h(1)(p), . . . ,h(d)(p).

Proof. Let ℓ be the labeling which is in B(p2) but not in B(p1). Since this labeling is not in B(p1),
for each w, there is some hyperplane hi(p1) such that ℓi ⟨w,hi(p1)⟩ < 0. Since this labeling is in
B(p2), there is some w such that ℓi ⟨w,hi(p2)⟩ ≥ 0 for every i ∈ [n].

Let B ⊂ Rd denote the unit hypersphere around the origin. Since the labelings are invariant to the
scale of w, the set of possible labelings for w ∈ Rd is exactly the set of possible labelings for w ∈ B

Consider the quantity m(p) = maxw∈B mini ℓi ⟨w,hi(p)⟩. We observe that if m(p) < 0, for
each w there is some i ∈ [n] such that ℓi ⟨w,hi(p)⟩ < 0, i.e., the labeling is not attained at any
point. On the other hand, if m(p) ≥ 0, there is some w such that the labeling is attained at w.
Since ℓi ⟨w,hi(p)⟩ is a continuous function in w and p for all i ∈ [n], mini ℓi ⟨w,hi(p)⟩ is also a
continuous function in w and p. Thus, m(p) is also a continuous function in p.

Using this fact and the intermediate value theorem, there should be some p ∈ [p1, p2] such that
m(p) = 0. Let w∗ ∈ B be a vector at which m(p) = 0 is attained. We now show that at this p, at
least d of the n vectors {hi(p)}ni=1 are linearly dependent.

18

Suppose this were not the case, i.e., any set of d vectors in the set is linearly independent. This means
that at most d − 1 of the vectors lie on the hyperplane {x : ⟨w,x⟩ = 0}. Let h(1)(p), . . . ,h(k)(p)
denote these vectors, with k ≤ d− 1. Since m(p) = 0, there should be at least one such vector. Let
H ∈ Rk×d be the matrix with these vectors as the rows.

If these k vectors are linearly dependent, we can add any of the remaining n − k vectors to get a
set of d linearly dependent vectors. Let us consider the case where they are not linearly dependent.
Consider {x : Hx = 1k}. This is an underdetermined set of linear equations, and the set should be
non-empty (because of linear independence of the k vectors). Let x0 be one of the vectors in this set.

Let t > maxi∈[n]− ⟨w,hi(p)⟩
⟨x0,hi(p)⟩ . We have

⟨w + tx0, hi(p)⟩ = ⟨w, hi(p)⟩+ t ⟨x0, hi(p)⟩

> ⟨w, hi(p)⟩ −max
j∈[n]

⟨w,hj(p)⟩
⟨x0,hj(p)⟩

⟨x0,hi(p)⟩

≥ ⟨w, hi(p)⟩ −
⟨w,hi(p)⟩
⟨x0,hi(p)⟩

⟨x0,hi(p)⟩

= 0

Thus, w + tx0 is a point such that ⟨w + tx0,hi(p)⟩ > 0 for all i ∈ [n]. This means that
m(p) > 0, which is a contradiction. Intuitively, this means that if any d vectors in {hi(p)}ni=1
are linearly independent, then m(p) > 0. Thus, there should be a set of d linearly dependent vectors
h(1)(p), . . . , h(d)(p).

From the above lemma, we observe that any change in the set of labelings is accompanied by a p
which gives d linearly dependent vectors.

Proof of Lemma 4.1 Part (b). Using the lemma above, to bound the number of possible labelings,
we first bound the number of p’s such that there are d linearly dependent vectors.

Consider a set of d vectors h1(p), . . . , hd(p). As the vectors are linearly dependent, the determinant
of the matrix constructed using these vectors should be zero. We should thus have∣∣∣∣∣∣∣

sign (p) (up
11 − vp11) · · · sign (p) (up

1d − vp1d)
...

. . .
...

sign (p) (up
d1 − vp11) · · · sign (p) (up

1d − vpdd)

∣∣∣∣∣∣∣ = 0

Upon expanding the determinant, we get an equation of the form
∑m

i=1 aiu
p
i which has 2d · d! terms.

From an earlier lemma, we know that this equation should have at most 2d ·d!−1 roots. Upon adding
the original configuration, we get 2d · d! possible configurations. The choice of the d vectors can be
made in

(
n
d

)
ways, and hence we have a bound on the possible changes as 2dd!

(
n
d

)
. In the worst case,

we assume that all the labelings are changed, and we thus get an upper bound on the changes as

(n+ 1)d2dd!

(
n

d

)
In the beginning of the proof, we had carefully set aside p = 0. We now observe that p = 0 is a root
of the above system of equations. Thus, we are implicitly considering any possible changes at p = 0
as well.

We can show that n = 8(⌈d log2 d⌉+ 1) points cannot be shattered.

(n+ 1)d2dd!

(
n

d

)
= (n+ 1)d2d · n(n− 1) . . . (n− d+ 1)

> (n+ 1)2dn2d−1

> 2d−1n2d

19

We now show that for every d ∈ N, the inequality 2d−1n2d ≤ 2n holds, i.e. n−d−2d log2 n+1 > 0
for n = 8(⌈d log2 d⌉ + 1). For d ∈ {1, 2}, this statement can be verified directly. Therefore, it
suffices to show that f(x) := 8(x log2 x+ 1)− 2x log2[8(x log2 x+ 1)]− x+ 1 > 0 for any x ≥ 3.

f(x) > 8x log2 x− 2x log2(16x log2 x)− x+ 9 (x log2 x > 1)

= 6x log2 x− 2x log2(log2 x)− 9x+ 9

> 4x log2 x− 9x+ 9 = g(x)

We note that g(3) = 12 log2 3 − 18 > 1 > 0. Moreover, g′(x) = 4 log2 x + 4/ log 2 − 9, and
we note that g′(2) = 4/ log 2 − 5 > 0.77 > 0, with g′(x) being an increasing function. Thus,
f(x) > g(x) > 0 for all x ≥ 3. This means that f(x) > 0, which proves our bound. This implies
that the VC dimension is bounded above by 8(d log2 d+ 1)

Proof of Lemma 4.1 Part (c). Take m = log2(d) + 1. Let σ1, . . . , σ2m ∈ {±1}m be a Gray code
ordering of the set {±1}m, such that two successive values have a Hamming distance of 1, and
that the number of changes in different bit positions is at most 2m

2 ≤ d (for the existence of such
an ordering, see [2]). For i < 2m, denote by si ∈ [m] the bit position in which σi and σi+1 differ.
By using Lemma A.10 d times, there exists a sample {ui,vi}mi=1 and p1 < . . . < p2m−1 , where
pi satisfies ∥uj∥pi

= ∥vj∥pi
if si = j. Furthermore, define p0 = −∞, and note that each interval

(pi, pi+1) for 0 ≤ i < 2m corresponds to a unique combination of labels over {ui,vi}mi=1.

When the weights are unknown, we observe that p = 1 is similar to the case of linear classification
with the constraint of positive weights and no bias term. This is because

C((u,v);w, 1) = sign (logM(u;w, 1)− logM(v, 1))

= sign (M(u;w, 1)−M(v;w, 1)) (log is increasing)

= sign

(
d∑

i=1

wi(ui − vi)

)
Since linear classification with no bias term has a VC dimension of d− 1, this is a lower bound for
the VC dimension of Cw,d.

A.7 Proof of Theorem 4.3

Proof. We prove the result for unknown weights, with the known weights result following similar
steps. We consider the function class Cd as in Section 4, with ℓ0−1 loss being ℓ0−1(t, y) = (1 +
ty)/2, t, y ∈ {±1}. We observe that ℓ0−1 is 1/2 Lipschitz w.r.t. t. Thus, by applying Theorem 3 of
Natarajan et al. [15], we observe that w.r.t. ℓ0−1 on the noiseless data distribution,

R(ŵ, p̂)−R(w, p) ≤ 4LρR̂(Cd) + 2

√
log(1/δ)

2n
(2)

where Lρ = (1+ |ρ+1 − ρ−1|)L/(1− ρ+1− ρ−1). Here, ρ+1 and ρ−1 are defined as the probability
of mislabeling true positive and true negative examples, which in our case are the same value, ρ. Thus,
Lρ = 1/(2(1− 2ρ)) in our case. We obtain R̂(Cd) using the VC bound on Rademacher complexity:

R̂(Cd) ≤
√

16(d log2 d+ 1) log(n+ 1)

n
Substituting it in 2 concludes our proof.

A.8 Proof of Theorem 5.1

Proof. We prove the result for unknown weights, with the case for known weights
following similar steps. We first establish a bound on the Rademacher complex-
ity of Tw,d = {τ (logM(·;w, p)− logM(·;w, p)) |τ, p}. Let logM(ui;w, p) =
log ui(1) + log(ui(d)/ui(1)) logM(ri;w, q), and logM(vi;w, p) = log vi(1) +
log(vi(d)/vi(1)) logM(r′i;w, q).

R̂(Td) =
1

n
Eϵ

[
sup
τ,w,p

n∑
i=1

ϵiτ (logM(ui;w, p)− logM(vi;w, p))

]

20

≤ 1

n
Eϵ

[
sup
τ,w,p

n∑
i=1

ϵiτ logM(ui;w, p)

]
+

1

n
Eϵ

[
sup
τ,w,p

n∑
i=1

(−ϵi)τ logM(vi;w, p)

]

≤ 1

n
Eϵ

[
sup
τ,w,p

n∑
i=1

ϵiτ logM(ui;w, p)

]
+

1

n
Eϵ

[
sup
τ,w,p

n∑
i=1

ϵiτ logM(vi;w, p)

]

≤ 1

n
Eϵ

[
sup
τ,w,p

n∑
i=1

ϵiτ
(
log ui(1) + log(ui(d)/ui(1)) logM(ri;w, q)

)]

+
1

n
Eϵ

[
sup
τ,w,p

n∑
i=1

ϵiτ
(
log vi(1) + log(vi(d)/vi(1)) logM(r′i;w, q)

)]

=
1

n
Eϵ

[
sup
τ,w,p

n∑
i=1

ϵiτ log(ui(d)/ui(1)) logM(ri;w, q)

]

+
1

n
Eϵ

[
sup
τ,w,p

n∑
i=1

ϵiτ log(vi(d)/vi(1)) logM(r′i;w, q)

]

≤ 1

n
Eϵ

[
sup
τ,w,p

∣∣∣∣∣
n∑

i=1

ϵiτ log(ui(d)/ui(1)) logM(ri;w, q)

∣∣∣∣∣
]

+
1

n
Eϵ

[
sup
τ,w,p

∣∣∣∣∣
n∑

i=1

ϵiτ log(vi(d)/vi(1)) logM(r′i;w, q)

∣∣∣∣∣
]

=
1

n
log

(
ui(d)

ui(1)

)
Eϵ

[
sup
τ,w,p

∣∣∣∣∣
n∑

i=1

ϵiτ logM(ri;w, q)

∣∣∣∣∣
]

+
1

n
log

(
vi(d)

vi(1)

)
Eϵ

[
sup
τ,w,p

∣∣∣∣∣
n∑

i=1

ϵiτ logM(r′i;w, q)

∣∣∣∣∣
]

≤ κ

n
Eϵ

[
sup
τ,w,p

∣∣∣∣∣
n∑

i=1

ϵiτ logM(ri;w, q)

∣∣∣∣∣
]
+

κ

n
Eϵ

[
sup
τ,w,p

∣∣∣∣∣
n∑

i=1

ϵiτ logM(r′i;w, q)

∣∣∣∣∣
]

≤ τmaxκ

n
Eϵ

[
sup
τ,w,p

∣∣∣∣∣
n∑

i=1

ϵi logM(ri;w, q)

∣∣∣∣∣
]
+

τmaxκ

n
Eϵ

[
sup
τ,w,p

∣∣∣∣∣
n∑

i=1

ϵi logM(r′i;w, q)

∣∣∣∣∣
]

= 2τmaxκR̂abs(Sd)

We now use the bound on R̂abs(Sd) from Appendix A.4 to get the following bound on R̂(Td)

R̂(Td) ≤ 2τmaxκ

(√
2 log 2 + 16(d log2 d+ 1) log n

n
+

c√
n

)
We then use the uniform convergence bounds obtained using Rademacher complexity to obtain the
following PAC bound:

R(ŵ, p̂)−R(w, p) =
(
R̂n(ŵ, p̂)− R̂n(w, p)

)
+
(
R̂n(w, p)−R(w, p)

)
+
(
R(ŵ, p̂)− R̂n(ŵ, p̂)

)
≤ 0 + ϵ+ ϵ = 2ϵ

= 8κR̂(Td) + 6

√
log(4/δ)

2n

B Algorithm

Our algorithm can be broken into two nested steps. The first step consists of choosing p, and the
second step involves conducting gradient descent on w (and possibly τ) to obtain their empirically

21

optimal values, ŵ and p̂. In our experiments we choose p using grid search. However, optimization
over p can also be done using other methods like simulated annealing. We minimize the ℓ2 loss in the
cardinal case with weighted power mean and the logistic loss in the ordinal case with log weighted
power mean. The algorithm’s pseudocode is presented in Algorithm 1.

Algorithm 1 ERM algorithm for weighted power mean-based optimization

Require: D = {(xi, yi)}ni=1
ŵ← 1/d
vbest ← 0
p̂← 0
for p ∈ [plower, plower + ϵ, . . . , pupper − ϵ, pupper] do

v ← argminw
1
n

∑n
i=1 ℓ(M(ui;w, p), yi)

w̃← argminw
1
n

∑n
i=1 ℓ(M(ui;w, p), yi)

if v < vbest then
ŵ← w̃
vbest ← v

end if
end for
Return ŵ, vbest

Note that for the ordinal case, we would optimize over τ along with w. For our experiments, we set
plower = −3.5 and pupper = 3.5. We use a grid resolution of ϵ = 0.1. Since the function is not convex,
we use several tricks to ensure quick convergence:

• While we use Algorithm 1 from [5] for projection onto the simplex, it can potentially be
time consuming. Thus, we project the gradient∇wℓ itself on the unit simplex and use it for
gradient descent, with the simplex projection algorithm being used only when some weights
become too small/negative.

• To prevent the algorithm from taking excessively large steps, we use the learning rate to clip
the norm of the gradient. More specifically, if gt is the gradient and λ is the learning rate,
we use the update

gt+1 = gt −min {λ, ∥gt∥2} ·
gt
∥gt∥2

• If the optimal value hasn’t improved in a certain number of iterations, the algorithm may
be oscillating above the minimum. We thus halve the learning rate to encourage better
convergence.

• If the learning rate becomes too small, the steps taken would be too small to change the loss
significantly. Thus, we terminate the algorithm. We also terminate the algorithm if the range
of the past few losses is too small.

• We also conduct gradient descent parallely starting from d + 1 points. The d + 1 points
correspond to points close to the vertices of the simplex (corresponding to almost one-hot
vectors) and the centroid of the simplex. This was done since convergence was observed to
be slow for certain weights. At each step, vbest is updated according to the point giving the
minimum loss.

We ran the experiments on an NVIDIA RTX A5000 GPU. The algorithm with the above settings
takes about 30 minutes to check for all 71 values of p.

C Semi-synthetic Experiments: Further Information

22

C.1 Cardinal Case: More Results

50 100 200 400 800
Number of samples

10 7

10 6

10 5

10 4

10 3

10 2

Tr
ai

n
lo

ss

(a) Train loss

50 100 200 400 800
Number of samples

10 6

10 5

10 4

10 3

Te
st

 lo
ss

 (n
oi

se
le

ss
)

(b) Noiseless test loss

0.0 0.001 0.01 0.1 0.167

Figure 3: More results for cardinal case with number of samples. Different lines show results for
different values of added noise. Solid lines correspond to values for learnt parameters, whereas dotted
lines correspond to values for real parameters. All plots are on log-log scale.

C.2 Ordinal Case: More Results

500 1000 2000 4000 8000
Number of samples

10 1

Tr
ai

n
lo

ss

(a) Train loss

500 1000 2000 4000 8000
Number of samples

2.5

2.0

1.5

1.0

0.5

Va
lu

e
of

 p

(b) Learnt p

500 1000 2000 4000 8000
Number of samples

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

(c) Test accuracy

500 1000 2000 4000 8000
Number of samples

10 1

100

Te
st

 lo
ss

 (n
oi

se
le

ss
)

(d) Noiseless test loss

0.1 1.0 10.0 40.0 100.0

Figure 4: More results for ordinal case with number of samples. Different lines show results for
different values of τ . Solid lines correspond to values for learnt parameters, whereas dotted lines
correspond to values for real parameters. All plots except accuracy are on log-log scale

23

C.3 Ordinal Case: Positive p

500 1000 2000 4000 8000
Number of samples

10 2

10 1

Te
st

 lo
ss

(a) Test loss

500 1000 2000 4000 8000
Number of samples

10 3

10 2

10 1

100

101

KL
 d

iv
er

ge
nc

e

(b) KL(w∗∥w)

500 1000 2000 4000 8000
Number of samples

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 a
cc

ur
ac

y
(n

oi
se

le
ss

)

(c) Noiseless test accuracy

500 1000 2000 4000 8000
Number of samples

10 2

10 1

Tr
ai

n
lo

ss

(d) Train loss

500 1000 2000 4000 8000
Number of samples

1.5

2.0

2.5

3.0

Va
lu

e
of

 p

(e) Learnt p

500 1000 2000 4000 8000
Number of samples

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

(f) Test accuracy

500 1000 2000 4000 8000
Number of samples

10 2

10 1

Te
st

 lo
ss

 (n
oi

se
le

ss
)

(g) Noiseless test loss

0.1 1.0 10.0 40.0 100.0

Figure 5: More results for ordinal case with p = 1.62. Different lines show results for different
values of τ . Solid lines correspond to values for learnt parameters, whereas dotted lines correspond
to values for real parameters. All plots except accuracy are on log-log scale

D Additional Plots

Figure 6 shows a pair of utility vectors (u,v) such that with w = 1d/d, logM(u;w, p) −
logM(v;w, p) is non-convex. Upon slightly changing the value of v to v′, we see that there
can be significant change in the region {p : logM(u;w, p)− logM(v;w, p) > 0}

E Simulations

We conduct additional simulations on cardinal and ordinal data with logistic noise. For each d and
n, we construct a dataset in a pre-specified range [umin, umax]

d = [1, 1000]d. Each individual i

24

1 2 3 4 5 6
p

0.5

0.0

0.5

1.0

1.5

D
iff

er
en

ce
 in

 lo
g

po
w

er
 m

ea
ns

1e 6

(u, v)
(u, v′)

Figure 6: An example showing the non-convexity of logM(u,w, p)− logM(v,w, p). We see that
the function has five roots for (u,v), but is translated downwards for (u,v′) and has only three
roots in this case. If the correct label is 1 for both pairs, then p should be greater than 6; however,
gradient-based optimization can stop between 3 and 4, which is a local optimum and does not give
correct labels to both points.

is assumed to have a scaled and translated beta distribution over [umin, umax] with the parameters
(αi, βi) of the beta distribution being different for each i. The utilities for each action are drawn
independently for each individual to construct a utility vector. The underlying weight vector is
sampled uniformly from ∆d−1.

To learn p (and w if needed), we first assume p to be in a fixed range, which in this case is [−10, 10].
We first conduct a random sampling stage, in which Nrandom instances of p (and w) are uniformly
randomly sampled. At the end of this stage, we pick the set of parameters giving the lowest training
loss, and then conduct gradient descent for Ngrad steps. We observe that this simple two-stage method
is able to provide good results for the range of values of d we consider. Each setting is run thrice to
obtain error bounds on the empirical results.

For the unknown weights case, we observe that we are sampling in d dimensions. As d becomes larger,
we increasingly suffer from the curse of dimensionality —Nrandom would have to grow exponentially
with d to ensure that we are sampling at the same density across different d. This makes sampling
at the same density prohibitively expensive for larger dimensions. As a compromise, we increase
Nrandom linearly with d.

E.1 Cardinal Values

For cardinal values, we further add Gaussian noise to each yi with standard deviation (u(d)−u(1))/10
and clamp the values between [u(1), u(d)]. We conduct experiments for both known and unknown
weights by setting p = −2. Figure 7a (known weights) and Figure 7b (unknown weights) show the
estimated test loss on noiseless test data generated using the true parameters.

We observe that there is relatively little change in the difference of test losses for the case of known
weights as n increases. On the other hand, there is greater decrease with increasing n for higher d
when the weights are also being learned. The estimated test loss also increases with d, with the trend
being stronger for the case of unknown weights.

E.2 Logistic Noise

For logistic noise, we generate pairs of utility vectors with p = 0.9 and a w obtained through random
sampling, and then mislabel each instance according to Equation (1) with τ∗ = 10. Since we also
have to learn τ , we set τmax = 50, a sufficiently high value, and uniformly randomly sample it along
with p (and w). Figure 7a (known weights) and Figure 7b (unknown weights) show the accuracy on
noiseless test data of the learned parameters. Across the different settings, the proportion of correctly
labeled samples in the training dataset has mean 71.4%, with a maximum value of 86.5%.

For known weights, we observe that accuracy increases with n, and mean accuracy stays high
(> 93%) across d. There is limited distinction between the curves corresponding to different values

25

10
2

10
3

10
4

n

0.00

0.02

0.04

0.06

0.08

Es
tim

at
ed

 (n
oi

se
le

ss
) T

es
t L

os
s

(a) Cardinal social welfare values, known
weights

10
2

10
3

10
4

n

0.00

0.05

0.10

0.15

0.20

Es
tim

at
ed

 (n
oi

se
le

ss
) T

es
t L

os
s

(b) Cardinal social welfare values, unknown
weights

10
2

10
3

10
4

n

0.92

0.94

0.96

0.98

1.00

Te
st

 A
cc

ur
ac

y
(n

oi
se

le
ss

)

(c) Pairwise comparisons with logistic noise,
known weights

10
2

10
3

10
4

n

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y
(n

oi
se

le
ss

)
(d) Pairwise comparisons with logistic noise,
unknown weights

d = 5 d = 10 d = 25 d = 50

Figure 7: Results for synthetic data on cardinal and ordinal logistic tasks

of d, with all of them approaching near-perfect accuracy as n becomes very high. This suggests
that the error bounds in this case should be independent of d. For unknown weights, there is a
clear trend of decreasing performance with an increase in d, which is expected because of the
O(
√
d log d) dependence of logistic loss error bounds. Nevertheless, all settings achieve very high

accuracy as n increases. Thus, we observe that up to moderately high d, the logistic noise model finds
highly accurate parameters using this simple algorithm, despite the training data having significant
mislabeling. We provide empirical verification of our theoretical O(d log d) dependence of risk on
sample complexity by re-scaling our plots in 8

0 5 10 15 20 25
= n/(dlog nlog d)

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y
(n

oi
se

le
ss

)

d
5
10
25
50

Figure 8: Verification of O(d log d) risk bound for ordinal case with logistic noise, unknown weights

In Figure 8 we re-plot the test accuracy α on noiseless data against η =
√

n/(d log n log d), a
differently scaled version of Figure 7d. Theoretically, α and η are related as 1− α = O(1/η). The
alignment of all curves in Figure 8 as compared to the original curves in Figure 7d provides evidence
that our risk and sample complexity bounds indeed scale as d log n log d for the ordinal case with
logistic noise and unknown weights.

26

	Introduction
	Problem Setup
	Cardinal Social Welfare
	Pairwise Preference Between Actions
	Convergence Bounds Under I.I.D Noise

	Pairwise Preference With Logistic Noise
	Empirical Results
	Discussion
	Deferred Proofs
	Proof of Lemma 2.1
	Quasiconvexity of 2 loss
	Quasilinearity of logistic loss

	Lemma A.1
	Proof of Lemma 3.1
	Lemma A.7: Rademacher complexity bound for cardinal case
	Proof for Theorem 3.2
	Proof of Lemma 4.1
	Proof of Theorem 4.3
	Proof of Theorem 5.1

	Algorithm
	Semi-synthetic Experiments: Further Information
	Cardinal Case: More Results
	Ordinal Case: More Results
	Ordinal Case: Positive p

	Additional Plots
	Simulations
	Cardinal Values
	Logistic Noise

